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Abstract. Kenzo is a Computer Algebra system devoted to Algebraic
Topology, and written in the Common Lisp programming language. It is
a descendant of a previous system called EAT (for Effective Algebraic
Topology). Kenzo shows a much better performance than EAT due,
among other reasons, to a smart encoding of degeneracy lists as integers.
In this paper, we give a complete automated proof of the correctness of
this encoding used in Kenzo. The proof is carried out using ACL2, a sys-
tem for proving properties of programs written in (a subset of) Common
Lisp. The most interesting idea, from a methodological point of view, is
our use of EAT to build a model on which the verification is carried out.
Thus, EAT, which is logically simpler but less efficient than Kenzo, acts
as a mathematical model and then Kenzo is formally verified against it.

1 Introduction

The Kenzo system [8] is a Common Lisp program, developed by F. Sergeraert
and devoted to Algebraic Topology. It was written mainly as a research tool
and has got relevant results which have not been confirmed nor refuted by any
other means. Being a compact program (around 16000 lines of Common Lisp,
implementing complicated algorithms), the question of Kenzo reliability (beyond
testing) came up in a natural way.

Several approaches based on Formal Methods have been used to undertake
this problem, ranging from the Algebraic Specification of its data structures
([12], [7], and recently computer aided with Coq [6]) to the application of Proof
Assistants to study the correctness of algorithms implemented in Kenzo. In this
second line, the most important contributions have been the Isabelle/HOL proof
of the Basic Perturbation Lemma [3] and the project by Coquand and Spiwack
which is based on Constructive Type Theory and Coq [5]. As it is well-know, Coq
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proofs carry their corresponding programs, and also some work has been done to
produce running code from Isabelle/HOL proofs in this context [4]. Nevertheless,
the extracted programs are not comparable with the real Kenzo system, both
from the efficiency and the programming languages points of view (OCaML or
ML code instead of Common Lisp).

Due to this drawback of the approaches based on Isabelle and Coq, a new
research line was launched, focused on the ACL2 theorem prover. ACL2 is orien-
ted to prove properties of Common Lisp programs, and thus it could seem, at
first sight, very promising to verify Kenzo. Nevertheless, since the ACL2 logic is
first-order, the full verification of Kenzo is not possible, since it uses intensively
higher order functional programming (to encode, in particular, topological spaces
of infinite dimension). This observation, however, does not close the possibility
of verifying first order fragments of Kenzo with ACL2. Some preliminary works
in this line have been published in [1] and [2]. It is worth noting that in those
papers we undertake the problem of verifying some Common Lisp programs
about simplicial topology (in particular, algebraic manipulation and simplicial
properties of Kenzo algorithms), but that no actual Kenzo fragment was studied.

In this paper we present for the first time the verification of a Kenzo fragment
within the ACL2 theorem prover. The verified fragment is small in number of
lines, but it is central to the efficiency got by Kenzo. This is compared to the pre-
decessor of Kenzo, another Common Lisp system called EAT [15], based on the
same Sergeraert’s ideas, but whose performance was much poorer than that of
Kenzo. One of the reasons why Kenzo performs better than EAT is because of a
smart encoding of degeneracy lists. These combinatorial objects are usually pre-
sented in the Simplicial Topology literature as decreasing lists of natural num-
bers, and so they were encoded in EAT. On the contrary, in Kenzo degeneracy
lists are encoded as natural numbers. Since to generate and compose degeneracy
lists are operations which appear in an exponential manner in most Kenzo calcu-
lations (through the Eilenberg-Zilber theorem [14]), it is clear that the benefits of
having a better way for storing and processing degeneracy lists is very important.
But, on the negative side, the algorithms are somehow obscured in Kenzo, with
respect to the clean and comprehensible approach in EAT. Therefore, to prove
the correctness of the implementation of degeneracy algorithms in Kenzo seems
to be a good test-bed to apply computer-aided formal methods.

A complete ACL2 proof of the correctness of the degeneracy programs in
Kenzo is described in this paper. The main methodological contribution of the
proof is, in our opinion, using EAT to build a model with respect to the veri-
fication is carried out. Thus, EAT, which is logically simpler (i.e., easier to be
verified) but less efficient than Kenzo, acts as a mathematical model and then
Kenzo is formally verified against it.

The organization of the rest of the paper is as follows. In Section 2, we in-
troduce briefly both Simplicial Topology and the role of degeneracy operators
in it. In Section 3, we give a brief introduction to the ACL2 system. Even if a
first order fragment of Kenzo (and EAT) has been chosen, the Kenzo functions
cannot be directly defined in ACL2 (due to Common Lisp features, like loops



or destructive updates, which are not available in ACL2). Thus, in Section 4 we
explain how to obtain actual ACL2 functions from Kenzo and EAT degeneracy
programs, in a safe and reliable way. Sections 5 and 6 are devoted to the descrip-
tion of the ACL2 proof of correctness and other important properties. Finally
we comment some conclusions and point out possible further work.

Due to the lack of space, we will not give here details about the proofs obtained
and some function definitions will be omitted. The interested reader may consult
[13], where the complete development is available.

2 The Role of Degeneracy Operators in Simplicial
Topology

Simplicial Topology [14] is a subarea of Topology devoted to replace topologi-
cal spaces by combinatorial models, in order to ease their study. The simplest
combinatorial model of a topological space is a simplicial complex. Let V be a
set together with a partial order < on it. A n-simplex is a list [v0, v1, . . . , vn]
where v0 < v1 < . . . < vn are elements of V . For each index i we consider the
i-face operator ∂i that given a n-simplex constructs a (n−1)-simplex deleting the
element at position i. A simplicial complex K (over (V, <)) is a set of simplices
closed with respect to the face operators.

Each n-simplex can be realized as an affine geometrical simplex (for instance,
a 0-simplex is realized as a point, a 1-simplex as a segment, a 2-simplex as a tri-
angle, a 3-simplex as a tetrahedron and so on). Thus, simplicial complexes are
models for triangulated spaces, which are a class of topological spaces sufficiently
large to develop much of the general and algebraic topology. Nevertheless, simpli-
cial complexes have a severe drawback: one needs many simplices to model rela-
tively simple spaces. For instance, to model a sphere with a tetrahedron we need
4 vertices, 6 edges and 4 triangles. Since the topological notions are quite flexi-
ble, we could use a much more efficient way of representing a sphere: by means
of a triangle where all the edges and vertices are collapsed to just one point. The
problem with this new representation is the “dimension jump”: there is one ele-
ment of dimension 2 (the triangle) and one element of dimension 0 (the point),
and then this set of simplices is not closed with respect to the face operators.

The solution to this problem is to move from simplicial complexes to sim-
plicial sets. In addition to the face operators, new operators of degeneracy are
considered. These operators create “artificial” simplexes (with no geometrical
meaning) but allowing “jumping” among dimensions. To give an idea of this so-
phisticated instrument let us comment briefly on how a simplicial complex can
be viewed as a simplicial set. The trick is to accept simplexes that are ordered
but not necessarily strictly ordered; that is, repeated elements are allowed. Then
for each index i with 0≤ i≤n, we define the i-degeneracy operator ηi that given
a n-simplex constructs a (n+1)-simplex repeating the element at position i.

Based on this idea, we define a simplicial set as a graded set {Kq}q∈N of
abstract simplexes (i.e. not necessarily lists of elements) with the i-face and
i-degeneracy operators, satisfying the following simplicial identities (see [14] for
details):



∀i < j ∂i∂j = ∂j−1∂i

∀i ≤ j ηiηj = ηj+1ηi (1)
∀i < j ∂iηj = ηj−1∂i

∀i, j ∂iηi = Id = ∂j+1ηj

∀i > j + 1 ∂iηj = ηj∂i−1

A simplicial set represents a topological space in a much less expensive
manner than a simplicial complex. For instance, a sphere of dimension n can
be represented with just two non-degenerate simplices: one in dimension n and
other in dimension 0 (geometrically, all the faces on the affine n-simplex are
collapsed over a unique point, producing a topological sphere; think in a seg-
ment where the two extremes are identified, producing a circle, a 1-sphere).

A simplex is degenerate if it is obtained as the application of some operator ηi.
It could be proved that given a simplex x there exists a unique non-degenerate
simplex y and a unique strictly decreasing list of natural numbers [i0, i1, . . . , in]
such that ηi0ηi1 . . . ηin(y) = x. (This fundamental result of Simplicial Topology
has been proved in ACL2 as documented in [2]). We call this list of indices
[i0, i1, . . . , in] a degeneracy list and we say that x is obtained applying the de-
generacy list [i0, i1, . . . , in] to y.

In general, the application of degeneracy lists to simplexes is a very common
operation in Kenzo, even for degenerate simplexes. Let us note that the appli-
cation of a degeneracy list [i0, . . . , in] to an degenerate simplex x, that is the
result of applying another degeneracy list [j0, . . . , jm] to a non-degenerate sim-
plex y, is the result of applying the composition of the two degeneracy lists,
[i0, . . . , in] ◦ [j0, . . . , jm], to y. The composition of two degeneracy lists is de-
fined as the composition of the degeneracy operators: [i0, . . . , in] ◦ [j0, . . . , jm] =
ηi0 . . . ηinηj0 . . . ηjm ; repeatedly applying equation (1) above, this could be trans-
formed again into a degeneracy list. The implementation in Kenzo of this com-
position operation is central in the system as a whole. For example, the com-
position of the degeneracy lists [3, 1] and [5, 3, 0] is η3η1η5η3η0, and applying
repeatedly the equation ηiηj = ηj+1ηi, when i ≤ j, we successively obtain
η3η6η1η3η0, η3η6η4η1η0, η7η3η4η1η0 and finally η7η5η3η1η0, that is, the degene-
racy list [7, 5, 3, 1, 0].

The strategy Sergeraert devised was to interpret a degeneracy list [i0, . . . , in]
as a binary representation of an integer. He stores the degeneracies as integers
(with the corresponding memory saving) and implements the composition of
degeneracy lists by using very efficient Common Lisp primitives dealing with
binary numbers (like logxor, ash, and so on). This is one of the reasons why
Kenzo improves dramatically the performance of its predecessor EAT. Neverthe-
less, this efficient composition operator called dgop*dgop in Kenzo has a more
obscure semantics than its corresponding in EAT, called cmp-ls-ls. This paper
is devoted to describe the certification in ACL2 of the correctness of dgop*dgop,
using cmp-ls-ls as a formal specification, and then proving additional proper-
ties like equation (1) of simplicial sets or associativity of dgop*dgop.



3 An Introduction to the ACL2 System

ACL2 ([10],[11]) stands for “A Computational Logic for an Applicative Common
Lisp”. Roughly speaking, ACL2 is a programming language, a logic and a theo-
rem prover. Thus, the system constitutes an environment in which algorithms
can be defined and executed, and their properties can be formally specified and
proved with the assistance of a mechanical theorem prover.

As a programming language, it is an extension of an applicative subset of
Common Lisp1 [16]. The logic considers every function defined in the pro-
gramming language as a first-order function in the mathematical sense. For
that reason, the programming language is restricted to the applicative subset of
Common Lisp. This means, for example, that there are no side-effects, no global
variables, no destructive updates and no higher-order features. Even with these
restrictions, there is a close connection between ACL2 and Common Lisp: ACL2
primitives that are also Common Lisp primitives behave exactly in the same
way, and this means that, in general, ACL2 programs can be executed in any
compliant Common Lisp.

The ACL2 logic is a first-order logic, in which formulas are written in prefix
notation; they are quantifier–free and the variables in it are implicitly universally
quantified. The logic includes axioms for propositional logic (with connectives
implies, and,. . . ), equality (equal) and those describing the behavior of a sub-
set of primitive Common Lisp functions. Rules of inference include those for
propositional logic, equality and instantiation of variables. The logic also pro-
vides a principle of proof by induction that allows to prove a conjecture splitting
it into cases and inductively assuming some instances of the conjecture that are
smaller with respect to some well–founded measure.

An interesting feature of ACL2 is that the same language is used to define
programs and to specify properties of those programs. Every time a function is
defined with defun, in addition to define a program, it is also introduced as an
axiom in the logic (whenever it is proved to terminate for every input). Theorems
and lemmas are stated in ACL2 by the defthm command, and this command
also starts a proof attempt in the ACL2 theorem prover.

The main proof techniques used by ACL2 in a proof attempt are simplification
and induction. The theorem prover is automatic in the sense that once defthm
is invoked, the user can no longer interact with the system. However, in a deeper
sense the system is interactive: very often non-trivial proofs are not found by
the system in a first attempt and then it is needed to guide the prover by adding
lemmas, suggested by a preconceived hand proof or by inspection of failed proofs.
These lemmas are then used as rewrite rules in subsequent proof attempts. This
kind of interaction with the system is called “The Method” by its authors.

4 From Kenzo and EAT to ACL2

Before giving the ACL2 definition of the composition of degeneracy lists (and the
statements of the theorems we have proved), let us present the Kenzo code for
1 In this paper, we will assume familiarity with Common Lisp.



that operation. As we have said before, Kenzo deals with degeneracy lists using
a smart encoding. Basically, every degeneracy list can be seen as the natural
number whose binary notation represents the characteristic function of the set
of elements of the list. Let us explain this with an example: the degeneracy list
[5, 3, 0] can equivalently be seen as the binary list [1, 0, 0, 1, 0, 1] in which 1 is in
position i if the number i is in the degeneracy list, 0 otherwise. This list, seen
as a binary number in the reverse order, is the natural number 41. Thus, Kenzo
encodes the above degeneracy list as 41.

Let us now explain how Kenzo implements composition of degeneracy lists.
This is better understood if we think first in the binary representation. Let
us consider the composition of the degeneracy lists [3, 1] and [5, 3, 0]. Applying
repeatedly the equation ηiηj = ηj+1ηi, when i ≤ j, we obtain [7, 5, 3, 1, 0]. Using
binary notation, this means that the composition of [0, 1, 0, 1] and [1, 0, 0, 1, 0, 1]
is [1, 1, 0, 1, 0, 1, 0, 1]. In general (although it is not obvious), composition between
two degeneracy lists in binary notation can be described as sequentially replacing
the 0’s in the first list by the successive elements of the second list, until one
of the lists is exhausted; and then completing the result with the remaining
elements of the other list.

As we have said before, Kenzo does not directly use the binary notation:
it uses the natural number that this binary notation represents. Common Lisp
logical operations on numbers, like logxor and ash, are used to reflect the corres-
ponding manipulations on binary lists. The following is the real Common Lisp
code of Kenzo for composition of degeneracy lists2:

(defun dgop*dgop (dgop1 dgop2)
(declare (type fixnum dgop1 dgop2))
(let ((dgop 0) (bmark 0))
(declare (fixnum dgop bmark))
(loop (when (zerop dgop1)

(return-from dgop*dgop (logxor dgop (ash dgop2 bmark))))
(when (zerop dgop2)

(return-from dgop*dgop (logxor dgop (ash dgop1 bmark))))
(cond ((evenp dgop1)

(when (oddp dgop2) (incf dgop (2-exp bmark)))
(setf dgop2 (ash dgop2 -1)))

(t (incf dgop (2-exp bmark))))
(setf dgop1 (ash dgop1 -1))
(incf bmark))))

This definition receives as input two fixnum natural numbers dgop1 and dgop2
(encoding two degeneracy lists) and executes a loop that uses two local variables
dgop and bmark storing respectively the (partially computed) result, and the
number of elements of dgop already scanned. When one of the degeneracy lists
is exhausted, it stops and returns the concatenation of dgop and the remaining
elements of the other list. Otherwise, it updates the two local variables (according
to the values of the first elements of dgop1 and dgop2) and executes again the
body of the loop, removing the first element of dgop1, and eventually the first
element of dgop2.

2 In the following, to distinguish ACL2 code from general Common Lisp code, we will
use italics for the latter.



Since the function dgop*dgop deals with natural numbers, we emphasize again
that logical operators are used to treat them as binary lists. For example, com-
puting (logxor dgop (ash dgop2 bmark)) is equivalent to “concatenate” dgop
and dgop2 (since bmark is the length of dgop). Or, for example, (ash dgop1 -1)
is equivalent to remove “the first element” of dgop1. These logical operators on
fixnum numbers are usually computed in Common Lisp very efficiently, and this
is one of the reasons why Kenzo performs much better than EAT. On the negative
side, the formal verification of dgop*dgop seems a hard task. In the rest of this
section, we present a definition of dgop*dgop in ACL2 (trying to keep as close
as possible to its original Common Lisp definition) and we state the theorem we
want to prove in order to increase our confidence in the way Kenzo deals with
degeneracy lists.

4.1 Definition of dgop*dgop in ACL2

Since the ACL2 programming language is a subset of Common Lisp, the defi-
nition of dgop*dgop in ACL2, based on the above Common Lisp code, is quite
direct. Nevertheless, due to the applicative nature of ACL2, there are some things
that have to be defined in a different (but equivalent) way. In particular, the only
way to iterate in ACL2 is by means of recursion. Thus, we use an auxiliary recur-
sive definition implementing the internal loop, trying to be as faithful as possible
to the original version. Also, since destructive updates are not allowed in ACL2,
we consider the local variables dgop and bmark as extra input parameters. Fi-
nally, since ACL2 functions have to be total, we have to define a result just in
case the inputs were not of the intended type ((type fixnum dgop1 dgop2)).
Taking all these considerations into account, the following is the ACL2 definition
of the loop3:

(defun dgop*dgop-loop (dgop1 dgop2 dgop bmark)
(if (and (natp dgop1) (natp dgop2))

(cond ((zerop dgop1) (logxor dgop (ash dgop2 bmark)))
((zerop dgop2) (logxor dgop (ash dgop1 bmark)))
((evenp dgop1)
(dgop*dgop-loop (ash dgop1 -1) (ash dgop2 -1)

(if (oddp dgop2)
(+ dgop (ash 1 bmark))
dgop)

(+ bmark 1)))
(t (dgop*dgop-loop (ash dgop1 -1) dgop2

(+ dgop (ash 1 bmark)) (+ bmark 1))))
0))

Finally, the ACL2 definition of dgop*dgop is a call to the above auxiliary
function, with suitable initial zero values for dgop and bmark:

(defun dgop*dgop (dgop1 dgop2)
(dgop*dgop-loop dgop1 dgop2 0 0))

We claim that the ACL2 version is faithful with the original Kenzo definition,
since we have tried to keep it as similar as possible. As we have said, the fact that
3 (2-exp n) returns 2n, the same as (ash 1 n); we will comment more on this in the

conclusions.



ACL2 is a subset of Common Lisp makes this translation almost direct. Anyway,
we strengthened our claim by an intensive testing. Since both definitions can be
executed on any compliant Common Lisp, it was very easy to (successfully)
test that they return the same result for all pairs of inputs n and m, with
n, m ≤ 10000.

4.2 Stating the Correctness Property of dgop*dgop

We now describe how we state the main theorem about the correctness of the
above ACL2 definition. It is clear that we would like to prove that the function
computes, using the natural number encoding, the composition of two degene-
racy lists. Degeneracy lists have been defined in Section 2 as strictly decreasing
lists of natural numbers.

Therefore, the first thing we have to define in ACL2 is the composition of
degeneracy lists, represented as strictly decreasing lists. That will be our “specifi-
cation” of the intended behavior of any implementation of composition of degene-
racy lists. Note that, in principle, the computation carried out by dgop*dgop has
nothing to do with the definition given in section 2. While the original definition
is based on successive applications of degeneracy operators onto a degeneracy
list, the function dgop*dgop makes some kind of “merge” between the binary
representation of degeneracy lists. As we have said before, the EAT system (the
Kenzo predecessor) used strictly decreasing lists of natural numbers to represent
degeneracy lists. Thus, it seems a good idea to prove the equivalence (modulo
the change of representation) of the Kenzo function with the corresponding EAT
function.

In EAT, the composition of degeneracy lists is defined as an iterative appli-
cation of the equation ηiηj = ηj+1ηi, when i ≤ j. The following is the real
code for the EAT definition of composition. Note that the auxiliary function
cmp-s-ls implements the application of a degeneracy operator to a degeneracy
list; this function is iteratively used by the main function cmp-ls-ls to define
composition:

(defun cmp-s-ls (s ls)
(declare (type fixnum+ s) (type list ls))
(do ((p ls (cdr p))

(rsl (list ) (cons (1+ (car p)) rsl)))
((endp p) (nreverse (cons s rsl)))

(declare (type list p rsl))
(when (> s (car p)) (return (nreconc (cons s rsl) p)))))

(defun cmp-ls-ls (ls1 ls2)
(declare (type list ls1 ls2))
(do ((p (reverse ls1) (cdr p))

(rsl ls2 (cmp-s-ls (car p) rsl)))
((endp p) rsl)

(declare (type list p rsl))))

We have defined ACL2 versions of these functions, trying to keep as faithful
as possible with the original code. Analogously to the previous subsection, a do
loop has to be replaced by auxiliary recursive functions. These are our ACL2
definitions for composition of degeneracy lists:



(defun cmp-s-ls-do (s p rsl)
(cond ((endp p) (reverse (cons s rsl)))

((> s (car p)) (nreconc (cons s rsl) p))
(t (cmp-s-ls-do s (cdr p) (cons (1+ (car p)) rsl)))))

(defun cmp-s-ls (s ls)
(cmp-s-ls-do s ls nil))

(defun cmp-ls-ls-do (p rsl)
(cond ((endp p) rsl)

(t (cmp-ls-ls-do (cdr p) (cmp-s-ls (car p) rsl)))))

(defun cmp-ls-ls (ls1 ls2)
(cmp-ls-ls-do (reverse ls1) ls2))

Again, the translation from the real Common Lisp code of EAT to the ACL2
version is quite straightforward. But in order to strengthen even more our confi-
dence in this “model”, we did intensive testing, checking that they compute the
same results for 100000 inputs randomly generated.

We now have to define functions relating the encoding used by Kenzo and the
representation of degeneracy list used by EAT. First, the function dgop-ext-int
transforms a degeneracy list represented as a strictly decreasing list of natural
numbers (checked by the function dgl-p) to its corresponding representation as
a natural number. Note the use of logical arithmetic operators:
(defun dgop-ext-int (ext-dgop)

(if (dgl-p ext-dgop)
(if (endp ext-dgop)

0
(logxor (ash 1 (car ext-dgop))

(dgop-ext-int (cdr ext-dgop))))
0))

We also define the function dgop-int-ext, its inverse. For that, we use an
auxiliary recursive definition that simulates a do loop, with the input variables
rslt and bmark, that work as extra parameters for storing respectively the
result (partially) computed and the number of binary digits analyzed. The main
function simply calls this auxiliary definition with suitable initial values for the
extra parameters. This is our ACL2 definition:
(defun dgop-int-ext-do (dgop rslt bmark)

(if (natp dgop)
(if (zerop dgop)

rslt
(if (oddp dgop)

(dgop-int-ext-do (ash dgop -1) (cons bmark rslt) (1+ bmark))
(dgop-int-ext-do (ash dgop -1) rslt (1+ bmark))))

nil))

(defun dgop-int-ext (dgop)
(if (natp dgop)

(dgop-int-ext-acc dgop nil 0)
nil))

It should be emphasized that these definitions are defined trying to be as close
as possible to the corresponding Kenzo definitions of these operations (although
due to the lack of space we do not include here this part of the Kenzo code).

We have now defined all the functions that we need for stating the correctness
property of dgop*dgop. This property expresses that for every pair of degeneracy



lists represented as strictly decreasing lists of natural numbers, the result of
computing dgop*dgop on their corresponding encoding as natural numbers is
equal to the encoding of the result of the composition carried out by the EAT
system. The following is the corresponding ACL2 theorem stating that property:

(defthm dgop*dgop-cmp-ls-ls
(implies (and (natp dgn1) (natp dgn2))

(equal (dgop*dgop dgn1 dgn2)
(dgop-ext-int (cmp-ls-ls (dgop-int-ext dgn1)

(dgop-int-ext dgn2)))))

In the next section, we will explain how we carried out a mechanical proof of
this theorem in ACL2.

5 The Proof: Transforming the Domain

The ACL2 proof of the above result is not simple, mainly for two reasons. Firstly,
the functions dgop*dgop (Kenzo) and cmp-ls-ls (EAT) deal with different re-
presentations of degeneracy lists. Secondly, the Kenzo function implements an
algorithm which is not intuitive and quite different from the algorithm of the
EAT version, which is closely related to the mathematical definition. A suitable
strategy to attack the proof is to try to solve the above two questions separately.
Thus, it seems natural to consider an intermediate representation of degeneracy
lists based on the binary lists described at the beginning of Section 4.

Our plan will be to define a function dgb*dgb implementing composition of
degeneracy lists represented as binary lists, following the same algorithm than
dgop*dgop, except for the use of this intermediate representation. This will
allow us to prove the equivalence of dgop*dgop and dgb*dgb dealing only with
the encoding aspects. After that, we will prove the equivalence of dgb*dgb and
cmp-ls-ls, focusing only on the algorithmic aspects of the Kenzo definition.
Schematically, if DL

g denotes the set of strictly decreasing lists of natural num-
bers, DB

g the set of binary lists and DN
g the set of natural numbers, we will prove

the commutativity of the following diagram (in which, for the sake of clarity, we
have omitted the names for the encoding and decoding functions between the
different representations):

cmp-ls-ls dgb*dgb dgop*dgop

DL
g ×DL

g DB
g ×DB

g DN
g ×DN

g

DN
gDL

g DB
g

The rest of this section will be devoted to explain our proof. We will describe
separately the properties concerning each of the three representations (or do-
mains) considered, and finally we will show how we compose all these results to
achieve the desired theorem.



5.1 The Domain DL
g

The tail-recursive definitions of functions cmp-s-ls and cmp-ls-ls that we
adopted (since we wanted to keep as close as possible to the EAT version) are not
the best option for reasoning in ACL2. Therefore, we proved that these functions
verify the following simple recursive schemata, which are much more suitable for
the induction heuristics of the ACL2 prover:

(defthm cmp-s-ls-recursive
(equal (cmp-s-ls s ls)

(cond ((endp ls) (list s))
((> s (car ls)) (cons s ls))
(t (cons (1+ (car ls)) (cmp-s-ls s (cdr ls)))))))

(defthm cmp-ls-ls-recursive
(equal (cmp-ls-ls ls1 ls2)

(cond ((endp ls1) ls2)
(t (cmp-s-ls (car ls1) (cmp-ls-ls (cdr ls1) ls2))))))

If we use these alternative recursive schemata, instead of the original versions,
it turns out that some properties of cmp-ls-ls (for example, its associativity)
can be proved very easily in ACL2.

5.2 The Domain DB
g

The following is the definition of the functions dgl->dgb and dgb->dgl imple-
menting the change of representation between the domains DL

g and DB
g :

(defun dgb-pos (n)
(cond ((zp n) ’(1))

(t (cons 0 (dgb-pos (- n 1))))))

(defun dgb-app (dgb1 dgb2)
(cond ((endp dgb1) dgb2)

((endp dgb2) dgb1)
(t (cons (car dgb1) (dgb-app (cdr dgb1) (cdr dgb2))))))

(defun dgl->dgb (dgl)
(cond ((endp dgl) nil)

(t (dgb-app (dgl->dgb (cdr dgl)) (dgb-pos (car dgl))))))

(defun 1+ls (lst)
(cond ((endp lst) nil)

(t (cons (1+ (car lst)) (1+ls (cdr lst))))))

(defun dgb->dgl (dgb)
(cond ((endp dgb) nil)

((eql (car dgb) 0) (1+ls (dgb->dgl (cdr dgb))))
(t (append (1+ls (dgb->dgl (cdr dgb))) (list 0)))))

These functions are bijections between DL
g and DB

g , and therefore they are
indeed a change of representation between two different encodings. The follo-
wing theorems proved in ACL2 establish that fact (where dgl-p and dgb-p are
respectively functions checking membership to DL

g and DB
g ):



(defthm dgb->dgl-dgl->dgb
(implies (dgl-p dgl)

(equal (dgb->dgl (dgl->dgb dgl)) dgl)))

(defthm dgl->dgb-dgb->dgl
(implies (dgb-p dgb)

(equal (dgl->dgb (dgb->dgl dgb)) dgb)))

Now we define the composition of degeneracy lists in DB
g , following the same

algorithmic procedure than in the Kenzo version. Recall from section 4 that
the result of composing two binary lists dB

g 1
◦ dB

g 2
, is obtained by sequentially

replacing the 0’s in the first list by the successive elements of the second list,
until one of the two lists is exhausted; and then completing the result with the
remaining elements of the other list. This is precisely what the recursive function
dgb*dgb does:
(defun dgb*dgb (dgb1 dgb2)

(if (and (dgb-p dgb1) (dgb-p dgb2))
(cond ((endp dgb1) dgb2)

((endp dgb2) dgb1)
((eql (car dgb1) 0)
(cons (car dgb2) (dgb*dgb (cdr dgb1) (cdr dgb2))))

(t (cons 1 (dgb*dgb (cdr dgb1) dgb2))))
nil))

As expected, the following theorem can be proved, establishing the equivalence
of the function dgb*dgb in DB

g and the function cmp-ls-ls, based on the EAT
version:
(defthm dgb*dgb-cmp-ls-ls

(implies (and (dgb-p dgb1) (dgb-p dgb2))
(equal (dgb*dgb dgb1 dgb2)

(dgl->dgb (cmp-ls-ls (dgb->dgl dgb1)
(dgb->dgl dgb2))))))

5.3 The Domain DN
g

The following is the definition of the functions dgb->dgn and dgn->dgb imple-
menting the change of representation between the domains DB

g and DN
g . Recall

that this is simply done by considering the elements of DB
g as the reverse of the

binary notation of a natural number:
(defun dgb->dgn (dgb)

(cond ((endp dgb) 0)
(t (+ (car dgb) (ash (dgb->dgn (cdr dgb)) 1)))))

(defun dgn->dgb (dgn)
(cond ((zp dgn) nil)
(t (cons (if (evenp dgn) 0 1) (dgn->dgb (ash dgn -1))))))

As in the previous subsection, it can be proved that these functions define
a change of representation between two different encodings. That is, they are
bijections between DB

g and DN
g , as established by the following theorems:

(defthm dgb->dgn-dgn->dgb
(implies (natp dgn)

(equal (dgb->dgn (dgn->dgb dgn)) dgn))))

(defthm dgn->dgb-dgb->dgn
(implies (dgb-p dgb)

(equal (dgn->dgb (dgb->dgn dgb)) dgb)))



The following theorem proves the equivalence between the functions dgb*dgb
and dgop*dgop (modulo the change of representation):
(defthm dgop*dgop-dgb*dgb

(implies (and (natp dgn1) (natp dgn2))
(equal (dgop*dgop dgn1 dgn2)

(dgb->dgn (dgb*dgb (dgn->dgb dgn1)
(dgn->dgb dgn2))))))

5.4 Correctness of Kenzo Degeneracy Lists Composition

Having proved the equivalences of both dgop*dgop and cmp-ls-ls with the
intermediate function dgb*dgb, the final step is to prove that the functions
dgop-int-ext and dgop-ext-int are equivalent to the composition of the
corresponding transformations between the domains DL

g , DB
g and DN

g . That is:

(defthm dgop-int-ext-dgb->dgl-dgn->dgb
(implies (natp dgn)

(equal (dgop-int-ext dgn) (dgb->dgl (dgn->dgb dgn)))))

(defthm dgop-ext-int-dgb->dgn-dgl->dgb
(implies (dgl-p dgl)

(equal (dgop-ext-int dgl) (dgb->dgn (dgl->dgb dgl)))))

Now we only have to glue together the different pieces, using these last pro-
perties and the equivalences of the previous subsections, and finally obtaining
the main correctness property we wanted to prove:
(defthm dgop*dgop-cmp-ls-ls

(implies (and (natp dgn1) (natp dgn2))
(equal (dgop*dgop dgn1 dgn2)

(dgop-ext-int (cmp-ls-ls (dgop-int-ext dgn1)
(dgop-int-ext dgn2))))))

That is, we have established the correctness of the function dgop*dgop (based
on the Kenzo code) with respect to the specification defined by the function
cmp-ls-ls (based on the EAT code).

6 Translating Properties from DL
g to DN

g

Once we have proved the main correctness theorem, it is easy to prove a pro-
perty about dgop*dgop by first proving the property about cmp-ls-ls (which
is usually much simpler) and then translating it to dgop*dgop, by means of the
above theorem. Let us illustrate this with an example.

One of the properties assumed as an axiom in the definition of simplicial set
is the following equation between degeneracy operators: ηiηj = ηj+1ηi, ∀i ≤ j.
That is, for every pair of natural numbers i ≤ j and every degeneracy list dg, we
have ηi(ηj(dg)) = ηj+1(ηi(dg)). With respect to the composition of degeneracy
lists, the property is stated as follows:

∀i, j ∈ N, ∀dg ∈ Dg : i ≤ j → [i] ◦ ([j] ◦ dg) = [j + 1] ◦ ([i] ◦ dg)

This property should be true for any implementation of the composition
operation. In particular, that is the case for the function cmp-ls-ls, as shown in



the theorem below. ACL2 can prove this property immediately, using the simpler
recursive schemata presented in subsection 5.1:

(defthm cmp-ls-ls-property
(implies (<= i j)

(equal (cmp-ls-ls (list i) (cmp-ls-ls (list j) dg))
(cmp-ls-ls (list (+ 1 j)) (cmp-ls-ls (list i) dg)))))

Now, this allows us to prove in a quite straightforward manner the correspon-
ding version of this theorem for dgop*dgop. It is an easy consequence of the above
theorem, the theorem dgop*dgop-cmp-ls-ls of the previous section, and the re-
lations between the functions dgop-int-ext and dgop-ext-int and the trans-
formations between the domains DL

g , DB
g and DN

g . This results in the following:

(defthm dgop*dgop-property
(implies (and (natp dgop) (natp i) (natp j) (<= i j))

(equal (dgop*dgop (dgop-ext-int (list (+ 1 j)))
(dgop*dgop (dgop-ext-int (list i)) dgop))

(dgop*dgop (dgop-ext-int (list i))
(dgop*dgop (dgop-ext-int (list j)) dgop))))

In a similar way, we have also proved that the function dgop*dgop is associa-
tive, from the same property for cmp-ls-ls, whose proof is very simple.

7 Conclusions and Further Work

In this paper we have described an ACL2 proof of the correctness of a first-order
fragment of the Kenzo system. Concretely, the Kenzo programs dealing with
degeneracy lists have been certified. Although the verified fragment is short in
number of lines, it is important for efficiency reasons in Kenzo.

As for the proof effort, we followed “The Method” described in [10] and out-
lined in Section 3. We recall that although every proof attempt of the system
is fully automatic, the system can be seen as interactive, since the appropriate
lemmas has to be previously proved in order to obtain the proof. Thus, and follo-
wing “The Method”, when a proof attempt of a result failed, we inspected its
output to discover which lemmas were needed to lead the prover to a successful
proof. Most of the resulting proofs were carried out by induction and simplifica-
tion. In most cases, the heuristics of the prover were able to automatically find a
suitable induction scheme. Only in a few cases, we needed to supply an explicit
induction scheme. All our interaction with the prover resulted in a collection of
27 definitions and 112 theorems. It is interesting to point out that we had no
preconceived proof in mind, and that all we did was to follow the suggestions
from the failed proof attempts. We urge the interested reader to consult the
complete development in [13].

From a practical point of view, a library of results about the logical arithmetic
operands was very useful. This library contains results previously proved by other
ACL2 users and comes with the ACL2 distribution. Thus, we think this is a good
example of reusability.

It is also worth pointing out the methodology devised to formally verify a sys-
tem written in Common Lisp. Obviously, we are not directly verifying the actual



code, due to limitations of the ACL2 programming language. But since ACL2 is
a subset of Common Lisp, a “model” very closely related to the original code can
be defined. And since ACL2 functions can be executed in any compliant Common
Lisp, we could do intensive testing to strengthen even more the assumption that
our model is faithful. Another remarkable point is our use of a previous version
of Kenzo, called EAT, as a main component of the specification of the intended
properties. This also increases the trust in the correctness of the methods appea-
ring in both EAT and Kenzo.

In this paper, we have not dealt with efficiency issues. In fact, there are two
technical details in the verified ACL2 function which make it less efficient than
its Kenzo counterpart. The first one is that the ACL2 function dgop*dgop-loop
has an explicit test in its body, checking that its first two arguments are natural
numbers. This is needed to ensure termination of the function on all possible
inputs, as required by the principle of definition of the ACL2 logic ([10]). That
explicit condition has a negative impact on the efficiency of the ACL2 algorithm,
since it is checked in every recursive call. The other technical detail that affects
efficiency has to do with how 2n is computed by Kenzo: at initialization, a lookup
table is built, with the powers of two until the biggest fixnum; after that, every
time a power of two is needed, the function (2-exp n) used by Kenzo simply
retrieves the value from position n of the table. In contrast, our ACL2 function
computes (ash 1 n), which is an equivalent, but less efficient method. Although
in a first stage we have not dealt with this issues, both technical details can be
solved in ACL2, using the defexec and stobj features, respectively (see the
users manual in [11] for details). We plan to introduce these improvements in
our ACL2 code and formally verify them, in order to obtain a certified algorithm,
comparable in efficiency with the Kenzo algorithm.

The work presented here is a first approach on using ACL2 with the purpose of
certifying fragments of an already implemented system as Kenzo (that is, we do
not want to reimplement the system, but to certify the existing code). This case
study shows the benefits of the fact that both systems (Kenzo and ACL2) deal
with the same programming language. Nevertheless, further research has to be
done to test how ACL2 will behave with two important issues not addressed here.
First, the mathematical theory underlying most Kenzo computations (algebraic
topology) is more complex than the needed by this example. Second, Kenzo
intensively uses higher order programming, not allowed in ACL2.

Thus, our future work will follow two lines of research: first, we intend to forma-
lize in ACL2 some results of algebraic topology, which will allow us to tackle more
difficult algorithms, such as the one extracted from the Eilenberg-Zilber theorem,
where the combinatorial explosion of simplicial degeneracy shuffles appears [14].
Or for example to verify the Kenzo builders (to construct spheres, Moore spaces,
projective spaces, . . . ) which are used as primitives in the reKenzo graphical user
interface [9]. Other line of research will be to study how we can model the higher-
order features used by the Common Lisp Kenzo code, in a first-order Common
Lisp ACL2 code; after that, we will be able to compare this approach with the
alternative of using higher-order theorem provers like Coq, PVS or HOL.
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