
Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Formato de Publicación de la Escuela Técnica
Superior de Ingeniería

Autor: F. Javier Payán Somet

Tutor: Juan José Murillo Fuentes

Dep. Teoría de la Señal y Comunicaciones
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2013

Tesis Doctoral
Ingeniería de Automática, Electrónica y de
Telecomunicación

Visual Perception System for Aerial
Manipulation: Methods and
Implementations

Autor: Pablo Ramón Soria
Director: B.C. ARRUE y A. Ollero

Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería
Universidad de Sevilla

Sevilla, 2018

Tesis Doctoral
Ingeniería de Automática, Electrónica y de

Telecomunicación

Visual Perception System for Aerial Manipulation: Methods
and Implementations

Autor:

Pablo Ramón Soria

Director:

B.C. Arrue y A. Ollero
Profesor Titular

Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

2018

Tesis Doctoral: Visual Perception System for Aerial Manipulation: Methods and Imple-
mentations

Autor: Pablo Ramón Soria
Director: B.C. Arrue y A. Ollero

El tribunal nombrado para juzgar la Tesis arriba indicada, compuesto por los siguientes
doctores:

Presidente:

Vocales:

Secretario:

acuerdan otorgarle la calificación de:

El Secretario del Tribunal

Fecha:

A mi familia
A mis profesores

Acknowledgements

First of all, I have much to thank to my supervisors Begoña C. Arrue and Anibal Ollero
for all the support, time and patience that I received from them. I appreciate the

support and trust that Begoña put on me. She encouraged me to start this project and
helped me to achieve it.

During my Phd I had the opportunity to do a research internship in the Australian Centre
for Field Robotics (ACFR) in Sydney. I want to thank Prof. Robert Fitch who guided my
research during the stay. Also, I really appreciate the time and effort that Wolfram Martens
dedicated to me. He taught me to be more strict in mathematical terms in my research and
introduced me in the probabilistic world of Gaussian processes.

Also, I would like to thank to all colleagues in the Group of Robotics, Vision and Control
(GRVC) who I worked with over these years. Particularly, I appreciated the time spent with
Manuel Perez, Ricardo Lopez, Javier Rubiales and Alejandro Gomez. It has been really
amusing developing with them and discussing my work. They helped me a lot carrying
out the experiments and had an endless patience.

I must make an special mention to my family. They have provided me their support and
time day by day. I want to thank my parent because he guided me in my career as engineer
since I can remember. And also to my mother for her unconditional support every day,
whatever happen during life. At last but not at least, I sincerely want to thank Ana, my
love, for faithfully supporting me during this long journey.

Pablo Ramón Soria
December, 2018

III

Abstract

Technology is growing fast, and autonomous systems are becoming a reality. Companies
are increasingly demanding robotized solutions to improve the efficiency of their

operations. It is also the case for aerial robots. Their unique capability of moving freely
in the space makes them suitable for many tasks that are tedious and even dangerous for
human operators.
Nowadays, the vast amount of sensors and commercial drones makes them highly

appealing. However, it is still required a strong manual effort to customize the existing
solutions to each particular task due to the number of possible environments, robot designs
and missions. Different vision algorithms, hardware devices and sensor setups are usually
designed by researchers to tackle specific tasks. Currently, aerial manipulation is being
intensively studied to allow aerial robots to extend the number of applications. These
could be inspection, maintenance, or even operating valves or other machines.
This thesis presents an aerial manipulation system and a set of perception algorithms

for the automation aerial manipulation tasks. The complete design of the system is
presented and modular frameworks are shown to facilitate the development of these kind
of operations.

At first, the research about object analysis for manipulation and grasp planning consid-
ering different object models is presented. Depend on the model of the objects, different
state of art grasping analysis are reviewed and planning algorithms for both single and
dual manipulators are shown.
Secondly, the development of perception algorithms for object detection and pose

estimation are presented. These allow the system to identify many kind of objects in
any scene and locate them to perform manipulation tasks. These algorithms produce the
necessary information for the manipulation analysis described in the previous paragraph.
Thirdly, it is presented how to use vision to localize the robot in the environment. At

the same time, local maps are created which can be beneficial for the manipulation tasks.
These maps are are enhanced with semantic information from the perception algorithm
mentioned above.

V

VI Abstract

At last, the thesis presents the development of the hardware of the aerial platform which
includes the lightweight manipulators and the invention of a novel tool that allows the
aerial robot to operate in contact with static objects.
All the techniques presented in this thesis have been validated throughout extensive

experimentation with real aerial robotic platforms.

Contents

Abstract V
Notation XI
Acronyms XIII

1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Thesis Framework 5
1.3 Thesis Outline 6
1.4 Contributions 7

2 Object manipulation analysis for aerial robots 11
2.1 Introduction 11
2.2 Object modeling 11

2.2.1 Point cloud-based object modeling 12
2.2.2 Sparse featured point clouds 14
2.2.3 Mesh based object modeling 17
2.2.4 Probabilistic object modeling 18

Gaussian Processes for object modeling 18
Combining point clouds with GPIS for pose uncertainty 23

2.3 Object manipulation - Grasp generation and evaluation 28
2.3.1 Grasp Quality metrics 28

Quality metrics derived from the Grasp Matrix 30
Quality metrics from other aspects 31

2.3.2 Grasp generation - Deterministic shape models 33
2.3.3 Grasp generation - Probabilistic shape models 36

2.4 Grasp planning with dual manipulators 39

3 Object detection and localization for aerial manipulation 43
3.1 Introduction 43

VII

VIII Contents

3.2 Distance based object detection 44
3.3 Object detection by dense point cloud alignment 47
3.4 Feature-based object detection 50
3.5 Object detection and location using probabilistic model 58

3.5.1 Multiview probabilistic object detection and location 61
3.5.2 Extending probabilistic object segmentation using to multiple differ-

ent object’s priors 64
3.6 Machine learning for object detection 65

3.6.1 Bag of Words model and State Vector Machine 65
3.6.2 Latent Dirichlet Allocation, a text-oriented non-supervised image

classification 69
3.6.3 Neuronal Networks and Deep Learning 74

Evaluation of different nets in a custom Dataset of hand-tools 75
Crawler detection using CNN for aerial manipulation 77

4 Mapping and localization for aerial manipulation 81
4.1 Introduction and Related Work 81
4.2 Online SLAM method using stereo cameras 85
4.3 Full SLAM Framework using RGB-D sensors 91

4.3.1 Sensors and DataFrame creation 92
4.3.2 Odometry estimator 93
4.3.3 Database module 94
4.3.4 Optimizer Module 95

4.4 Experimental Validation of the Framework 98
4.4.1 Experiments in Microsoft 7-scenes RGB-D Datasets 98
4.4.2 Experiments in TUM RGB-D Datasets 101
4.4.3 Custom dataset - Flying under the bridge 103

4.5 Semantic labeling for manipulation and Augmented data for human operators 104

5 Aerial manipulator platforms and general system architectures 109
5.1 Introduction 109
5.2 First approach with single manipulator 111
5.3 Aerial dual manipulator 113
5.4 Contact positioning tool for manipulation tasks 116

5.4.1 Docking tool model 116
5.4.2 Controlling the position with contact point 121
5.4.3 Experimental Setup 122
5.4.4 Test-bench and tool characterization 123
5.4.5 GPS positioning characterization 124
5.4.6 Docking and autonomous control 125
5.4.7 Manipulation while keeping in contact 126

6 Conclusions and Future Work 129

Contents IX

6.1 Contributions and conclusions 129
6.2 Future work 132

Appendix A Open resources developed 135
A.1 RGBD TOOLS 135

A.1.1 Camera Wrapper Module 136
A.1.2 SLAM Module 137
A.1.3 State Filtering Module 138
A.1.4 Machine Learning Module 139
A.1.5 Other Tools Module 139

A.2 GRASPING TOOLS 140
A.3 HECATONQUIROS 141

List of Figures 143
List of Tables 149
Bibliography 151
Index 169
Glossary 169

Notation

R Real numbers
O three dimensional object
S Surface of object O
S Approximate surface of S
P Polytope of surface S
V = {vi} Vertices of polytope P
E = {el} Edges of polytope P
F = { fm} Faces of polytope P
GP Gaussian Process
GPIS Gaussian Process Implicit Surface
f ∼ GP(m(·),K(·,·)) Joint distribution of variables driven by a Gaussian Process

with mean m(·) and covariance K(·,·)
D = {(xi,yi) Set of data points in 3D with associated scalar values yi
exp(·) Exponential function
sin(·) Sinusoidal function
cos(·) Cosine function
ε Error associated to a process
x∼ N(0,σ2) Variable distributed with a Gaussian or Normal distribution
µ Mean of Gaussian distribution
σ Variance of a Gaussian distribution
D+ = {(xi,yi)} Extended set of data points in three dimensions with associated

scalar values and normal vector direction
∇ Derivative term
K Covariance matrix of data points in GP
K∗∗ Covariance matrix of query points in GP
K∗ Cross-covariance matrix between data points and query points

in GP
∂ f (x)

∂y Partial derivative of x repect y
diag Diagonal matrix

XI

XII Notation

min_dist(A,B) Minimum distance between set of points A and B
Fi Three dimensional normal force
τi Three dimensional torque force
ωi Six dimensional vector representing a force wrench composed

by Fi and τi
S(t) Cross-product matrix
R Multi-link Serial Robot
Θ = θ1, ...,θn Set of scalar variables describing joints of Serial Robot R
J(X) Jacobian matrix of X
∆ Increment
∠(x,y) Angle between x and y
∑i=1...Nk

xi Sum of all xi variables
∏

n=1
N xi Product over all xi variables

a ∈ A a belongs to A
P(x|y) Conditional probability of x given y
P(x = a) Probability of x = a
{w1,w2, ...,wi,...,wN} Set of words defining a document W
D =
{W1,W2, ...,WM}

Corpus or set of documents

z Latent topic
z = (1,...,K) Set of latent topics
θ Variational parameter of the distribution of the latent variables
γ Latent variables of the Latent Dirichlet Distribution
φ Variational parameter of the distribution of the topics
xi

k state variable
ẋi

k first derivative of state variable
ẍi

k second derivative of state variable
DFi Data-Frame
CFi Cluster-Frame
χ

2 Chi square probability distribution

Acronyms

2D Two Dimensional (or dimensions)
3D Three Dimensional (or dimensions)
3DSC 3D Shape Context
ACFR Australian Centre for Field Robotics
AEROARMS AErial RObotic system integrating multiple ARMS and ad-

vanced manipulation capabilities for inspection and mainte-
nance

BA Bundle Adjustment
ANN Artificial Neuronal Network
BOW Bag Of Words
BRIEF Binary Robust Independent Elementary Features
CAD Computer-Aided Drafting
CNN Convolutional Neuronal Network
CRP Chinese Restaurant Process
CUDA Compute Unified Device Architecture
CWS Cone Wrench Space
DH Denavit Hartenberg
DL Deep Learning
DLS Damped Least Squares
DOF Degrees Of Freedom
DP Dirichlet Process
DPMM Dirichlet Process Mixture Model
EKF Extended Kalman Filter
FAST Features from accelerated segment test
FLANN Fast Library for Approximate Nearest Neighbors
FPFH Fast Point Feature Histograms
FPS Frames Per Second
F-RCNN Fast(er) Region-Based Convolutional Neuronal Network
gICP Generalized Iterative Closest Points

XIII

XIV Notation

GPS Global Positioning System
GP Gaussian Process
GPIS Gaussian Process Implicit Surface
GPU Graphics Processing Unit
GRVC Group of Robotics Vision and Control
GWS Grasp Wrench Space
HSV Hue Saturation Value
IBVS Image-Based Visual Servoing
ICP Iterative Closest Points
IK Inverse Kinematic
IR InfraRed
IMU Inertial Measurement Unit
KNN K-Nearest Neighbor
LDA Latent Dirichlet Allocation
LM Levenberg Marquardt
MCMC Markov Chain Monte Carlo
MH Metropolis Hastings
NARF Normal Aligned Radial Feature
ORB Oriented FAST and rotated BRIEF
OWS Object Wrench Space
PBVS Position-Based Visual Servoing
PCA Principal Components Analysis
PCL Point Cloud Library
PFH Fast Point Feature Histograms
PWM Pulse-Width Modulation
RANSAC Random Sample Consensus
RBF Radial Basis Function
RCNN Region-Based Convolutional Neuronal Network
RGB Red Green Blue
RGB-D Red Green Blue Depth
ROS Robot Operating System
SBA Sparse Bundle Adjustment
SHOT Signature of Histograms of Orientations
SIFT Scale Invariant Feature Transform
SURF Speed-Up Robust Features
SLAM Simultaneous Localization and Mapping
SSD Single Shot MultiBox Detector
SVM Support Vector Machine
TCVF Temporal Convolution Voxel Filtering
TWS Task Wrench Space
UAV Unmanned Aerial Vehicle
YOLO You Only Look Once

1 Introduction

1.1 Motivation and Objectives

Most living beings use vision to perform even the most insignificant task. Finding their-
selves in the environment, recognizing places, moving or even grasping objects would be
impossible without vision.

For a long time, scientists and researchers have paid special attention to develop meth-
ods and algorithms that, somehow, replicate the capabilities of living beings in term of
perception. These algorithms are targeted to be applied to machines, allowing them to
perceive to accomplish different tasks in an autonomous manner. These machines are
called robots. Autonomous robots require for a perfect symbiosis between the hardware
and the software, and the synchrony of a variety of algorithms to, among several things,
perceive the environment, control its actuators and interact with the environment.

The motivation of this dissertation is to develop the necessary vision algorithms to allow
robots to perform manipulation tasks. Particularly, the work developed in this research
focuses on aerial robots, i.e., robots that fly. Researching with this kind of robots has many
requirements and specifications. Some of them are the same that with any other kind of
robot. However, aerial robots usually suffer from more and stricter constraints, and require
more robust algorithms due to the fragility of these platforms and their minimal payload
capabilities.

Nonetheless, aerial robots, so-called drones or Unmanned Aerial Vehicles (UAVs), are
suitable for a wide range of applications which take place in inaccessible locations and are
typically dangerous to human operators such as power line inspections [1, 2], wind-turbine
maintenance [3], inspection of different structures in facilities [4] or photogrammetry [5].
In the later years, they have been prove to be useful for manipulation tasks too[6].
In order to perform these tasks, it is necessary to provide the robot with various capa-

bilities such as localization, planning, and, in general, smart capabilities. It also requires
to equip them with the appropriate hardware to perform the desired tasks. The purpose
of introducing robots in these applications is to provide a more efficient solution to these
problems, to reduce the costs (both time and monetary) and definitely reduce the decay
on the quality due to faults in human operators caused by the monotony of some of these

1

2 Chapter 1. Introduction

tasks. Instead, the operator will be placed in a more important role which can not be done
by robots.

The advances in mechatronics and the continuous rise of smaller electronic devices have
favored the rise of applications with these aerial platforms. Particularly, the development
of small electronic devices such as embedded computers and lightweight sensors have
paid an essential role in this topic.
Multirotors platforms are common platforms in the field of aerial robotics. Some of

their beneficial capabilities are their reduced cost compared with other similar solutions
such as helicopters, their ability to move freely in the space and hover closer to the desired
location, and their scalability in size and quantity.

However, these platforms are not exempted of challenges. One of the main limitations
of these platforms is their endurance. The maximum time flight is highly dependent on
the platform’s configuration and its payload. The development of new lithium polymer
battery technology has been utterly important improving this endurance. However, this
fact is still a strong limitation for many applications.
In recent years, a new trend in aerial research has appeared: the aerial manipulation.

Aerial manipulation is based on the concept that installing a manipulator on an aerial robot
expands the number of applications that these platforms can perform. In the beginning,
applications involving UAVs were merely perceptive. Cameras and computers can be
easily set up in the robots, so they can explore areas and process images on board or just
relay them to a ground computer. Now, the concept is to enable UAVs to interact with the
environment, so the robot can, not only detect or perceive something but also, perform
actions.

This thesis focus on providing these aerial robots for the vision capabilities to perform
manipulation tasks. Aerial manipulation is a very challenging area of research. Aerial
robots are delicate and have strong payload limitation which implies that algorithms must
be as much light as possible and effective to prevent the robot crashing. Figure 1.1 shows
two platforms developed by the Group of Robotics, Vision, and Control of the University
of Seville under the framework of AEROARMS European Project [7]. Particularly, the
platform on the left has been designed and built during the development of this thesis.

Manipulation implies to interact with physical objects using manipulators. This can be,
for example, grasping objects, moving them, or just keeping in contact with some stiff
object. In order to do so, the robot needs to be able to detect, locate and analyze how to
interact with the objects. Additionally, in order to perform this tasks, it is necessary to
plan the actions and movements of the manipulators and to prevent them from colliding
with the environment and the platform itself.

As mentioned before, this thesis focus on the development of an aerial platform with
manipulation capabilities. For that purpose, a variety of vision algorithms has been
developed and applied in real aerial platforms developed by the author.

In order to perform a manipulation task, many subtasks are needed. At first instance, it is
required to detect the object to be manipulated. Then, it is necessary to have an estimation
of the position of the objects relative to the robot. At the same time, robots’ manipulators
or arms are required to be located to manipulate the object. A principal aspect that is going
to be discussed in this dissertation is how objects can be modeled. These models are used
in several aspects of manipulation such as object detection or grasp planning.

1.1 Motivation and Objectives 3

Figure 1.1 Aerial manipulators developed by the GRVC team.

Additionally to the skill of detecting and recognizing objects in the environment, making
the robot able to locate itself in the space, detecting the physical world that surrounds it, is
what makes it possible to move and to plan reasonable movements. Moreover, detecting
objects and placing them into the space makes it possible to interpret the surrounding and
influences on how to move from one place to another.

The capability of self-location is utterly required in robotics to allow fully autonomous
development of tasks. This problem receives the name of Simultaneous Localization and
Mapping (SLAM) and has been very popular in mobile robotics over the last decades.
Global Localization systems offer a partial solution to this problem. However, the low
accuracy rates of traditional GPS solutions, the sensitivity of these systems to atmospheric
conditions and the disability of working indoor due to the interference of the infrastructures
have nefarious effects on this localization system. For this reason, many researching
efforts have been paid to provide robots with other methods for localization using a broad
spectrum of sensors. Most common sensors are visual sensors or camera-based sensors.
These provide color images which can be used in similitude with human eyes to compute
relative information about the localization of the platform. Nowadays, many vehicles use
laser-based sensors. These devices are of high accuracy and have been used effectively,
for example, in autonomous navigation of cars. However, the price of these sensors is
extraordinarily high, and their weight is not affordable for all the platforms.

All the mentioned capabilities are necessary to move to the next generation of au-
tonomous robots. Each of them, fulfill a specific requirement without which the operation
cannot be granted. This dissertation will cover some of these aspects as will be described
later in this section. Special consideration needs to be made when working with UAVs.
As aforementioned, these platforms have strong limitations regarding design and up-lift
weight. It is because the aerial robot’s flight in an unstable equilibrium in the air balancing

4 Chapter 1. Introduction

the gravity forces with the multiple rotors. Contrary to helicopters, small propellers of
multirotors are highly less efficient, so the trade-off between the thrust and the energy
consumption is more compromised. Nevertheless, the multi-rotor design overweight the
mono-propeller design concerning maneuverability, flexibility and fault tolerant.

Figure 1.2 shows some of the existing concept models of aerial manipulation platforms.
Each of these platforms has been designed to accomplish different manipulation tasks.

Figure 1.2 Examples of aerial platforms with manipulators.

Nevertheless, payload limitation influences, not only the design of the aerial platforms
but also the computing hardware. On board computers are required to be smaller and
less power-drainer due to the limitations in space and battery consumption. For these
reasons, the design of the algorithms and software implementation has inherited limitations
regarding memory usage, power resources, and power consumption.
Therefore, this thesis has the following objectives:

• To analyze different methodologies for modeling objects concerning the visual
capabilities of the aerial robot to perform manipulation tasks. It includes analyzing
the types of data that on board sensors can acquire and to elaborate methods to
define a virtual abstraction of the object to be manipulated by the robot.

1.2 Thesis Framework 5

• To implement and compare algorithms to evaluate and generate more efficient ways
to carry out manipulation tasks to grasp different objects. These algorithms should
take into consideration the models, mentioned in the previous objective, concerning
the visual sensors.

• To design and develop computer vision algorithms that allow the aerial system to
detect and locate objects in its environment. These algorithms should exploit the
sensor capabilities and be robust to changes in illumination and appearance.

• To provide the aerial robot for a system to perceive the environment and its own
location. Additionally, the system should be able then to locate individual instances
of objects in the environment.

• Robustness and speed have to be explicitly considered in the proposed methods and
algorithms, such that they can be used in real applications. The system should be
applied to any object and environment without increasing the complexity of the
algorithms. Thus they can be applied to any manipulation task.

• To design and develop the required hardware devices to test and validate the proposed
methods and algorithms in real conditions. This includes the preparation of the
aerial platforms, the embedded computers and electronics, and the arms. Special
consideration will be paid to the manipulators to be lightweight and to have the
necessary capabilities to perform the manipulation tasks.

During the development of the thesis, the author developed hardware for two aerial
platforms. Additionally, a contact tool has been developed which docks to pipes to provide
the relative position of the platform as an alternative to visual localization algorithms.

1.2 Thesis Framework

The core research of this dissertation has been developed under the framework of two
projects. The European project AEROARMS (Project ID: 644271), or AErial RObotic
system integrating multiple ARMS and advanced manipulation capabilities for inspection
and maintenance, under the program H2020. And the national project ARM-EXTENDED
(DPI2017-89790-R). The primary motivation of these projects is to develop a robotic
aerial system with arms with advances manipulation capabilities.
Additionally, the author did an internship in the Australian Center for Field Robotics

(ACFR), where he developed vision algorithms for manipulation in the context of fruit
harvesting.
This goal is difficult to achieve because of the complexity of operating with UAVs.

During the development of the thesis, various experiments and demonstrations have been
shown under the Framework of AEROARMS project. These experiments were autonomous
and semi-autonomous, and showed the perception and manipulation capabilities the aerial
platforms developed and implemented during this thesis.

6 Chapter 1. Introduction

1.3 Thesis Outline

The thesis is organized in the following chapters:

• Chapter 2 describes the methods and algorithms that have been explored and
implemented during the thesis to model objects by the robot’s perception system.
These models are mathematical definitions of the objects. These are classified into
deterministic and probabilistic models. Each specific model determines how sensor
data is used to detect or manipulate the object. The chapter analyzes how the models
are used to compute and evaluate the best way to manipulate them. The content of
this chapter has been published in [8], [9] and [10].

• Chapter 3 describes how to detect and locate different objects in the environment.
This objective is critical to allow the robot to interact with the objects. The algorithms
are ordered an classified according to object models aforementioned in Chapter
2. The methods exploit 2D and/or 3D information obtained from the sensors to
achieve this objective. The chapter ends with an analysis of various object detection
algorithms using machine learning techniques. The content of this chapter has been
published in [11], [8], [9], [12],[13] and [14].

• Chapter 4 Introduces two different methods for simultaneous localization and
mapping for UAVs applications. The first method is based on sparse feature clouds
obtained from a low-cost stereo camera. This algorithm fuses the visual information
together with the Inertial Measurement Unit (IMU) of the aerial robot to elaborate
a local map. The second method is based on depth-sensing cameras and proposes
a flexible framework for simultaneous localization and mapping. The framework
has been evaluated in different standard datasets, and two cases of uses are shown:
mapping of the pillars of a bridge for future inspection purposes, and an object-based
semantic SLAM using the deep learning techniques used in Chapter 3. The content
of this chapter has been published in [11].

• Chapter 5 exposes the platforms that have been developed during the course of
the research. This chapter is important as thanks to the development of these
platforms, the author was able to test in real conditions the developed methods
and algorithms. Additionally, a novel end-effector which is integrated into the
manipulator is described too. This tool was conceived as an alternative to the vision
algorithms to obtain the relative position of the platform. The content of this chapter
has been published in [11], [8] and [15].

• Chapter 6 Summarizes the conclusions of the research developed by the author and
discusses the research lines for the future work.

Figure 1.3 shows visually the structure of the thesis and the influences between the
chapters.
The contributions in this dissertation are not only focused in advancing state of the

art methodologies but also implementing them in real-world applications in UAVs for
advanced manipulation tasks. As it is well-known, validating algorithms in physical
setups requires extra efforts in comparison with simulation environments or single runs

1.4 Contributions 7

Figure 1.3 Thesis outline.

of datasets. The purpose is to provide as much as possible a ready to use platform with
current technology to potential transfer to industry.
It is worth to mention that all the algorithms and implementations has been validated

with real platforms and real data which made the research more challenging.

1.4 Contributions

The main contributions of this dissertation are the development of:

• Computer vision algorithms for object detection and location for aerial manipulation.
• Visual aided object analysis for object manipulation using manipulators.
• Computer vision framework for robot localization and mapping of the environment
• Development of two aerial platforms with manipulation capabilities and a variety of
end-effectors.

These contributions are aligned with the motivation and goals of the thesis. The disser-
tation summarizes the following publications:

1. Ramon Soria, P.; Bevec, R.; Arrue, B.C.; Ude, A.; Ollero, A. "Extracting Objects
for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors". Sensors 2016,
16, 700.

8 Chapter 1. Introduction

2. Ramon Soria, P.; Arrue, B.C.; Ollero, A. "Detection, Location and Grasping Objects
Using a Stereo Sensor on UAV in Outdoor Environments". Sensors 2017, 17, 103.

3. P. Ramon Soria, B.C. Arrue and A. Ollero, "A 3D-Printable Docking System for
Aerial Robots: Controlling Aerial Manipulators in Outdoor Industrial Applications,"
in IEEERobotics&AutomationMagazine (RAM). doi: 10.1109/MRA.2018.2884744

4. Ramon Soria, P., B.C. Arrue, Anibal Ollero. Grasp Planning and Visual Servoing
for Aerial Dual Manipulator outdoors - (Under submission). Elsevier - Engineering.
2018.

5. W. Martens, Y. Poffet, P. R. Soria, R. Fitch, and S. Sukkarieh, "Geometric Priors for
Gaussian Process Implicit Surfaces," in IEEE Robotics and Automation Letters, vol.
2, no. 2, pp. 373-380, April 2017.

6. Ramon Soria P., Sukkar F., Martens W., Arrue B.C., Fitch R. "Multi-view Proba-
bilistic Segmentation of Pome Fruit with a Low-Cost RGB-D Camera". ROBOT
2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent
Systems and Computing, vol 694. Springer, Cham

7. Prada Delgado J., Ramon Soria P., Arrue B.C., Ollero A. "Bridge Mapping for
Inspection Using an UAV Assisted by a Total Station". ROBOT 2017: Third Iberian
Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Comput-
ing, vol 694. Springer, Cham

8. A. Suarez, P. R. Soria, G. Heredia, B. C. Arrue and A. Ollero, "Anthropomorphic,
compliant and lightweight dual arm system for aerial manipulation," 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC,
2017, pp. 992-997.

9. Pablo Ramón Soria and Begoña C. Arrue. "Aerial robotics manipulation" – Chapter
4.7 "Object Detection and Probabilistic Object Representation for Grasping with Two
Arms". Editors: Anibal Ollero and Bruno Siciliano. Springer Tracts on Advanced
Robotics – 2018.

Additionally, during the course of this thesis, fruitful collaborations have led to many
other publications which are not discussed in this dissertation but are also related with the
development of vision or perceptive algorithms, or related with aerial platforms:

1. Castaño ÁR, Real F, Ramón-Soria P, et al. "Al-Robotics team: A cooperative multi-
unmanned aerial vehicle approach for the Mohamed Bin Zayed International Robotic
Challenge". J Field Robotics. 2018;1–21.

2. Fran Real, Arturo Torres-Gonzalez, Pablo Ramón Soria, Jesús Capitán and Aníbal
Ollero. "UAL: an abstraction layer for unmanned vehicles". International Symposium
on Aerial Robotics (ISAR). June 12th. 2018. Philadelphia, USA. 2018.

3. P. R. Soria, A. F. Palomino, B. C. Arrue and A. Ollero, "Bluetooth network for
micro-uavs for communication network and embedded range only localization,"
2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL,
USA, 2017, pp. 747-752.

1.4 Contributions 9

4. P. Ramon Soria, Begoña C. Arrue, Jose Joaquin Acevedo, Anibal Ollero. "Visual
surveillance system with multi-UAVs under communication constraints". Robot
2015: Second Iberian Robotics Conference. December 2015

5. J. M. Aguilar, Pablo Ramon Soria, B.C. Arrue, A. Ollero. " Cooperative Perime-
ter Surveillance Using Bluetooth Framework Under Communication Constraints"
Advances in Intelligent Systems and Computing book series (AISC, volume 694)

6. Pedro J. Sanchez-Cuevas, Pablo Ramon-Soria, BegoñaArrue, Anibal Ollero, Guillermo
Heredia. " Robotic System for Inspection by Contact of Bridge Beams Using UAVs".
Sensors 18, no. 12. Bridge Structural Health Monitoring and Damage Identification.

7. José Joaquín Acevedo, Manuel García, Antidio Viguria, Pablo Ramón, Begoña C.
Arrue, Anibal Ollero. "Autonomous Landing of a Multicopter on a Moving Platform
Based on Vision Techniques". Advances in Intelligent Systems and Computing book
series (AISC, volume 694)

2 Object manipulation analysis for
aerial robots

2.1 Introduction

The use of aerial vehicles for manipulation tasks requires the development of efficient
and reliable capabilities. Many robot operations typically consist of just perceiving their
environment. However, in order to move to the next generation of automated missions
with robots, it is vital to provide them with actuation capabilities with the environment.
Manipulation of objects is a challenging task that needs the robot to detect, track and
analyze these objects. This Chapter is devoted to perception methods and algorithms that
allow the robot to model and interact with movable objects.
The chapter is structured as follow. Section 2.2 introduces four different methods to

model objects concerning the input data and the mathematical definition. The selection
of the object model influences how these are treated later in the manipulation analysis.
Section 2.3 describes algorithms that analyze how the objects should be manipulated
taking into account the object and the robot configuration. Finally, Section 2.4 exposes
how previous information is used to grasp using dual serial manipulators. All the methods
exposed in this chapter has been implemented an integrated in an Open-Source library
described in AppendixA.2.

2.2 Object modeling

Manipulation with robots has been studied extensively and tackled in different ways. This
section describes how objects can be modeled concerning the visual information from
sensors. The selection of this model influences the way objects are analyzed for their
manipulation. During the development of this thesis, many models have been studied.
Each of these models has particular advantages and disadvantages which will be discussed
during the rest of this section.

11

12 Chapter 2. Object manipulation analysis for aerial robots

There are many characteristics of objects that need to be taken into consideration.
Nevertheless, it is common to simplify the objects with a representation of its envelope or
surface. Let O be a generic three-dimensional object, and S the surface of object O . The
surface encloses the volume of the object, and it is its interface to be manipulated. Also,
objects have mass and consequently weight. This is directly translated into inertial and
gravity forces.

The interaction between manipulators and objects occurs through its interface, i.e., the
surface. These interactions are contact points, and they need to be properly characterized
to perform manipulation tasks. The model includes the position and orientation of the
contact points which are mainly defined by the surface of the object. This position and
orientation define the normal forces that are mutually exerted to and from the object and
the hand. Additionally, the material of both, manipulator and object, determine the friction
coefficient term. This coefficient is used to compute the magnitude of the tangential forces
in soft contacts.
This section focuses on the mathematical modeling of object surfaces. These models

are categorized into deterministic and probabilistic. Particularly, under the classification
of deterministic models there can be found dense point cloud-based model, sparse feature
based point cloud model, and mesh-based surfaces. These deterministic models do not
handle uncertainty, but are very convenient due to their simplicity, and are widely used.
For the probabilistic model, this chapter focus on the use of Gaussian Processes (GP)
to handle uncertainty on objects’ surfaces. This model has been widely used and has
promising applications. The author of this thesis paid special attention to this probabilistic
model and various publications have been written using it.

2.2.1 Point cloud-based object modeling

Point clouds might be the simplest model for objects surfaces. This representation is
widespread as point clouds are the typical output data generated by range sensors such
as depth cameras, stereo cameras, and laser devices. Many processing libraries, such as
PCL [16], handle with this structure of data.

Lets denote S ∈S the approximation of object surface being,

S= {V = {vi}, i = 1...N , vi ∈S }

This is a list of points containing 3d information that is assumed to be on the surface of
the object.
Nowadays several devices that acquire dense point clouds exist in the market. Let’s

classify them in three categories: passive stereo cameras, active stereo cameras, and mixed
stereo cameras.
Passive stereo cameras have a calibrated baseline that allows computing the disparity

map between the images that they capture. This disparity is then used to perform a pixel-
wise triangulation of points which results in a point cloud. Additionally, as the depth is
computed from color images of cameras, point clouds can be colored, providing them with
additional information. This kind of cameras are usually less accurate than active stereo
cameras but works well in almost any condition. However, they are based in the visible
spectrum of light. Thus, their performance is poor in low light conditions.

2.2 Object modeling 13

The second kind of devices, active stereo cameras, are devices composed by an emitter,
usually IR-light emitter, and a sensor sensitive to that emission. These kinds of cameras
emit a structured pattern to the environment, so-called structural light. The pattern is
then captured by the camera to be analyzed. The distortions in the pattern are used as
features for computing the depth map. Contrary to passive stereo cameras, this devices
cannot assign color to point clouds as typically IR cameras are grayscale. Nevertheless,
these devices are usually equipped with a color camera that, once calibrated, is possible
to project the color image onto the point cloud to paint it. These devices are usually
more accurate than passive stereo devices. However, their main drawback is that IR-light
is usually blinded with sunlight. So these devices have strong limitations for working
outdoors.
Other modern devices use a combination of both systems, structural light, and stereo

cameras to obtain the benefits of both systems.
During the development of this work, there have been tested many devices such as Intel

real sense R200, SR300, D435; Microsoft Kinect v1 and v2; Artec EVA; StereoLab ZED
and ZED mini; and other handmade stereo cameras using Logitech webcams. Figure 2.1
shows an example of typical data from this kind of sensors.

Figure 2.1 Example of data stream from an active stereo camera. From left to right it can
be seen: the color image, the depth image resulting from the IR-emitter and the
IR-sensor and eventually the constructed point cloud. This picture has been
taken with an Intel RealSense SR300.

Point clouds are widely extended nowadays in robotics. They provide a quantitative
representation of objects and the environment. Additionally, there exist a considerable
number of algorithms that use point clouds to model objects or the environment. Many
algorithms such as RANdom SAmple Consensus (RANSAC) [8, 17] or Iterative Closest
Points (ICP) [18, 19] are used for model fitting and use directly point clouds obtained from

14 Chapter 2. Object manipulation analysis for aerial robots

depth sensors. Thus there is no need to adapt the type of data. As an example, authors
in [20] used point clouds to do shape fitting and track objects position for later generating
grasps.

2.2.2 Sparse featured point clouds

The model introduced in the previous section is widely extended, and its geometrical
representation is very intuitive. However, this representation is massive in terms of data.
Sometimes, it is convenient to have 3D information but in amore compact way. Sparse point
clouds contain scattered tridimensional information about the object or the environment,
so they are less time-consuming. Additionally, each of the 3D points contained in the
cloud usually has attributes or information that differentiates them.
Depending on the way this cloud is obtained, this additional data can be varied. This

information is usually called descriptor, and each of the points is considered a feature.
Features, or keypoints, are extensively studied in perception and can be obtained from
both 2D images or 3D clouds. In the following paragraphs, a brief introduction of the
features and descriptors is presented. Then, it is explained how these features can be used
to model objects to perform the manipulation tasks.
Image features (or 2D features) have been widely used and studied. Features are com-

puted in two steps. First, a feature detector algorithm chooses the set of stand out pixels in
the images, typically corners or blobs. Then, a feature descriptor algorithm takes the local
information of the pixel to generate a distinctive signature for that specific pixel. Stereo
systems can use these 2D features to compute the disparity between the pair of images,
and triangulate the 3D location of that specific points. As a consequence, the 3D point has
both geometrical information and a distinctive signature that holds descriptive information
about the vicinity of the point.

Several new feature detectors and descriptors have been developed over the last decades,
to name a few SIFT [21], SURF [22], ORB [23], DAISY [24], BRIEF [25], FAST [26],
shi-Tomasi [27]. These methods have been designed according to different objectives, as
being faster or more robust. SIFT is a well-known detector and descriptor, and it has been
proven to be robust to scales, rotations, and translations on images. However, it needs a
high computational time in comparison with other features. Authors in [28, 29] proposed
optimizations to speed it up but it is sometimes still not fast enough, or their approximation
causes some losses of information.
Vision algorithms for UAVs have a strong requirement concerning speed as they need

a faster response for the control loop than ground robots. For this reason, faster features
such as ORB should be used.
Feature descriptors are specifically designed to describe points. This description is

used to be able to keep track of those points in different images. The correlation between
different features over a stream of images is commonly called feature matching. Each
descriptor in one image can be compared with any other descriptor in a second image
using a distance calculation such as Norm L2 or Hamming distance. The strategies to
find the matching between two sets of descriptors is varied and starts from force brute
algorithms to expanding trees or the well-known Fast Library for Approximate Nearest
Neighbors (FLANN) [30].

2.2 Object modeling 15

Figure 2.2 shows an example of sparse cloud creation from a set of 2D images using
ORB feature detector and descriptor. First three images show the matches during the
sequence of images. Eventually, the last picture shows the point cloud obtained.

Figure 2.2 Example of 2D feature detection, description and matching. A sequence of
images is used to compute an sparse featured cloud by the triangulation of
features matched between the images..

With the rise of 3D point clouds, other kinds of descriptors have appeared. 3D detectors
and descriptors use the local 3D information of dense point clouds to compute this distinc-
tive description. Moving from dense point clouds representation to sparse representations
can be highly beneficial. At first, it is intuitively less time consuming as the point cloud
reduces its size drastically. Additionally, each of the points of the new sparse point cloud
intrinsically collects the geometrical information about its vicinity.

3D keypoints have similar benefits to the 2D ones. Moreover, many of them are adapta-
tions of bidimensional detectors. Several authors [31, 32, 33, 34] investigated the benefits
and limitations of 3D keypoint detectors. Some of the well-known 3D detectors are Har-
ris3D [35], which is a variation of the Harris corner detector. Similarly to the 2D case, it
measures local changes in different directions applying different patches. Other detector is
SIFT3D [36], that is a variant of SIFT. As its planar predecessor, it uses Hessian to define
interest points. Finally, NARF (or Normal Aligned Radial Feature) [37], which locates
features in areas where the surface is stable and the neighborhood contains large surface
changes.

Some of the most used 3D descriptors are 3D Shape Context (3DSC) [38], this descriptor
uses a 3D spherical grid which is divided into several portions. Then a weighted sum
of points falling in each portion is used to generate the descriptor. Fast Point Feature
Histograms (FPFH) [39] performs a multi-dimensional histogram with the information
of each point. This variant is more robust than the previous version PFH due to the
variety of density in local portions of the cloud. Signature of Histograms of Orientations

16 Chapter 2. Object manipulation analysis for aerial robots

(SHOT) [40] first computes a local reference frame which is used to align the information
of neighboring points. Then the local region is divided into volumes in which a histogram
is computed. Finally, the descriptor is computed by concatenating the histograms. Authors
in [41] proposed a variant of the SHOT descriptor which takes into account possible color
information in the point clouds.

Similarly to bidimensional features, it is possible to perform a feature matching using the
3D descriptors. Figure 2.3 shows an example of feature matching using features computed
from a dense point cloud. It can be clearly seen that this method overtake dense method for
the alignment as they perform matching using a lower number of points and the matches
go straight to the corresponding object. Top figures show the features computed in a cloud
belonging to an object (top left figure) and features computed in a cloud of a scene (top
right figure). The bottom figure shows the matches between them.

Figure 2.3 Example of 3D features in an scene with Stanford’s Bunny in a couch. Figure
a) shows the a point cloud of the bunny and a feature cloud computed using
SIFT3D, then for each feature FPFH is computed. Similarly, Figure b) shows the
same result for an environment. Figures c) and d) shows the matches between
the features that can be used later for an alignment process.

The above 3D sparse representation has been extensively used to detect objects and
compute their location. Gordon et al [42] uses a 3D representation of objects using sparse
cloud computed with 2D SIFT features to recognize specific learned objects in new images
and to use the 3D information to obtain their pose in the space relative to the camera. Tsai
et al [43] proposed an algorithm that uses 3D features and descriptors to create descriptions
of particular objects. Then, the same kind of signature is used in new shots of scenes
captured using RGB-D cameras to seek for the object and to compute its location.

2.2 Object modeling 17

Particularly, the author of this thesis developed an algorithm for Aerial Manipulation
that will be described in section 3.4 using this model and that was published in [8].

2.2.3 Mesh based object modeling

In this section, mesh models are introduced. Previous point-based models present a prob-
lem, which is that there is not a complete representation of the surface but an approximated
representation using scattered points which are assumed to lie on the surface. However,
these point clouds are still hollowed. Meshes offer an alternative in which points are
connected with edges and faces. Meshes have been traditionally treated in mathematics
as Polytopes P (N-dimensional geometrical objects). Moreover, this model is widely
extended in the world of computer graphics (3D animation and computer games), thanks to
which, meshes have been popularized, and there is much research in this area. Particularly,
traditional GPU rendering pipelines use meshes as input streams. In this section, the
mathematical definition of 3D meshes is briefly introduced and it is shown how this model
is used to model objects.

In a nutshell, surfaces are continuous feasible 2D manifolds in R3, which represents the
envelope of objects. Let S be a specific surface, and S a discrete approximation of the
surface such that S ∈S . This approximation is characterized by,

S=

V = vi i = 1...N & vi ∈S

E = el = (vi,v j) ∀ i 6= j
F = fm = (vi,v j,vk) ∀ i 6= j 6= k

(2.1)

Each vi is named a vertex, each el is an edge and fm a facet (typically named a face in 3D).
This discretization usually makes the problem more tractable than managing continuous
functions in the space.
Meshes’ complexity can be of any kind. Miller et al. [44] propose the use of a set of

primitive shapes, such as spheres, cylinders, cones, or boxes to approximate objects. Each
simplified shape has a set of predefined grasping strategies. This simplification makes the
problem tractable, and it is particularly useful for a fast generation of grasps. An example
of usage can be seen in Figure 2.4

Figure 2.4 Example of grasps using shape primitives as meshed models. Resource
from [44]. First image shows a mesh model of a mug, second model shows
an approximation using a cylinder and a rectangle. Third picture shows some
resulting approaching points for grasping the object..

18 Chapter 2. Object manipulation analysis for aerial robots

In [45], authors propose an algorithm to extract objects from the scene which shape
fits into primitive shapes for grasping them. However, this method needs the object to be
simple itself and cannot be used in case of more complex shapes.
Other algorithms consider the use of any shape. However, it is important to take into

consideration the convexity of the objects to check the feasibility of the grasps. Authors
in [46] consider meshed objects that are non-convex. The algorithm proceeds using an
approximate convex decomposition of the object for planning grasps.

Meshes are also a widespread model to represent objects surfaces. An advantage respect
to point clouds is that faces area very compact representation. This can be interpreted as
point cloud models with linear interpolations between sets of points, i.e., the faces. How-
ever, like previous models, it is deterministic and does not handle uncertainty intrinsically.

2.2.4 Probabilistic object modeling

This section introduces a newmodel for objects surfaces using a probabilistic representation
called Gaussian Processes (GPs). Introducing this probabilistic model allows to incorporate
uncertainty in the manipulation algorithms. This uncertainty can be, for example, caused
by the errors in the visual detection algorithms, or even the uncertainty in the control of
the manipulators.

At first, the mathematical definition of the model is presented. Then, the contributions
of the author in this field are introduced, which are the use of geometrical priors for
the inference of the surfaces, and the use of non-fixed variances in the data points for
the inference. Additionally, all the methods and algorithms have been implemented an
wrapped-up in the OpenSource library grasping_tools introduced in AppendixA.2.

Gaussian Processes for object modeling

Williams and Fitzgibbon in [47] propose an algorithm that uses Gaussian Processes for
the reconstruction of 3D objects in a probabilistic framework denoted Gaussian Process
Implicit Surfaces (GPIS). In this approach, the surface of the object is assigned to a level
set of the regressed function using the data. This gives a probabilistic representation
of the surface of the object in contrast with previous algorithms that use deterministic
shapes. GPIS are also used in the literature for smoothing input data [48] or fusing data
from different sensors [49, 50]. In [49, 50, 51] authors extend GPIS by integrating surface
normals to improve the reconstruction of the object.

A Gaussian Process is a probabilistic model in which each of an arbitrarily large set of
variables is assumed to be jointly normally distributed. The following equations use the
notation given in [9]. In GP models the joint distribution of all these variables is defined as

f ∼ GP(m(·),K(·,·)) (2.2)

where f is a vector of random variables, m(·) denotes the mean function and K(·,·) the
kernel or covariance function.

Given a set of data points in 3D,

D = {(xi,yi),∀i = 1,...,N;xi ∈ R3 andyi ∈ R} (2.3)

2.2 Object modeling 19

it is possible to perform a regression [52] for any point x∗ ∈ R3. This regression is
computed as follow

f ∗ = µ
∗
f +K∗T ·K−1 · (Y −µ f) (2.4)

Σ
∗ = K∗∗−K∗T ·K−1 ·K∗, (2.5)

where Y ∈ RN is a concatenation of the data values yi, K ∈ RN×N is the covariance
matrix between the data points, K∗ ∈ RN×1 is the covariance between the data points and
the query point, K∗∗ ∈ R is the covariance matrix evaluated for the query point, µ f ∈ RN

is a vector containing the concatenation of the mean function evaluated at the data points
and µ

∗
f ∈ R is the mean function evaluated at the query point.

The kernel function K(·,·) defines the correlation between data and any query points.
Some examples of kernel functions are:

Exponential kernel K(x,y) = exp(− (x−y)′∗(x−y)
2∗l2)

Brownian kernel K(x,y) = l ∗min(x,y)

periodic kernel K(x,y) = exp(− 2∗sin(x−y
2)

l2)

(2.6)

Figure 2.5 shows the resulting GPs using different kernels (and assuming m f (x) = 0).
One of the benefits of using this probabilistic model is that it is possible to sample from
the GP to generate different possible functions as shown in the same figure.

(a) Exponential Kernel. (b) Brownian Kernel. (c) Periodic Kernel.

(d) Exponential Samples. (e) Brownian Samples. (f) Periodic Samples.

Figure 2.5 Different kernels and samples.

20 Chapter 2. Object manipulation analysis for aerial robots

Figure 2.6 shows an example of 1D regression. The plot on the left shows the mean
values of the distribution (blue) and the associated variance (red). Red stars represent
the data points (or observations). The plot on the right shows some examples of sampled
functions from the posterior distribution.

(a) Posterior distribution. (b) Samples from posterior.

Figure 2.6 Gaussian Process Regression.

The previous model assumes that there is no uncertainty in the data, for that reason the
variance in data points(red stars in figure) is always zero. It is possible to introduce noise to
the process by adding a term to the value function y= f (x)+ε such that ε ∼N(0,σ2

y). This
modification in the value function is translated in a small modification in the covariance
matrix, resulting in Ky = K +σ

2
y ∗ I

Up to this point, 1D GPs have been introduced. GPs can be extended to any dimension
as f is a scalar function that can be of any shape. For the purpose of this thesis, the surface
of the object is modeled as a level-set of f function in the 3D space, so that

f =

Interior, if f < 0
Sur f ace, if f = 0
Exterior, if f > 0.

(2.7)

According to the previous statement, all observed data points xi ∈D are hence set to
yi = 0 as they are assumed to belong to the surface, with some associated noise ε ∼N(0,σ2

y)

Additionally, to the assumption that observation points lie on the surface, i.e., they have
a value equal to zero, it is possible to add surface normals to the observed data-points.
This information can be captured by the camera or computed from the observed data
points. This extra information can feed the GP regression by extending the mean and
covariance functions with derivative terms. Derivatives of a GP are also Gaussian. Thus
the covariance functions between data points and derivatives can also be computed [53, 54].

2.2 Object modeling 21

Hence, it can also be inferred the normals on new points.K
(

∂ f (x)
∂xi

, f (x′)
)

= ∂k(x,x′)
∂xi

K
(

∂ f (x)
∂xi

, ∂ f (x′)
∂x′j

)
= ∂ 2k(x,x′)

∂xi∂x′j
.

(2.8)

As a result, the dataset D is extended as

D+ = {(xi,yi),∀i = 1...N,xi ∈ R3 andyi ∈ R4}... (2.9)

with yi being the concatenation of the function value at xi (usually zero for GPIS) and the
components of the normal [∇x,∇y,∇z]. Equations 2.4 and 2.5 are modified using Y ∈R4N ,
K ∈ R(4N)×(4N), K∗ ∈ R(4N)×1, K∗∗ ∈ R4×4, µ f ∈ R4N and µ

∗
f ∈ R4.

Figure 2.7 shows the result of a regression in 3D. This Figure only shows iso-surfaces of
level zero and ±σ , as for obvious limitations it is not possible to show the scalar function
in the 4th-dimension. This regression was computed using an exponential kernel, and a
set of four 3D data points. The regression fits the data points and smoothly predicts the
most probable shape, resulting in an oval figure.

(a) Zero-level iso-surface. (b) Zero-level and 3σ variances iso-
surfaces.

Figure 2.7 Gaussian Process Regression in 3D. This figure shows: on the left, the zero-
level iso-surface of the mean function of a 3D regression using an spherical
prior; on the right it is shown the mean on green and the variance of the mean
on the zero-level and the iso-level variance surface shown with the red (outside)
and blue (inside) surfaces.

Most of the works focus on the use of constant mean functions for the regression of the
data. However, in some situations, it is possible to have clues of the approximate shape
or a primitive shape. In this dissertation, prior shapes have been introduced in the mean
function of the GPIS process to improve the regression or kriging [55]. Particularly, in [9]
following prior shapes were explored: ellipsoids, cylinders and finite planes.
The first prior is the ellipsoidal. It is a generalization of the spherical prior for object

shapes with non-isotropic dimensions. Let a,b,c be the semi-major axes of an ellipsoid in
3D, and AE = diag[a−2,b−2,c−2]. For any h ∈ R, the mean function

22 Chapter 2. Object manipulation analysis for aerial robots

mS(x) =
h
2
(
xT AEx−1

)
(2.10)

satisfies the zero-level set assumption for the surface of an ellipsoid defined by a,b,c.
However, unless a = b = c, the magnitude-one assumption for the surface gradients will
be violated at a non-empty set of points, regardless of how h is selected. Possible choices
are, for example, setting h equal to either of a,b,c, resulting in correct gradient magnitudes
in the corresponding direction, or setting h equal to their mean.

Figure 2.8 shows an example of surface reconstruction for an apple with ellipsoidal
prior versus constant level mean function. The first figure shows the ground truth captured
by an Artec EVA device. For the reconstruction, only half of the points have been used.
These points are represented with the red arrows behind the apple. Second figure shows
the reconstruction using GPIS and the ellipsoidal prior function. It shows that the second
half of the apple is reconstructed using the GPIS. It can be observed that the use of the
prior shape is highly beneficial against the use of a constant level function. The prior adds
the necessary information to reconstruct the volume of the apple. While, as shown in the
third picture, the constant level prior completely loses this information. This result is very
important in robotics manipulation, as the later analysis of the shape for the manipulation
task may fail, if the estimation of the surface has significant errors.

(a) Complete shape. (b) Using geometrical prior. (c) Using constant level prior. .

Figure 2.8 Reconstruction of a scanned apple with and without geometrical prior from
observations on half of the surface.

The second prior is the cylindrical. It is interpreted as the limit of an ellipsoid with one
of the major axes going to infinity, resulting in a scale matrix AC = diag[a−2,b−2,0] for
c→∞, for instance. Figure 2.9 shows the reconstruction of a tree trunk using a cylindrical
prior. In this example, the data points belonging to the tree trunk were manually segmented
from the remaining data points.

At last, while the introduction of implicit surfaces was motivated to model closed
surfaces, it may also be useful to use planar GPIS priors. The planar mean prior can be
used for example to represent tables, floors or walls. In this model, the mean function is
set to

2.2 Object modeling 23

Figure 2.9 Reconstruction of a tree trunk using a cylindrical prior.

mP(x) = nT x, (2.11)

where |n|2 = 1, describes a linear prior with planar zero-level set. The resulting surface
intersects with the origin, and its gradient magnitude is 1 everywhere, thus satisfying
the gradient magnitude assumption. In particular, let n = [0,0,1]T , so that mP(x) = x3
describes a linear function in 3D, with constant gradient pointing in positive x3-direction.
The zero-level set is then given by the x1,x2-plane, with the infinite half-volumes for x3 < 0
and x3 > 0 interpreted as the “inside” and the “outside” of the object. A natural application
of this prior is for representing a ground surface in 3D-pointclouds, with positive x3
pointing upwards.
Unfortunately, some objects, such as a chair or a lamp, cannot be represented with

primitive shapes. In these cases, GPIS can still be applied using a zero-mean prior. Future
implementation will integrate more complex priors named composite priors. These priors
will be piecewise-defined functions in the d dimensional space. The main limitation of
this priors is that they need to be continuous and their first derivatives too to ensure proper
behavior of the GP.

Combining point clouds with GPIS for pose uncertainty

Up to this point, two methods have been presented to model the mean function of GPIS: a
constant mean level function for m(·) = c; and the use of geometrical functions as primitive
shapes for the mean functions such as spheres, ellipsoids, improving the reconstruction of
the expected volume of the object according to the prior. The use of prior knowledge in the
shape of the object is undoubtedly helpful for grasping, contrary to standard constant-mean
functions that produce in holes in the volume of the objects which is undesirable for the
grasping process.
In this work, instead of modifying the mean function, a method for adding prior in-

formation in the form of extra data is proposed. Let S be a set of points that models the
shape of the targeted object, and D a set of points obtained from an input sensor, which is
assumed to belong to the object. A variance term is inferred for each point in the model
data set according to

σ(xmodel
i) = σalignment ∗ emin_dist(xmodel

i ,xobs
j) (2.12)

24 Chapter 2. Object manipulation analysis for aerial robots

being σalignment the variance of the correspondences used for the alignment of the model
and min_dist(xmodel

i ,xobs
j) is the minimum distance between the point and the observed

points.

For simplicity, a 1D example is considered first. Figure 2.10a shows the standard
regression using a constant mean function and a fixed observation noise set for each point.
Figure 2.10b shows an example of regression using a model aligned with the data. However,
this does not take into account that points that lie far away from the observations cannot
have the same confidence that those points that are close to them. For this reason, a varying
sigma depending on the distance to the data points is introduced as shown in Figure 2.10c.

(a) No model and fixed sigma noise.

(b) Model and fixed sigma noise.

(c) Model and varying sigma.

Figure 2.10 1D example of varying sigma for prior model for GPIS. The green circles
correspond to real observations, the blue line the mean function and the pair of
black lines represent the variances on the value of the function. Red asterisks
are the data points from the aligned model.

2.2 Object modeling 25

This method allows the introduction of custom complex mean shapes for the GPIS
regression, by using the point clouds as virtual data with varying variance. Comparing
Subfigures 2.10a and 2.10c it can be clearly seen how both have the desired mean shape,
but the proposed model produces larger sigmas for unconfident points that are further away
from the observations.
The same process can be applied for 3D shapes as shown in Figure 2.11. At first, an

initial model is placed with the observed point cloud using any alignment algorithm,
such as RANSAC or ICP, resulting in an initial pose for the object. However, these
algorithms might have alignment errors, so the variance term on the points of the model is
introduced. It can be seen that the mean shape of the GPIS bends towards the model points
reconstructing the shape of the object correctly. This would not be possible with only a
constant mean function and the observations. Other authors use the thin plate covariance
kernel which minimizes the changes in the gradients, but it still fails when the gaps in the
observed surfaces are large [9].

Figure 2.11 Sequence for 3d object. Firstly input cloud is received, then the model is
aligned and voxelized to reduce the number of points used for the GPIS
regression. Finally, the regression is performed obtaining the shape of the
object.

Experiments have been performed first with virtual objects, similar to those that can be
found in public datasets [56]. In order to test the algorithm, partial observations (in the
form of point clouds) are generated using BlenSor [57]. BlenSor is a modified version of
Blender 3D tool that can simulate different depth sensors such as Kinect or Time of Flight
cameras (ToF).
The computation time of GP regressions scales poorly with the size of the input data.

For this reason, the input point cloud of the model can be downsampled using any kind of
filtering. A super-voxelization algorithm presented in [58] is chosen, but any other simple
voxel filtering or downsampling algorithm can also be used.

Figure 2.12 shows the results of the surface reconstruction using the proposed algorithm
in comparison with the result without using the prior shape model and a constant mean
level function.
Note that the complete surface reconstruction is not needed for the grasping process

with GPIS and it is computationally expensive. For these reasons, it may not be computed

26 Chapter 2. Object manipulation analysis for aerial robots

(a) Coke input data. (b) Bunny input data. (c) Tool input data. (d) Jar input data.

(e) Coke aligned &
voxels.

(f) Bunny aligned &
voxels.

(g) Teapot aligned &
voxels.

(h) Jar aligned & vox-
els.

(i) Coke non-model
surface.

(j) Bunny non-model
surface.

(k) Teapot non-model
surface.

(l) Jar non-model sur-
face.

(m) Coke our surface. (n) bunny our surface. (o) Teapot our surface. (p) Jar our surface.

Figure 2.12 Simulation examples of surface reconstruction for different objects using. First
row shows a simulated input cloud with a partial observation. Subfigures in
second row have the result of the alignment of the model with the input cloud
(small white dots) and the supervoxelization (in red dots). In third row there
are the computed surfaces of the objects using our method. Finally, last row
shows the reconstruction of the surface using a GPIS with a constant mean
level.

2.2 Object modeling 27

in the grasping process, and it is shown for demonstration purposes using the algorithm
described in [9].
The above probabilistic model has been used to model the surface of a crawler robot

for grasping during the AEROARMS projects. The experiments have been carried out
in a hexacopter platform equipped with an Intel RealSense D435 camera, as shown in
Figure 2.13.

Figure 2.13 Aerial platform used for the experiments..

Figure 2.14 show captures of a real experiment. At first instance, the object has been
detected and its pose estimated using the 3D model and the point cloud acquired by the
camera. Then, an approximated reconstruction of the object’s surface has been computed
using the GPIS model.

Figure 2.14 Snapshots of outdoor experiments. Reconstruction of the complete surface
with colored covariance from the GPIS.

The GPIS model calculates the covariance term for each of the points on the approxi-
mated surface of the object. These covariances allow computing some probabilistic metrics
for manipulation such as the probability of force closure (described later in Section 2.3.1),

28 Chapter 2. Object manipulation analysis for aerial robots

which gives the probability of a grasp to be stable. Figure 2.14 shows the experiment in
three different instants. From left to right columns; the crawler is completely observed,
for this reason, the uncertainty is uniform and low close to the observation points. In
the second column, the crawler started leaving the frustum of the camera, the alignment
algorithm still have enough information for acquiring an approximate pose of the target
object, but as part of the object is not observed, the uncertainty increased on the backside.
In the third column, the top-right part of the crawler is out of camera’s sight. Thus the
uncertainty increased in the right side too.
As conclusion, the computation of this covariance terms in the surfaces allows taking

into account both the shape of the object and which part is better to be used for grasping
in situations where the object is wholly observed.
Remark on GP parameters: The hyperparameters for the kernel function and mean

function were selected ensuring that the reconstruction of the object is reasonable. A
broader study about the parametrization and learning of the hyperparameters is proposed
as future work.

2.3 Object manipulation - Grasp generation and evaluation

In order to perform manipulation tasks, the robot needs to compute how to grasp objects
efficiently. This section introduces how to generate grasps efficiently and a variety of
methods to evaluate the quality of these grasps. All the methods and metrics introduced in
this section has been implemented and integrated in the OpenSource library grasping_tools
introduced in AppendixA.2

2.3.1 Grasp Quality metrics

The manipulation of objects requires the analysis of objects’ shape as explained in the
previous section. However, to manipulate, it is necessary to determine the appropriate
contact points for the manipulator’s end-effectors. The computation of these points depends
on the object surface model. The combination of them generates a grasp, but not all the
possible grasps are good candidates to manipulate objects. Thus it is necessary to evaluate
them to be able to achieve desired tasks.
Grasps are evaluated with quality metrics[59]. This section summarizes the most

commonly used metrics. These can be categorized in regards to the relative position of
the contact points, the global hand configuration and other variety of aspects.
Before analyzing the different state of art quality metrics, some fundamental concepts

are introduced in this section.
As aforementioned, the robot exert forces on the object through its surface on the contact

points. These contact forces can be modeled in three different ways[59, 60, 61], as shown
in Figure 2.15

• Punctual contact point without friction. In this model, the force exerted on the
object is only applied in the direction of the normal.

• Punctual contact point with friction. In this model, a force is applied in the
direction of surface’s normal. Additionally, forces may be exerted in the tangential

2.3 Object manipulation - Grasp generation and evaluation 29

direction. These tangential forces are usually modeled with Coulomb’s friction
model and are usually discretized with a convex cone.

• Soft contact point. This model assumes the same forces the Punctual contact point
with friction but with an additional torque around the direction of the normal.

Figure 2.15 Contact point types.

These forces on the object are usually represented in a vector so called wrench. A
wrench ωi is a 6D vector which contains the 3D vector of forces Fi and a second 3D vector
with the torque τi exerted by Fi from the center of the object c to the contact point pi being
τi = Fi× (pi− c). Thus,

ωi =

(
Fi
τi

)
(2.13)

As mentioned before, tangential forces may appear. These forces, if they exist, oppose
the movement. Thus they do not have an explicit representation. Instead, a convex cone
of possible wrenches containing all the possible tangential forces is used. This cone is
represented in the wrench space which is commonly named Cone Wrench Space (CWS)

CWSi =

{
ωi

∣∣∣∣ωi =

(
Fi

Fi× (pi− c)

)
,‖Fi− (Fi ·ni)ni‖ ≤ µ(Fi ·ni)×‖Fi‖

∣∣∣∣} (2.14)

The summary of all the n CWS exerted by the manipulator on the object is called Grasp
Wrench Space (or GWS).

GWS =

{
W

∣∣∣∣∣ωi =
n

∑
i=1

ωi ∈CWSi

∣∣∣∣∣
}

(2.15)

A complete evaluation of the cone increases the complexity of the grasp analysis. Thus
it is usually approximated to a polyhedral convex cone as shown in Figure 2.16

30 Chapter 2. Object manipulation analysis for aerial robots

Figure 2.16 Approximate wrench cone by a convex polyhedral cone.

For the grasp analysis these contact point information information is stored in a matrix
called Grasp Matrix (G). It is a R6x6n matrix that is composed of n partial matrices
(Gi ∈ R6x6), being n the number of contact points. It is computed as follow,

Gi =

(
Ri 0

S(pi− c)Ri Ri

)
(2.16)

being Ri a R3x3 matrix which represents the orientation of the contact point, c the center
of the object, pi the position of the contact point and S(t) the cross-product matrix given
by,

S(t) =

0 −rz ry
rz 0 −rx
−ry rx 0

 (2.17)

Eventually, the complete grasp matrix is the concatenation of all the grasp matrices,

G =
{

Gn‖...‖Gn
}

(2.18)

Quality metrics derived from the Grasp Matrix

Most of the quality metrics based on on the geometrical position of the contact points
are computed from the Complete Grasp Matrix, which encloses fundamental geometrical
properties of the object and the grasps such us the size or the geometrical distribution of
the contact points.

A grasp is stable if its Grasp Matrix is full rank, or in other words, if it has six singular
values (σi) by the positive square root of GGT . If any of the singular values turn to be zero
the grasp become unstable and incapable of resisting external wrenches.

G =U ·Σ ·V ∗ being, Σ =

σ1 0 ... 0
0 σ2 ... 0
0 0 ... 0
0 0 ... σ6

 (2.19)

2.3 Object manipulation - Grasp generation and evaluation 31

Concerning the singular values of the grasp matrix, this section focuses on three mea-
sures: the minimum value of the singular values, the volume of the ellipsoid in the wrench
space and the grasp isotropy index.

As the singular values are required to be strictly larger than zero, the minimum value of
the singular values indicates if the grasp is close or not to a singular grasp.

Qmin = σmin(G) (2.20)

The volume of the ellipsoid in the wrench space provides a general measure of the
global contribution of the contact forces which is essential to be maximized. However, as
all singular values are equally weighted, it is not possible to determine the contribution of
each of the contact forces.

Qvolume =
√

det(GGT) = σ1...σn (2.21)

The last metric (grasp isotropy index) tries to determine if the grasp present a similar
behavior in all the direction. If the index is close to 1 it means that the grasp can be used
for any task, i.e., it resists external wrenches, equally, in any direction. However, if the
index tends to zero, it means that it presents a lousy behavior against some direction of the
external wrenches.

Qisotropy =
σmin(G)

σmax(G)
(2.22)

The principal advantage of the grasp quality metrics based on the grasp matrix is that
they are relatively easy to compute. However, the information that they give is vague in
some situations and qualitative. For these reasons, the following section introduces other
quality metrics that are widely used and provide more quantitative information for the
manipulation tasks.

Quality metrics from other aspects

A grasp is said to be good if it can resist external wrenches in any direction. One common
property to ensure this condition is the force-closure. Nguyen defined in [60] "A grasp on
an object B is a force closure grasp if and only if we can exert arbitrary force and moment
on object B by pressing the fingertips against this object. Equivalently, any arbitrary
motion of object B will be resisted by a contact force from the fingers, which means that B
cannot break contact with the fingertips without some non zero external work. That is, the
total freedom of B is zero."

As mentioned before, the forces exerted by the manipulator on the object are wrenches
which are usually approximated by convex cones in R6. The combination of all the convex
cones defines the Grasp Wrench Space. The boundary of the GWS can be enclosed by
with 6D convex hull of all the wrenches. Authors in [62] proof that a necessary condition
for a grasp to have force closure is that the convex hull needs to enclose the origin of the
wrench space.

There are two common ways to construct the convex hull of the wrench space concerning
the constraint of fingers’ force. The first assumes that each finger has the same force and is

32 Chapter 2. Object manipulation analysis for aerial robots

limited to 1, i.e., ‖ fi‖ ≤ 1∀i = 1...n. The second model assumes that the sum of all forces
is limited and normalized to 1, i.e., ∑

n
i ‖ fi‖ ≤ 1∀i = 1...n.

Ferrari and Canny in [63] proposed a new quality metric based on the convex hull of
the GWS: the distance from the origin to the closest facet of the polytope (P) of the
approximate convex hull of the GWS. Geometrically, this measurement is equivalent to
the radius of the largest sphere centered on the origin that can be fully contained in P . It
is usually called largest minimum resisted wrench (or lmrw). Figure 2.17 shows the lmrw
for both of fingers’ force models. Additionally, if lmrw > 0, it means that the origin is
contained by the convex hull, so the grasp has force closure too without extra computations.

Figure 2.17 Largest minimum resisted wrench using both models of fingers’ force.

This measure is widely used and very convenient as it grants that the grasp has force-
closure and also defines the weaker direction of the grasp. An alternative quality metric has
been proposed in [64] which is the volume of the complete GWS. This metric is invariant
to the orientation of the grasp, but it has a high computational cost and does not indicate
the poorest direction that the grasp can resist.
All the quality measures introduced, up to this point, assume that external wrenches,

i.e., perturbations, may occur in any direction. Nevertheless, in many situations, it is
possible to assume a previous knowledge in the way perturbations are exerted. Li and
Sastry [64] introduced the concept of Task Wrench Space (TWS) as a set of wrenches that
can be specified for a given task. This TWS is a polytope P which shape is usually a 6D
ellipsoid.
However, it is not always possible to explicitly define the TWS or do it accurately.

Previous work [65, 66] extended it in case of partial known of the tasks. They introduced

2.3 Object manipulation - Grasp generation and evaluation 33

that there is always a set of forces that can be known such as the gravity or the forces
that arise by the acceleration of the object, this is called Object Wrench Space (OWS). In
general, TWS and OWS are more convenient, as the lmrw is more restrictive.

An additional, grasp quality metric is introduced which derives from the force closure
metric: the probability of force closure [67, 68]. The probability of force closure is defined
as the probability of a grasp with uncertain contact points and normals of having force
closure. Its analytical solution is complicated, so usually, this metric is obtained by Monte
Carlo sampling. Each contact point is sampled, and then it is computed if it has force
closure. The probability can then be approximated by evaluating N samples. This quality
metric can be applied in the probabilistic framework of GPIS thanks to the possibility of
random sampling processes with the definition of the underlying GP model.
Previously described quality measurements are based in mathematical definitions of

geometrical properties of the contact points of the manipulators with the object. However,
recently, a new paradigm has appeared in robotics manipulation as in many other fields of
robotics. Neuronal networks can be used to generate approximate grasps by a supervised
training of sets of labeled data. Contrary to previous mathematical algorithms, these
algorithms infer clues of the possible grasps from the collections of data.
Caldera et al [69] provide a comprehensive review of Deep learning algorithms for

grasp detection. As an example, authors in [70] used RGB-D to fed a neuronal network to
compute feasible gripper-like grasps (as shown in Figure 2.18). They introduce a structured
regularized approach to improve the efficiency of the network taking into account the
different nature of the color and depth channels.

Figure 2.18 Example results on a cluttered scene using deep learning. Rectangles corre-
spond to feasuble grasps for the robot. Resource from [70].

2.3.2 Grasp generation - Deterministic shape models

Once objects surfaces are modeled, it is possible to determine processes for generating
grasps. The first deterministic model that is going to be used is the mesh-based model. As
stated before, a mesh is a set of faces that encloses a volume. Author in [71] uses a bound
box to generate a set of rays which are cast from a bounding box towards the target object.

34 Chapter 2. Object manipulation analysis for aerial robots

Each ray collides once with the surface, and the surface normal is computed. Figure 2.19
shows an example for a crawler robot in the AEROARMS project.

Figure 2.19 A simple way of parameterizing the grasp search space..

The method above computes a set of possible contact points for grasping the object.
Then, knowing the kinematic model of the robot and its restrictions it is possible to compute
feasible grasps.

However, this methodology might fail to generate feasible grasp for objects with complex
shapes. A simple method has been implemented in this thesis to take into account any
non-convex shape extending the previous procedure. For this purpose, the rays are collided
not only with the first encounter facet but also to all the possible facets. Figure 2.20 shows
an example of ray tracing of an object with an U-shape. If gripper’s size is smaller than a
size, then the object is un-graspable for the robot using previous method. In this section, a
slight modification of the algorithm is proposed, which takes into consideration all the
possible internal nooks on the surface.

Figure 2.20 Example of non-convex object for grasping algorithm. Red lines represent the
rays used to trace the possible grasp points..

In general, terms, let be a single ray passing through an object. The number of collisions
is

2.3 Object manipulation - Grasp generation and evaluation 35

ncollisions = n f olds ·2

thus the number of combinations of opposite contact points that might generate a grasp
is

ngrasps =

n f olds

∑
i=1

i

Ray tracing algorithms have been intensively studied, especially in the field of computer
graphics [72]. In this work, faces are composed of just three vertices. Let be a triplet of
points forming a facetV = v1,v2,v3 and a ray defined by two points p0 and p1, it is possible
to determine if the ray intersects the triangle by using Möller–Trumbore intersection
algorithm [73].

This contact point candidates generation might be time intensive if the mesh of the object
is too complicated. For this reason, once the ray tracing is performed, the untransformed
results are stored into a binary file, so if the same object or a different instance of the same
object is grasped later, this database is recovered, avoiding all the ray tracing computations.

As aforementioned, meshed representations are very common and this algorithm can be
used for objects of any kind. Figure 2.21 shows examples of grasps for a parallel gripper
for different objects. Gripper exerted forces are represented as red cones in the contact
points.

Figure 2.21 Grasp generation for a parallel gripper for meshed objects, from left to right:
drilling tool, mug, crawler robot and ring. Red cones represent wrenches
exerted on contact points of the grasps.

The other common deterministic object model is the point cloud. A similar procedure
can be applied to them. The only difference is that point clouds are face-less representations
of objects. Thereby, it is necessary to make some modifications.
The algorithm starts with the same steps. A set of initial points with directions are

defined to perform the ray tracing algorithm (as shown in Figure 2.19). However, in this
case, it is not possible to detect collisions with faces. Therefore, an octree [74] is used to
get a fast estimation of the approximate collisions of the rays with the expected surface
of the object. Figure 2.22 shows examples of grasp generation using point clouds for a
parallel gripper. Red cones represent the wrenches on the contact points of the grasps.

36 Chapter 2. Object manipulation analysis for aerial robots

Figure 2.22 Examples of grasps generation using point clouds for a parallel gripper. From
left to right, a crawler, Standfor’s Bunny, and a sphere. Red cones represent
the wrenches on the contact points..

2.3.3 Grasp generation - Probabilistic shape models

As aforementioned, one of the fundamental steps of the grasping process is the generation
of grasp candidates. There are several algorithms to compute feasible candidates given the
robot/hand kinematics. Usually, authors assume that the surface is known when generating
the contact points as shown in previous sections. In this section, it is assumed that there is
not an exact model of the object surface. The GPIS model presented in Section 2.2.4 is
used for grasping. In these experiments, a parallel gripper is used, but a similar process can
be extended for generating grasps for other manipulators. This work has been presented
in [10] and implemented in the Open-Source library presented in AppendixA.2
The grasping process is outlined in algorithm1. Initially, a random point away from

the observations is selected. Next, using the GPIS information and a gradient descent
algorithm, it is moved toward object’s surface, being f (x) the function to be minimized.
As f (x) > 0 means outside, the algorithm just need to converge to f (x) = 0 . Then, an
opposite point to the initial one is taken and converged to the surface too. Figure 2.23
shows examples of grasps generated.

Algorithm 1 Grasp Generation using GPIS for parallel gripper
1: Choose random init point.
2: while is point on surface? do
3: gradient← GPIS(point)
4: movepoint
5: end while
6: Choose opposite point on the previous sphere
7: while is point on surface? do
8: gradient← GPIS(point)
9: movepoint
10: end while

As mentioned in the previous section, a new Grasp quality metric can be introduced in

2.3 Object manipulation - Grasp generation and evaluation 37

(a) (b)

Figure 2.23 Examples of grasps generated on a cylinder. The reconstructed surface is
represented by a gray mesh. Red lines belong to the convex cone of forces
generated in the grasping points..

this model thanks to the intrinsic uncertainty in this shape model. Previous work [67, 75]
introduced the concept of Probability of Force closure out of the context of GPIS. In that
work, authors use polygons or splines to model the contour of the objects and then handle
the uncertainty with a probability distribution. The probability of force closure is computed
by sampling the contact points and their normals using a probability distribution and then
performing Monte-Carlo integration. This concept has been later used in the context
of GPIS [76] as at each point of the space it is possible to infer a Gaussian probability
distribution.

Being able to extrapolate the entire shape of the object in the GPIS regression allows
generating grasps. As the variance of the surface increases with the distance to observations,
the grasp algorithm tends to choose not only the stable (as in the deterministic shapes)
but also the best stability regarding the probability of force closure. Figure 2.24 shows
generated grasps for the simulated object obtained from the grasp planning process. For
this figure, the objects were observed only from one side. The GPIS reconstructed the
complete shape so the algorithm can compute efficiently feasible grasps.

(a) Coke input data. (b) Bunny input data. (c) Tool input data. (d) Jar input data.

Figure 2.24 Generated grasps for simulated objects using the proposed method for recon-
structing the surface. The surface is computed for showing purposes not for
computing the grasps..

38 Chapter 2. Object manipulation analysis for aerial robots

The same methodology was applied for real data, in which a Kinect Depth sensor was
used to generate the object’s models as well as to acquire the input clouds to the algorithm.
Figure 2.25, shows generated grasps for different real objects.

(a) Real jar. (b) Real teapot. (c) Real spray.

(d) Example grasp jar. (e) Example grasp teapot. (f) Example grasp spray.

(g) Example grasp jar. (h) Example grasp teapot. (i) Example grasp spray.

Figure 2.25 Generated grasps for real objects using the proposed method for reconstructing
the surface. The surface is computed for showing purposes not for computing
the grasps..

2.4 Grasp planning with dual manipulators 39

2.4 Grasp planning with dual manipulators

Mechanical and mathematical models of robot hands and their interaction with the object
are a fundamental aspect of the analysis of robotic manipulation. The vast amount of
combinations of object and hand configurations makes this research challenging. This
section describes how the grasping algorithms described above are used to perform grasp
planning tasks with a pair of complete serial manipulators with grippers. This section
presents the implementation and results of the work presented in [13]. In this work, the
aerial platform perform a visual servoing to grasp objects using a pair of manipulators
installed in the aerial robot. The object detection will be presented in Section 3.6.3 and
the dual manipulator platform will be described in Section 5.3.
Particularly, the manipulators used in this work are part of an open-hardware & open-

source project called Hecatonquiros introduced in AppendixA.3, which aims for general
purpose, cheap and easy to use robotic arms. These are designed to be light-weight. Thus
relatively small UAVs can carry them. These are 3D printed reducing the overall cost of
its production as the material es relatively cheap and does not need any post-processing
step, so can be assembled easily. The cost of a single arm is ∼ 150$ (including the
smart serial servos). The project also provides for a library based on OpenRAVE [71] for
the kinematic solvers and has support to ROS to perform simulations before and while
doing real experiments. The overall description of the complete hardware, including the
multicopter, is in Section 5.

The previous section introduced how to grasp general objects using parallel grippers tak-
ing into account, just, the limitations of these. In this section, complete serial manipulators
are modeled to perform the grasp generation and grasp planning.
At first instance, a set of feasible grasps are generated taking into account its shape.

These initial grasps are computed based on any of the previously mentioned methods,
either for a deterministic or probabilistic model. Each of these possible grasps needs
an extra requirement. These grasps need to be reachable, i.e., the arms should be able
to place its end-effector in the target position. In order to determine this reachability,
a best suitable distance has been computed according to arms configuration. Once the
grasps are computed and its reachability computed, these are then arranged according to
their properties, such as the largest-minimum resisted wrench, described previously in
Section 2.3.1.
In order to compute the inverse kinematic of the arms, two methods have been used.

The first one is a Fast-IK solver developed by Rosen Diankov [77]. The second one is an
iterative method using the mathematical definition of arms’ kinematics.

Let a multi-link robot manipulator R be specified by the scalar variables Θ = θ1, ...,θn
describing its joints states. The end of each links of the body have a certain position
S = s1,...,sn. These positions can be described using Denavit-Hartenberg formulation [78]
as a chain of transformations computed by a set of parameters DHi = {αi,ai,di,θi}. Each
DHi element is a matrix which transform between link i−1 to i, i.e. forward kinematics.
Figure 2.26 shows a particular arm configuration with 6DoF developed in this research.
The purpose is to obtain a set of adequate joints Θ that places the end-effectors on

a target location Tt , or Inverse Kinematics (IK). This problem has been widely studied.
Unfortunately, it does not have a straightforward solution in most of the situations. Iterative

40 Chapter 2. Object manipulation analysis for aerial robots

Figure 2.26 6DoF arm part of Hecatonquiros project, developed by the Ph.D. candidate
during this research. The model will be introduced in more detail in Chapter 5.

methods [79] and sampling methods [80] perfectly suit to problem. Forward kinematic is
given by functions Θ 7→ S(Θ) that are R 7→ R3. These functions can be linearly approx-
imated using Jacobian matrices (J(Θ)) close to current state Θ. The velocities can be
expressed as,

˙S(θ) = J(Θ)Θ̇ J(Θ) =

(
δ si

δθ j

)
i, j

The final purpose is to guide the arms towards the target grasps using the visual informa-
tion the sensors. Particularly, in this work a Jacobian damped-least square (DLS) gradient
descent method [81, 82] is applied to ensure the convergence of the arms towards the
target position. This method has proved to be more robust to inverse and pseudo-inverse
methods [82] near to instabilities and singularities in the Jacobian matrices. Let Xk and Qk
be the target position of orientation for the end effector given by the grasp planning and
updated by the vision algorithm. The aim is to update manipulator’s pose by updating its
joints. The DLS proceed as follow

error =
{

Xk−Xk−1
Qk−Qk−1

Jc =

[
JX
JΘ

]

∆θk = (JT
c (θk) · Jc(θk)+λ

2 · I)−1 · error (2.23)

being Xk and Qk the target position and orientation of the end-effector at instant k; θk
current joints’ angles of the arm; JX and JQ are the corresponding position and orientation
jacobians at current state; and λ the damping coefficient to reduce the issues related to the

2.4 Grasp planning with dual manipulators 41

inversion of the matrix. λ needs to be large enough to ensure that the algorithm behaves
adequately close to singularities but not too large to grant a good convergence rate.
An alternative to this method is the Fast-IK solver. It has the benefit of giving fast

solutions, and the implementation is given and generalized to any kind of robots. However,
in some situations, it leads to abrupt changes in joints coordinates to reach the same
position. Contrary, the DLS method grants smooth transitions between any change in
position because of being iterative as long as the parameters are well tuned to grant the
convergence rate.
At last but not at least, working with a pair of manipulators require for additional

constraints. The principal one is the need to avoid self-collisions, collisions with the object
and collisions between the arms. However, checking collisions of any non-convex object
is not trivial. The use of convex-hull is advantageous in some situations as it is relatively
used to check collisions within convex-hulls, but this simplification can be rough in some
applications. Modern approaches split the objects into a set of convex hulls [83, 84]. It
results in a more accurate solution while preserving the advantages and mathematical
simplifications of working with convex hulls. In this work, the implementation given by
OpenRAVE is used [77].

Figure 2.27 shows some examples of grasps generated using the described methodology.

Figure 2.27 Examples of dual grasping using the proposed methodology for the dual
manipulator represented in OpenRAVE QtCoin visualizer..

Figure 2.28 shows the value of the joints during two visual servoing tests. The dashed
line corresponds to the target joints and the solid line to the actual joints values. A change
in grasp due to the previous target being unreachable is shown in the middle of the figure.
Figure 2.29 shows snapshot of a test-bench experiment and a real flying experiment from
both the point of view of the robot and from outside.
In this section, it has been demonstrated that it is possible to perform grasping with

dual arms using the grasp analysis described in this chapter. Despite the oscillations of the
aerial platform due to the control system, the DLS method ensures the right convergence
of the inverse kinematic and smooth the trajectories in real time. Thanks to DLS, it is not
necessary to compute explicit trajectories as far as the target positions are ensured to not
collide with any object.

42 Chapter 2. Object manipulation analysis for aerial robots

Figure 2.28 Joints values during experiments. At first instance the arms follow the grasps
target. Up to a certain point, the object rotates so the system switch to another
feasible grasp..

Figure 2.29 Complete system running. Top pictures shows the system in a test-bench and
bottom pictures shows it running in a real autonomous flying experiment.

3 Object detection and localization
for aerial manipulation

3.1 Introduction

Humans and animals have an inherent ability to identify and locate instances of objects to
be able to interact with them. However, this simple skill implies a set of subprocesses that
are not intuitive for machines. Robust and reliable object detection and recognition, as
well as full pose estimation in any scene, are critical tasks to achieve robotic manipulation.
Furthermore, contrary to the ground or fixed manipulators, aerial manipulation implies
extra robustness and speed to be able to produce more agile movements.
Both object detection and tracking have been tackled with a wide range of techniques.

Some simpler straight algorithms use a fixed set of markers to accurately locate objects by
placing these tags stuck onto the surface [85, 86]. However, this methodology limits the
applications and is poorly scalable.
Some techniques are based on detecting the object using Euclidean distances between

the objects [87, 88]. Most frequent algorithms apply feature detectors and descriptors to
generate sparse descriptive models that are identified later in any scene [42][43]. Finally,
many current researchers in this area focus on using Deep Learning techniques for ob-
ject detection [89, 90], object tracking by recurrent networks [91] and even object pose
estimation [92].
This chapter introduces techniques to tackle the problem of object detection and lo-

calization for aerial manipulation tasks. The chapter is divided in six sections organized
according to the typology of the algorithms. Section 3.2 shows the implementation and
results of a distance-based object detection and localization algorithm. Section 3.3 shows
how to use dense point clouds with ICP to detect objects in scenes composed of dense
point clouds. Section 3.4 shows an algorithm to create sparse models of objects using
feature clouds and how to detect and locate them efficiently. In Section 3.5 a probabilis-
tic algorithm is described to perform multi-object detection and localization under the

43

44 Chapter 3. Object detection and localization for aerial manipulation

framework of Gaussian Processes Implicit Surfaces. Finally, Section 3.6 shows different
machine learning algorithm for object detection using monocular cameras.

3.2 Distance based object detection

Some of the more basic algorithms for object detection are the geometric or distance-based
algorithms. These algorithms take the 3D information given by the robot’s sensors to
create clusters and locate the objects. The information used in these algorithms is diverse.
Not only 3D geometric distances are used but also color information, so-called color space;
or further adding curvature data to the 3D geometric information.
A well-known algorithm is K-means [93]. This algorithm aims to partition a set of

observations into a defined number of clusters according to the nearest mean of the
cluster. More formally, each cluster has a Normal distribution associated to evaluate the
membership of each data point to a cluster, which is a very intensive problem. Nevertheless,
several heuristic algorithms produce good results to guarantee the convergence to a local
minimum by iterative processes.
The primary challenge of this algorithm is its initialization, i.e., selecting the right

amount of clusters and their initial parameters. Authors in [94] propose an efficient
algorithm for selecting the initial parameters of the centroids by sampling a weighted
distribution which segregates the initial clusters bymaximizing their distance. An extension
of the k-means algorithm, called X-mean algorithm [95], was developed to update the
number of clusters iteratively. This improvement is of high importance as in some situations
it is not possible to know a priori the number of existing clusters.
Another object detection algorithm based on Euclidean distances is shown in [88].

This algorithm uses an efficient representation of the space using a Kd-tree and uses an
approximate nearest neighbors method to measure the distance between the points. Then
the algorithm iteratively grows clusters of points that are close in range and ends when the
complete point cloud has been explored.

The author of this thesis used this technique to segment candidate objects in [11]. The
remainder of this section introduces it. In that work, the authors focus on using cheap
stereo cameras. These pair of images are used to compute a sparse 3D point clouds. The
data was obtained with flights of a real aerial robot carrying the stereo system. Section 4.2
will explain with more detail the elaboration process of the point clouds and the creation
of a map representing the environment by the consecutive alignment of the point clouds.
An example of input point cloud from the system is shown in Figure 3.1. This input

cloud contains points that belongs to objects, the background, and even noise points that
do not exist. Thus, the input cloud needs to be filtered.

At first instance, the noise is removed using and standard outlier removal [16]. Then the
floor is subtracted from the point cloud using a RANSAC algorithm [96] which finds the
best set of points in the point cloud that match a planar model, i.e., the floor.

The resulting cloud is free of noise points and the points that are assumed to belong to
the floor. Then the Euclidean-based distance segmentation algorithm is used to get a list of
candidate clusters that are assumed to be objects. Finally, clusters that meet the minimum
number of points required are selected as candidate objects. The idea behind this is that a

3.2 Distance based object detection 45

Figure 3.1 Input cloud and corresponding image of the scene for the detection of objects.

tight cluster of features that is not part of the floor could represent an object, assuming the
objects are close to each other. Figure 3.2 shows the clusters obtained from an experiment.

Figure 3.2 Reconstruction of the objects in the scene (colored clusters) compared to ground
truth (red circles). The frame in each object represents the PCA result with the
red axis representing the dominant axis. .

After the candidates are extracted and clustered, as shown in Figure 3.2, their points
are projected onto the images from the cameras. The projected points correspond to their
respective objects as can be seen in Figure 3.3.

In order to do so, it is necessary to know the position of the UAV in the 3D map and
the calibration of the cameras. Let C be a cluster of points belonging to an object, K the
calibration matrix of the camera, and T the pose of the camera with respect to the map,
being

46 Chapter 3. Object detection and localization for aerial manipulation

Figure 3.3 Left and right images with projection of the points belonging to candidate
objects, surrounded by a convex hull. .

C = {pi∀i = 1...N} K =

 fx 0 cX
0 fy cy
0 0 s

 T =
[
R|T
]

the projection of every single point of the cluster using a pinhole model of the camera

xim
yim
1

= K ·T ·

X
Y
Z
1

 (3.1)

Once all the points are projected onto the image, a convex hull that envelops the object
is generated, for each cluster of 2D points. These 2D clusters can be used later in an object
classification algorithm. Particularly, subsection 3.6.1 introduces the algorithm used to
classify the objects from the footprint in the image. Figure 3.4 shows a close up view of
an extracted object.

(a) Top view of object’s cloud.
(b) Side view of object’s

cloud.
(c) Sample picture of real ob-

ject.

Figure 3.4 Example of an extracted objec.

3.3 Object detection by dense point cloud alignment 47

3.3 Object detection by dense point cloud alignment

Point cloud model for objects was introduced previously in Section 2.2.1. Detecting objects
using this model typically implies an alignment process. 3D point cloud alignment consists
of finding the right 6DoF rigid transformation existing between two point clouds in some
coordinate system. A large variety of algorithms exists [97] to solve the alignment problem
using different properties and methodologies. Some of these algorithms are even able to
handle non-rigid deformations [98] of the point clouds during the alignment process. This
section will focus on the alignment of point clouds using ICP and particularly a variant
called generalized-Iterative closest points or gICP [99]. Additionally, color information
has been added to the process to make the alignment process more robust. This section
focuses on the work developed in article [13] for the detection of objects using dense point
clouds.
The alignment problem usually involves two point sets, the target which is considered

static and is used as a reference for the second point set, the source. Let’s denote them
T = {pi = [xi,yi,zi]∀i = 1...N} and S = {p j = [x j,y j,z j]∀ j = 1...M}. At first instance the
algorithm seeks for possible matching candidates. It means, for each point in the source
cloud, creating a list with the closest points in the target cloud.
Once each point in the source cloud is paired with the target cloud, a set of filters

is used to reject possible bad matches. Simplest ICP algorithm just looks for distance
correspondences between the points. Other versions use some kind of local information in
the point clouds to seek for lines, planes or any other feature that can be used to reject false
matches between points, making the process more robust to local minima. The presented
implementation uses following correspondence rejectors: maximum distance (Eq.3.2),
normal compatibility (Eq.3.3), a custom implementation of color rejector using HSV
(Eq.3.4), and a one to one correspondence rejector.

sdist = min(
√

(xi− x̂ j)
2) (3.2)

snorm = min(cos(∠(ni, n̂ j))) (3.3)

scolor = min(
√

(ri− r̂ j)
2 +
√
(gi− ĝ j)

2 +
√
(bi− b̂ j)

2) (3.4)

As a brief introduction, a set of examples are shown in the following paragraph. Given the
two sets of point clouds and their matches (typically named correspondences), ICP tries to
iteratively performs small steps to align both sets of points by looking for correspondences
between the clouds.
ICP alignment algorithms strictly need to have an initial estimation because they are

susceptible to fall in local minimums. Moreover, if the algorithm is used to locate individual
objects. This happens due to the vast amount of redundant data, which makes possible
that the source cloud fit to several locations in the target cloud. Figure 3.5 shows the
results of the ICP algorithm for object detection. Left figure show a good result when the
estimation is close to the right position. Right figure shows a bad result due to the bad
initial estimation.

48 Chapter 3. Object detection and localization for aerial manipulation

Figure 3.5 ICP algorithms are sensitive to the initial estimation of cloud’s pose. Figures
show two example of object alignment with different initial locations for the
same object on a scene. Left picture shows a good initialization and right
picture a bad initialization. .

The rest of this section shows the results of the object detection and location algorithm
using dense point clouds developed in [13]. Particularly, the model of the object to be
detected corresponds to a mock-up of a crawler robot that is part of the European Project
AEROARMS [7]. Figure 3.6 shows an instant of the algorithm in which the crawler robot
is detected in outdoor environments on the top of a fragment of a pipe.

Figure 3.6 Top figures show the a pair of RGB-D data from a RealSense D435 device.
Bottom left figure shows the final matches between a dense 3d point cloud
model of the case of the crawler and bottom right figure shows the resulting
alignment. The coordinate system of on the point cloud represent the final
position of the robot in the coordinate system of the camera.

3.3 Object detection by dense point cloud alignment 49

The complete fitting algorithm is stated in algorithm 2. The algorithm is complemented
with an Extended Kalman Filter (EKF) to smooth the results of the alignment and to
predicts next possible position of the object to guarantee the convergence.

Algorithm 2 Object fitting with EKF estimator for orientation consistency with objects
with symmetries
1: if initialized? then
2: EKF ← previous_estimate
3: pose← predict_current()
4: re f ine_estimate(plose, input_cloud,model)
5: else
6: initial_estimate()
7: init_ek f ()
8: end if

The complete application is described in the article referenced above. The first part
of it consists on a convolutional neuronal network (CNN) which detects the crawler in
the RGB image providing a guest of objects pose. This algorithm is introduced later in
Section 3.6.3. This particular object has three symmetry planes which can produce a twist
in the estimation of 60deg. In order to prevent this problem, once the initial estimate
has been computed, the EKF is used to have the initial estimation of the position and
the rotation, giving a better initial condition for the refining alignment algorithm and
preventing undesired twists.

The system works in UAV’s coordinate system. It implies that even if the target object
is static respect to the scene, it moves relative to the robot, due to the movement of the
UAV. It is assumed that the relative pose has a simple kinematic movement,

X = Xk−1 + Ẋk−1 ·∆t +
1
2

Ẍk−1 ·∆t

and that the observation equation is the result of the alignment algorithm being

Zk = X̂k

Figure 3.7 shows the result of object’s pose estimation algorithm. This position estima-
tion is used later to grasp the object as described in Section 2.

The use of the Kalman filter and the refinement of the ICP provide high accurate results
of the position of the object to be grasped. Additionally, it is computed in real time, which
is critical for the right execution of the manipulation. Section 3.6.3 will introduce an object
detection algorithm for 2D images which provides in which fragment of the image is the
object located. Providing this candidate region enhances the speed of the algorithm as it
reduces the size of the point cloud which is used for the alignment process.

50 Chapter 3. Object detection and localization for aerial manipulation

Figure 3.7 Errors in cartesian coordinates of object’s pose estimation using point cloud
model with ICP and EKF pose filtering.

3.4 Feature-based object detection

Feature-based point clouds, as introduced in 2.2.2, are sparse point cloud in which each
point contains local geometrical information about its vicinity. Featured clouds are very
convenient as their size is hugely lower than the ones used in ICP algorithms and they
contain reliable information that overcomes this shortage of points.

This section describes the implementation of a feature-based object detection algorithm
developed in [8]. This algorithm is divided into two stages: the learning stage (or offline
stage), in which the model of the object is created, and the localization stage (or online
stage), in which the object is detected and its position is estimated. Figure 3.8 summarizes
the pipeline of the algorithm in both the modeling and localization stages.

Figure 3.8 Pipeline of both stages of the algorithm..

The learning stage, or offline stage, generates a model of an object from a set of images.
The presented method differs from previous approaches by the use of a stereo camera [42,
100], which automates the learning process (providing 3D information of the real-world

3.4 Feature-based object detection 51

scale) and improving the filtering of outliers. Particularly, a ZED stereo camera from
StereoLabs1 has been used.

Section 2.2.2 introduced some of the most used state-of-art two-dimensional features. In
this work, the performance between FAST-SIFT and ORB are evaluated, and quantitative
results have been provided to show the efficiency of the system in different situations.
The performance of the image feature detection and matching for the model creation and
object position estimation depends on the combination of the detector and descriptor
chosen. Nevertheless, for both the object modeling and detection algorithms, the features
are entirely exchangeable. Later in this section, the processing time for the different
combinations of detectors and descriptors is shown.

As mentioned before, a ZED stereo camera is used for image acquisition. This camera
has a wide-angle lens, so a rectification of the images is needed to detect and match the
features correctly. Initially, features are detected on each pair of images. Then these
features are matched with either a FLANN [30] (for SIFT) matcher or a force brute matcher
(for ORB). The first advantage of using stereo images is to improve the filtering of matches,
making it more robust to outliers. Despite, it needs more processing time as features are
computed in both images. The resulting inliers are assumed to be key features of the object.
This makes the algorithm more robust to outliers as these are rejected at the beginning of
the process. Figure 3.9 shows examples of feature filtering using stereo, as described in
this paragraph.

(a) Box 1. 640x480. (b) Box 2 640x480.

(c) Tool 640x480. (d) Can 640x480.

Figure 3.9 Filtering bad features using known stereo geometry and sequential filtering..

The last step of the object modeling is to perform a bundle adjustment (BA) [101] with
the features and camera positions to reconstruct the right shape of the object. The camera

1 https://www.stereolabs.com/

https://www.stereolabs.com/

52 Chapter 3. Object detection and localization for aerial manipulation

positions where the images were taken are also obtained. However, for the proposed
method this information is not used. The BA consists of a global optimization using
Levenberg&Marquardt [102] algorithm to minimize the re-projection errors on feature
points in a set of images.

In order to perform the BA, it is necessary to correlate the points within all the images. It
is assumed that all the pictures from the dataset are arranged as they were captured. Then,
the features are matched sequentially to obtain the inter-frame visibility of the features.
With this step, the relations within sequential frames are obtained. Figure 3.10 shows
consecutive matches of features for the creation of the inter-frame visibility matrix for
different objects.

(a) Whoopies box. 640x480. (b) Gena box 640x480.

(c) Drilling tool 640x480. (d) can 1280x720.

Figure 3.10 Features are associated sequentially to compute the inter-frame visibility of the
features. Then, following algorithm 3, the visibility between non-sequential
frames is computed..

Additionally, it is necessary to obtain the rest of the relations within all the frames. Let
us denote P = {pk ∀k = 1...K} a vector in which each pk is a vector with the features on the
frame k; M a matrix that at each element mi j contains a vector with the matches between
the frame i and the frame j. All the elements mi(i+1) are filled from the sequential match
of frames. Then the rest of elements of mi j above the diagonal, i.e., j > i can be filled
using algorithm 3. An improvement can be made by detecting loop closure; however, for
most of the cases, this method is enough to reconstruct the object, as the camera is always
pointing to the same place. A diagram of this visibility problem is shown in Figure 3.11
Consider a set of N 3D points, observed from K cameras (at Tk position and Rk ori-

entation). Then, given the correlations between the projections of the 3d points into the
cameras, an optimization is performed minimizing the errors. Using the previously defined
matrix M of matches between frames makes it possible to generate a unique list of 3D

3.4 Feature-based object detection 53

Algorithm 3 Correlate back matches
1: for o f f set = 2,o f f set < K do

2: for i = 0, i < K−o f f set do

3: j = i+o f f set

4: for match in mi(j−1) do

5: if match is visible in m(j−1) j then

6: add match in mi j

7: end if

8: end for

9: end for

10: end for

Figure 3.11 Diagram of elements in the Bundle Adjustment problem. A, B and C represent
the position of the camera from where the observations were taken. pi∀i =
1...6 are six features in the space and ai,biandci are the features observed by
each of the positions..

points and the inter-visibility of the points within the frames. Gordon and Lowe [42]
showed that placing all the cameras at the same distance from the origin on the Z-axis and
all the projections in the XY-plane are enough conditions to ensure the convergence of the
BA. It is important to highlight that it is necessary to keep track of the descriptors of the
features, as they need to be stored with the 3D points as part of the model of the object.
Figure 3.12 shows how a model has iteratively been constructed using the BA.
Moreover, since the inter-visibility matrix was obtained, it is possible to compute the

number of times that each point appears, i.e., in how many images each point is observed.
Therefore before computing the BA, an additional filtering can be done to improve the
performance.
Some of the features can be badly matched or just not matched. Hence, this could

produce duplicated points that might complicate the convergence of the algorithm. To
avoid this, removing points that appear in less than k images can improve and speed up the

54 Chapter 3. Object detection and localization for aerial manipulation

(a) Starting state. (b) First iteration. (c) Iteration 5. (d) Iteration 20.

Figure 3.12 Features are associated sequentially to compute the inter-frame visibility of the
features. Then, following algorithm 3, the visibility between non-sequential
frames is computed..

convergence of the BA. The minimum value for k is 2, as the points need to appear in at
least two images to be able to triangulate it. On the other hand, increasing this parameter
too much is not possible, because the BA solver might not be able to solve the problem if
the number of observed variables is lower than the number of variables in the problem.
Therefore, in this work, k is set to 3.

Once the BA process is performed, a 3D model of the object is obtained. However, as
described by in [103], because of the optimization algorithm, the points are not scaled
according to the real size. Authors in [103] record an additional dataset in which the
position and orientation of the object are known, then a second optimization algorithm is
performed to obtain the right scale of the model.

In contrast, in the proposed method, with the use of stereo cameras, this new dataset
is not needed. As the correlation of all the points is known, it is possible to get the
projections on both the left and right images at each frame. Pm are the points obtained
from the BA and Pt is a cloud reconstructed from features of a frame k using the known
stereo geometry. Therefore, it is possible to estimate the transformation T between them
using an SVD-based estimator. If k is the current frame, Nk is the number of points seen
on that frame, pm

i is the point i on the model and pt
i is the triangulated point from the

stereo pair; the score of each transformation is computed as

score = ∑
i=1...Nk

(‖pm
i − pt

i‖)/Nk

The transformation T which produces the minimum score is used to scale the model to
the real-world size. Being

T =

a11 a12 a13 tx
a21 a22 a23 ty
a31 a32 a33 tz
0 0 0 1

3.4 Feature-based object detection 55

the scale factor can be computed as

s = [sx,sy,sz] =

sx = ‖[a11,a21,a31]‖
sy = ‖[a11,a21,a31]‖
sz = ‖[a11,a21,a31]‖

As the model of the object is sparse, it is hard to compute information about how to
grasp it reliably. But it can be set manually to ensure a correct manipulation. As the object
modeling is performed offline, it is realistic to choose it manually at this stage. Nevertheless,
the detection of the grasping points can be analyzed depending on the manipulator and
the geometry of the object using various quality metrics [59] if some extra information is
given about its shape.

The remainder of this section introduces the online detection of the object in new images
and the position estimation. First of all, using the camera calibration, the acquired images
are undistorted. The same feature detector and descriptor as the one used in the modeling
stage is used to extract features in both input images. Then, the features in the pair of
images are matched. As described before, the known parameters of the stereo calibration
are used to filter the outliers. Hence, the remaining points are stronger as they appear in
both cameras and they are easy to match.
At this point, there is a set of point candidates on the scene that becomes part of the

object. To detect it and estimate its position a PnP (or Perspective-n-Points) formulation is
used. Let P = {[xi,yi,zi],∀i = 1...N} be a set of 3d points andU = {[ui,vi],∀i = 1...N} be
their projection on the camera plane. The objective is to find the Rotation R and translation
T of the object in the camera’s coordinates (knowing the calibration parameters of the
camera) by minimizing the re-projection error of the points. Particularly, a RANSAC
implementation is used, which is less sensitive to local minima and more robust to outliers.
To be able to start the PnP problem, it is necessary to match the features in the scene

with the feature model of the object. In order to do that, each descriptor is matched with
the points in the scene and then filtered to remove outliers. The inliers are used in the PnP
problem to detect the position of the object. Figure 3.13, shows screen-shots of results
outdoors with a featured floor.

(a) Drilling tool. (b) Box 1. (c) Box 2.

Figure 3.13 Examples of detection and position estimation of objects outdoors. White
thin circles are candidate features in the scene. Green thick circles are the
features assigned to the object and the coordinate system is the representation
of the position of the object. It depends on the coordinate system chosen at
the modeling stage.

56 Chapter 3. Object detection and localization for aerial manipulation

The PnP process was analyzed regarding the confidence parameter and the reprojection
error parameter. These two parameters affect the performance of the algorithm in both
time and pose estimation. To give a numerical idea of the influence of the parameters,
table 3.1 summarizes the average time for the algorithm varying the parameters using FAST
and SIFT. Figure 3.14 shows the estimated position of an object varying the reprojection
parameter. It can be seen that the estimation on the z-axis is worst when the reprojection
error increases.

reprojection error
3 5 7 8

co
nf
. 0.99 0.031 0.028 0.025 0.024

0.999 0.036 0.031 0.027 0.026
0.9999 0.039 0.034 0.026 0.028

Table 3.1 PnP problem times.

(a) Reprojection error 3. (b) Reprojection error 5.

(c) Reprojection error 7. (d) Reprojection error 8.

Figure 3.14 Result of pose estimation algorithm varying the reprojection error. Due to the
increase of this parameter, the position is less accurate. However, as described
in table 3.1, it is slightly faster.

The algorithm is also proved to be robust to occlusions. The position of the object can
be reconstructed with a small fraction of points of the model. Subfigures 3.15a, 3.15b,
show the estimated position of an object occluding partially by a person. Also, in Subfig-
ures 3.15c, 3.15d one can see how the position of the object remains stable even with the

3.4 Feature-based object detection 57

robotic arm occluding the object during the grasping trajectory. It is noticeable that the
position is more stable than the orientation against partial occlusions.

(a) Non-occluded indoor. (b) Occluded indoor.

(c) Non-occluded outdoor. (d) Occluded outdoor.

Figure 3.15 Testing detection and pose estimation against partial occlusions..

It was observed that the use of a FAST detector and SIFT descriptors produced the best
results. In the learning stage, these features produced accurate models. Subsequently, the
position estimation was recovered, in both indoor and outdoor environments, easier than
with the other feature descriptors. However, the computation time of this descriptor is too
high. In simple scenes, a frame speed within 8 and 13 is obtained. However, outdoors, due
to the light conditions and the texture of the floor, the FPS decreased drastically within 2
and 4 FPS. This happens due to the large increment of features detected by FAST. This
fact enlarges the number of descriptors that need to be computed and the RANSAC PnP
solver takes longer to converge.
The second best option is to use FAST detector and rBRIEF descriptor. The size of

rBRIEF descriptors is smaller than SIFT ones, so the time spent by the matching algorithm
is lower too. For this pair detector-descriptor 15-25 FPS were achieved. However, this
descriptor showed the worst behavior against variations in the scale.

This algorithm has been intensively tested in several environments with different objects.
Videos 23 shows the summary results submitted to [8]. Additionally, the algorithm has
been used in the project AEROARMS to enable UAVs to perform aerial manipulation
tasks456.

2 https:// youtu.be/P5krV80lAdk
3 https:// youtu.be/ eL2mBwhQxtA
4 https://www.youtube.com/watch?v=G4kDpBnqGH0
5 https://www.youtube.com/watch?v=H6CzL5ZJmpM
6 https://www.youtube.com/watch?v=XVi5ZGTlFTM

https://youtu.be/P5krV80lAdk
https://youtu.be/eL2mBwhQxtA
https://www.youtube.com/watch?v=G4kDpBnqGH0
https://www.youtube.com/watch?v=H6CzL5ZJmpM
https://www.youtube.com/watch?v=XVi5ZGTlFTM

58 Chapter 3. Object detection and localization for aerial manipulation

3.5 Object detection and location using probabilistic model

As presented in Chapter 2, probabilistic models are an alternative to deterministic repre-
sentations of objects in robotics. Particularly, probabilistic representations of point clouds
are essential for active methods such as targeted exploration [104], decision making in
grasping contexts [105] or probabilistic object detection [106]. In this section, the object
detection and location is formulated as a data association problem, where each point n is
assigned a label an, associating it to one of a set of objects present in the scene. Particularly,
this work has been published in [12] and the target objects to be detected are fruits for
harvesting which is an interesting manipulation problem in robotics.
The surface of fruits are modeled by Gaussian process implicit surfaces [47], where

observations of object surfaces are interpreted as points in the zero-level set of an underlying
GP. Let D= {xn,yn} for n = 1, · · · ,N, be a set of observations yn of f (xn), characterized
by the covariance function kN(xm,xn). Observations y∗ of f ∗ = f (x∗) at a query location
x∗ are distributed according to

y∗ ∼ N(〈y∗〉 ,σ∗2), (3.5)

with mean and variance

〈y∗〉= µyD
+ k∗T K−1yD, (3.6)

σ
∗2 = k∗∗− k∗T K−1k∗, (3.7)

where yD ∈ RN×1 denotes the concatenation of the observations for all data points, and
K ∈ RN×N ,k∗ ∈ RN×1,k∗∗ ∈ R denotes covariance terms. Further information can be
found in [47, 107, 108].

This section takes into account the possible existence of multiples objects, so mixtures of
GPs are considered instead of a single instance. The association of data points to different
GPs is modeled by a Dirichlet process (DP). DP mixture models have the advantage that
they readily deal with data sets where the number of latent clusters is not known. Each
GP is then characterized by a set of hyperparameters, which can be used to represent the
surface properties as well as prior shape and location [107].
Analytical representations of the resulting probability space are intractable, even for

reasonably small problems, as it consists of all possible combinations of part associations.
As a result, Markov-Chain Monte Carlo method is employed to sequentially explore the
probability space by producing samples according to a Gibbs-sampler.

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) technique commonly used to
make statistical inference. Monte Carlo term refers to algorithms that involve performing
simulations using probabilistic choices. Markov Chain algorithms are a class of algorithms
for sampling from a probability distribution based on the construction of a Markov chain,
which is a random process that undergoes transitions from one step to another. Let
zk be a set of states. It is desired a function g that makes a probabilistic choice to go
from one state to another. That choice is done according to a transition probability
Ptrans(z

(k+1)|z(0),z(1)...z(k)). Performing these transitions is called probabilistic walking

3.5 Object detection and location using probabilistic model 59

through the states. A Markov Chain Monte Carlo algorithm is defined so that the next
state zk+1 only depends on the current state zk,

Ptrans(z
(k+1)|z(0),z(1)...z(k)) = Ptrans(z

(k+1)|z(k)) (3.8)

To apply Gibbs sampling the state z need to have two or more dimensions, i.e., z =
{z1,z2, ...,zD} with D > 1. The basic idea is that, rather than picking the next state com-
pletely, the probabilistic choice is split for each of the d ∈ D dimensions, where each
choice depends on the other D−1 dimensions. The walk proceeds as follow:

1: z(0) := {z(0)1 ,z(0)2 , ...,z(0)D }
2: for t = 1 toT do
3: for d = 1 toD do
4: zt+1

d ∼ P(zd |z
(t+1)
1 ,...,z(t+1)

d−1 ,z(t)d+1, ..., ,z
(t)
D)

5: end for
6: end for

The conditional distribution can be obtained using its definition as:

P(zd |z
(t+1)
1 ,...,z(t+1)

d−1 ,z(t)d+1, ...,z
(t)
D) =

z(t+1)
1 ,...,z(t+1)

d−1 ,z(t)d ,z(t)d+1, ...,z
(t)
D)

z(t+1)
1 ,...,z(t+1)

d−1 ,z(t)d+1, ...,z
(t)
D)

(3.9)

It is known that samples from a DP can be generated by sampling from the so called
Chinese Restaurant Process (CRP): the prior distribution of a data point’s association is
conditioned on the association of all other data points and is given by

p(zn = k|z\n,α) =
Nk

N−1+α
(3.10)

p(zn = K +1|z\n,α) =
α

N−1+α
, (3.11)

where an denotes the association of point n, z\n denotes the association vector for
all other points, N denotes the total number of points (including point n), Nk denotes
the number of points associated to component K, and α denotes the Dirichlet process
concentration parameter. The second expression p(zn = K +1) represents the probability
that point n is associated to a new object without any points associated. The algorithm
randomly selects a data point {xn,yn} ∈DM and removes it from its current GP, before
computing the likelihoods with respect to all GPs currently present in the scene, i.e.,
with a number of associated data points Nk > 0. The GP likelihoods are weighted by Nk
according to (3.10) and (3.11) and used to compute posterior association probabilities
p(zn = k) by normalisation. Our algorithm produces a desired number of samples for the
scene segmentation, which can be used to draw probabilistic conclusions about the scene
segmentation and the location and shape of objects.
The previous concepts are extended to the problem of reconstructing multiple objects

in cluttered scenes. This work aims to exploit the prior object shapes described in Sec-

60 Chapter 3. Object detection and localization for aerial manipulation

tion 2.2.4, and the compactness of objects for a probabilistic association of point cloud
observation to different objects.
Let D = {xn,yn;∀n = 1...N} be a set of observations (called parts), K denotes the

number objects in the scene and A = [A1,...,AN] the association of the parts to the objects.
Each object k is characterized for its prior parameters θk.

It is assumed that the number of objects present in the scene is not known a priori and
the analytical representation of the scene is intractable. The association probabilities An
are modeled using a Dirichlet Process Mixture Model (DPMM) which accounts that the
number of objects is not known a priori. In order to solve the problem, MCMC methods
can be used to generate samples. The previously described Gibbs-sampling method is
used, which has been applied to similar problems. The whole process is summarized in
algorithm 4.

Algorithm 4Multi-Object Sampler
1: init prior data
2: for all samples do
3: for each part n do
4: remove part from associated object
5: for each object k do
6: compute association probability
7: end for
8: sample association An
9: if object exist then
10: add part to object
11: else
12: create new object
13: end if
14: end for
15: for each object k do
16: if has parts associated then
17: sample prior parameters θk
18: else
19: remove object
20: end if
21: end for
22: end for

Given an initial state of the system, the sampler first iterates over the parts. For each
of the N parts, it is computed the probability of belonging to an existing object. The
sample for a new association of the part is done according to a Chinese Restaurant Process
(CRP) which weights the different objects with a Dirichlet concentration parameter α .
Consequently, there is a possibility that the part is associated to a new object instead of
an existing one. One of the parts are updated, all the object without parts associated are
removed. Then the algorithm cycles through all the objects updating its parameters. The
update of parameters is performed sampling according to the current state. There is not any

3.5 Object detection and location using probabilistic model 61

limitation about how that sample is performed. Currently, two different kinds of samplers
are considered, 1) constructing a normal distribution using the part information; 2) using
the Metropolis-Hastings (MH) algorithm [109].

Figure 3.16 shows samples of the described multiobject sampler in a scene with multiple
fruits. Only spherical prior was used with radius fixed at 0.3 m. The last figure also shows
the representation of the mean of the underlying GP process. It means as described before
representing a 3D surfaces. Usually, plotting an iso-level surface of the GP is expensive.
For that reason, it was developed a quick plotter using a seed and spread algorithm which
has been implemented in the library described in AppendixA.2.

(a) Sample 0. (b) Sample 4.

(c) Sample 60. (d) Sample 100.

Figure 3.16 Random samples and Zero-level of GPIS after one hundred samples for a
scene with cluttered fruits and vegetables. The algorithm is initialized with the
same number of objects than parts. The last picture shows one of the samples
with the reconstructed GPIS objects.

3.5.1 Multiview probabilistic object detection and location

This algorithm has been tested for the probabilistic segmentation of apple vines for har-
vesting. The vine-like structure of apple trees on a trellis comprises leaves, branches, and
fruit. The leaves can occlude the fruit and also induce noise in the observed point clouds.
For these reasons, the input point clouds are firstly filtered with standard noise removal. At
this stage, the clouds have fragments of the apple, but morphologically these are identical
to leaves since both are small planar surfaces.

In order to achieve better results in the probabilistic segmentation a set of point clouds
are taken from multiple points of view to build up a 3D reconstruction of the apple vine
using a registration algorithm. A pose planner generates camera poses such that the scene
is observed from different angles. Figure 3.17 summarises the multiview probabilistic
segmentation process. It is assumed that the robot is positioned in front of the apple

62 Chapter 3. Object detection and localization for aerial manipulation

branches. First, a snapshot is taken and used to infer the relative angle of the apple "vine"
with respect to the arm pose. Using this angle, the algorithm computes candidate poses
reachable by the arm, and these are arranged on a portion of a sphere. Then, at each step
of the algorithm, a pose is selected that maximizes the distance from the history of past
poses granting a good convergence of the mapping process. From each viewpoint, a new
cloud is taken, which is registered using ICP plus information from the arm controller that
provides an initial estimate of the point cloud’s exact pose.

Figure 3.17 System block diagram.

Finally, the map of the scene is filtered by color using the Euclidean distance between
colors and a model value in HSV. Then, it is simplified using the voxel cloud segmenta-
tion algorithm described in [58] before being introduced into the Dirichlet segmentation
process.

The artificial apple trellis has a dimension of 1.5m by 1.5m with the same characteristics
as typical orchard trellises. The initial position of the arm with respect to the trellis is
unknown at the beginning of each experiment. The only assumption is that the trellis is in
the range of the camera (the Intel RealSense SR300 has a maximum range of 1.5m).

The first row in Figure 3.18 shows the input cloud that is fed into the Dirichlet segmenta-
tion algorithm. In the second row, the result of the segmentation process is shown, where
different colors are used to show the association to the different objects.
Finally, Figure 3.19 shows additional results of the probabilistic segmentation with

different configurations and clusters of apples. All the apple vines were reconstructed
entirely, and all the apples were successfully segmented using 1000 iterations of the Gibbs
Sampler. The centroids of the apples are distributed over the samples within a range of
3 cm. This range depends on the parameters of the sampler, and a specific centroid depends
on the selected iteration step, as these are updated sequentially to ensure convergence. The
surfaces of the apples fit well to the data, demonstrating accurate reconstruction close to
the observed data points, as required for harvesting and manipulation.

3.5 Object detection and location using probabilistic model 63

Figure 3.18 Segmentation results for an increasing number of viewpoints from left to right.
The first row shows the registered point clouds for multiple views, the second
row shows the labeled groups representing the segmented apples, and the last
row displays the centroids of apples that were segmented with a sufficiently
large number of parts associated..

Figure 3.19 Segmentation results for different distributions of the apples over the vine..

64 Chapter 3. Object detection and localization for aerial manipulation

3.5.2 Extending probabilistic object segmentation using to multiple different object’s pri-
ors

In previous Chapter, it has been introduced how objects’ surface can be modeled using the
GPIS probabilistic model (Section 2.2.4) and how can be used this model together with a
Gibbs Sampler to segment multiple instances of objects [12]. This section presents how to
implement a more complex sampler to introduce several mean priors on the Gibbs sampler
to segment objects of many kinds.

A a new function is introduced after line 14 in Algorithm 4 called samplerPriorType().
This function computes the likelihood of each prior for each object with it currently
associated parts. Then it is sampled for the priors according to the likelihoods (computed
using the information of the associated parts to the object). Figure 3.20 shows an example
of the Multiobject-Multi-Prior sampler using ellipsoidal and infinite plane priors.

Figure 3.20 Segmentation of objects using multiple priors, in this case spherical and planar
priors.

General poses of observed objects are immediately integrated into the prior functions,
as outlined in the following.

A translation of the object by a vector µ is realised by shifting the mean function by
an offset, mµ(x) = m(x−µ). For example, the mean function of a spherical object prior,
translated by µ yields

mµ

S (x) =
r
2

(
(x−µ)T AS (x−µ)−1

)
. (3.12)

3.6 Machine learning for object detection 65

Furthermore, anisotropic objects, such as ellipsoids, cylinders or planes, exhibit rota-
tional degrees of freedom in SO(3), in addition to translation. For a prior mean function
m(x), the result of a translation µ ∈R3 and rotation θ ∈ SO(3) is readily given by the trans-
formed mean function mµ,θ (x) = m(Rθ (x−µ)), where Rθ denotes the rotation matrix
induced by θ . For example, the mean for a general ellipsoid reads

mµ,θ
E (x) =

h
2

(
(x−µ)T Aθ

E (x−µ)−1
)
, (3.13)

where Aθ
E = RT

θ AERθ . In the case of a newly observed set of surface points and given
an object prior function, µ and θ represent a set of unknown parameters that need to be
inferred, for example via maximising the log-likelihood of the data.

3.6 Machine learning for object detection

Machine learning refers to a field of algorithms that allows the computer to generate
behaviors or results by the generalization of information. The number of applications
for machine learning is enormous. This section focuses on the use of machine learning
algorithms for object detection and classification. These methods have been evolved along
the years adapting to the resources of the technologies. First designed algorithms differ
radically from what it is considered today "learning" from some adopters.
K-Nearest Neighbors (KNN)[110] is one of the simplest machine learning algorithms

categorized as lazy learning type. KNN algorithm uses a set of data to classify new data
points based on similarity measures. Others long-tradition algorithms for machine learning
are decision trees and random forests. Decision trees [111] are non-parametric learning
algorithms which are graph-based classifiers. These can be used to infer the category
of new input data related to a input dataset by splitting the datasets into ramified groups
in which each set of branches at the same level distinguish are different in some kind of
attribute.

This section describes the methods explored and used during the research of the author.
At first, the Bag of Words (BoW) model with a State Vector Machine (SVM) as a classifier
and Latent Dirichlet Allocation (LDA) are presenteds. These use of these methods were
generalized before the explosion of Neuronal Networks and Deep learning and have been
proved to be robust and accurate in many applications. At last, a review of different
Convolutional Neuronal Networks for object detection is presented.

3.6.1 Bag of Words model and State Vector Machine

This section introduces a classical approach for image classification so called Bag-of-words
model. This model has been used as a first approach for instance object classification
during this thesis. Particularly, it has been applied in in [11]. At first instance, it is
briefly explained how the algorithm works. Then, qualitative results are shown. Current
implementation in c++ has been wrapped up in the library described in AppendixA.1.
Images are NxMx3 matrices of unstructured data. Managing all this amount of infor-

mation is not tractable. Thus, images are usually encoded in feature vectors. Features

66 Chapter 3. Object detection and localization for aerial manipulation

are pieces of information that contain local information of the image, i.e., corners, lines,
etc. This codification of information is a considerable reduction of dimensionality which
simplifies the task of classification. The bag-of-words model (BoW)[112] simplifies the
images into an histogram of codified features. BoW methodology is commonly used to
classify text documents where the occurrence of each word is used as a feature for training
a classifier. In similarity with the text model, image features are interpreted as words. Each
object is represented by a histogram of visual descriptors, computed by detecting features
in the image. Figure 3.21 shows a simplified representation of the bag of words model.

codewords

FEATURE DETECTOR ‐

FEATURE DESCRIPTOR
FEATURE DETECTOR ‐

FEATURE DESCRIPTOR

Classifiers

LEARNING INFERENCE

K‐means

Figure 3.21 Bag of words representative model for image.

BoWmodel requires a vocabulary (so-called codewords), which is a set of representative
descriptors that are used as a reference to quantify features in the images. The vocabulary
is generated during an offline training process of the classifier. The algorithm detects all
features in the training set. Then a clustering algorithm (typically k-means) is used to
extracts the representative set of words by N clusters.

During the training process, a classifier is optimized using positive and negative object
samples. The resulting object detection and recognition system return the labels of the
detected objects, which the drone uses if a specific object must be picked up or located.
By training the object to recognize object categories, a novel object can also be classified.
In this work, SVM has been used as classifier.

During the 1990s, before the explosion of modern neuronal networks, SVM [113, 114]
was one of the best solutions as a classifier due to its high efficiency. In a nutshell, given a
set of multidimensional points which belong to two categories, a linear SVM seeks for the
hyperplane that divides the set of points so that each side contains the most significant

3.6 Machine learning for object detection 67

possible fraction of points belonging to the same class. This hyperplane divides the space
so for each new point can be categorized.
However, linear SVM classifiers assume that the data is linearly separable. Thus they

are not able to classify real-world data which, usually, it is not. Left picture of Figure 3.22
shows an example of circular distributions of data which are not linearly separable. In order
to solve, Vapnik [114] proposed what it is called "kernel trick". It consists of applying a
feature space mapping to the points, so they became linear separable by the SVM. There
are many kernels such as the polynomial kernel or the Radian basis function (RBF). Right
picture in Figure 3.22 shows how the problem becomes linear separable in 3D by applying
the polynomial kernel.

Figure 3.22 Example of non-linear separable data and application of polynomial kernel
trick to make it linear separable in a higher dimensional space.

In this research [11], the SVM classifier was trained using 16 individual objects based
on the BoW model. A second classifier has been trained with the objects were grouped by
categories (Figure 3.23): cans; juice boxes; circuits; cars; boxes; Some of the objects were
very similar and hard to distinguish from certain angles, e.g., the original coke and generic
copy, juice boxes of the same brand but different flavors, since they possess intentionally
similar appearance. Shi-Tomasi corner detector has been used in combination with the
SIFT descriptor [21] to model words.

(a) Category cans. (b) Category juice box. (c) Category circuits.

Figure 3.23 Some sample categories of objects used for the BoW-SVM algorithm in [11].

68 Chapter 3. Object detection and localization for aerial manipulation

The algorithm has been tested in four test scenarios (Laboratory, Street1, Street2,
Testbed). In the Laboratory scenario had an uniform background. In this scenario the
high-level classification of objects in categories was excellent, while the specific object
class seems to produce less accurate results. It should be noted that no color information
was used for training and recognition, although it could improve recognition results of
individual objects.
In the other scenarios, the recognition rates were lower, and we attribute this to our

feature extraction implementation. A square bounding box around the objects is used to
extract features instead of only the convex hull. During the training the background was
plain, but those examples with a textured floor, a lot of the background is included in the
bounding box, and it is vibrant with visual features. Still, it can be seen that the categories
were detected better than the individual objects.

Table 3.2 summarizes the results of our object extraction method in real flights. In our
scenarios the number of total points in the local map stopped increasing significantly after
this point, meaning the area had been mostly inspected and the results have converged.
However, this is an empirically derived value that depends on the diversity of the observed
scene and the flight path the UAV takes to inspect it.

Categories Objects
Dataset Precision Recall F-Score Precision Recall F-Score

Laboratory 1 1 1 1 0.5 0.667
Street 1 0.429 0.6 0.6 0.333 0.4 0.36
Street 2 0.783 0.4 0.53 0.75 0.33 0.462
Testbed 0.429 0.5 0.462 0.2 0.167 0.182

Table 3.2 Results of the object extraction method.

This algorithm has been integrated into a complete system that computes a local map
of the environment and subtracts patches on images that are evaluated by the BoW-SVM
algorithm. A show-case video can be seen in this video7 showing both the mapping and the
learning capabilities. The Chapter 4 will introduce in more detail the mapping algorithm.

Note on multiple object instances. Typically, BoW-SVM algorithm is applied to an
image or a patch of images. In work presented in [11], authors used a bottom-up approach
where candidate objects are extracted from a reconstructed local map of the scene and
then recognized using 2D information from the images. It means that the object detection
algorithm is only applied to single patches of objects previously computed by the projection
of the 3D object segmented in the scene.

Nevertheless, this algorithm can be applied without previous 3D knowledge of the scene.
In order to do that, it is typically applied a sliding window methodology in which many
patches of the image are extracted sequentially with different sizes, and then these are
processed by the classifier as shown in Figure 3.24. A threshold filters the results, and then
a Non-max suppression algorithm is used to erase redundant results.

7 https://www.youtube.com/watch?v=cRBgsHr0pHA

https://www.youtube.com/watch?v=cRBgsHr0pHA

3.6 Machine learning for object detection 69

Figure 3.24 Example of sliding window in the Picture La rendición de Breda o Las lanzas
by Velazquez.

3.6.2 Latent Dirichlet Allocation, a text-oriented non-supervised image classification

There is a prolonged confrontation between two branches of object classification re-
searchers [115]: the ones that support generative models and the ones supporting dis-
criminative models. Support Vector Machines, described in the previous section is a
discriminative model. This kind of algorithms directly tries to learn the posterior dis-
tribution of the probability of some kind of feature vector to belong to a specific class
(p(z|X)). However, there exists another alternative. Generative classifiers try to infer the
joint distribution p(z,X) to be able to make any prediction using Bayes rules to compute
p(z|X) to pick the most likely category z.
Previous section describes an algorithm that learns to classify images starting from a

set of pre-categorized images. These methods are called supervised machine learning
and imply that each input vector (or image) are tagged manually. Sometimes this is not
possible or even intractable. For these reasons, there are other classes of algorithms
that can classify information without human intervention nor labeling, which are called
unsupervised machine learning.

This section introduces Latent Dirichlet Allocation (LDA) [116, 117, 118], an unsuper-
vised approach for topic modeling. This algorithm has been implemented an integrated in
the OpenSource library introduced in AppendixA.1.
LDA intent to discover latent semantic topics in collections of documents. To make it

easier to understand first, this model is based on the concept that text documents that discuss
similar concepts usually use similar words. Thus, it is possible to establish categories
by identifying these group of words. Typically, by accounting for the frequency of usage
of the words within the corpus of different documents, it is possible to discover latent
topics. Documents are modeled as a random mixture over latent topics, being each topic
characterized by a particular distribution of words.

70 Chapter 3. Object detection and localization for aerial manipulation

Consider a document a finite mixture over underlying topics. The documents are
composed of a sequence of N words denoted by W = (w1,w2, ...,wi,...,wN). Each word is
a discrete V−dimensional unit of data. A corpus is a collection of M documents denoted
by D = (W1,W2, ...,WM). Eventually, a topic z = (1,...,K) is a probability distribution
over a vocabulary of V words. There are only two hyper-parameters which control the
expected behavior of the probabilistic distributions over topics α and words β as shown in
Figure 3.25.

Figure 3.25 Generative model of Latent Diritchelet Allocation algorithm for topic model-
ing.

The method aims to compute the posterior distribution of the hidden variables (z and θ)
given a document.

p(θ ,z|w,α,β) =
p(θ ,z,w|α,β)

p(w|α,β)
(3.14)

Unfortunately, this inference is, in general, intractable due to the couple between θ and
β [117].
In order to solve this problem, there are many alternatives. One option is to use a

variational inference algorithm. The basic idea of convexity-based variational inference
is to obtain a lower bound on the log-likelihood, or to consider a family of lower bounds
indexed by a set of variational parameters. This solve the coupling between θ and β

obtaining a family of distributions on the latent variables θ and z characterized by the
distribution (Figure 3.26)

q(θ ,z|γ,φ) = q(θ |γ)
n=1

∏
N

q(zn|φn)

At this point, it is possible to define an optimization algorithm that determines the
optimal values of the variational parameters γ and φ given a set of finite data. The
complete methodology is described in in [117, 119]
A second alternative is to use Gibbs sampling [120, 121]. The problem is still to infer

equation 3.14. The previous method proposes a simplification in the problem to obtain a
tractable solution. This alternative is based on a Monte Carlo sampling methodology [122,
123]. In this case, the variables of interest are the topics of portions of the documents θd ,
the distributions of words per topic φ

z and the specific topic of each word zi.

3.6 Machine learning for object detection 71

Figure 3.26 Generative model of Latent Diritchelet Allocation algorithm for topic model-
ing.

Given an initial random assignment of topics over the words zi and the observed vari-
ables α , β and the words W , the algorithms try to improve the categories by performing
continuous Monte-Carlo steps.

p(zi|zi−1,α,β ,W)

Another sequential optimization alternative is using an Expectation-Maximization
algorithm (EM) [124, 125]. This algorithm iteratively computes the probability distribution
of the words in a document (or image) d j

p(wi|d j) =
k=1

∑
K

p(wi|zk)p(zk|s j)

by performing two steps. The expectation step of the topic distribution is

p(zk|wi,d j) =
p(wi|zk)p(pz|d j)

∑
K
l=i p(wi|zl)p(zl |d j)

next is, a step to maximize the likelihood of the data

L =
M

∏
i=i

N

∏
j=1

p(wi|d j)

A typical representation of LDA is using a geometrical representation of the latent
space [126]. In the case of using three topics, it is a triangular representation in which each
vertex correspond to one of the topics and the distance to them indicates the proximity or
similarity to that topic.
Figure 3.27 shows the case of a classification of a set of images from the Caltech 101

Objects dataset [127] for four different categories. The picture shows the effect of varying
both alpha and beta in the results of the distribution of documents after the training. Each
point is represented with a different color according to the real label of the image.

Figure 3.28 shows the optimal result for the classification. It can be seen that each color
tends to a specific corner or the tetrahedron.

72 Chapter 3. Object detection and localization for aerial manipulation

Figure 3.27 Geometrical representation of the documents of the LDA according to their
classification. Figure shows the effect of varying the hyper-parameters of the
model.

Figure 3.28 Geometrical representation of the documents of the LDA according to their
classification. Figure correspond to the results with the optimal parameters
for four categories of the Caltech101 dataset.

The resulting model can be used to infer labels on new images. Figure 3.29 shows
examples of inferences on new images by the trained model. Each row corresponds to a
different category (camera, cougar, motorbike, and faces). It can be seen that motorbike
is the category with less confusion while cougars, faces, and cameras have one mislead
result.

3.6 Machine learning for object detection 73

Figure 3.29 Inference on new images of Caltech101 dataset using pLSA trained model.

The same algorithm has been used to train a dataset of tools (described in the following
section). The results have been tested using a sliding window algorithm to detect and
locate different tools as shown in the following video8.

8 https://www.youtube.com/watch?v=SuHmORfo8-U

https://www.youtube.com/watch?v=SuHmORfo8-U

74 Chapter 3. Object detection and localization for aerial manipulation

3.6.3 Neuronal Networks and Deep Learning

Even though classical methods are proved to have fair results in many applications, there
are many issues related to their design, flexibility, and robustness. One of the primary
drawbacks of classical methods is that they rely, up to a certain point, on a human design
in terms of feature selection. For example, the previously described algorithms, BoW and
LDA, can discriminate between different sets of objects by labeling histograms of features
which are computed for every single image. These are even able to infer the classification
of unseen data. However, in order to perform this classification, it is necessary to provide
them with the histograms of features. It means that it is needed to predefine which features
are used to describe the objects, the size of the vocabulary to cluster the features and the
size of the histogram which is used as a signature for each object.
Artificial Neuronal Networks (ANNs) suffered from the same problem in their be-

ginnings. ANNs are algorithms which topology inherites somehow from biological
neurological systems [128]. ANNs are composed by a minimal entity called neuron or
perceptron [129]. These small pieces consist of an input, a weight, an activation, and an
output; simulating a biological neuron. Having several of this networks connected creates
what is called a fully connected network. The first layer is the input layer and the last layer
the output layer.

However, these networks can model just linear classifications. Adding multiple interme-
diate layers (or hidden layers) starts adding non-linear behaviors to the network allowing
them to model more complicated information.

The revolution of neuronal networks come with the invention of Convolutional Neuronal
Networks (CNN). In a nutshell, these networks have a preprocessing set of layers called
convolutional layers which perform a set of convolutions which are weighted too and
compute by their selves thousands of possible features which fed the fully connected layers
which are responsible for the later classification. The key power of these networks is
that, for the first time, the algorithm learns itself the proper features to make the right
classification, contrary to classical approaches in which the feature selection needed a
carefully human-design. This fact, and the impressive advances in hardware technology
(particularly advances in GPU devices) made CNN powerful tools for image processing.

Figure 3.30 Different layers involved in modern artificial neuronal networks. From left
to right: Convolutional layer, max pooling layer, ReLU, and fully connected
layer.

Since then, the number of networks and variations have exploited. In the field of

3.6 Machine learning for object detection 75

object detection, most used networks are Faster R-CNN [130], YOLO [131, 132], Mask-
RCNN [133], and SSD [134], which has been tested during this research.
In this thesis, CNNs have been used as a tool for detecting objects robustly to perform

manipulation tasks. During the development of this thesis the author explored two different
frameworks for deep learning: caffe [135] or TensorFlow [136] which are ones of the most
used tools.
The remainder of this section show quantitative results of the use of various network

topologies in two different datasets for different applications. The first application consists
of the elaboration of a dataset of hand tools to be grasped by the UAV. The results given by
the network is used later for creating a labeled 3D map with the location and category of
the tools, which will be introduced in Section 4.5. Evaluates different networks to choose
the appropriate one for a real time grasping application described in [13].

Evaluation of different nets in a custom Dataset of hand-tools

This brief section compares the results of different state-of-art object detectors in a custom
dataset for detecting hand-tools. The purpose of this dataset is to allow the aerial platform
to grasp different tools to use them or to transport them to a human operator for human-
robot cooperation. Figure 3.31 shows in a shot some examples of the training set. This set
has been manually labeled and, up to now, contains four labels which are: screwdriver,
wrench, plier and hammer.

Figure 3.31 Sample images from hand tools dataset.

CNN is widely used nowadays. These algorithms provide a quick and easy solution to
many intractable problems such as is the case of object detection. If the target object is
known, just a labeled database of images is needed to train the network. However, these
algorithms are extensively heavy regarding mathematical operations, but they are highly
parallelizable. Thus, Graphics Unit Processors are usually used to boost their performance.
Ones of the most used frameworks for this purpose are TensorFlow [136] or Caffe [135].
They provide for an extensive "model zoo" with implementations of newest networks.
This speed up the testing and development process. However, it is vital to be taken into
consideration that the final algorithm will be carried out by the onboard computer of the
drone, which may have some limitations such as CUDA compatibility.

76 Chapter 3. Object detection and localization for aerial manipulation

The results thrown in this section have been calculated using TensorFlow model zoo.
Specifically, the dataset has been testedwith four networks, Faster R-CNN [130], SSD [134],
and YOLO [131, 132] (this network has a different implementation and is not embed in
Tensorflow, instead it can be found in9).

R-CNN is one of the first region based convolutional neuronal networks. As mentioned
before, one of the main problems of object detection algorithm is how to accurately propose
regions where the objects can be located to be able to identify them. Due to the large pixel
resolution, the number of possible combination is enormous. Girshick et al. proposed
an algorithm that for each instance it selectively generates 2000 regions. It was called
region-proposal step. This fixed number of regions is then warped and fed the CNN which
computes the features, and then a classifier put the labels on the object. This algorithm
showed promising results, but its computational time makes it unusable for almost any
application. Later, Girshick proposed a new version of the algorithm called Fast-RCNN.
In this work, the author improved the region proposal phase by using a net to generate a
convolutional feature map. Then, this map is used to generate the region proposals.
Later in 2016 two new networks appeared which revolutionized the concept of object

detection; YOLO (You Only Look once) and SSD (or Single Shot Detector). Both networks
are based on the same concept, processing in the same net both the regions and classifying
them, contrary to FRCNN. This fact makes both networks remarkably faster than previous
algorithms. Additionally, as the whole image is processed, the network is fed with all
the contextual information, a fact that does not happen if the regions are extracted before,
and the net is fed only with the regions. Figure 3.32 shows the structure of both networks.
YOLO takes the whole input image, processes it and divides it in SxS grids, for each grid it
computes B bounding boxes. Also, in the same pipeline, a classification score is generated.
It makes an all-in-once region proposal and classification. Nowadays, a faster version of
YOLO is the fastest object detection network. SSD appeared to be a trade-off between
accuracy and speed. It has a single network which computes a rich feature map and then
the information from different layers fed a convolutional layer that generates the regions
and the classification scores.

Figure 3.32 Structure of SSD versus YOLO networks.

9 https:// pjreddie.com/darknet/

https://pjreddie.com/darknet/

3.6 Machine learning for object detection 77

Each the networks introduced had a particular improvement, it is also essential to take
into account that every quartile an improvement appears in this field, either by a new
software enhancement or by new hardware version. For this reason, this section tries to
compare and analyze the strengths and weakness of each of this net designs objectively.

Method mAP (0.5IOU) mAP (0.75IOU) Recall
F-RCNN inception_v2 0.5192 0.2717 0.4576
F-RCNN restnet50 0.3891 0.0978 0.3954
F-RCNN restnet101 0.4242 0.1063 0.4132

YOLO v3 tiny 0.69 (avg.) 0.65
YOLO v3 ssp 0.77 (avg.) 0.70

SSD inception_v2 0.5847 0.3557 0.5006
SSD mobilenet_v1 0.6923 0.4670 0.5945

Table 3.3 Detection scores for the hand tools dataset for the tested networks..

Despite being small, this dataset is quite challenging as the shapes and colors of the
different tools are highly varied. Also, there are many similitudes in the shapes. There are
many images in the dataset that are very challenging because hand-tools appear cluttered
or in cases, as shown in Figure 3.33.

Figure 3.33 Detection results of F-RCNN in the datasets tool for difficult image. Left
picture shows the detection results and right picture shows the ground truth.

Crawler detection using CNN for aerial manipulation

In this section, a set of CNNs are tested for the detection of a crawler robot. The purpose
is to find the a network that is robust and able to run in real time to grasp the crawler using
the aerial manipulator. Once the crawler robot is detected, the algorithm described in
Section 2.4 is used to perform the grasping.
This section describes the algorithm for the detection and tracking of the target object.

The algorithm is summarized in Figure 3.34, yet introduced in the previous section of
this chapter. The algorithm is based on two stages, at first instance, an object detection
convolutional neuronal network (CNN) is applied to produce object candidates. Then

78 Chapter 3. Object detection and localization for aerial manipulation

an alignment algorithm is used to compute the exact location of the target object. This
section focuses on the integration of the neuronal network in the pipeline, as Section 3.3
introduced the alignment algorithm previously.

Figure 3.34 Scheme of the visual algorithm for the object detection and pose estimation
of the target object.

The results of the object detection and pose estimation are filtered and used by a grasp
planning and visual servoing module as described in Chapter 2.

In order to train and evaluate the task of the detection of the crawler robot, a custom
intensive dataset has been created. The dataset contains images of the crawler robot
in different environments with different light conditions, backgrounds, and occlusions.
Figure 3.35 shows some pictures of the dataset in different environments.

Figure 3.35 Sample images from crawler dataset.

Three popular algorithms have been tested in three different devices to choose the best
option that fits the needed speed for the manipulation task and the payload limitations of
the aerial manipulator. In particular, the CNN chosen were: FRCNN, SSD300, and YOLO
(tiny YOLO v2); in the devices: laptop with a GTX1070, a Jetson TX1 and an Intel NUC
with an iris GPU. Two first devices have CUDA capabilities as they use a Nvidia GPU, the
third one, however, can not use common frameworks that use CUDA. For this reason, an

3.6 Machine learning for object detection 79

OpenCL implementation of YOLO10 has been tested. Table 3.4 summarizes the averaged
computational times of the different detection algorithms in the different devices.

Table 3.4 Computational time in seconds of the different algorithms in the tested devices..
F-RCNN SSD YOLO (OpenCL)

Laptop 0.067 0.027 0.0103
Jetson TX1 0.47 0.113 0.051
Intel NUC - - 0.053

It is seen that the performance on the laptop overtakes the results of the other devices.
However, due to the strict payload limitations, while operating with UAVs, just the other
two devices can be considered. At first, YOLO runs a bit faster in Jetson Tx1 device.
However, CPU speed of Intel NUC highly overtakes Jetson’s CPU capabilities. As the
whole system requires many processes to run many tasks, the last platform was chosen.
Figure 3.36 shows example of results in different environments of the algorithm online.

Figure 3.36 Scheme of the visual algorithm for the object detection and pose estimation
of the target object..

The overall system proves to be able to perform the mission autonomously. The system
detects and track the object using the algorithms described in Section 2.2.2 and Sec-
tion 3.6.3. Then, having the pose of the object, it computes a set of good feasible grasps as
described in Section 2.3.2. These grasps, together with the continuously updated pose of
the object is used to perform a PBVS algorithm, described in Section 2.4, which moves the
arms towards the grasp and perform the grasping. The results can be seen in the following
video 11

10https:// github.com/ganyc717/Darknet-On-OpenCL
11https://www.youtube.com/watch?v=nXYlzqwM8kA

https://github.com/ganyc717/Darknet-On-OpenCL
https://www.youtube.com/watch?v=nXYlzqwM8kA

4 Mapping and localization for
aerial manipulation

4.1 Introduction and Related Work

This Chapter addresses the topic of Localization and Mapping algorithms for aerial robots
with manipulation capabilities. Two methodologies has been applied to solve this problem,
each of them described in a separated section. Both sections presents the implementation
carried out by the author for the localization of the UAV and the creation of a local map
of the environment, and have been integrated in the OpenSource library described in
AppendixA.1. The presented work focuses on algorithms to work in a local area. It means
that the purpose is not to elaborate large-scale maps but smaller portions to allow the robot
to execute manipulation tasks. Having this map, the robot can localize itself, the objects,
and take into account possible collisions between the manipulators and the environment.

Self-localization in the environment is one key skill required for the full automation of
the robot. To perform dexterous manipulation tasks, knowing the specific set up where
the task is going to be performed is important to locate the target objects or to prevent
the manipulators to collide. Additionally, this information may be useful for planning
movements from one place to another, avoiding obstacles, among other tasks.

The task of localization usually involves two concepts. The first is the representation of
the environment which is typically called map. The second one is the localization of the
robot in that map.
Maps can be of many kinds, depend on the data used for its creation. Maps can be a

CAD designed model of a factory, building or room, which can be used as a reference
to localize the robot [137, 138]. Other kinds of maps are based on frequency beacons
placed in the environment which are used to triangulate the position of the robot [139].
Alternatively, other models use three-dimensional point clouds which are computed while
the robot moves in the environment [140, 141].

Maps can also hold information about where the data was obtained. In graph-based map
models [142, 143] the observations of the environment and the positions where the robot

81

82 Chapter 4. Mapping and localization for aerial manipulation

took the data compose a graph with nodes and edges. In this model, each edge corresponds
to a particular observation of the environment in a specific pose of the object. Then each
side of the edge corresponds to a robot pose on one side and a particular landmark on the
other side (Figure 4.1).

Figure 4.1 Graph-based SLAM model. Resource from [143].

Traditionally, one of the common localization methods for humans is based on the
global reference frame of the earth, labeled with Latitude and Longitude. This position is
commonly provided by a Global Positioning System (GPS) [144, 145]. In recent years,
the European Commission put a special effort into developing a new positioning sys-
tem, Galileo [145]. The new global positioning system is currently integrated into many
platforms with promising results. These global localization systems are based on the
triangulation of the position of the sensor using the signals from satellites. In order to
receive this signal, it is necessary to have "line of sight" of a number of satellites which are
distributed in the orbit of the Earth. The set of connected satellites is called constellation.
However, due to the "line of sight" constraint, this localization system is not suitable

for all the situations. Indoor applications, or applications in environments with poor
GPS coverage, require for other localization systems. The use of sensors to compute
the localization of the robot and the map concurrently is frequently called SLAM, or
Simultaneous Localization And Mapping. SLAM algorithms, typically use visual or
laser sensors to obtain information about the environment and associate it sequentially to
compute the incremental transformation between batches of data. Many methodologies
and frameworks [146, 147, 148, 149, 150] has been developed which produce good enough
solutions to this problem nowadays.

Sequential correlation of the information from the sensors is usually called odometry, or
visual odometry if the system uses cameras. Typically, to make visual odometry algorithms
more robust, the information given by the perception sensors is fused with other sensors
available in the robots. These can be for example the GPS when it is available, encoders
in the axis of the actuators or Inertial Measurements Units (IMUs). The use of Bayesian
filters [151] such as EKF [152] or Particle filter [153] for robot localization integrating
these sensors is widely extended.
However, even these method reduces the incremental error of conventional odometry

algorithms. They still suffer the problem of drifting. In order to solve it, many authors

4.1 Introduction and Related Work 83

studied the use of optimization algorithms to minimize the errors in the maps and reduce
the global drifts produced over time. These processes usually enclose two methods or
phases. One of them is the optimization itself. The second one is the so-called loop-closure,
which consists of the location of closed loops during the execution of the algorithm. This
closing loop methods allow the optimization algorithm to minimize the error enclosed in
the loop, thus reducing the long-term biases.
The sequential computation of the position of the robot, i.e., odometry, algorithms

usually produces, not only the localization of the robot but also a set of points or entities
of interest that are part of the environment. The accumulation of all these interest points is
what is called map and, as aforementioned, they can be of any kind. This map also suffers
from the shifts in the localization, and it is also improved by the optimization algorithms
to produce a more accurate and robust map. 4.2 shows an example of map representation
and its improved version after the optimizations.

Figure 4.2 Effect of loop closure and global optimization in SLAM. Resource from [154].

Loop closing is very related to a concept called visual place recognition [155] in this
context. It is a challenging problem due to a large number of ways in which the appearance
of a place can arise. Many solutions [156, 157] propose a probabilistic appearance-based
approach using a Bag of Words model. However, these methods usually rely on the
invariance of the descriptors in the scene. Light changes or smog might profoundly affect
the descriptors.
Previous loop closure algorithms are based on hand-crafted features such as ORB.

Recent authors explore the use of deep learning techniques to auto-generate in a more
efficient way the representation of the images for detecting loops [158, 159, 160].
Once loops closures are detected, the global optimization algorithm turns into action.

The optimization process depend on the information captured by the sensors and the
representation of the map in the SLAM algorithms. One of the most popular ways of
representing themaps in the environment is the graph-basedmap [143]. This representation
has been popularized, and many frameworks exist which provide a quick implementation
to be integrated, particularly g2o [161] is one of the most used frameworks.

Bearing all the above in mind, it is possible to make a theoretical classification of SLAM
methodologies: online SLAM and Full SLAM. Online SLAM refers to those algorithms
that just pay attention to the computation of the most recent pose of the camera and map.

84 Chapter 4. Mapping and localization for aerial manipulation

Full SLAM methods intend to estimate the full trajectory of the robot and the complete
map of the environment. The latter requires a more complex structure as all the information
is continuously being updated while the methods run.
Regarding the practical application of the SLAM methodologies, the selection of the

sensors highly influences the algorithms. There are several kinds of sensors that can be
used for this applications, but these can be classified in three classes as shown in Figure 4.3

Figure 4.3 Classification of sensors for SLAM algorithms.

This chapter focuses on the use of sensors of the first kind, i.e., visual sensors, for SLAM
applications. Particularly, the work presented focuses on the use of stereo sensors. This
kind of sensors have a good trade-off between the resolution and accuracy versus price. In
the remainder of this section, this kind of sensors may also be called RGB-D sensors, as
they provide both color images and an estimation of the depth of the points.
Typical RGB-D cameras such us Microsoft Kinect works with infrared (IR) structural

light. The camera projects a pattern with a laser which is captured by an IR sensor. The
deformation of this pattern is then used to build a depth map efficiently. However, the
main drawback of these cameras is that they barely work outdoors in daylight due to the
radiance of the sun.

Passive stereo cameras use a pair of calibrated cameras [162][163] to compute the depth
of the scene by comparing the disparity between the images. Graphics Processing Units
(GPU) have played an essential role in this scope. Recent devices exploit GPU capabilities
to build quickly dense disparity maps from calibrated stereo devices [164][165]. Cameras,
such as Zed by Stereo Lab, revolutionized SLAM world as these devices work where
structural light devices cannot.

Newer devices combine both technologies by adding a pair of IR sensors in the RGB-D
cameras. These devices use the structural light where the pattern is available and exploit
the stereo capabilities in the presence of sun’s radiation. An example of this technology is
the new devices created by Intel under the name of Intel RealSense [166].
The remainder of this chapter proceeds as follow. Section 4.2 focuses on a first online

SLAM approach based on sparse featured clouds computed using low-cost unsynchro-

4.2 Online SLAM method using stereo cameras 85

nized stereo cameras. This implementation integrates the visual odometry with inertial
information from the IMU of the drone to elaborate a sparse map while computing the
position of the robot. Section 4.3 introduces a SLAM Framework based in RGB-D sensors.
This Framework proposes an architecture for the full SLAM problem which includes
optimization algorithms and loop closure detection. Section 4.4 shows a set of validation
results from different datasets of the proposed SLAM Framework. Finally, Section 4.5
shows how the SLAM framework can be used together with machine learning algorithms
to elaborate a semantic map with objects instances for later manipulations tasks.

4.2 Online SLAM method using stereo cameras

This section presents a simultaneous localization and mapping algorithm for UAVs using
low-cost unsynchronized stereo cameras. This work has been presented in [11] and used
for the detection of objects described in Section 3.2.
This first approach is based on the creation of sparse feature clouds and its sequential

alignment to estimate the position of the robot. It is assumed that the source of the images
is not fully reliable. For this reason, it proceeds at the beginning with a set of filters
to reject blurry images and possible outliers. For the robustness of the algorithm, it
has been implemented an EKF which fuses the results of the visual odometry with the
inertial information of UAV’s IMU. Figure 4.4 summarizes the pipeline of the algorithm.
Concerning the map, it is a keyframe-free representation. It means that poses are not
stored and no optimization algorithm is used to refine the map. Instead, the map is stored
as a raw set of feature points filtered with a voxelized operation over time.

IMU

Stereo Images

Pose

Map

TVCF

EKF

Point cloud

alignment

Sparse Point

cloud genereation

Pose Filtered

Figure 4.4 Epipolar geometry..

The generation of the point clouds from the pair of unsynchronized cameras is divided
into four steps:

1. Evaluation of input images

2. Visual feature detection in the left image.

86 Chapter 4. Mapping and localization for aerial manipulation

3. Template matching over the epipolar line in the right image.

4. Triangulation.

At first instance, the cameras are prompted to return new images. The time difference
between them can be up to 1/FPS. Thus, if the movement of the drone above the objects
is slow, the time drift can be ignored. However, it is essential to check if the quality of
the image is good enough for the creation of the point cloud. This quality is measured in
terms of blurriness. Particularly, the score proposed in [167] is used to evaluate the quality
of the pair of images. If some of both of the images is blurry or there is a large time drift
between them, the quality of the cloud decrease drastically. An example of good and bad
point clouds is shown in Figure 4.5.

Figure 4.5 On the Top a good input image is shown and the corresponding point cloud,
generated from the stereo pair. On the bottom a blurry image results in a very
poor cloud. A similarly bad cloud is also generated when images are mistimed
too much..

Once the pair of images is accepted, the algorithm proceeds computing visual features in
the left picture. These features are assumed to be there in the right one. The pair of cameras
is adequately calibrated, thus the extrinsic constraint and the epipolar geometry can be

4.2 Online SLAM method using stereo cameras 87

used to look for keypoint matches. A template window is slid across the epipolar line and
compared to the template of each corresponding keypoint. If the matching score is lower
than a threshold, the keypoint pair is then triangulated (Figure 4.6). All the triangulated
keypoints build the point cloud.

Figure 4.6 Epipolar geometry..

Any feature detector can be used (See Chapter 2.2.2). In the work presented in this
section, Shi-Tomasi corner detector [27] has been chosen because these features are cheap
to compute. The cost function used for the template matching algorithm is the squared
sum of differences.

The resulting point clouds might contain noisy points due to bad matches, triangulation
and calibration errors, mistimed stereo images (Unsynchronized stereo produces a delay
between the captured frames), occasional rolling shutter effect because of vibrations, and
even some partially blurry images that get through to this point. For this reason, it is
necessary to process these clouds before adding them to the map. The author developed a
method that processes sequential point clouds in both spatial and time dimensions before
adding the result to the map.
The point clouds are filtered in two steps: (1) Spatial filtering: Isolated particles or

small clusters of particles are considered noise (using [168]) and the remaining points
are transformed into a grid of cubic volumes of equal size, also called voxels, where a
voxel is occupied if at least one point from the point cloud belongs to it. [169]; (2) Time
filtering: filtering method over time is proposed using sequential voxel point clouds stored
into memory, also called history. The occupancy of each voxel is checked in each cloud in
history so that only voxels that have a higher probability of being occupied by a real point
will be kept. We call this method Temporal Convolution Voxel Filtering (or TCVF).

Given a set of N consecutive point clouds PCi. The goal is to obtain a realistic represen-
tation of the environment by filtering out incorrect points. The algorithm 5 describes the
process.
TCVF adds a new cloud to the history in each iteration and evaluates the clouds kept

in the history at that moment. The result of this operation is then added to the map. By
discretizing the space, the number of points for computation is reduced, which reduces the
computational time. An occupancy requirement of 100% is used throughout the entire
history, making this calculation a simple binary operation of occupancy check, which is

88 Chapter 4. Mapping and localization for aerial manipulation

Algorithm 5 Probabilistic Map Generation
1: MAP← empty
2: for i ∈ [0,N] do
3: PCI ← filter(PCI)
4: PCI ← align(PCI)
5: PCI ← voxel(PCI)
6: addToHistory(PCI)
7: end for
8: for point inPCi do
9: if point ∃ inPCi with i ∈ [0,N] then
10: MAP add point
11: end if
12: end for

very fast and is only evaluated on occupied voxels, making this method computationally
light. The number of operations is O(nk), with n the number of occupied voxels in the
smallest cloud in the history and k the history size. The voxel size is predetermined and
represents the resolution of our map. Figure 4.7, shows a schematic of a 2D example using
a history size of three.

Figure 4.7 A 2D example of our Temporal Convolution Voxel Filtering for history size of
3. Only voxels occupied in the entire history are passed through the filter..

At the start of the application, the drone acquires the first point cloud and initializes an

4.2 Online SLAM method using stereo cameras 89

empty local map. Since noise is not desirable, the TCVF algorithm is used to add points
to the map. TCVF needs to fill first the entire history with sequential point clouds in order
to determine whether specific points exist. However, the drone is not static, so from the
camera’s point of view, the points might move, even though they represent the same actual
static point. The camera origin of a point cloud effectively represents the relative position
of the drone to the detected scene.

The sequential clouds must be aligned in order for TCVF to work. The effect of aligning
sequential clouds is also an assessment of the updated position of the drone. Iterative
closest point (ICP) algorithm is used to minimize the distances of pairs of closest points
in an iterative fashion, to align point clouds. However, ICP algorithms have difficulties
detecting the correct transformation between two sequential point clouds if the change in
pose between them is substantial.

This problem can be solved by using IMU data from the drone, to provide an assessment
of the pose change and feed this to the ICP algorithm. Unfortunately, it is not possible to
rely solely on the IMU data for positioning in GPS-denied environments, because it tends
to drift quickly. Luckily the ICP result gives us an estimation of the drone position, so we
implemented an algorithm to fuse the information from the IMU and the ICP result, to
estimate the position of the drone in the map.
Traditionally, an Extended Kalman Filter (EKF) is used to fuse the visual and inertial

data. The result of using an EKF is a smoothed pose estimation. There are several
implementations of this idea [170, 171, 172, 173]. In particular, in [173] the effect of the
biases in the IMU is studied and a solution provided. Suppose that the system’s state is:

Xk = {xx
k,x

y
k,x

z
k, ẋ

z
k, ẋ

y
k, ẋ

z
k, ẍ

x
k, ẍ

y
k, ẍ

z
k,b

ẍ
k,b

ÿ
k,b

z̈
k} (4.1)

and the observation’s state:

Zk = {xx
k,x

y
k,x

z
k, ẍ

x
k, ẍ

y
k, ẍ

z
k} (4.2)

while the equations for the system and the observation are:
xi

k = xi
k−1 +∆t · ẋi

k−1 +
∆t
2 · ẍ

i
k−1, i = x,y,z

ẋi
k = ∆t · ẍi

k−1, i = x,y,z
ẍi

k = ẍi
k−1, i = x,y,z

biasẍi

k = T
T+∆t ·biasẍi

k−1 +
∆t+T
T+∆t · (C1 +C2), i = x,y,z

(4.3)

{
X i

k = Z j
k , i = j = 0...2

X i
k = Z j

k , i = 0...2, j = 3...5
(4.4)

Introducing these equations into the EKF allows predicting the current state of the
system. This information is used to locate the cameras in the environment. It is also used
to provide a guess in the next iteration of ICP, by taking the current state and assessing
the drone’s position after ∆t. The orientation is taken directly from the IMU since it is
provided by the compass and does not drift. The process is summarized as follow:

90 Chapter 4. Mapping and localization for aerial manipulation

1. The previous state Xk−1 is used to obtain X̃k, which is a rough estimation of the
current position of the robot.

2. If the stereo system has captured good images, a point cloud is generated and aligned
with the map using X̃k as the initial guess. The transformation result of the alignment
is used as the true position of the drone X̂k. The obtained transformation is compared
to the provided guess and discarded if the difference exceeds a predefined threshold.

3. If the stereo system has not captured good images, it is assumed that X̃k is a good
approximation of the state, so X̂k = X̃k

4. The EKF merges the information from the ICP X̂k, with the information from the
IMU, ˆ̈Xk, and the resulting Xk is the current filtered state.

Figure 4.8 shows how the fusion of ICP information and IMU information gives more
robust and accurate results than using only IMU data or ICP results separately. The
RGB refer to XYZ respectively. Dotted lines is the estimation of position using just IMU
information. As mentioned in Section 4.1, this tends to drift due to the accumulation of
errors. Dashed lines are the estimation using only ICP. These results are initially good if
all the input clouds are confident and input images are not blurry. But, un iteration 120
the algorithm converges to a wrong solution, shifting the estimation of the position of
the robot. Finally, solid lines are the estimations of the drone position from the fusion
algorithm. It returns stable and robust estimates of the position of the drone. The progress
of building the local map of the scene can be seen in Figure 4.9.

Figure 4.8 Comparison of drone positioning using the EKF with only IMU data; only ICP
results; fused IMU data and ICP results. Using only IMU data, the position
drifts away quickly. Using only ICP results the position has several bad discrete
jumps and doesn’t correspond to actual motion. Using the fused data the
position corresponds to actual motion..

4.3 Full SLAM Framework using RGB-D sensors 91

Figure 4.9 Local map at different iterations. .

The author used this technique to elaborate the map that is used for detecting objects in
the environment as described in Sections 3.2 and 3.6.1. Additionally, the work is part of
the publication [11].

4.3 Full SLAM Framework using RGB-D sensors

In this section, it is shown a general purpose framework for full SLAM using RGB-D
sensors which exploit both the RGB and Depth pictures for localizing the robot and
creating a dense map. This framework has been developed and implemented as open-
source resource as is described in AppendixA.1. The purpose is to make a modular
framework to allow fast development of applications that requires SLAM. Additionally,
each of the modules is coded in such way that can be replaced with other with similar
functionalities, allowing the integration of new methods and algorithms. The purpose
is to allow developers to focus in single problems while being able to exploit all the
functionalities. Figure 4.10 shows the complete pipeline of the algorithm and the modules
involved in it.

 Dataframe creation

Database (Back-end)

RGB-D Sensor

Compute 2D features

Build 3D dense cloud

RGB

DEPTH

Build 3D feature cloud

Cluster frame
creation

Words
Dictionary

DF

Odometry estimator (Front-end)

Coarse aligner

Fine aligner

Optimizer (Back-end)

Compare signatures

Loop closure search

Local Optimization

CF

Global Optimization

Figure 4.10 RGB-D SLAM pipeline.

This framework has been developed based on the advantages of existing SLAM Frame-
works such as [146, 161, 174]. Additionally, the lessons learned from the methodology
described in the previous section have been beneficial. This framework intends to solve

92 Chapter 4. Mapping and localization for aerial manipulation

the full SLAM problem, obtaining the localization of the robot over time and a keyframed
map based in graphs. This new structure allows to perform not only the visual odometry
estimation of the pose of the UAV but also perform optimizations in it improving the
elaborated map and making the odometry more robust to sequential drifts.
This section is structured according to the modules shown in Figure 4.10. At first

instance, it is introduced how the data is captured from the sensors to elaborate a bundle
pack called Data-Frame which contains useful information for the SLAM algorithm at
each instant. Then, the visual odometry algorithm is described using the Data-Frames to
acquire an estimation of the actual position of the robot. The obtained pose is stored in
the Data-Frame for using it later. The sequential acquisition of the position of the robot is
usually called front-end of a SLAM algorithm. The latter part of the SLAM algorithm is
called back-end and consist on two different modules. The first module, or Database, is
responsible for the management of the results of the front-end to elaborate a graph-based
map of the environment. This module selects highlighting Data-Frames and store them as
nodes of the graph, that are called in this framework Cluster-Frames. Additionally, the
strongest features are stored separately in a dictionary, these features are called words.
Finally, while the map is being created two different processes perform optimizations in
the map. The first optimization occurs locally in the vicinity of the position of the robot.
This local optimization fixes small drifts and eliminates bad words in the dictionary. A
second global optimizer works looking for loop closures and fixing drifts in the position
of the robot on a larger scale.

4.3.1 Sensors and DataFrame creation

Each instant of time, the camera captures important information that is used for locating
the robot, and potentially to be used in other tasks. This information is used into computes
robot position. The unit of data of the framework is called Data-Frame and contains the
following information:

• a color image captured by the device.

• a depth image captured by the device or computed by some algorithm.

• a unique identifier ID of the Data-Frame.

• list of features obtained from the color image

• colorized point cloud obtained from the deprojection of the depth and color image.

• sparse point cloud obtained from the deprojection of features computed in the color
image

• the pose calculated by the odometry estimator.

The information can be either obtained from the sensors or computed online. Active
stereo cameras usually provide in the same shot the color and the depth image, while
passive stereo cameras required the depth map to be computed in a separate pipeline. Once
both images are obtained, two processes compute two clouds. The first cloud consists of
a sparse cloud obtained by the deprojection of the features detected in the color image.

4.3 Full SLAM Framework using RGB-D sensors 93

The second cloud is the complete deprojection of the depth image, obtaining a dense point
cloud which can be used to perform a finer alignment process in the odometry estimator.

The rest of the information is gradually filled in the pipeline. Lately, the Data-Frame is
given to the Database to store it for optimizations or just data query.

4.3.2 Odometry estimator

In SLAM, odometry is the basic operation which computes a fast, but rough localization
of the robot. In this work, the odometry estimator relies on visual clues from an RGB-D
device, which are stored in the Data-Frame. Algorithm 6 summarizes the pipeline of the
odometry estimator using visual clues.

Algorithm 6 Visual odometry estimator
1: d fi.rgb, d fi.depth← camera_grab()

2: d fi. f eatures← compute_ f eatures(d fi← rgb)

3: d fi. f eature_cloud← compute_rough_ f eature_cloud(d fi← depth)

4: d fi.matches_prev← match_ f eatures(d fi−1← f eatures,d fi← f eatures)

5: {d fi.pose,inliers}← rough_trans f orm_ransac(d fi−1,d fi)

6: if d fi.n_inliers > inliers_threshold & is_valid(trans f ormation) then

7: validate_data f rame()

8: else

9: re ject_data f rame()

10: end if

As mentioned before, at each instance, the algorithm captures information from the
camera and store it into a Data-Frame. The first step then is to subtract visual clues from
the color images and create a point cloud with descriptors. Visual features have been
intensively mentioned in previous in Sections 2.2.2 and 3.4 for their use in object detection
and modeling. Any of the features can be used in this framework, but ORB has been
chosen due to the computation limitations in UAVs’ onboard computers.
Once the features are computed on the RGB image, their location in pixels on the 2D

image is transformed to 3D using the depth picture and the calibration of the sensor. This
generates a point cloud in which each point has a descriptor, called feature cloud. Then,
these descriptors are used to match the point clouds of sequential Data-Frames.
Up to this point, feature clouds are computed related to the camera’s frame. It means

that they are referred to a local coordinate system attached to the camera. In order to
compute the relative position of sequential cameras all the information computed above is
used. There is a large variety of method for computing the incremental transformation
between two camera frames using visual clues. In this work, the 3D information in the
sparse point cloud is used, together with the matches between sequential features, to obtain
the relative position of the cameras in a robust manner.

94 Chapter 4. Mapping and localization for aerial manipulation

A rough classification of algorithms can be gradient descent and sampling algorithms.
Gradient descent algorithms are usually characterized for obtaining more accurate solutions
with the main drawback of needing a proper initialization. This drawback arises from their
definition as gradient descent methods minimize a global function which may fall in local
minimums. In contrast, sampling based algorithms are characterized for being more robust
and not to fall in local minimums, but solutions are usually less accurate. Additionally,
gradient descent usually needs the definition of step sizes and convergence functions which
makes their convergence time undefined in some situations. While sampling algorithms
just need the definition of a fixed number of samples which bounds computational time.

Our odometry estimator uses RANSAC [96] with a refinement stage to take advantage
of its robustness and obtaining a more accurate solution. The matches between sequential
feature clouds are used to sample possible transformations and eventually the one with
more fitness score is used. The algorithm computes the relative transformation between
the pair of frames, and then adds it to the previous Data-Frame pose to compute current
position.

A further refinement can be performed in the alignment using the dense clouds stored in
the Data-Frames. Given the initial robust estimation of the position of the camera, gradient
descent algorithms such as ICP are optionally used. This step produces muchmore accurate
results, and by the use of previous rough position the probability to converge increases.
However, it is usually more time-consuming. Thus, if the computational resources are
limited, this step can be skipped.
Additionally to the visual clues, it is possible to integrate extra information into the

system to improve the estimation of the odometry. Similar to the algorithm exposed in
Section 4.2 the IMU information can be acquired to be fused with the EKF or using a
particle filter.

4.3.3 Database module

This section presents the Database module. This module is responsible for the efficient
creation of the map. The map is composed of two principal components: Cluster-Frames
and words. Cluster-Frames are those Data-Frames that are chosen to be representative.
Words are those feature points which are strong and repetitive, so they are stored as
representative points. These two components are then used to generate a graph-based
map in which Cluster-Frames and words are nodes in the graph, and the edges are the
corresponding projections of the words into the specific Cluster-Frames.

Words contain the following data:

• Data-Frame DFi in which the word has been observed.

• a descriptive descriptor that is used for local optimization and detection of loop
closures.

• its position in the space.

• its projection at each Data-Frame and Cluster-Frame

• list of invalidated projection.

• cluster in which word has been observed for optimizations

4.3 Full SLAM Framework using RGB-D sensors 95

Cluster-frames are containers of information from different data-frames. These act as
melting pots of information which is enhanced over time from input data. Additionally,
keeping the similarity with keyframes, these are used as reference positions for the lo-
calization algorithm, but these are prepared to collect (or cluster) the information from
related data-frames. Cluster-Frames contains the following information:

• unique identifier ID

• Position and orientation

• signature

• covisibility

• words associated

• associated data-frames

All the sequential data is gathered in Data-Frames. However, storing every single
Data-Frame is extremely memory consuming and highly redundant. To solve this problem,
information from sequential Data-Frames is collected in the Cluster-Frames. These contain
the useful information needed for the localization problem and also to elaborate a map of
the environment.
For each input Data-Frame, the database computes a representative a signature which

describes its visual information. This signature is used to determine its membership to a
Cluster-Frame. A signature is assigned to clusters too, in order to unequivocally identify
them. Meanwhile, the database selects those features that are repetitive and correlate
them which the clusters. If several features are observed between different clusters, these
clusters are considered to have covisibility. This covisibility is important to perform later
the optimizations algorithms.

Being able to efficiently store all the information acquired in the environment to build a
map simultaneously to the localization of the robot is vital. For this purpose, the more
useful information is stored in a graph. This graph-based map based holds the necessary
information about the structure of the map. In the proposed framework, each node is
represented with a Cluster-Frame, and each landmark on the map is a Word. Each Cluster
contains the words which has a projection in the cluster. The information is not stored
intrinsically in a graph shape, but the graph can be quickly built from the data. As
mentioned in the introduction, the purpose is to make the framework modular. Thus, this
fact is useful to not to particularize to a specific algorithm, keeping the framework flexible
for new algorithms and methodologies.

4.3.4 Optimizer Module

As it is well-known, the sequential alignment of the data from the sensors (or visual
odometry in this case) is prone to produce drifts overtime while computing the localization
of the robot. This section introduces two levels of optimizations to reduce the drift. The
first optimization level occurs locally at the same time that the odometry estimation. The
second level of optimization involves long-term improvements which turn into action when
loop closures are detected. For this purpose, the graph-based map representation is used.

96 Chapter 4. Mapping and localization for aerial manipulation

This optimizations prevent the dead-reckoning and minimize the drift in the position of
the platform. In this work, the optimization is performed using g2o [161] framework.
The first optimization, or Local optimization, is based in the covisibility between the

cluster-frames in the vicinity of current robot pose. The optimization consists of performing
Bundle Adjustment (BA) using the last information in the graph map. BA algorithm has
been introduced previously in Section 3.4 for the optimization of the reconstruction of
objects using sparse clouds. In this section, Sparse Bundle Adjustment [101] is used
similarly to minimize the re-projection of the words onto the images of the cluster-frames
to reduce the drifts produced by the visual odometry.
All the information captured previously is stored in a graph in which each node is

denoted xi and represent a cluster-frame of the database, and holds a pose in the space
and a unique identifier. Also, let be zi j the observation of a specific feature j observed
from cluster-frame i. Finally, the constraints between the nodes and the observations are
denoted with an edge ei j.

In general terms, it is possible to construct a cost function to minimize the errors in the
positions of the clusters with the following form:

F(x) = ∑
(i j)∈C

ei, jΩi jei jx
∗ = argminxF(x) (4.5)

Where Ωi, j represents the mean and information matrix of the constraints represented
by the projections of the features observed and the poses of the cameras held by the cluster-
frames. If the initial information is good enough, the algorithm is ensured to converge. The
basic idea behind is to approximate the error function by its first order Taylor expansion in
the initial guess x̂

ei j(x̂i +∆xi, x̂ j +∆x j)' ei j + Ji j∆x (4.6)

For the local optimization, let beCFi a cluster-frame in the map which holds the observed
features and its pose. Also, let the covisibility be

CFcovisibility = {CFj∀ j = 1...N}

A set of cluster-frames which share a minimum of observed features, i.e., they share a
visible part of the environment, so j = 1...N represent the co-visibility of the cluster-frame.
The bundle adjustment is performed in that specific subset of cluster-frames to improve
the poses of all the clusters in the co-visibility locally and consequently the representation
of the features or map-points.
Up to this point, the algorithm produces a map and robot’s localization using visual

odometry and local optimizations. However, the accumulation of small errors in the
system ended up biasing the real location of the robot. To solve this problem, loop-closing
algorithms detect when the robot re-visited someplace and correlate its position with the
position in the past. By adding this connection in the graph-map, the global optimization
algorithm is able to erase the drift produced by the odometry, fixing the past trajectory
and consequently the map generated. With this concern, two methods have been explored.

4.3 Full SLAM Framework using RGB-D sensors 97

The first method is based on the construction of a similarity matrix between the existing
Cluster-Frames and has been implemented and integrated in the framework. Each time
a cluster i is created, the loop-closure detector computes a similarity score between it
and the other Cluster-Frames in the database based on their unique signature [156] and
place it in a RNxN matrix. Figure 4.11 show the score matrix computed in a dataset. The
left picture shows the raw matrix with the similarity scores. The right picture shows an
optimized version using the algorithm proposed in [175]. Authors proposed an analysis of
the singular values of the score matrix to remove those values that are not significant. The
algorithm proceeds by computing the singular value decomposition, then reconstructing
the matrix but setting those non-significant singular values to 0.

Figure 4.11 Score matrix from signature to detect loop closures. Left matrix shows the
raw scores and right matrix shows the optimized matrix using rank reduction..

Then the loops are detected by applying Water-Smith algorithm [176] in the lower
triangular fragment of the rank reduced matrix. Figure 4.12 shows the resulting binary
matrix. The sequence of all positive values (i, j) correspond to a loop in the sequence.

Figure 4.12 Result of the Water-Smith algorithm for loop closure detection.

However, this method scales poorly in extensive experiments due to the need for creation
of the score matrix for each Cluster-Frame with all the existing Cluster-Frames. For this
reason, another alternative has been explored. The loop closure detector developed by
Dorian et al. in [156] has been used as an alternative, which is less time-consuming and
scale better with large experiments. This algorithm detects loops by comparing signatures
of Cluster-Frames in a database. The comparison between images is made more efficiently

98 Chapter 4. Mapping and localization for aerial manipulation

by the use of trees. Then, if the comparison passes a threshold, the geometrical distribution
of the features used for computing the signature is compared using RANSAC. If the
RANSAC algorithm gives a solution and the number of inliers is above a threshold, the
loop is considered detected, and both nodes are connected in the graph.

Eventually, once a loop is detected by either of the aforementioned methods, the frame-
work proceeds to optimize those cluster-frames that are included in it. This is done, again
in our framework, using Sparse Bundle Adjustment. In this case, all the frames integrated
into the loop are introduced in the minimization problem while the rest remain unused.
Once the optimization algorithm has finished, all the poses are updated and the branches
attached to to the optimized loop are moved too according to the base of the branch.

Additionally, after the optimization process, all the edges in the graph-map are analyzed.
The optimization algorithm returns a score based on the probability of the deviation of
the measurements using a Chi-Square distribution (χ2). If the score of an edge, i.e. a
projection ,is above a threshold, it is invalidated, assuming that it is a bad match. Removing
this bad matches is essential, as if they grow over time, they can make the algorithm diverge
even if the initial condition is good. This elimination process also occurs in the local
optimization to reduce the mismatches while the map is being created.

4.4 Experimental Validation of the Framework

This section presents the validation experiments of the proposed SLAM Framework. The
purpose is to evaluate the accuracy of the system using different datasets. However, it
is difficult to elaborate custom datasets for aerial platforms due to the need for accurate
ground truth to compare the results against. For these reasons, the first two subsections
evaluate the framework using two standard datasets. The last subsection presents an
experiment that the author was able to record with a custom aerial platform under a bridge,
in which the position of the Drone was recorded using an external positioning tool called
Total Station as ground truth. Finally, a semantic slam approach is presented using the
algorithms presented in Chapter 3.

4.4.1 Experiments in Microsoft 7-scenes RGB-D Datasets

This section shows the experimental results on the 7-scenes dataset by Criminisi et al.[177].
This dataset was recorded using a handheld Kinect RGB-D camera. The datasets consist
of several sequences in seven different scenarios. They are shipped with a ground truth
obtained with the KinectFusion[178]. The only objection is that they do not provide any
calibration file for the camera but a raw focal length (fx = fy = 585) and principal point
(cx = 320, cy = 240).

Table 4.1 summarizes the results of the proposed SLAM framework with and without
optimizers. As there are a total of 50 sequences, only the first two of each scene are shown
in this table. As the framework only stores the cluster frames, these are the one compared
against the ground truth. An example of map reconstruction can be seen in Figure 4.13.
Each Cluster-Frame is represented with a red number, and the green lines represent the
covisibility between them.

4.4 Experimental Validation of the Framework 99

Avg. error
dataset visual odometry loop closure

chess - seq01 0.043091 0.035963
chess - seq02 0.050865 0.0497788
fire - seq01 0.095764 0.027084
fire - seq02 0.085799 0.043113
heads - seq01 0.080163 0.038983
heads - seq02 0.071898 0.046259
office - seq01 0.254695 0.041244
office - seq02 0.345024 0.124132

pumpkin - seq01 0.080049 0.084454
pumpkin - seq02 0.098603 0.068412
redkitchen - seq01 0.060107 0.059255
redkitchen - seq02 0.168820 0.096546

stairs - seq01 0.206929 0.046391
stairs - seq02 0.057993 0.035623

Table 4.1 Average error in microsoft 7-scenes dataset.

Figure 4.13 Sample map reconstruction in the Office sequence 01.

Additionally, Figure 4.14 show the 3D trajectories of the cameras in some sample datasets
against the given ground truth. For clearness of the chapter, the rest of the trajectories can
be found in AppendixA.1.

It can be clearly seen that the optimizations pay an essential role in both the localization

100 Chapter 4. Mapping and localization for aerial manipulation

(a) Fire sequence 02. (b) Fire sequence 02 - with optimizations.

(c) Heads sequence 01. (d) Heads sequence 01 - with optimizations.

(e) Office sequence 01. (f) Office sequence 01 - with optimizations.

Figure 4.14 Sample trajectories computed by the SLAM framework versus ground truth
in Microsoft 7 scenes. Pictures in left column show the results without opti-
mizations. Right column picture shows the results using both local and global
optimizations..

and the mapping of the environment. If the optimizations are applied, the average errors
in the cluster frames are reduced between 25% and 65% depend on the dataset.

4.4 Experimental Validation of the Framework 101

4.4.2 Experiments in TUM RGB-D Datasets

The TUM RGB-D benchmark [179] provides a good number of datasets for evaluating the
accuracy of the localization of the RGB-D sensor in several sequences. These datasets are
composed by a set of color and depth images acquired with a Kinect camera. Additionally,
the authors provide a highly accurate position of the camera using an indoor motion capture
system.

Table 4.2 shows the average errors of the algorithm in some of TUM’s RGB-D datasets.
An example of map reconstruction can be seen in Figure 4.15.

Avg. error
dataset visual odometry optimizations
fr1_xyz 0.021423 0.009089
fr1_floor 0.089290 0.083565
fr1_room 0.208355 0.178355
fr2_xyz 0.011387 0.006515
fr2_desk 0.159498 0.138194

fr2_desk_person 0.076316 0.052962

Table 4.2 Average error in freiburg datasets just with VO, and with VO and optimizations..

Figure 4.15 Sample map reconstruction in the freiburg1_room dataset.

Additionally, Figure 4.16 show the 3D trajectories of the computed by the algorithm
with just visual odometry and with the optimization module running, respectively.

102 Chapter 4. Mapping and localization for aerial manipulation

(a) Dataset Freiburg 2 XYZ .
(b) Dataset Freiburg 2 XYZ - with optimiza-

tions.

(c) Dataset Freiburg 1 floor.
(d) Dataset Freiburg 1 floor - with optimiza-

tions.

(e) Dataset Freiburg 1 room.
(f) Dataset Freiburg 1 room - with optimiza-

tions.

Figure 4.16 Freiburg datasets just visual odometry.

Similar to previous datasets, the results are unequivocally better if optimizations are
applied. However, it is worth to mention that the results in the dataset fr2_desk_person,
results deteriorate in the last fragment of the datasets due to the person moving in the
scene. In this case, the visual odometry seems to be more robust thanks to the robust inlier
rejection by RANSAC. However, during the last fragment of the dataset, the person moves

4.4 Experimental Validation of the Framework 103

the objects in the table, which causes mismatches in the past projections of the words. In
future implementations of the framework, the system will watch out this temporal-spatial
mismatches of dynamic objects to prevent the optimization to diverge.

4.4.3 Custom dataset - Flying under the bridge

This subsection presents the results of the reconstruction of the pillars of a bridge using our
framework. The results are compared against the position captured by a Leica Total station.
This device tracks a prism located in the UAV and records its position. Thanks to this
device, it is possible to obtain a ground truth of the experiments in almost any environment
if the platform keeps in the line of sight of the ground device. Figure 4.17 shows the 3D
map reconstructed by the SLAM algorithm and the trajectory of the UAV compared against
the ground truth. An average error of 0.1056(m) is obtained in the experiment shown.

This experiment is important not only for introducing a different context but for being
a real outdoor dataset using a flying platform. With it, the author wants to show the
capabilities of the framework in the target circumstances concerning the movements and
vibrations typical of the aerial platforms.

Figure 4.17 Bridge pillars mapping.

104 Chapter 4. Mapping and localization for aerial manipulation

4.5 Semantic labeling for manipulation and Augmented data for hu-
man operators

In this section, results from the object detection algorithms presented in Chapter 2 are used
to enhance 3D maps. With this work, it is pretended to fully automate the manipulations
tasks to be developed by the aerial platform, as the UAV will be able to, at first instance,
locale itself in the environment, and to locate the target objects in the environment. Thus,
at last instance, the robot could perform manipulation task as described in Chapter 3.

This information is highly valuable because it provides information about the location of
the objects in the scene. With this knowledge, the robot can plan for different tasks such as
transporting the objects from one place to another. This work focuses on the localization of
the objects in the scene. Once the objects are located, the rest of the algorithms presented
will be used to grasp the specific objects.

Semantic labeling [180] refers to the field of computer vision which categorize 2D or
3D data into human-comprehensible information. In some way, computer vision always
tries to categorize the information of the environment, but in this particular context, the
objective is, in general terms, to place a label on physical objects which can be useful
for some task. This task is very correlated with segmentation tasks in robotics. Usually,
segmentation is performed using visual information which characterizes an object to
isolate it from the environment. It is possible to use contextual information to help this
segmentation. This has been recently studied by using deep learning techniques [181].
Custom datasets have been recorded in which several instances of objects appear in

the scene. The algorithm computes the localization of the robot at the same time that it
builds up a map of the environment. In parallel, each image is processed using the object
detection neuronal network, described in Section 3.6.3 to detect instances of objects. These
instances in 2D are projected onto the point clouds to generate semantic 3D information.

Each time that an object is detected with a score higher than a threshold, it is projected
onto the point cloud generating a set of points in which the object is assumed to be.
Then, using Principal Component Analysis (PCA) the minimum oriented bounding box
containing the points is computed using the following equation.

P = Xi = (xi,yi,zi)∀i = 1...N

k(x,y) = ∑
N
i=i(xi−x̄)∗(yi−ȳ)

N

K =

k(x,x) k(x,y) k(x,z)
k(y,x) k(y,y) k(y,z)
k(z,x) k(z,y) k(z,z)

PCA = {σλi

(K),Eλi
(K) ∀i = x,y,z}

(4.7)

These detections are associated with current Cluster-Frame to be stored in the map. Then,
it could happen in subsequent instants that the same object is detected by the network, and
consequently, a second bounding box is obtained. In order to prevent several instances of

4.5 Semantic labeling for manipulation and Augmented data for human operators 105

the same object to appear in the scene, for each new detection, the volumetric Intersection
over Union (IoU) is computed by

V1 = width1 ∗height1 ∗altitude1

V2 = width2 ∗height2 ∗altitude2

Vintersec =V1∩V2

IoU = Vintersec
V1+V2−Vintersec

(4.8)

This value measures the overlap between the two regions, and if the overlap is significant,
it means that two predictions belong to the same object. If a new detection has a null
or low IoU score, a new instance of an object is added to the scene and attached to the
cluster frame. This link to the cluster frame is very important because if the cluster pose
is updated due to the optimization algorithm, the pose of the detected object needs to be
updated too.

Figures 4.18 and 4.19 show the reconstruction of an indoor office in which there different
mockups of the crawler robot shown in Section 3.6.3. The results of the trained networks
showed in that section are used to obtain the semantic information.

Figure 4.18 Top view of office dataset with semantic information from the neuronal net-
work trained with the crawler dataset.

106 Chapter 4. Mapping and localization for aerial manipulation

Figure 4.19 Close-up view of crawler detections .

In the same scene, different hand tools were placed. Using the trained network shown
in Section 3.6.3, a second run of the experiment was performed obtained the results shown
in Figures 4.20 and 4.21.

Figure 4.20 Top view of office dataset with semantic information from the neuronal net-
work trained with the hand-tools dataset.

Future work in this researching line will include more complex networks which detect,
not only the bounding box in the 2D image but the exact pixels that belong to the object.

4.5 Semantic labeling for manipulation and Augmented data for human operators 107

Figure 4.21 Close-up view of hand-tools detections.

This information is advantageous because the 3D projection of the points includes only
the specific points that belong to the object, contrary to bounding boxes that may include
points that belong to the background. Further conclusions are thrown in Chapter 6.

5 Aerial manipulator platforms and
general system architectures

5.1 Introduction

Multirotors have been proved to be practical solutions for developing inspection and
maintenance tasks [6, 182, 183]. Contrary to fixed-wing UAVs, multirotors can move
freely in the space and hover at a desired position to develop any tasks.
Many approaches exist in state-of-art to the problem of aerial manipulation. At first,

it is important to consider the expected specifications that need to be accomplished by
the aerial robot. Then, the UAV needs to be equipped with an adequate set of tools to
accomplish these tasks.
First approaches provided the aerial platforms with a single gripper placed just at

the bottom of the UAV. A well-known example of this kind of aerial manipulators is
Yale’s helicopter [184, 185] Dollar et al. researched the use of a helicopter with a built-in
gripper downside for transportation purposes. However, the previous platform is large
and not suitable for many operations. Authors in [186] proposed a smaller design using a
quadcopter which was equipped with a gripper downside too. In that article, authors show
the design and the resulting platform which has been tested indoor using a VICON system.
However, these kinds of actuators can merely be used to grab-and-drop applications. Many
other small low-complexity grippers for multirotors have been designed [187, 188]. Other
grippers can also be magnetic [189] reducing the complexity and the mechanical parts.
Other authors, studied the use of manipulators to exert forces to objects or surfaces.

Authors in [190] studied the design of a tiltrotor with a sensorized rod to control the force
exerted. Another example is manipulators with force control as shown in [191] in which
authors developed a 1DoF manipulator with exerting controlled forces to walls for bridge
inspection. In these works, authors govern the position of the aerial platform to exert
controlled forces to objects. In the AEROARMS project [7] a contact force inspection tool
was developed which actively uses the force exerted to control the position of the UAV.

109

110 Chapter 5. Aerial manipulator platforms and general system architectures

Conversely, a passive tool for controlling the position of the multirotor is shown later in
Section 5.4.

New generations of aerial manipulators are provided with full serial robotic arms to
extend the capabilities and applications of these platforms. In this case, more complex
operations can be performed as the embedded manipulators have more dexterity and allow
the platform to remain static while the manipulators are moving to perform an operation.
Robotic manipulators are a wide area of research. However, due to the nature of this
research, this document focuses on lightweight manipulators due to the strict payload
limitations of aerial vehicles.

Parallel manipulators [192, 193] have been recently studied for their use in aerial plat-
forms. The main advantage of this kind of manipulators is that they are relatively fast
and accurate being able to maintain robustly its position against perturbations. However,
the reachability of these arms is limited. Serial arms are suitable for more applications.
Many articles explored the use of a single arm installed in the aerial platform to carry out
a variety of tasks. K. Kondak et al. developed a helicopter equipped with an industrial
robotic arm to perform manipulations task as shown in [194][195]. Currently, a rising
interest in aerial manipulation leads to researches to place not one but two manipulators in
the same platform to allow it to perform dexterous manipulation with both hands. Authors
in [196] proposed the use of a pair of manipulators to turn valves in industrial environments.
Dual manipulators [197, 198] configuration has been found to be very versatile to enhance
manipulation tasks.

In this dissertation, aerial manipulators with embedded serial robotic arms are the case
of study. These are more efficient and flexible, concerning the reachability, to perform a
large variety of tasks which imply dexterous manipulation.

Eventually, it is not hard to understand, that flying aerial platforms with embed ma-
nipulators introduce an extra challenge. These attachments produce static and dynamic
instabilities on the platforms. Additionally, the interaction with physical objects during
the manipulation tasks, or even the interaction with fixed objects such as walls, induces
more problems.

For a better understanding, this Chapter focuses on the hardware implementation and the
architecture of the software used during the research to test all the manipulation algorithms
exposed in previous chapters. A proper control design that integrates the movements of
the manipulators in the dynamic model of the multirotor is beneficial for the stability and
control of the platform. However, these concepts are out of the scope of this research.

The remainder of this Chapter is divided into four sections. Section 5.2 introduces the
first platform developed; a small hexacopter with a single manipulator. Section 5.3 shows
the last platform, a medium size hexacopter with larger payload capabilities with a dual
manipulator embedded. Section 5.4 presents a custom designed tool which is used as
end-effector of one of the manipulators shown in Section 5.3. This tool docks to a structure
and is used to compute the relative position of the UAV to the attachment point. One of the
purposes of this docking tool is to perform manipulation tasks with a second manipulator
while it remains in contact with a stiff object.

5.2 First approach with single manipulator 111

5.2 First approach with single manipulator

The first platform developed during this research was based on a commercial hexacopter
DJI F550 with customized engines to maximize the thrust. This platform was called
Aquiles. The hexacopter model was chosen for two reasons; the first one is that it has
more power than smaller multirotors, which is very convenient for carrying the payload of
the arm and the onboard computer for running the algorithms. Additionally, hexacopter
configuration is more stable and robust to failures, as it can work better in case of losing
one engine or propeller.
In order to evaluate any algorithm, an onboard computer has been embedded in it.

To ensure enough computational power, the computer that was used was an INTEL
NUC5i7RYH [199]. This compact computer has a CPU i7 3.1 GHz and 8 GB of RAM.
An Arduino Uno [200] board was added as an interface between the computer and the
manipulator. Further, a specific holder for cameras is placed close to the arm to perform
the visual manipulation tasks. Finally, a Pixhawk1 autopilot is used to control the platform.
This hardware has the advantage of being open-source and relatively easy to command
from the onboard computer.
The requirements of the robotic arm were: to be lightweight, to have as long range as

possible and having 4-DOF to accomplish the grasping task. Figure 5.1a shows the CAD
design of the parts ,which were built by 3D printing. Joints axis and angles have been
highlighted. The arm is actuated using PWM servos controlled by the onboard computer
through the analog pins of the Arduino. These servos have a strength of 25 Kg/cm and are
placed directly in the joints. Finally, Figure 5.1b shows the whole structure that we built.

(a) Cad design of the 3d printed parts. (b) Final built platform.

Figure 5.1 Model of robotic arm for the aerial robot..

Special care was taken in the design of the first rotation joint. In order to prevent the
actuator of that joint to hold the whole weight of the arm and the grasped object, it has been
designed to hold the load structurally as shown in Figure 5.2. This structure is greased to
reduce the friction as much as possible.
1 https:// pixhawk.org/

https://pixhawk.org/

112 Chapter 5. Aerial manipulator platforms and general system architectures

Figure 5.2 Details of first joint. Left picture shows the general assembly of the joint. Right
picture shows a cut-view. The red arrows show the structure that holds the
weight of the arm..

Due to the simplicity of the design, the inverse kinematic of the arm can be computed
analytically by:

[θ1,θ2,θ3] = F(x,y,z) =

θ1 = atan(y/x)
θ2 = acos((l2

2 −d2− l2
1)/(−2∗d ∗ l1))

θ3 = acos((d2− l2
1 − l2

2)/(−2+ l1 ∗ l2))

being, d = 2
√

p2 + z2 and p= 2
√

x2 + y2. The additional joint at the end-effector provides
for an extra rotation to accommodate the orientation of the gripper for the grasping
operation.
Additionally, the arm is provided with a gripper as end-effector. It is crucial to design

a gripper with enough strength to prevent the objects to slip or fall when manipulating
them. Bearing this in mind, it was designed with a worm drive to pull a bar which closes
the gripper. This mechanism is significantly stronger than those grippers in which the
servo actuates a connecting rod directly. Figure 5.3 shows a close up picture of grippers
assembly CAD. The arm had a total weight of 0.72 Kg, including the servos, wiring, and
electronics.

Figure 5.3 Gripper design with worm drive actuator.

Additionally, a transformation is needed between the coordinate system of the camera

5.3 Aerial dual manipulator 113

holder and the coordinate system of the arm. This transformation is composed of a
translation between the centers of the coordinates and a simple spin on the X axis:

TC←A =

1 0 0 tx
0 cos(α) −sin(α) ty
0 sin(α) cos(α) tz
0 0 0 1

The parameters of the transformation are experimentally obtained as α = 30, tx = 0.06m,

ty = 0.1m, tz = 0.

(a) Secure structure for testing.. (b) UAV grasping the drilling tool..

Figure 5.4 The left figure shows the safety structure. The UAV is hanging from the top.
The right image shows a close-up picture of the bottom side of the robot after
grasping the drilling tool..

This hexacopter has been employed in real experiments, and mainly was used for the
validation of the grasping algorithm explained in Section 3.4, published in article [8].

5.3 Aerial dual manipulator

The second platform was also a coplanar hexacopter. However, in this case, the platform
is larger than previous one, thus having more stability and strength, which is necessary
to accomplish the payload requirements to carry the pair of manipulators. This platform
was called Belerofonte. Figure 5.5 shows the actual platform. The electronic devices were
placed in the center below the autopilot to balance the center of mass, and the arms have
been placed below too. The frame is an hexacopter designed and built by DroneTools
SL 2. The rest of the hardware, as well as the arms and the software, has been designed
and developed by the author.

The platform has a Pixhawk3 autopilot which is responsible for the robot’s flying control.
Additionally, an Intel NUC computer, in which all the systems run, has been installed
at the bottom. Finally, a camera holder is placed between the arms to place any camera
to perform query images for the vision algorithms. Particularly, two cameras have been
tested with this platform: an Intel Real-Sense camera and a ZED Stereo Camera.
2 http://www.dronetools.es
3 https:// pixhawk.org/

http://www.dronetools.es
https://pixhawk.org/

114 Chapter 5. Aerial manipulator platforms and general system architectures

Figure 5.5 Figure shows the arms built in the multirotor.

The arms were refurbished taking into account the problems that raised in previous
versions. First of all, the traditional PWM servos were replaced by digital serial servos.
These presents many advantages compare with previous ones. Particularly, they can
measure the actual load that these are suffering, which is useful to be able to code a
fail-safe stop if the servos are getting overloaded. Additionally, they are controlled over
the same wire bus, reducing the number of cables that are needed in PWM servos.
In this design, special attention was paid to make the system as reusable as possible.

For this reason, the end effector was designed with a quick release mechanism (shown in
Figure 5.6) with a screw to quickly change between different tools.

Figure 5.6 Quick release system for attaching different tools, i.e. the gripper or the docking
tool..

Then three different grippers have been designed each of them giving extra degrees of
freedom. Figure 5.7 shows the design of the different grippers. All of them use the worm
drive to actuate the gripper.
These arms are part of an open-source project called hecatonquiros 4 which aims for

general purpose, cheap and easy to use robotic arms. These are designed to be light-weight,
thus relatively small UAVs can carry them. These are 3D printed reducing the overall cost
of its production as the material is relatively cheap and does not need any post-processing
step, so can be assembled. The cost of a single arm is ∼ 150$ (including the smart serial
servos). The project also provides for a library based on OpenRAVE for the kinematic

4 https:// github.com/bardo91/ hecatonquiros/

https://github.com/bardo91/hecatonquiros/

5.3 Aerial dual manipulator 115

(a) Gripper with 0 extra DoF. (b) Gripper with 1 extra DoF.

(c) Gripper with 2 extra DoF.

Figure 5.7 CAD design of different grippers designed for the aerial manipulation.

solvers and has support to ROS for performing simulations before the real experiments.
More detailed information about the project is presented in AppendixA.3.
Figure 5.8a and Figure 5.8b show the coordinate frames defined for the robot, which

will be used to transform from the detection of the camera to move the end-effectors of the
arms. Figure 5.9 shows the kinematic reachability of the pairs of arms which will be used
to estimate the appropriated position of the robot to perform the manipulation tasks.

(a) 6DoF arms model in OpenRAVE and co-
ordinate frames.

(b) 4DoF arms model in OpenRAVE and co-
ordinate frames.

Figure 5.8 Cad models of the 6Dof and 4DoF manipulators for the online simulations and
planning.

Detailed information about the kinematics and inverse kinematics of these manipulators
has been previously introduced in Section 2.4.

116 Chapter 5. Aerial manipulator platforms and general system architectures

Figure 5.9 Kinematic reachability of the aerial Manipulator..

This platform has been used in many experiments for the AEROARMS project. Particu-
larly, it has been used to validate the grasping algorithm shown in Sections 2.4 and 3.6.3,
published in article [13].

5.4 Contact positioning tool for manipulation tasks

This section describes the hardware design of the novel tool, so-called docking tool, which
is used to control the position of the aerial platform by contacting a rigid object. The tool
has multiple free degrees of freedom which are sensorized. Other approaches [7] actively
exert forces towards the rigid objects, overloading the engines and consuming more energy.
Conversely, this tool is underactuated being more efficient and more stable.
At first, the development of tools for aerial robots is usually more constrained than

in-ground systems due to the payload limitations and stability issues. In this work, the
following assumptions are adopted:

• Perturbations produced by wind are relatively small.

• The UAV has a low-level controller which input is the desired speed in Cartesian
coordinates, and it outputs motors speed.

In order to test this tool, the aerial platform presented in the previous section was
used. The right arm is provided with a gripper to perform different manipulation tasks.
The docking tool is attached to the left one. This tool provides the position of the UAV
relative to its attachment base. These measurements are used for stabilizing it close to
the manipulation space. Figure 5.10 shows the aerial robot with all the tools. The work
presented in this section has been published in [15].

5.4.1 Docking tool model

The tool consists of a passive multi-link arm with sensors in the joints to measure the
angles between the links. The main criteria during the design of the tool were to minimize

5.4 Contact positioning tool for manipulation tasks 117

Figure 5.10 Dual arm aerial robot with gripper and docking tool..

the total weight and the friction in the joints, reducing the torques exerted on the arm and
subsequently on the UAV. To reduce the weight, the structural parts are designed to thin
and hollow. The components are 3D printed using ABS, making it lightweight and easier
to replace. Furthermore, the production costs are lower than using aluminum or carbon
fiber, and the components do not need to be built, machined or post-processed.
The tool is not actuated, i.e., it does not need any motor, making it lighter and getting

rid of batteries. Figure 5.11 shows the CAD model of the tool. Bearings have been placed
in the joints to minimize the friction. These are made of acetal plastic which is ten times
lighter than common metal bearings.
It is composed of five joints. The base joint (or θ0) provides a rotation on the Z axis.

The following two joints (θ1 and θ2) compose a two-link arm that gives to the robot free
3D movement on the work zone. Joint θ3 are set to provide an extra degree of freedom
allowing the robot to remain parallel to the floor, independently of the position of the
two-link section. Finally, the last joint (θ4) adds to the robot another DoF, to make it able
to maintain the heading effortlessly.
The kinematic model is shown in

TUAV = f (θ0,θ1,θ2,θ3,θ4) = T0 ·T1 ·T2 ·T3 ·T4 (5.1)

being,

T0 =

cθ0 −sθ0 0 0
sθ0 cθ0 0 0
0 0 1 l0
0 0 0 1

 (5.2)

Ti =

1 0 0 li
0 cθi −sθi 0
0 sθi cθi 0
0 0 0 1

∀i = 1,2,3 (5.3)

118 Chapter 5. Aerial manipulator platforms and general system architectures

Figure 5.11 CAD model of docking tool with base for attaching to pipes with joints edges
illustrated.

T4 =

cθ1 0 sθ1 0
0 1 0 l4
−sθ1 0 cθ1 0

0 0 0 1

 (5.4)

The docking tool system has 5 DoF for the drone’s movement. An additional joint in
the axis of the last bar provides free rotation related to the roll of the UAV. However, this
rotation is significantly small due to the assumption of small perturbations. For this reason,
the joint is not included in the design.

The joints of the tool are provided with potentiometers that are used for measuring the
angles. The voltage signals from the potentiometers are measured by an electronic device
connected to the onboard computer. Then, the signals are mapped to the angles, because
the voltage in the resistances changes linearly, the mapping of variables is a linear map.
The sensors are wired using internal holes on the joints as shown in Figure 5.12. This

minimizes the forces exerted by the cables on the joints.
The angles measured from the potentiometers are used to estimate the current pose of

the UAV. Together with the information of the arms, these measurements are used to close

5.4 Contact positioning tool for manipulation tasks 119

Figure 5.12 a) shows an figure with the component exploded. b) shows part of the joint
sliced to see the internal holes and the components assembled. Finally, d)
shows a close picture of the wiring system, passing through the holes that can
be seen in previous figures..

the loop of the control system described in section 5.4.2. Figure 5.13 shows a 3D virtual
visualization at different times of real experiments.

Figure 5.13 Online virtual visualization of the aerial platform with the docking tool during
the experiments..

Furthermore, the base of the docking tool is provided with two additional components
shown in Figure 5.14. The first is a 3-axis accelerometer, and the second one is a servo
that locks the rotation of the base during the flight to improve the coupling phase.

The use of the accelerometer is essential to guarantee that the 6D pose of the end-effector
can be used to control the UAV. As the arm that holds the docking tool remains parallel to
the horizontal plane of the platform, it is important to know the orientation of the base
of the docking tool to properly compute not only the position but the full pose. If for any
reason during the attachment, the base is not entirely parallel it will lead to a rotation in
the end-effector.

120 Chapter 5. Aerial manipulator platforms and general system architectures

The second component, the servo, has been integrated to prevent the base from rotating
while the platform is flying. As the joints are not actuated, the base tends to rotate, thus
making difficult the docking stage. Then, the purpose of the servo is to lock until the
platform has docked.

Figure 5.14 Left picture shows the accelerometer placed in the base joint to measure the
orientation of the base while docked. The other two pictures shows the servo
that locks the base of the docking tool until it is placed..

More detailed specifications of the docking tool components are summarized in Table 5.1.

Table 5.1 Specifications of the low-cost Docking tool.
Potentiometers resistance(KΩ) 20
Potentiometers angle range(deg) 270

Operating Voltage (V) 5
Power consumption (W) 0.25

Servos SG90 Pro 9g
Accelerometer L3GD20H and LSM303D Carrier
Longitudes (m) l0 0.071

l1 0.105
l2 0.155
l3 0.07
l4 0.075

Total weight (g) 150
Base material Plastic ABS

Finally, Figure 5.15 shows the workspace of the end-position of the docking tool and
the quality of each of the positions. The quality is evaluated using the distance of the
joints to the saturation points. This distance is mapped to a value within 0 and 1, and all

5.4 Contact positioning tool for manipulation tasks 121

the values are multiplied, obtaining a single bounded value. It means that if one of the
joints get close to a saturation limit, the overall quality of the position decreases. The
values are represented using a heat-map scale, being blue the best value and red the worst.
These values are intended to be used in future work to perform a smarter control of the
system trying to keep the position of the docking tool in a well-conditioned volume of the
workspace.

Figure 5.15 Reachability of the end-position of the docking tool with heatmap colors
evaluating the closeness of the joints to the saturation limits.

5.4.2 Controlling the position with contact point

In this Section, a case of use of the docking tool proposed is shown. The position provided
by the tool is used to estimate the relative pose of the end-effector of the second arm regards
the attached position. Thanks to this information, it is possible to perform a Position Based
Servoing (PBS) algorithm to keep the end-effector in a fixed point or location.

A cascade control system is proposed for positioning the aerial robot. Figure 5.16 shows
the controller structure. The inner loop corresponds to the internal controller provided by
the px4 software. It consists of Cartesian speed control that translates from the desired
velocity to the corresponding actuation on the motors. The outer loop uses the position
obtained by the docking tool to produce a target speed to control the robot.
The outer controller is a PID tuned to provide quick responses to the perturbations on

the UAV and the drifts of the internal controller (generally due to errors in the internal
estimators of the px4 software: GPS errors, IMU drifts, etc.). The position of the docking
tool is compared against a target position to compute an error e(t)[m]. This error in position
fed the controller which produces at the output a control signal u(t) which is a reference
speed in [ms] that fed the autopilot.

While the tool is docked, it throws measures of the relative position from its base. The
error that feeds the control loop is computed by the difference in position of the current
position and a reference position. In order to smooth the state of the robot, the data obtained
from the tool is filtered using an Extended Kalman Filter[201].

122 Chapter 5. Aerial manipulator platforms and general system architectures

Figure 5.16 Scheme of the cascade control system..

The PID was coded with an anti-windup block to avoid large oscillations due to the
integral factor. Additionally, the output speeds are saturated to prevent abrupt control
signals due to the derivative terms. Table 5.2 contains the values of the PID parameters.
These values were tuned from the experiments, starting from a controller flying free in the
air and then tuning the parameters with the information from the docking tool.

Table 5.2 PID parameters.
Kp Ki Kd Anti-windup Signal saturation (m/s)

X 0.8 0.01 0.7 10 2
Y 0.8 0.01 0.7 10 2
Z 0.3 0.03 0.7 10 1

5.4.3 Experimental Setup

In addition to the components shown in Section 5.4.1, the aerial robot needs other devices
to perform the experiments. Figure 5.17 shows all system components. The potentiometers
on the joints of the docking tool are connected to the analog inputs of the microcontroller.
The Arduino is connected to an onboard Intel NUC computer which is used as the main
computer. The lectures of the sensors are gathered on it, to produce the control signals that
are sent to the autopilot (Pixhawk). The autopilot receives the target speed and controls
the multi-rotor. Additionally, a power supply system is added to feed each of the devices
at appropriate voltages.

A set of practical conclusions were obtained during the first stages of the development
process:

• In order to increase the arms operation range and to prevent internal collisions a
foldable landing gear was built-in.

• It was observed that signals of potentiometers saturate before reaching the mechani-
cal extremes. This reduces the tool workspace. Particularly, the mechanical range is
170◦, and the signal range is 150◦. For this reason, it is good to keep the UAV in a
position in which the joints are not in the limits.

5.4 Contact positioning tool for manipulation tasks 123

Figure 5.17 Components of the autonomous docking system..

• The docking tool joints are not actuated. During the experiments, the tool hangs
until it is docked. Particularly, the base joint can rotate. For this reason, that joint is
locked with a micro servo which unlocks the joint once the tool is placed.

5.4.4 Test-bench and tool characterization

A static experiment has been carried out in a test-bench. The purpose is to measure two
variables: the accuracy and frequency of the measurements. The data provided by the
docking tool is compared against a ground truth obtained by a Leica Total Station MS505
(or TS). It uses a laser that locates a prism within an error of 0.3−0.4 millimeters.

The docking tool is placed on a table and the prism is attached at the end of the positioning
system as shown in Figure 5.18.
Figure 5.19 shows the results in the test-bench. The end position of the tool is moved

to describe a cross in 3D, trying to perform the movements over each axis independently.
Figure 5.19a shows the end position of the tool, the solid line is the position measured by
the docking tool, and the dashed line is the position measured by the TS taken as ground
truth; Figure 5.19b shows the difference between both measures. The mismatch in the
Z axis, within time counts 2375 and 2675, corresponds to the fact that the values of the
potentiometers saturate when going down. The joints exceed the allowed range which leads
to bad angle measurements. Similar effects can be seen at the limits of the movements
in the X and Y axis, but in these cases, the effect is slightly noticeable. This happened
intentionally in this experiment to show the saturation effect. Nevertheless, because the
workspace and the closeness of the joints to the saturation limits are known at any time,
this effect can be mitigated while flying.

5 https:// leica-geosystems.com/products/ total-stations

https://leica-geosystems.com/products/total-stations

124 Chapter 5. Aerial manipulator platforms and general system architectures

Figure 5.18 Test-bench with laser system for measuring the accuracy of the docking tool..

(a) Position measurements vs ground truth. (b) relative error.

Figure 5.19 5.19a shows the X, Y, Z components of the trajectory of the end-effector during
the experiment in the test-bench measured by the docking tool and the laser
system (X: red; Y: green; Z: blue). 5.19b shows the relative error between the
measurements. The relative error has been zoomed for the clearness of the
figure. .

5.4.5 GPS positioning characterization

An outdoor first experiment was executed using the GPS to obtain the position reference
for the control loop. This experiment is shown to characterize the magnitude of typical
errors using this common positioning device and to compare with our positioning system.
The real position of the robot is measured with the Total Station. Figure 5.20 shows the
error in the position of the UAV according to a fixed set point measured with the Total
Station. The experiments were performed in a clear day with very low wind conditions
with the hardware specified in Section 5.4.3

In this experiment, it can be observed that the errors can be large in some situations.
Moreover, these experiments were performed outdoors on a clear day. Thus, there could
be worst conditions were the GPS could be denied or noisy, that would induce larger

5.4 Contact positioning tool for manipulation tasks 125

Figure 5.20 Position of the UAV measured by the total station during a hovering test using
GPS as position estimator. .

errors and put the platform and the environment in danger. This inaccuracy exceeds the
workspace of the arms, making difficult any kind of inspection or manipulation task in the
target zone.

5.4.6 Docking and autonomous control

During the experiment 6, the UAV takes off, moves to the target position in order to attach
the docking tool. Then, it starts measuring the relative position of the robot and performs
the autonomous control. The position of the UAV is also acquired using the TS as ground
truth. Figure 5.21 shows snapshots of different experiments of the robot docked to a pipe.

Figure 5.21 Snapshots of robot docked to a pipe during different experiments. The joints
of the docking tool, passively, adapt to the UAV position, which can vary due
to external perturbations..

6 https:// youtu.be/Vk9G7lb_r6I

https://youtu.be/Vk9G7lb_r6I

126 Chapter 5. Aerial manipulator platforms and general system architectures

Additionally, a camera has been attached to the docking tool to compare the results with
a monocular vision system (ORB_SLAM2[174]). In Figure 5.22 the data recorded during
an experiment using the docking system can be observed. Figures 5.22a, 5.22b and 5.22c
show the difference between the current position and the reference position measured by
the different localization systems. The solid line represents the difference in position by
the docking tool. The dashed line the one measured by the total station and the solid line
with dots using the vision algorithm.

(a) Comparison of values in X axis. (b) Comparison of values in Y axis.

(c) Comparison of values in Z axis. (d) Control speed generated by the controller.

Figure 5.22 5.22a, 5.22b and 5.22c compare the errors between current UAV position and
a reference position measured from the docking tool (solid line) and the TS
(dashed line) and the vision system (solid line with dots) in the three axis.
5.22d shows the speed control generated for the outer loop of the cascade
controller.

Figure 5.22d, shows the control signals produced by the PID generated by the outer loop
of the cascade controller from the error in position obtained by the docking tool.

Table 5.3 compares the errors and deviations of the different localization systems studied
against the docking tool during the experiments at each axis. It is evident that just relying
on GPS is unsafe for the platform. It can be observed, that both the visual algorithm and
the docking tool provides similar measures. However, the visual localization algorithm
consumes a lot of computer resources, and it gives the location of the robot up to 25 Hz.
Conversely, the measurements obtained from the docking system achieve a frequency
of 1200 Hz which overtakes the vision speed. Moreover, the computer vision approach
depends strongly on the light conditions.

5.4.7 Manipulation while keeping in contact

A last experimental set up has been proposed to enhance the usefulness of the docking
tool. As aforementioned, the aerial platform has two built-in manipulators. The purpose of

5.4 Contact positioning tool for manipulation tasks 127

Table 5.3 Errors and standard deviations during the test experiments..
GPS Vision Docking Tool

µ σ µ σ µ σ

x (m) 0.164 0.079 0.022 0.027 0.034 0.032
y (m) 0.153 0.123 0.012 0.032 0.036 0.028
z (m) 0.179 0.085 0.023 0.026 0.040 0.039

avg. speed (Hz) 10 25 1200

the docking tool is to provide to the aerial platform a robust position estimation from the
attaching point to then be able to perform any task with the second arm. In the experiment
shown in this section, the second manipulator is commanded to place its end-effector to a
predefined location. The target is to perform a position based servoing (PBS) to minimize
the error between the real position of the end-effector and the target position. To reduce
the position error, the equations shown in Section 2.4 are used.
In order to measure the real position of the end-effector a reflector prism is placed to

be detected by the total station. Using the docking tool and the control loop proposed in
Section 5.4.2 the arm tries to fix the position of the end-effector in the target pose as shown
in Figure 5.23.

Figure 5.23 Outdoor experiments of the position based servoing of the manipulator using
the position given by the docking tool.

The expected relative position from the attachment point computed by the docking tool
has been compared against the reference position obtained by the total station. Figure 5.24
the positions obtained.

Additionally, the results of the joints state of the manipulator are shown in Figure 5.25,
resulting from the PBS algorithm to move the arm towards the target point. Dashed lines
represent target joints of the manipulator, and the solid lines are the actual joints at each
instant.

128 Chapter 5. Aerial manipulator platforms and general system architectures

Figure 5.24 Position of the end-effector measured by the docking tool and the kinematic
model of the system, and measured by the ground truth.

Figure 5.25 Target joints angles and current joints angles during the experiment.

6 Conclusions and Future Work

This chapter presents the main contributions of the thesis and analyses and highlights the
results. Moreover, it discusses the advantages and disadvantages of the proposed methods
and algorithms. Finally, future developments are introduced to overcome the drawbacks.

Unmanned Aerial Vehicles have a clear and key future in many applications. However,
there are many challenges that need to be overtaken to fully integrate them among us.
Especially, if these are expected to cooperate with humans. One of the central pillar for
full automation is the development of an adequate vision system. Any limitation in the
perception capabilities of the robots will obstruct in the rest of functionalities of the system.
For this reason, it is the belief of the author that robots require substantial improvements
in their perception capabilities to allow them to interact with the environment to perform
any task.

The presented aerial system intended to allow these aerial robots to perform autonomous
operations in industrial environments for inspection and maintenance tasks. The contribu-
tions of this thesis center in the perception capabilities for interacting with specific objects,
either detecting them or analyzing the best way of manipulating them. Nevertheless, there
is a long way to make them future-proof and capable of achieving the same capabilities
than human operators in these environments.

6.1 Contributions and conclusions

This thesis presented a set of useful algorithms for the automation of aerial robots in
manipulations tasks from the point of view of the perception and the manipulation analysis
of physical objects. The thesis has been arranged coherently gathering all the knowledge
acquired during the research of the author over these years. This knowledge has been pub-
lished in many articles, and each of them contains the information in specific applications
which are then split to accommodate the presented structure.

Chapter 2 contributes with algorithms to describe objects and analyze the manipulation
of them. At first, several object models have been presented. The right selection of
these models is essential to determine the later algorithms for the manipulation analysis.
Special attention has been paid to the probabilistic model of Gaussian Processes Implicit

129

130 Chapter 6. Conclusions and Future Work

surfaces about which the author has been working intensively during his research stay in
the Australian Center for Field Robotics and with which he has published various articles.
Later, in the same Chapter, most of the common manipulation analysis has been presented
and which are also implemented in the framework that is shown in AppendixA.2. At last
but not least, practical applications of different manipulation methodologies are presented
for manipulation tasks with real aerial platforms. Related to this work, the following
conclusions can be drawn:

• Point cloud-based and mesh-based object models provide for reasonably good results
for object manipulation. However, these models are quite simple and do not handle
uncertainty.

• GPIS can hold a resolution-less representation of objects which has information
about the confidence of where the surface lies. Thus, the manipulation tasks can be
evaluated from the probabilistic point of view, making the robot system to chose
those grasps that maximizes the probability of succeed.

• Contrary to fixed manipulators, in order to perform manipulations tasks with aerial
robots, it is critical to take into account dynamic targets. This chapter introduced
how to use a DLS method to dynamically update the position of the arms to grasp
objects that move relative to the frame of the robot.

Chapter 3 summarizes a variety of perception algorithms that allow the aerial robots to
detect the objects a that are required to be manipulated somehow. The presented algorithms
cover from the classical deterministic models using point clouds and meshes to state-of-art
deep learning algorithms, covering some alternatives using the GPIS probabilistic model.
The purpose of these sections is to allow the robot to perceive and track their-selves objects
of any nature to automate the inspection and maintenance tasks. From this presented work,
the following conclusions can be drawn:

• Most of vision based algorithms for object detection and pose estimation requires
for a learning stage and supervised data. In many applications, it can be assumed
that the object to be manipulated is already known. However, for future exploration
applications, it might be useful to explore detection algorithms such as the one
introduced in Section 3.2 which are able to detect object instances without a previous
definition of them.

• Feature-based object detection is quite extended and has proven to be robust and
accurate. However, the model overfits to a specific object, making this algorithm
poorly scalable.

• Finally, among the different supervised methods, DL neuronal networks have over-
thrown state of the art algorithms. However, despite the advances in electronics,
neuronal networks have strong limitations, and most of the state-of-art networks
cannot run in small embedded computers on the UAV.

Chapter 4, explore two methodologies to give the robot the capability of locating itself
in the environment and to create a descriptive map of the surrounding, so-called SLAM.
At first, a localization system based on a pair of cheap web-cams is presented. Visual

6.1 Contributions and conclusions 131

features are exploited in the images captured by both cameras to create a sparse feature
cloud. The sequential computation of these feature clouds is used to estimate the position
of the robot at each instant. This visual localization algorithm has been improved by fusing
the information of the internal inertial measurement unit using an Extended Kalman filter.
It has been shown that the fusion of both information is highly beneficial, as the single
use of the IMU produces large drifts over time and the sequential alignment of the feature
clouds might induce abrupt movements in case of failures. Later in the same chapter, a
framework based on RGB-D cameras is proposed to perform the simultaneous localization
and mapping. This framework has been designed in well-differentiated modules which
are described in AppendixA.1. The purpose is to create a flexible framework for fast
development of many applications concerning the available resources and sensors in
the aerial platform. The framework has been evaluated using the TUM-RGBD datasets.
Additionally, a custom dataset of a bridge is presented to show the results with real outdoor
data. The last section in this chapter has introduced a method for integrating the perception
results from Chapter 3 into the maps computed in the proposed framework. This semantic
information can be beneficial for the automation missions with aerial robots. To conclude
with, the following conclusions can be drawn:

• It is undeniable that sensor fusion in SLAM algorithm is vital. Exploiting UAV’s
internal inertial sensors improves the transients and smooth the results of the visual
systems.

• Modularly is a key aspect in fast prototyping. While developing the full SLAM
framework, it has been found to be more efficient to split the implemented func-
tionality properly. This fact makes every single component reusable and the whole
framework easy to use.

Eventually, in Chapter 5 all the aerial platforms, manipulators and end-effectors devel-
oped during this research have been presented. Since the beginning, all the algorithms and
methodologies developed have been applied and tested in real aerial platforms. This fact
has been essential because, as mentioned several times, researching for aerial applications
has very strict limitations, and it is critical to grant that the algorithms accomplish, not
only the intended results, such as object detection and manipulation but also the required
specifications of speed and accuracy. At first, a small hexacopter with a single arm is
shown. This platform was used in article [11] for the detection of multiple objects using a
low-cost stereo system, and in article [8] for object detection and manipulation. Later, a
larger hexacopter is presented which has two manipulators. Finally, a special end-effector
tool, so-called docking tool is presented which is intended to be used in aerial manipulation
tasks which requires the aerial platform to have an estimation of the position relative to
an area of interest. In particular, experiments are presented in which the tool docks to a
pipe and the second manipulator performs position based servoing to control its position.
Following conclusions can be drawn from the development of this chapter:

• Design of aerial manipulators required for a strong trade-off between the size and
capabilities. Enlarging the size of manipulators affect to the payload and compromise
the stability. But also, it affect to the computation capabilities. Strong computers
are heavier and consumes more power which translates to larger batteries.

132 Chapter 6. Conclusions and Future Work

• Concerning the docking tool, it has been shown that in some situations, simpler
physical devices can provide practical solutions. In this, case the positioning system
is provided by a tool as end-effector, leaving the rest of resources available for other
tasks such as vision or manipulation.

6.2 Future work

It is our belief that this work has established a baseline for future developments in the field of
aerial manipulation. Additionally, three open-source frameworks have been implemented.
These are: a grasping tool framework which structure is shown in AppendixA.2; an
open-hardware and open-source repository for cheap 3D printed manipulators for aerial
platforms which are shown in AppendixA.3; and a general vision library for monocular
and depth cameras which is shown in AppendixA.1.
As the nature of the dissertation is varied, many research lines arose as future work.

Nevertheless, future developments will strongly consider a deeper usage of deep neuronal
networks for each of the tasks. Currently, all the methods developed in the analysis of
manipulation tasks are based on traditional geometrical analysis of the topology of the
objects. However, cutting-edge methods exploit the usage of deep learning to automate
the generation of grasp candidates more intuitively. These methods require the use of
labeled datasets to generalize the way objects can be manipulated or grasped. Other
methods instead, leave the algorithms to learn themselves by the use of reinforced learning
algorithms. These are based on the definitions of policies and rewards functions to define
how goods are grasps to, similarly to humans, let the robot train itself and adjust its internal
parameter to perform the tasks.
Concerning the object detection and tracking algorithms, recent state of the art algo-

rithms also exploit the usage of deep learning for improving the results. Particularly, we
found interesting the integration of both pipeline of images, the color, and the depth, into
a single neuronal network to exploit all the information in one row. This fact might be
useful as current implementations have two split algorithms, one for the object detection
and another one for the estimation of its pose. Merging both will improve the efficiency of
the algorithm in term of speed but also, it is expected that the neuronal network exploits
the visual and the spatial information all in the same algorithm.

A SLAM framework has been developed to give a highly flexible set of tool for testing
and integration localization andmapping capabilities to any platform in any new application.
However, there are many new development lines that can be:

• Parallelization of optimization pipelines. Optimization has been coded separately
to allow a parallel implementation of the SLAM algorithms. However, the current
application has been implemented sequentially. It will be of high interest to im-
plement an application with these modules running in parallel to not to hinder the
visual odometry pipeline.

6.2 Future work 133

• Threaded loop closure detection. The loop detection module is implemented sepa-
rately. However, the main application for SLAM has this code implemented sequen-
tially too. A thread-safe implementation of loop closure detection will also improve
the performance in real applications.

• Integrating new state estimators such as Unscented Kalman Filter or Particle Filter

• Recently, many loop closure detectors based on Deep Learning algorithm have
appeared. It might be interesting to research on them and implement different
backends for loop closure detection.

Eventually, regarding the augmented information for the SLAM algorithms, i.e., se-
mantic SLAM. The method exposed showed the results for localizing instances of objects.
However, this semantic information can be further extended. Possibly, the most interesting
line of research concerning this issue is the use of pixel-wise semantic deep learning algo-
rithms to completely categorize the point clouds used in the SLAM for the reconstruction
of the environment. This information could be useful to enhance the understanding of the
environment to perform the manipulation tasks.

Appendix A
Open resources developed

A.1 RGBD TOOLS

This section presents RGBD_TOOLS1 as an added value contribution to this thesis.
RGBD_TOOLS is an open-source library that targets to allow faster development of
real-world autonomous aerial robot applications. The library and the API is coded in C++
has has compatibility with other open-source libraries such as OpenCV, PCL, and ROS.
One of the challenges in developing real-world applications is the need for integrating

all the different modules. Additionally, if the application is moving from a testbench
or proof of concept to a real application, there is usually a need of refactoring the code
to adapt to the new interfaces. In RGBD_TOOLS, all the classes and functions have
been designed for the simplicity of the user. Additionally, an special attention has been
paid to those functionalities that can be, theoretically, exchangeable, and these have been
implemented with such flexibility. In that manner, for example, all the camera interfaces
are exchangeable, saving time while switching between simulations or datasets and the
real application.
The library is in a continuous development process. Up to now, it is composed by five

core modules which are shown in FigureA.1 which will be described in the rest of this
section. The list of modules are:

• Camera Wrapper

• SLAM Module

• State Filtering Module

• Machine Learning Module

• Other Tools

Further information and resources (such as tutorials and examples) can be found in the
github webpage of the library.
1 https:// github.com/Bardo91/ rgbd_tools

135

https://github.com/Bardo91/rgbd_tools

136 Chapter A. Open resources developed

RGBD_TOOLS

Third Party Libraries

BUILD-IN TOOLS

PCL

Camera Wrapper

OpenCV RealSense

Freenect

Artec G2O

Eigen

Darknet

Backend USB

Backend ZED

Backend RealSense

Backend Kinect

Backend Datasets

EXAMPLES AND

TUTORIALS
EXTERNAL APPLICATIONS

State Filtering

Other Tools

Extended Kalman Filter

Unscented Kalman Filter

Particle Filter

Fast Color Segmentation

Logging Tool

2D Graph Plotter

Flexible 3D Plotter

Machine Learning Module

Darknet Wrapper CUDA

Darknet Wrapper OpenCL

BoW Model

Support Vector Machine

Topic Modeling

Polynomial Regression

Feature Based detector

SLAM Module

Odometry Estimator Module

Loop Closure Detector Module

Bundle Adjuster Wrapper Database Module

3D Utils Module

2D Utils Module Backend ROS

ROS

CUDA

Figure A.1 Architecture of RGBD_TOOLS library.

A.1.1 Camera Wrapper Module

Figure A.2 Hierarchical architecture of cam-
eras to allow flexible changeabil-
ity.

Handling with different cameras or switch-
ing between real devices, simulations or
datasets is always a source of refactoring
in real applications. In order to make the
system flexible to any change in this device
the Camera Wrapper module provides an
standardized API that allows to switch be-
tween multiple camera back-ends without
needing to change any piece of code. This
is possible thanks to the use of factories
and the generalization of the interface us-
ing standard JSON files. FigureA.2 shows
the hierarchical structure of the cameras.

The cameras has been called StereoCam-
eras since the library focuses in devices that
provides not only color images but depth
images too. Nevertheless, the system han-
dle monocular cameras too.

The module is composed by the follow-
ing backends:

A.1 RGBD TOOLS 137

• Backend USB: This backend provides for a general interface with cameras that are
compatible with Universal Video Class (UVC) drivers. This backend targets for
custom buildmonocular or stereo systems and provide basic built-in implementations
of algorithms to compute the disparity between the cameras and to construct the point
clouds for any application. This fact has a goal to allow fast tests and development
of applications which point of interest is not the set up but another results which
uses this information such as SLAM, object detection, collision avoidance, etc.

• Backend Kinect: This backend provides a fast integration of the freenect open-source
library into the framework. The third-party library provides for the color image and
depth image which directly fed the interface. Then using the internal calibration of
the camera, the backend build the point cloud for the user making it simple to use.

• Backend RealSense: This backend provides a fast integration of the librealsense
library into the framework. This backend has compatibility with both version 1.X
and 2.X. As Intel Real-Sense devices are varied, the implementation intend to cover
all the configurations. The third-party library provides for the color image, depth
image and point cloud which directly fed the interface.

• Backend ZED: This backend provides a fast integration of ZED library by StereoLab
into the framework. This backend requires for the additional dependency of CUDA
to allow the fast computation of the pointclouds, if not, just the pair of stereo images
are provided. The third-party library provides for the color image, depth image and
point cloud which directly fed the interface.

• ROS Interface: This implementation has two different backends. ROS [202] is one
of the most wide used open-source libraries for robotics applications that exists in the
world. The library is built with modules and has many resources for a large variety
of applications. Particularly, one of the most important modules is a communication
system based on topics which is used to communicate different programs in the same
or different computers. A backend which reads the data from this topic is provided
to integrate the library into this framework. Additionally, ROS library provides for
bunches of data called ros-bags. The second backend provides an interface to this
files, reading all the information from them to fed the applications.

• Backend Datasets: Common datasets on internet consists on bunches of color and
depth images arranged. This backend provides for an interface to this standard
datasets to allow the users to tests their applications without needing to run the real
experiments online. This backend is particularly useful for proving concepts, testing
new algorithms, or during the development process.

A.1.2 SLAM Module

The purpose of this section is to introduced the framework given by the library to allow fast
development of applications using it and the possibilities that it offers. A deeper analysis
of the state of art and algorithms is provided in Chapter 4.
The tools has been coded taking into account the modular and agile development

philosophy of the library. The Module is composed by six packages: Odometry estimator,
Database, Loop-Closure detection, Bundle Adjustment, 2D utils and 3D utils.

138 Chapter A. Open resources developed

The odometry estimator consists in a common interface for different odometry estimators.
The purpose is to abstract the common behavior of odometry algorithms to make them
easily exchangeable to allow a fast integration and also testing of different algorithms
without changing the overall behavior of applications. This fact is extremely useful for
researching as in many cases, the topic of research focuses in this specific topic and it is
hard to test the final improvement in a SLAM algorithms which requires more complex
implementations of the rest of the functionalities. Current implementation is based in
computing visual odometry by using RGB-D sensors such as ZED, RealSense devices or
Kinect.

The Database module, provides for an implementation of the storage requirements
needed for a Graph-based visual SLAM algorithm. This module is responsible of the
storage of the data and for the creation of the visual landmarks that are used for the
localization algorithms, Loop-Closure detectors and optimization algorithms. Future
developments in this module will pay attention to the efficient storage of the data to improve
the dynamic memory allocation making applications faster and able to run large-scale
algorithms.

The Loop-closure module is an interface to simplify the usage of algorithms that are
able to detect when the camera has visited again the same location, which means that a
loop is detected. Similar to previous implementations, this module can be freely applied if
convenient and has a flexible structure. Particularly, two different implementations are
currently provided. The first one is based in the Smith-Waterman algorithm and the second
is based in the usage of Binary-BoW model for faster implementations.

An indispensable functionality for any SLAM algorithm are the optimizations. Bundle
Adjuster module intends to provide an easy interface for one of the most common used
optimization algorithms in these applications. Nowadays, several libraries exists that gives
this functionality. However, as in many other functionalities, each of these libraries has
different interfaces and requirements. This module integrates three different implementa-
tions of Bundle Adjustment optimization algorithm, each of them has different targets, but
all provide good results for this purpose. Particularly, these backends are g2o, cvSBA and
ROS_SBA. The generalization of the interface, allow the integration of the optimization
algorithm with almost any knowledge about the algorithms, making it extremely easy to
apply and making faster the development of SLAM implementations.

Eventually, 2D and 3D utils module contains various implementation of utilities that
are used by the other modules, but that can be used separately for similar purposes. Using
them, testing new algorithms or methodologies can be easier, unifying the interfaces.

A.1.3 State Filtering Module

The goal of this module is to provide easy to use implementations of state estimators for
robotics applications. All the implementations are based in bayesian algorithms which are
widely used in this field. Particularly, three implementations are provided: The well-known
Extended Kalman Filter (EKF), an implementation the Unscented Kalman Filter and a
general interface for deploying Particle Filters.

A.1 RGBD TOOLS 139

A.1.4 Machine Learning Module

The Machine Learning module ships with various implementations of learning algorithms
fully integrated with the framework and with C++ API. The huge popularity of Deep
learning in robotics have produced the apparition of a lot of frameworks to deploy their
usage. In many of these framework, Python has been chosen as programming language
due to its simplicity and portability. However, many users have experienced troubles
while integrating them into custom applications due to the large amount of dependencies
and the variety of implementations. For this reason, the Machine Learning module has
the purpose of providing interfaces that are easy to deploy and integrate in real-world
applications. This module has also implemented some popular methods such as BoW with
SVM, probabilistic LDA and object detection neuronal networks.

A.1.5 Other Tools Module

This last module integrates several tools that are not intrinsically related with the afore-
mentioned modules. The most important implementations are:

• Fast Color Segmentation: This tool, provides for an easy to use implementation with
speed improvements of the algorithm proposed in [203]. The algorithm segmentate
the color space by using binary operations which are quite faster than common color
clustering algorithms. This implementation has been used in [204] in the MBZIRC
robot competition.

• Logging Tool: It provides for a basic logging functionality with colored interface
for simple user interfaces and log storage for external applications.

• 2D Graph Plotter: It provides for a simple 2D plotter based in OpenCV to show
graphs or values over time. This tool has been found to be useful for debugging
purposes, due to its simplicity and light dependencies.

• 3D Gui: It provides for an easy to use 3D plotter based in PCL. It is thread-safe
and can be called across the application easily without needing to keep track of its
instantiation. Fact that make it versatile.

140 Chapter A. Open resources developed

A.2 GRASPING TOOLS

This appendix presents GRASPING_TOOLS2 architecture used to supplement the con-
tributions of this thesis. GRASPING_TOOLS is an open-source library for autonomous
grasps generation in robotics. The library and the API is coded in C++ and implements
the different object modeling shown in Chapter2 and the how to grasp objects according
to those models. Figure A.3 shows the content of the library.

GRASPING_TOOLS

Third Party Libraries

PCL

Armadillo

Eigen

EXAMPLES AND

TUTORIALS

EXTERNAL APPLICATIONS

Objects

ObjectPointCloud

ObjectMesh

ObjectGPIS

Hands

Gripper 2 fingers

Gipper 4 fingers

Arm with gripper

Grasp Evaluation

Grasp Matrix

Grasp Wrench Space

Probabilistic evaluation

GPIS library

GPIS object

GPIS Sampler

GP Kernels

GP means

Visualziation

qhull

Figure A.3 Architecture of GRASPING_TOOLS library.

The library is composed by 3 core modules which purpose is to interface 3 different
aspects of the manipulation: the objects, the manipulators and the evaluation of the grasps.

• Objects module: The purpose of this model is to provide an intuitive interface to
model objects for manipulation tasks. As introduced in Chapter 2 objects typolo-
gies are: point cloud based, mesh based, and probabilistic models using GPIS.
These models are used to simulate object’s surface to generate grasps for planning
manipulation tasks.

• Manipulators module: this module defines the interface for manipulators. Manipu-
lators are entities that can generate grasps given any object of the previous module.
Three basic manipulators are defined in this module, but more can be implemented
and easily integrated with few work.

• Grasp Evaluation module: this module is encapsulate the results of combining the
objects and manipulators. The pillar of this module is the grasp. Then different
quality metrics can be computed to it to evaluate the feasibility of the grasps and be
able to plan for the best option for each manipulation task.

2 https:// github.com/Bardo91/ grasping_tools

https://github.com/Bardo91/grasping_tools

A.3 HECATONQUIROS 141

A.3 HECATONQUIROS

This appendix exposes the open-hardware and open-software resource developed during
this research focuses in the development of general purpose arms and tools for aerial
manipulators. hecatonquiros 3 library contains different models of arms and end-effectors
easy to build using additive manufacturing techniques (i.e. 3d printing). These models have
been developed for the aerial manipulation tasks described in this dissertation. FigureA.4
shows the combined hardware-software architecture of the library.

Hardware Hecatonquiros

Third Party Libraries

BUILD-IN TOOLS

Model Solvers

OpenCV

OpenRAVE PCL

Eigen

Model Solver

OpenRave

Model Solver

simple 4DoF

EXAMPLES AND

TUTORIALS
EXTERNAL APPLICATIONS

Arm 4DoF PWM

ROS

SerialCpp

HAL

Backend Arduino PWM

Backend Feetech

Backend Gazebo

Backend ROS

Arm 4DoF Serial

Grippers Docking Tool

Figure A.4 Architecture of Hecatonquiros library.

Concerning the hardware design, two different arms have been designed. The main
difference between current arms designs is the electronics. The first version was developed
using PWM servos controlled by the onboard computer through and arduino. These
servos gave fair enough results, but they have the main disadvantage of not providing
any feedback of the real position of the joints. This fact can lead to inaccuracies in the
estimated position of the end-effector. For this reason, the second design uses serial servos
which have bidirectional communication between the computer and each of the engines.
Being able to query the actual angle of the joints makes possible to know the real position
of the end-effector, even if the target position is not reachable.

3 https:// github.com/ViGUS/hecatonquiros

https://github.com/ViGUS/hecatonquiros

142 Chapter A. Open resources developed

Additionally, a set of end-effectors are were designed. Firstly, three different gripper
with different degrees of freedom to complement the ones of the arms. Secondly, the
design of the docking tool shown in Chapter 5 is included too.
Eventually, the library provides for a C++ interface for controlling the arms. These

interface is standardized, so it can be use for any of the manipulators without changing
the code. This fact simplifies the development of new applications and transitioning
from simulation to real arms. The Hardware Abstraction Layer (HAL) is the module
responsible of this task. It implements backed for both of the aforementioned arms but
also for manipulators simulated in Gazebo or any other manipulator with ROS interface.

The library includes also two ways of computing the kinematics of the manipulators. The
first option is a simple model solver for the configurations with 4DoF. This implementation
has a fast algorithm based in the specific distribution of the joints of the arms. A second
option uses OpenRAVE as backend for solving the kinematics of the arm. This second
option can be used for any of the configurations.

List of Figures

1.1 Aerial manipulators developed by the GRVC team 3
1.2 Examples of aerial platforms with manipulators 4
1.3 Thesis outline 7

2.1 Example of data stream from an active stereo camera. From left to right it can
be seen: the color image, the depth image resulting from the IR-emitter and the
IR-sensor and eventually the constructed point cloud. This picture has been
taken with an Intel RealSense SR300 13

2.2 Example of 2D feature detection, description and matching. A sequence of
images is used to compute an sparse featured cloud by the triangulation of
features matched between the images. 15

2.3 Example of 3D features in an scene with Stanford’s Bunny in a couch. Figure
a) shows the a point cloud of the bunny and a feature cloud computed using
SIFT3D, then for each feature FPFH is computed. Similarly, Figure b) shows the
same result for an environment. Figures c) and d) shows the matches between
the features that can be used later for an alignment process 16

2.4 Example of grasps using shape primitives as meshed models. Resource from [44].
First image shows a mesh model of a mug, second model shows an approx-
imation using a cylinder and a rectangle. Third picture shows some resulting
approaching points for grasping the object. 17

2.5 Different kernels and samples 19
2.6 Gaussian Process Regression 20
2.7 Gaussian Process Regression in 3D. This figure shows: on the left, the zero-

level iso-surface of the mean function of a 3D regression using an spherical
prior; on the right it is shown the mean on green and the variance of the mean
on the zero-level and the iso-level variance surface shown with the red (outside)
and blue (inside) surfaces 21

2.8 Reconstruction of a scanned apple with and without geometrical prior from ob-
servations on half of the surface 22

143

144 List of Figures

2.9 Reconstruction of a tree trunk using a cylindrical prior 23
2.10 1D example of varying sigma for prior model for GPIS. The green circles cor-

respond to real observations, the blue line the mean function and the pair of
black lines represent the variances on the value of the function. Red asterisks
are the data points from the aligned model 24

2.11 Sequence for 3d object. Firstly input cloud is received, then the model is aligned
and voxelized to reduce the number of points used for the GPIS regression.
Finally, the regression is performed obtaining the shape of the object 25

2.12 Simulation examples of surface reconstruction for different objects using. First
row shows a simulated input cloud with a partial observation. Subfigures in
second row have the result of the alignment of the model with the input cloud
(small white dots) and the supervoxelization (in red dots). In third row there are
the computed surfaces of the objects using our method. Finally, last row shows
the reconstruction of the surface using a GPIS with a constant mean level 26

2.13 Aerial platform used for the experiments. 27
2.14 Snapshots of outdoor experiments. Reconstruction of the complete surface

with colored covariance from the GPIS 27
2.15 Contact point types 29
2.16 Approximate wrench cone by a convex polyhedral cone 30
2.17 Largest minimum resisted wrench using both models of fingers’ force 32
2.18 Example results on a cluttered scene using deep learning. Rectangles corre-

spond to feasuble grasps for the robot. Resource from [70] 33
2.19 A simple way of parameterizing the grasp search space. 34
2.20 Example of non-convex object for grasping algorithm. Red lines represent the

rays used to trace the possible grasp points. 34
2.21 Grasp generation for a parallel gripper for meshed objects, from left to right:

drilling tool, mug, crawler robot and ring. Red cones represent wrenches ex-
erted on contact points of the grasps 35

2.22 Examples of grasps generation using point clouds for a parallel gripper. From
left to right, a crawler, Standfor’s Bunny, and a sphere. Red cones represent
the wrenches on the contact points. 36

2.23 Examples of grasps generated on a cylinder. The reconstructed surface is
represented by a gray mesh. Red lines belong to the convex cone of forces
generated in the grasping points. 37

2.24 Generated grasps for simulated objects using the proposed method for recon-
structing the surface. The surface is computed for showing purposes not for
computing the grasps. 37

2.25 Generated grasps for real objects using the proposed method for reconstructing
the surface. The surface is computed for showing purposes not for computing
the grasps. 38

2.26 6DoF arm part of Hecatonquiros project, developed by the Ph.D. candidate
during this research. The model will be introduced in more detail in Chapter 5 40

2.27 Examples of dual grasping using the proposed methodology for the dual ma-
nipulator represented in OpenRAVE QtCoin visualizer. 41

List of Figures 145

2.28 Joints values during experiments. At first instance the arms follow the grasps
target. Up to a certain point, the object rotates so the system switch to another
feasible grasp. 42

2.29 Complete system running. Top pictures shows the system in a test-bench and
bottom pictures shows it running in a real autonomous flying experiment 42

3.1 Input cloud and corresponding image of the scene for the detection of objects 45
3.2 Reconstruction of the objects in the scene (colored clusters) compared to ground

truth (red circles). The frame in each object represents the PCA result with the
red axis representing the dominant axis. 45

3.3 Left and right images with projection of the points belonging to candidate ob-
jects, surrounded by a convex hull. 46

3.4 Example of an extracted objec 46
3.5 ICP algorithms are sensitive to the initial estimation of cloud’s pose. Figures

show two example of object alignment with different initial locations for the same
object on a scene. Left picture shows a good initialization and right picture a
bad initialization. 48

3.6 Top figures show the a pair of RGB-D data from a RealSense D435 device.
Bottom left figure shows the final matches between a dense 3d point cloud
model of the case of the crawler and bottom right figure shows the resulting
alignment. The coordinate system of on the point cloud represent the final
position of the robot in the coordinate system of the camera 48

3.7 Errors in cartesian coordinates of object’s pose estimation using point cloud
model with ICP and EKF pose filtering 50

3.8 Pipeline of both stages of the algorithm. 50
3.9 Filtering bad features using known stereo geometry and sequential filtering. 51
3.10 Features are associated sequentially to compute the inter-frame visibility of

the features. Then, following algorithm 3, the visibility between non-sequential
frames is computed. 52

3.11 Diagram of elements in the Bundle Adjustment problem. A, B and C represent
the position of the camera from where the observations were taken. pi∀i =
1...6 are six features in the space and ai,biandci are the features observed
by each of the positions. 53

3.12 Features are associated sequentially to compute the inter-frame visibility of
the features. Then, following algorithm 3, the visibility between non-sequential
frames is computed. 54

3.13 Examples of detection and position estimation of objects outdoors. White thin
circles are candidate features in the scene. Green thick circles are the fea-
tures assigned to the object and the coordinate system is the representation of
the position of the object. It depends on the coordinate system chosen at the
modeling stage 55

3.14 Result of pose estimation algorithm varying the reprojection error. Due to the
increase of this parameter, the position is less accurate. However, as described
in table 3.1, it is slightly faster 56

3.15 Testing detection and pose estimation against partial occlusions. 57

146 List of Figures

3.16 Random samples and Zero-level of GPIS after one hundred samples for a
scene with cluttered fruits and vegetables. The algorithm is initialized with the
same number of objects than parts. The last picture shows one of the samples
with the reconstructed GPIS objects 61

3.17 System block diagram 62
3.18 Segmentation results for an increasing number of viewpoints from left to right.

The first row shows the registered point clouds for multiple views, the second
row shows the labeled groups representing the segmented apples, and the last
row displays the centroids of apples that were segmented with a sufficiently
large number of parts associated. 63

3.19 Segmentation results for different distributions of the apples over the vine. 63
3.20 Segmentation of objects using multiple priors, in this case spherical and planar priors 64
3.21 Bag of words representative model for image 66
3.22 Example of non-linear separable data and application of polynomial kernel trick

to make it linear separable in a higher dimensional space 67
3.23 Some sample categories of objects used for the BoW-SVM algorithm in [11] 67
3.24 Example of sliding window in the Picture La rendición de Breda o Las lanzas

by Velazquez 69
3.25 Generative model of Latent Diritchelet Allocation algorithm for topic modeling 70
3.26 Generative model of Latent Diritchelet Allocation algorithm for topic modeling 71
3.27 Geometrical representation of the documents of the LDA according to their clas-

sification. Figure shows the effect of varying the hyper-parameters of the model 72
3.28 Geometrical representation of the documents of the LDA according to their clas-

sification. Figure correspond to the results with the optimal parameters for four
categories of the Caltech101 dataset 72

3.29 Inference on new images of Caltech101 dataset using pLSA trained model 73
3.30 Different layers involved in modern artificial neuronal networks. From left to

right: Convolutional layer, max pooling layer, ReLU, and fully connected layer 74
3.31 Sample images from hand tools dataset 75
3.32 Structure of SSD versus YOLO networks 76
3.33 Detection results of F-RCNN in the datasets tool for difficult image. Left picture

shows the detection results and right picture shows the ground truth 77
3.34 Scheme of the visual algorithm for the object detection and pose estimation of

the target object 78
3.35 Sample images from crawler dataset 78
3.36 Scheme of the visual algorithm for the object detection and pose estimation of

the target object. 79

4.1 Graph-based SLAM model. Resource from [143] 82
4.2 Effect of loop closure and global optimization in SLAM. Resource from [154] 83
4.3 Classification of sensors for SLAM algorithms 84
4.4 Epipolar geometry. 85

List of Figures 147

4.5 On the Top a good input image is shown and the corresponding point cloud,
generated from the stereo pair. On the bottom a blurry image results in a very
poor cloud. A similarly bad cloud is also generated when images are mistimed
too much. 86

4.6 Epipolar geometry. 87
4.7 A 2D example of our Temporal Convolution Voxel Filtering for history size of 3.

Only voxels occupied in the entire history are passed through the filter. 88
4.8 Comparison of drone positioning using the EKF with only IMU data; only ICP

results; fused IMU data and ICP results. Using only IMU data, the position drifts
away quickly. Using only ICP results the position has several bad discrete jumps
and doesn’t correspond to actual motion. Using the fused data the position
corresponds to actual motion. 90

4.9 Local map at different iterations. 91
4.10 RGB-D SLAM pipeline 91
4.11 Score matrix from signature to detect loop closures. Left matrix shows the raw

scores and right matrix shows the optimized matrix using rank reduction. 97
4.12 Result of the Water-Smith algorithm for loop closure detection 97
4.13 Sample map reconstruction in the Office sequence 01 99
4.14 Sample trajectories computed by the SLAM framework versus ground truth in

Microsoft 7 scenes. Pictures in left column show the results without optimiza-
tions. Right column picture shows the results using both local and global opti-
mizations. 100

4.15 Sample map reconstruction in the freiburg1_room dataset 101
4.16 Freiburg datasets just visual odometry 102
4.17 Bridge pillars mapping 103
4.18 Top view of office dataset with semantic information from the neuronal network

trained with the crawler dataset 105
4.19 Close-up view of crawler detections 106
4.20 Top view of office dataset with semantic information from the neuronal network

trained with the hand-tools dataset 106
4.21 Close-up view of hand-tools detections 107

5.1 Model of robotic arm for the aerial robot. 111
5.2 Details of first joint. Left picture shows the general assembly of the joint. Right

picture shows a cut-view. The red arrows show the structure that holds the
weight of the arm. 112

5.3 Gripper design with worm drive actuator 112
5.4 The left figure shows the safety structure. The UAV is hanging from the top.

The right image shows a close-up picture of the bottom side of the robot after
grasping the drilling tool. 113

5.5 Figure shows the arms built in the multirotor 114
5.6 Quick release system for attaching different tools, i.e. the gripper or the docking tool. 114
5.7 CAD design of different grippers designed for the aerial manipulation 115
5.8 Cad models of the 6Dof and 4DoF manipulators for the online simulations and

planning 115

148 List of Figures

5.9 Kinematic reachability of the aerial Manipulator. 116
5.10 Dual arm aerial robot with gripper and docking tool. 117
5.11 CAD model of docking tool with base for attaching to pipes with joints edges illustrated 118
5.12 a) shows an figure with the component exploded. b) shows part of the joint

sliced to see the internal holes and the components assembled. Finally, d)
shows a close picture of the wiring system, passing through the holes that can
be seen in previous figures. 119

5.13 Online virtual visualization of the aerial platform with the docking tool during the
experiments. 119

5.14 Left picture shows the accelerometer placed in the base joint to measure the
orientation of the base while docked. The other two pictures shows the servo
that locks the base of the docking tool until it is placed. 120

5.15 Reachability of the end-position of the docking tool with heatmap colors evalu-
ating the closeness of the joints to the saturation limits 121

5.16 Scheme of the cascade control system. 122
5.17 Components of the autonomous docking system. 123
5.18 Test-bench with laser system for measuring the accuracy of the docking tool. 124
5.19 5.19a shows the X, Y, Z components of the trajectory of the end-effector during

the experiment in the test-bench measured by the docking tool and the laser
system (X: red; Y: green; Z: blue). 5.19b shows the relative error between the
measurements. The relative error has been zoomed for the clearness of the
figure. 124

5.20 Position of the UAV measured by the total station during a hovering test using
GPS as position estimator. 125

5.21 Snapshots of robot docked to a pipe during different experiments. The joints of
the docking tool, passively, adapt to the UAV position, which can vary due to
external perturbations. 125

5.22 5.22a, 5.22b and 5.22c compare the errors between current UAV position and
a reference position measured from the docking tool (solid line) and the TS
(dashed line) and the vision system (solid line with dots) in the three axis. 5.22d
shows the speed control generated for the outer loop of the cascade controller 126

5.23 Outdoor experiments of the position based servoing of the manipulator using
the position given by the docking tool 127

5.24 Position of the end-effector measured by the docking tool and the kinematic
model of the system, and measured by the ground truth 128

5.25 Target joints angles and current joints angles during the experiment 128

A.1 Architecture of RGBD_TOOLS library 136
A.2 Hierarchical architecture of cameras to allow flexible changeability 136
A.3 Architecture of GRASPING_TOOLS library 140
A.4 Architecture of Hecatonquiros library 141

List of Tables

3.1 PnP problem times 56
3.2 Results of the object extraction method 68
3.3 Detection scores for the hand tools dataset for the tested networks. 77
3.4 Computational time in seconds of the different algorithms in the tested devices. 79

4.1 Average error in microsoft 7-scenes dataset 99
4.2 Average error in freiburg datasets just with VO, and with VO and optimizations. 101

5.1 Specifications of the low-cost Docking tool 120
5.2 PID parameters 122
5.3 Errors and standard deviations during the test experiments. 127

149

Bibliography

[1] N. Pouliot, P. Richard, and S. Montambault. Linescout technology opens the way
to robotic inspection and maintenance of high-voltage power lines. IEEE Power
and Energy Technology Systems Journal, 2(1):1–11, March 2015.

[2] Leena Matikainen, Matti Lehtomäki, Eero Ahokas, Juha Hyyppä, Mika Karjalainen,
Anttoni Jaakkola, Antero Kukko, and Tero Heinonen. Remote sensing methods
for power line corridor surveys. ISPRS Journal of Photogrammetry and Remote
Sensing, 119:10 – 31, 2016.

[3] L. Wang and Z. Zhang. Automatic detection of wind turbine blade surface
cracks based on uav-taken images. IEEE Transactions on Industrial Electronics,
64(9):7293–7303, Sept 2017.

[4] Randa Almadhoun, Tarek Taha, Lakmal Seneviratne, Jorge Dias, and Guowei Cai.
A survey on inspecting structures using robotic systems. International Journal of
Advanced Robotic Systems, 13(6):1729881416663664, 2016.

[5] JF Reinoso, JE Gonçalves, C Pereira, and T Bleninger. Cartography for civil
engineering projects: Photogrammetry supported by unmanned aerial vehicles.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
42(1):91–96, 2018.

[6] F. Ruggiero, V. Lippiello, and A. Ollero. Aerial manipulation: A literature review.
IEEE Robotics and Automation Letters, 3(3):1957–1964, July 2018.

[7] A. Ollero Baturone, G. Heredia, A. Franchi, G. Antonelli, K. Kondak, A. Sanfeliu
Cortes, A. Viguria, J. R. Martinez de Dios, F. Pierri, J. Cortes, A. Santamaria-
Navarro, M. A. Trujillo Soto, R. Balachandran, J. Andrade-Cetto, and A. Rodriguez
Castano. The aeroarms project: Aerial robots with advanced manipulation capabili-
ties for inspection and maintenance. IEEE Robotics Automation Magazine, pages
1–1, 2018.

151

152 Bibliography

[8] Pablo Ramon Soria, Begoña Arrue, and Anibal Ollero. Detection, location and
grasping objects using a stereo sensor on uav in outdoor environments. Sensors,
17(12):103, Jan 2017.

[9] W. Martens, Y. Poffet, P. R. Soria, R. Fitch, and S. Sukkarieh. Geometric priors
for gaussian process implicit surfaces. IEEE Robotics and Automation Letters,
2(2):373–380, April 2017.

[10] Pablo Ramón Soria and Begoña C. Arrue. "Aerial robotics manipulation" – Chapter
4.7 "Object Detection and Probabilistic Object Representation for Grasping with
Two Arms". Springer Tracts on Advanced Robotics, 2018.

[11] Pablo Ramon Soria, Robert Bevec, Begoña C. Arrue, Ales Ude, and Aníbal Ollero.
Extracting objects for aerial manipulation on uavs using low cost stereo sensors. In
Sensors, 2016.

[12] Pablo Ramon Soria, Fouad Sukkar, WolframMartens, B. C. Arrue, and Robert Fitch.
Multi-view probabilistic segmentation of pome fruit with a low-cost rgb-d camera.
In Anibal Ollero, Alberto Sanfeliu, Luis Montano, Nuno Lau, and Carlos Cardeira,
editors, ROBOT 2017: Third Iberian Robotics Conference, pages 320–331, Cham,
2018. Springer International Publishing.

[13] Pablo Ramon Soria, B.C. Arrue, and Anibal Ollero. Grasp planning and visual
servoing for aerial dual manipulator outdoors - (under submission). Elsevier -
Engineering, 2019.

[14] A. Suarez, P. R. Soria, G. Heredia, B. C. Arrue, and A. Ollero. Anthropomor-
phic, compliant and lightweight dual arm system for aerial manipulation. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
992–997, Sept 2017.

[15] P. Ramon Soria, B.C. Arrue, and A. Ollero. A 3d-printable docking system for
aerial robots: Controlling aerial manipulators in outdoor industrial applications.
IEEE Robotics Automation Magazine, pages 1–1, 2019.

[16] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In
Proc. of IEEE ICRA, pages 1–4, 2011.

[17] Michele Fenzi, Ralf Dragon, Laura Leal-Taixé, Bodo Rosenhahn, and Jörn Os-
termann. 3d object recognition and pose estimation for multiple objects using
multi-prioritized ransac and model updating. In Axel Pinz, Thomas Pock, Horst
Bischof, and Franz Leberl, editors, Pattern Recognition, pages 123–133, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[18] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In Proceed-
ings Third International Conference on 3-D Digital Imaging and Modeling, pages
145–152, 2001.

Bibliography 153

[19] Hao Men, Biruk Gebre, and Kishore Pochiraju. Color point cloud registration with
4d icp algorithm. In Proceedings - IEEE International Conference on Robotics and
Automation, pages 1511 – 1516, 06 2011.

[20] Naresh Marturi, Marek Kopicki, Alireza Rastegarpanah, Vijaykumar Rajasekaran,
Maxime Adjigble, Rustam Stolkin, Ales Leonardis, and Yasemin Bekiroglu. Dy-
namic grasp and trajectory planning for moving objects. 08 2018.

[21] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[22] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust
Features, pages 404–417. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[23] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, pages 2564–2571, Washington, DC, USA, 2011. IEEE
Computer Society.

[24] E. Tola, V.Lepetit, and P. Fua. A Fast Local Descriptor for Dense Matching. In
Proceedings of Computer Vision and Pattern Recognition, Alaska, USA, 2008.

[25] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. BRIEF:
Binary Robust Independent Elementary Features, pages 778–792. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[26] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning
approach to corner detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(1):105–119, Jan 2010.

[27] J. Shi and C. Tomasi. Good features to track. In Conference on Computer Vision
and Pattern Recognition, pages 593–600, 1994.

[28] Faraj Alhwarin, Danijela Ristić-Durrant, and Axel Gräser. VF-SIFT: Very Fast SIFT
Feature Matching, pages 222–231. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[29] Michael Grabner, Helmut Grabner, and Horst Bischof. Fast Approximated SIFT,
pages 918–927. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[30] MariusMuja andDavidG. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In International Conference on Computer Vision Theory
and Application VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[31] R. Hänsch, T. Weber, and O. Hellwich. Comparison of 3D interest point detectors
and descriptors for point cloud fusion. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, pages 57–64, August 2014.

154 Bibliography

[32] S. Filipe and L. A. Alexandre. A comparative evaluation of 3d keypoint detectors
in a rgb-d object dataset. In 2014 International Conference on Computer Vision
Theory and Applications (VISAPP), volume 1, pages 476–483, Jan 2014.

[33] V. K. Ghorpade, P. Checchin, L. Malaterre, and L. Trassoudaine. Performance
evaluation of 3d keypoint detectors for time-of-flight depth data. In 2016 14th
International Conference on Control, Automation, Robotics and Vision (ICARCV),
pages 1–6, Nov 2016.

[34] Jingdao Chen, Yihai Fang, and Yong K. Cho. Performance evaluation of 3d descrip-
tors for object recognition in construction applications. Automation in Construction,
86:44 – 52, 2018.

[35] Ivan Sipiran and Benjamin Bustos. Harris 3d: a robust extension of the harris
operator for interest point detection on 3dmeshes. The Visual Computer, 27(11):963,
Jul 2011.

[36] A. Flint, A. Dick, and A. v. d. Hengel. Thrift: Local 3d structure recognition. In 9th
Biennial Conference of the Australian Pattern Recognition Society on Digital Image
Computing Techniques and Applications (DICTA 2007), pages 182–188, Dec 2007.

[37] Bastian Steder, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Burgard. Narf: 3d
range image features for object recognition. In Workshop on Defining and Solving
Realistic Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Taipei, Taiwan, October 8, 2010 2010.

[38] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and Jitendra Malik.
Recognizing objects in range data using regional point descriptors. In Tomáš Pajdla
and Jiří Matas, editors, Computer Vision - ECCV 2004, pages 224–237, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[39] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (fpfh) for 3d
registration. In 2009 IEEE International Conference on Robotics and Automation,
pages 3212–3217, May 2009.

[40] Samuele Salti, Federico Tombari, and Luigi Di Stefano. Shot: Unique signatures
of histograms for surface and texture description. Computer Vision and Image
Understanding, 125:251 – 264, 2014.

[41] F. Tombari, S. Salti, and L. Di Stefano. A combined texture-shape descriptor for
enhanced 3d feature matching. In 2011 18th IEEE International Conference on
Image Processing, pages 809–812, Sept 2011.

[42] Iryna Gordon and David G. Lowe. What and Where: 3D Object Recognition with
Accurate Pose, pages 67–82. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[43] C. Tsai and S. Tsai. Simultaneous 3d object recognition and pose estimation based
on rgb-d images. IEEE Access, 6:28859–28869, 2018.

Bibliography 155

[44] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Automatic grasp planning
using shape primitives. In 2003 IEEE International Conference on Robotics and
Automation (Cat. No.03CH37422), volume 2, pages 1824–1829 vol.2, Sept 2003.

[45] Matthias Nieuwenhuisen, Jörg Stückler, Alexander Berner, Reinhard Klein, and
Sven Behnke. Shape-primitive based object recognition and grasping. In ROBOTIK,
2012.

[46] Efrain Lopez-Damian, Daniel Sidobre, and Rachid Alami. Grasp planning for
non-convex objects. In International symposium on robotics, volume 36, page 167.
unknown, 2005.

[47] Oliver Williams and Andrew Fitzgibbon. Gaussian process implicit surfaces. In
Gaussian Processes In Practice, June 2006.

[48] M. P. Gerardo-Castro, T. Peynot, F. Ramos, and R. Fitch. Robust multiple-sensing-
modality data fusion using gaussian process implicit surfaces. In Proc. of FUSION,
pages 1–8, 2014.

[49] S. Dragiev, M. Toussaint, and M. Gienger. Gaussian process implicit surfaces for
shape estimation and grasping. In Proc. of IEEE/RSJ ICRA, pages 2845–2850, May
2011.

[50] M. Björkman, Y. Bekiroglu, V. Högman, and D. Kragic. Enhancing visual percep-
tion of shape through tactile glances. In Proc. of IEEE/RSJ IROS, pages 3180–3186,
Nov 2013.

[51] Soohwan Kim and Jonghyuk Kim. GPmap: A Unified Framework for Robotic
Mapping Based on Sparse Gaussian Processes, pages 319–332. Results of the
9th International Conference, Field and Service Robotics. Springer International
Publishing, 2015.

[52] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for
regression. In Advances in neural information processing systems, pages 514–520,
1996.

[53] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

[54] R. Adler. The Geometry of Random Fields. Society for Industrial and Applied
Mathematics, 2010.

[55] Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer
Science & Business Media, 2012.

[56] The princeton shape benchmark. In Proc. of the Shape Modeling International
2004, SMI ’04, pages 167–178, Washington, DC, USA, 2004. IEEE Computer
Society.

156 Bibliography

[57] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang Pree. BlenSor:
Blender Sensor Simulation Toolbox Advances in Visual Computing. volume 6939
of Lecture Notes in Computer Science, chapter 20, pages 199–208. Springer Berlin
/ Heidelberg, Berlin, Heidelberg, 2011.

[58] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin Wörgötter. Voxel
cloud connectivity segmentation - supervoxels for point clouds. In Proc. of the 2013
IEEE CVPR, CVPR ’13, pages 2027–2034, Washington, DC, USA, 2013. IEEE
Computer Society.

[59] Máximo A. Roa and Raúl Suárez. Grasp quality measures: review and performance.
Autonomous Robots, 38(1):65–88, Jan 2015.

[60] V. D. Nguyen. Constructing force-closure grasps in 3d. In Proceedings. 1987 IEEE
International Conference on Robotics and Automation, volume 4, pages 240–245,
Mar 1987.

[61] Beatriz León, Antonio Morales, and Joaquin Sancho-Bru. Robot Grasping Founda-
tions, pages 15–31. Springer International Publishing, Cham, 2014.

[62] B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis of multi-
finger positive grips. Algorithmica, 2(1):541–558, Nov 1987.

[63] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings 1992 IEEE
International Conference on Robotics and Automation, pages 2290–2295 vol.3,
May 1992.

[64] Zexiang Li and S. Sastry. Task oriented optimal grasping by multifingered robot
hands. In Proceedings. 1987 IEEE International Conference on Robotics and
Automation, volume 4, pages 389–394, Mar 1987.

[65] Nancy Pollard. Parallel methods for synthesizing whole-hand grasps from general-
ized prototypes. In Technical Report AI-TR 1464, 01 1994.

[66] C. Borst, M. Fischer, and G. Hirzinger. Grasp planning: how to choose a suitable
task wrench space. In Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004 IEEE International Conference on, volume 1, pages 319–325 Vol.1, April
2004.

[67] V. N. Christopoulos and P. Schrater. Handling shape and contact location uncertainty
in grasping two-dimensional planar objects. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1557–1563, Oct 2007.

[68] J. Weisz and P. K. Allen. Pose error robust grasping from contact wrench space
metrics. In 2012 IEEE International Conference on Robotics and Automation,
pages 557–562, May 2012.

[69] Shehan Caldera, Alexander Rassau, and Douglas Chai. Review of deep learning
methods in robotic grasp detection. Multimodal Technologies Interact, 2018.

Bibliography 157

[70] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic
grasps. CoRR, abs/1301.3592, 2013.

[71] Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, Robotics Institute, August 2010.

[72] Andrew S Glassner. An introduction to ray tracing. Elsevier, 1989.

[73] Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle intersection.
J. Graph. Tools, 2(1):21–28, October 1997.

[74] Hanan Samet. Implementing ray tracing with octrees and neighbor finding. Com-
puters And Graphics, 13:445–460, 1989.

[75] B. Kehoe, D. Berenson, and K. Goldberg. Toward cloud-based grasping with
uncertainty in shape: Estimating lower bounds on achieving force closure with
zero-slip push grasps. In 2012 IEEE International Conference on Robotics and
Automation, pages 576–583, May 2012.

[76] Jeffrey Mahler, Santosh Patil, Ben Kehoe, Joran van den Berg, Matei Ciocarlie,
Pieter Abbeel, and Kenneth Goldberg. Gp-gpis-opt: Grasp planning with shape
uncertainty using gaussian process implicit surfaces and sequential convex pro-
gramming. 2015:4919–4926, 06 2015.

[77] Rosen Diankov and James Kuffner. Openrave: A planning architecture for au-
tonomous robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-
34, 79, 2008.

[78] Antonio Barrientos. Fundamentos de robótica. Technical report, McGraw Hill,
2007.

[79] A. Goldenberg, B. Benhabib, and R. Fenton. A complete generalized solution
to the inverse kinematics of robots. IEEE Journal on Robotics and Automation,
1(1):14–20, March 1985.

[80] Nicolas Courty and Elise Arnaud. Inverse kinematics using sequential monte carlo
methods. In Francisco J. Perales and Robert B. Fisher, editors, Articulated Motion
and Deformable Objects, pages 1–10, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[81] Wampler II and Larry Leifer. Applications of damped least-squares methods to
resolved-rate and resolved-acceleration control of manipulators. 110, 03 1988.

[82] Samuel Buss. Introduction to inverse kinematics with jacobian transpose, pseudoin-
verse and damped least squares methods. 17, 05 2004.

[83] Mukulika Ghosh, Nancy M. Amato, Yanyan Lu, and Jyh-Ming Lien. Fast ap-
proximate convex decomposition using relative concavity. Comput. Aided Des.,
45(2):494–504, February 2013.

158 Bibliography

[84] K.Mamou and F. Ghorbel. A simple and efficient approach for 3d mesh approximate
convex decomposition. In 2009 16th IEEE International Conference on Image
Processing (ICIP), pages 3501–3504, Nov 2009.

[85] Guillermo Heredia, AE Jimenez-Cano, I Sanchez, Domingo Llorente, V Vega,
J Braga, JA Acosta, and Aníbal Ollero. Control of a multirotor outdoor aerial
manipulator. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 3417–3422. IEEE, 2014.

[86] Joseph DeGol, Timothy Bretl, and Derek Hoiem. Chromatag: A colored marker
and fast detection algorithm. arXiv preprint arXiv:1708.02982, 2017.

[87] Shashank Bhatia and Stephan K Chalup. Segmenting salient objects in 3d point
clouds of indoor scenes using geodesic distances. Journal of Signal and Information
Processing, 4(03):102, 2013.

[88] Radu Bogdan Rusu. Semantic 3D Object Maps for Everyday Robot Manipulation.
Springer Publishing Company, Incorporated, 2013.

[89] Chunhu Li, Bo YANG, and Chun-hu LI. Deep learning based visual tracking: A
review. DEStech Transactions on Computer Science and Engineering, 07 2017.

[90] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection
with deep learning: A review. arXiv preprint arXiv:1807.05511, 2018.

[91] Anton Milan, Seyed Hamid Rezatofighi, Anthony R Dick, Ian D Reid, and Konrad
Schindler. Online multi-target tracking using recurrent neural networks. In AAAI,
volume 2, page 4, 2017.

[92] Thanh-Toan Do, Ming Cai, Trung Pham, and Ian D. Reid. Deep-6dpose: Recovering
6d object pose from a single RGB image. CoRR, abs/1802.10367, 2018.

[93] David MacKay. An example inference task: clustering. Information theory, infer-
ence and learning algorithms, 20:284–292, 2003.

[94] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007.
Society for Industrial and Applied Mathematics.

[95] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with efficient
estimation of the number of clusters. In Proceedings of the Seventeenth International
Conference on Machine Learning, ICML ’00, pages 727–734, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc.

[96] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Graphics and Image Processing, 24(6):381–395, 1981.

Bibliography 159

[97] G. K. L. Tam, Z. Cheng, Y. Lai, F. C. Langbein, Y. Liu, D. Marshall, R. R. Martin,
X. Sun, and P. L. Rosin. Registration of 3d point clouds and meshes: A survey from
rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics,
19(7):1199–1217, July 2013.

[98] Haili Chui and Anand Rangarajan. A new point matching algorithm for non-rigid
registration. Computer Vision and Image Understanding, 89(2-3):114–141, 2003.

[99] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In Robotics:
science and systems, volume 2, page 435, 2009.

[100] Alvaro Collet Romea, Dmitry Berenson, Siddhartha Srinivasa, and David Ferguson
. Object recognition and full pose registration from a single image for robotic
manipulation. In IEEE International Conference on Robotics and Automation
(ICRA ’09), May 2009.

[101] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon.
Bundle adjustment - a modern synthesis. In Proceedings of the International
Workshop on Vision Algorithms: Theory and Practice, ICCV ’99, pages 298–372,
London, UK, UK, 2000. Springer-Verlag.

[102] DonaldW.Marquardt. An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441,
1963.

[103] Alvaro Collet, Dmitry Berenson, Siddhartha S. Srinivasa, and Dave Ferguson.
Object recognition and full pose registration from a single image for robotic manip-
ulation. In Proceedings of the 2009 IEEE International Conference on Robotics
and Automation, ICRA’09, pages 3534–3541, Piscataway, NJ, USA, 2009. IEEE
Press.

[104] H. van Hoof, O. Kroemer, and J. Peters. Probabilistic segmentation and targeted
exploration of objects in cluttered environments. IEEE Trans. Robot., 30(5):1198–
1209, 2014.

[105] Joni Pajarinen and Ville Kyrki. Decision making under uncertain segmentations.
In Proc. of IEEE ICRA, pages 1303–1309, 2015.

[106] C. Cadena and J. Kosecká. Semantic parsing for priming object detection in indoors
RGB-D scenes. Int. J. Robot. Res., 34(4-5):582–597, 2015.

[107] W. Martens, Y. Poffet, P. R. Soria, R. Fitch, and S. Sukkarieh. Geometric priors
for Gaussian process implicit surfaces. IEEE Robotics and Automation Letters,
2(2):373–380, April 2017.

[108] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[109] Gareth O Roberts and Adrian FM Smith. Simple conditions for the convergence of
the gibbs sampler and metropolis-hastings algorithms. Stochastic processes and
their applications, 49(2):207–216, 1994.

160 Bibliography

[110] Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algorithm for multi-
label classification. In Granular Computing, 2005 IEEE International Conference
on, volume 2, pages 718–721. IEEE, 2005.

[111] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[112] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric
Bray. Visual categorization with bags of keypoints. In ECCVWorkshop on statistical
learning in computer vision, pages 1–22, 2004.

[113] Vladimir Naumovich Vapnik. An overview of statistical learning theory. IEEE
transactions on neural networks, 10(5):988–999, 1999.

[114] Vladimir Vapnik. The nature of statistical learning theory. Springer-Verlag, 1995.

[115] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems
14, pages 841–848. MIT Press, 2002.

[116] Kuan-Yu Menphis Chen and Yufei Wang. Latent dirichlet allocation, 2007.

[117] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[118] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and
Alexander J Smola. Scalable inference in latent variable models. In Proceedings
of the fifth ACM international conference on Web search and data mining, pages
123–132. ACM, 2012.

[119] Colorado Reed. Latent dirichlet allocation: Towards a deeper understanding, 2012.

[120] Tom Griffiths. Gibbs sampling in the generative model of latent dirichlet allocation.
2002.

[121] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth,
and Max Welling. Fast collapsed gibbs sampling for latent dirichlet allocation. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 569–577. ACM, 2008.

[122] Radford M Neal. Markov chain sampling methods for dirichlet process mixture
models. Journal of computational and graphical statistics, 9(2):249–265, 2000.

[123] Sonia Jain and Radford M Neal. A split-merge markov chain monte carlo procedure
for the dirichlet process mixture model. Journal of computational and Graphical
Statistics, 13(1):158–182, 2004.

[124] Thomas Hofmann. Unsupervised learning by probabilistic latent semantic analysis.
Machine Learning, 42(1):177–196, Jan 2001.

Bibliography 161

[125] J. Xu, G. Ye, Y. Wang, G. Herman, B. Zhang, and J. Yang. Incremental em for
probabilistic latent semantic analysis on human action recognition. In 2009 Sixth
IEEE International Conference on Advanced Video and Signal Based Surveillance,
pages 55–60, Sept 2009.

[126] Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI’99, pages 289–
296, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[127] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories. Computer vision and Image understanding, 106(1):59–70, 2007.

[128] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec 1943.

[129] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[130] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[131] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[132] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv,
2018.

[133] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
Computer Vision (ICCV), 2017 IEEE International Conference on, pages 2980–
2988. IEEE, 2017.

[134] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[135] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[136] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

162 Bibliography

Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[137] Aniket Murarka and Benjamin Kuipers. Using cad drawings for robot navigation. In
Systems, Man, and Cybernetics, 2001 IEEE International Conference on, volume 2,
pages 678–683. IEEE, 2001.

[138] Frederic Bosche, Carl T Haas, and Carlos H Caldas. 3d cad drawing as apriori
knowledge for machine vision in construction. In Proceedings of the 1st Annual
Inter-University Symposium on Infrastructure Management, Waterloo, Ontario,
Canada, August, volume 6. Citeseer, 2005.

[139] Yang Song, Mingyang Guan, Wee Peng Tay, Choi Look Law, and Changyun Wen.
Uwb/lidar fusion for cooperative range-only slam. arXiv preprint arXiv:1811.02854,
2018.

[140] Ben Bellekens, Vincent Spruyt, Rafael Berkvens, and Maarten Weyn. A survey of
rigid 3d pointcloud registration algorithms. In AMBIENT 2014: the Fourth Interna-
tional Conference on Ambient Computing, Applications, Services and Technologies,
August 24-28, 2014, Rome, Italy, pages 8–13, 2014.

[141] François Pomerleau, Francis Colas, Roland Siegwart, et al. A review of point cloud
registration algorithms for mobile robotics. Foundations and Trends® in Robotics,
4(1):1–104, 2015.

[142] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with appli-
cations to large-scale mapping of urban structures. The International Journal of
Robotics Research, 25(5-6):403–429, 2006.

[143] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Burgard. A
tutorial on graph-based slam. IEEE Intelligent Transportation Systems Magazine,
2(4):31–43, 2010.

[144] L Cordesses, P Martinet, B Thuilot, and M Berducat. Gps-based control of a land
vehicle. In Proceedings of the IAARC/IFAC/IEEE International Symposium on
Automation and Robotics in Construction, ISARC, volume 99, pages 22–24, 1999.

[145] David Obdržálek. Robot localization. 2012.

[146] Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers, and Wolfram Burgard.
3-d mapping with an rgb-d camera. IEEE Transactions on Robotics, 30(1):177–187,
2014.

[147] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In European Conference on Computer Vision, pages 834–849.
Springer, 2014.

[148] Montiel-J. M. M. Mur-Artal, Raúl and Juan D. Tardós. ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–
1163, 2015.

Bibliography 163

[149] Viorela Ila, Lukas Polok, Marek Solony, and Pavel Svoboda. Slam++-a highly
efficient and temporally scalable incremental slam framework. The International
Journal of Robotics Research, 36(2):210–230, 2017.

[150] Cyril Roussillon, Aurélien Gonzalez, Joan Solà, Jean-Marie Codol, Nicolas
Mansard, Simon Lacroix, and Michel Devy. RT-SLAM: A generic and real-time
visual SLAM implementation. CoRR, abs/1201.5450, 2012.

[151] Dieter Fox, Jeffrey Hightower, Lin Liao, Dirk Schulz, and Gaetano Borriello.
Bayesian filtering for location estimation. IEEE pervasive computing, (3):24–33,
2003.

[152] S. Y. Chen. Kalman filter for robot vision: A survey. IEEE Transactions on
Industrial Electronics, 59(11):4409–4420, Nov 2012.

[153] Sebastian Thrun. Particle filters in robotics. In Proceedings of the Eighteenth con-
ference on Uncertainty in artificial intelligence, pages 511–518. Morgan Kaufmann
Publishers Inc., 2002.

[154] Brian Patrick Williams, Mark Joseph Cummins, José Neira, Paul Newman, Ian D.
Reid, and Juan D. Tardós. An image-to-map loop closing method for monocular
slam. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2053–2059, 2008.

[155] Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J Leonard, David Cox,
Peter Corke, and Michael J Milford. Visual place recognition: A survey. IEEE
Transactions on Robotics, 32(1):1–19, 2016.

[156] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for fast place
recognition in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197,
2012.

[157] E. Garcia-Fidalgo and A. Ortiz. On the use of binary feature descriptors for loop
closure detection. In Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA), pages 1–8, Sept 2014.

[158] Yi Hou, Hong Zhang, and Shilin Zhou. Convolutional neural network-based image
representation for visual loop closure detection. CoRR, abs/1504.05241, 2015.

[159] Xiang Gao and Tao Zhang. Unsupervised learning to detect loops using deep neural
networks for visual slam system. Autonomous robots, 41(1):1–18, 2017.

[160] Xiwu Zhang, Yan Su, and Xinhua Zhu. Loop closure detection for visual slam
systems using convolutional neural network. In Automation and Computing (ICAC),
2017 23rd International Conference on, pages 1–6. IEEE, 2017.

[161] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. g 2 o: A general framework for graph optimization. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 3607–3613.
IEEE, 2011.

164 Bibliography

[162] L. M. Paz, P. PiniÉs, J. D. TardÓs, and J. Neira. Large-scale 6-dof slam with
stereo-in-hand. IEEE Transactions on Robotics, 24(5):946–957, Oct 2008.

[163] M. Tomono. Robust 3d slam with a stereo camera based on an edge-point icp
algorithm. In 2009 IEEE International Conference on Robotics and Automation,
pages 4306–4311, May 2009.

[164] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. Deepstereo: Learn-
ing to predict new views from the world’s imagery. CoRR, abs/1506.06825, 2015.

[165] Xiao Song, Xu Zhao, Hanwen Hu, and Liangji Fang. Edgestereo: A context
integrated residual pyramid network for stereo matching. Asian Conference on
Computer Vision (ACCV), 2018.

[166] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya
Bhowmik. Intel realsense stereoscopic depth cameras. CoRR, abs/1705.05548,
2017.

[167] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi. A no-reference perceptual
blur metric. In The International Conference on Image Processing, volume 3, pages
III–57–III–60, 2002.

[168] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael
Beetz. Towards 3d point cloud based object maps for household environments.
Robotics and Autonomous Systems, 56(11):927–941, 2008.

[169] Y. Roth-Tabak and R. Jain. Building an environment model using depth information.
Computer, 22(6):85–90, June 1989.

[170] Héctor García de Marina, Felipe Espinosa, and Carlos Santos. Adaptive uav attitude
estimation employing unscented kalman filter, foam and low-cost mems sensors.
Sensors (Basel, Switzerland), 12(7):9566–85, 2012.

[171] J. Lobo, J. Dias, P Corke, P Gemeiner, P Einramhof, and M Vincze. Relative
pose calibration between visual and inertial sensors. The International Journal of
Robotics Research, 26(6):561–575, 2007.

[172] M Nießner, a Dai, and M Fisher. Combining inertial navigation and icp for real-time
3d surface reconstruction. Eurographics, pages 1–4, 2014.

[173] C. Di Franco, G. Franchino, and M. Marinoni. A biased extended kalman filter for
indoor localization of a mobile agent using low-cost imu and usb wireless sensor
network.

[174] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source SLAM system
for monocular, stereo and RGB-D cameras. volume 33, pages 1255–1262, 2017.

[175] Kin Leong Ho and Paul Newman. Detecting loop closure with scene sequences.
International Journal of Computer Vision, 74(3):261–286, Sep 2007.

Bibliography 165

[176] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195 – 197, 1981.

[177] B. Glocker, S. Izadi, J. Shotton, and A. Criminisi. Real-time rgb-d camera relocal-
ization. In 2013 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pages 173–179, Oct 2013.

[178] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. Kinectfusion: Real-time 3d reconstruction and interaction
using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, UIST ’11, pages 559–568, New York,
NY, USA, 2011. ACM.

[179] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for
the evaluation of rgb-d slam systems. In Proc. of the International Conference on
Intelligent Robot Systems (IROS), Oct. 2012.

[180] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-
Martinez, and Jose Garcia-Rodriguez. A review on deep learning techniques
applied to semantic segmentation. arXiv preprint arXiv:1704.06857, 2017.

[181] L. Ran, Y. Zhang, and G. Hua. Cannet: Context aware nonlocal convolutional
networks for semantic image segmentation. In 2015 IEEE International Conference
on Image Processing (ICIP), pages 4669–4673, Sept 2015.

[182] Paul Oh Stjepan Bogdan Matko Orsag, Christopher Korpela. Aerial Manipulation.
Springer, 2018.

[183] Hossein Bonyan Khamseh, Farrokh Janabi-Sharifi, and Abdelkader Abdessameud.
Aerial manipulation—a literature survey. Robotics and Autonomous Systems,
107:221 – 235, 2018.

[184] P. E. I. Pounds, D. R. Bersak, and A. M. Dollar. Grasping from the air: Hovering
capture and load stability. In 2011 IEEE International Conference on Robotics and
Automation, pages 2491–2498, May 2011.

[185] S. B. Backus, L. U. Odhner, and A. M. Dollar. Design of hands for aerial manipula-
tion: Actuator number and routing for grasping and perching. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 34–40, Sept
2014.

[186] J. Qi, J. Kang, and X. Lu. Design and research of uav autonomous grasping
system. In 2017 IEEE International Conference on Unmanned Systems (ICUS),
pages 126–131, Oct 2017.

[187] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar. Design, modeling, estimation
and control for aerial grasping and manipulation. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2668–2673, Sept 2011.

166 Bibliography

[188] V. Ghadiok, J. Goldin, and W. Ren. Autonomous indoor aerial gripping using a
quadrotor. In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4645–4651, Sept 2011.

[189] Usman A. Fiaz, Mohamed Abdelkader, and Jeff Shamma. An intelligent gripper
design for autonomous aerial transport with passive magnetic grasping and dual-
impulsive release. 07 2018.

[190] C. Papachristos, K. Alexis, and A. Tzes. Efficient force exertion for aerial robotic
manipulation: Exploiting the thrust-vectoring authority of a tri-tiltrotor uav. In
2014 IEEE International Conference on Robotics and Automation (ICRA), pages
4500–4505, May 2014.

[191] T. Ikeda, S. Yasui, M. Fujihara, K. Ohara, S. Ashizawa, A. Ichikawa, A. Okino,
T. Oomichi, and T. Fukuda. Wall contact by octo-rotor uav with one dof manipulator
for bridge inspection. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5122–5127, Sept 2017.

[192] Todd W Danko, Kenneth P Chaney, and Paul Y Oh. A parallel manipulator for mo-
bile manipulating uavs. In Technologies for Practical Robot Applications (TePRA),
2015 IEEE International Conference on, pages 1–6. IEEE, 2015.

[193] Jonathan Hodgins. H-Delta: design and applications of a novel 5 degree of freedom
parallel robot. PhD thesis, 2018.

[194] K. Kondak, F. Huber, M. Schwarzbach, M. Laiacker, D. Sommer, M. Bejar, and
A. Ollero. Aerial manipulation robot composed of an autonomous helicopter and a 7
degrees of freedom industrial manipulator. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 2107–2112, May 2014.

[195] M. Laiacker, F. Huber, and K. Kondak. High accuracy visual servoing for aerial
manipulation using a 7 degrees of freedom industrial manipulator. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1631–
1636, Oct 2016.

[196] Christopher Korpela, Matko Orsag, and Paul Oh. Towards valve turning using a
dual-arm aerial manipulator. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 3411–3416. IEEE, 2014.

[197] A. Suarez, G. Heredia, and A. Ollero. Design of an anthropomorphic, compliant,
and lightweight dual arm for aerial manipulation. IEEE Access, 6:29173–29189,
2018.

[198] Prodrone. https://www.prodrone.jp, 2016.

[199] Small mini pc. http://www.intel.es/ content/www/ es/ es/ nuc/ overview.html, 2016.

[200] Arduino. https://www.arduino.cc, 2016.

https://www.prodrone.jp
http://www.intel.es/content/www/es/es/nuc/overview.html
https://www.arduino.cc

Bibliography 167

[201] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelli-
gent Robotics and Autonomous Agents). The MIT Press, 2005.

[202] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[203] James Bruce, Tucker Balch, and Manuela Veloso. Fast and inexpensive color image
segmentation for interactive robots. In Intelligent Robots and Systems, 2000.(IROS
2000). Proceedings. 2000 IEEE/RSJ International Conference on, volume 3, pages
2061–2066. IEEE, 2000.

[204] Ángel R. Castaño, Fran Real, Pablo Ramón-Soria, Jesús Capitán, Víctor Vega,
Begoña C. Arrue, Arturo Torres-González, and Aníbal Ollero. Al-robotics team: A
cooperative multi-unmanned aerial vehicle approach for the mohamed bin zayed
international robotic challenge. Journal of Field Robotics, 0(0).

Index 169

	Abstract
	Notation
	Acronyms
	Introduction
	Motivation and Objectives
	Thesis Framework
	Thesis Outline
	Contributions

	Object manipulation analysis for aerial robots
	Introduction
	Object modeling
	Point cloud-based object modeling
	Sparse featured point clouds
	Mesh based object modeling
	Probabilistic object modeling
	Gaussian Processes for object modeling
	Combining point clouds with GPIS for pose uncertainty

	Object manipulation - Grasp generation and evaluation
	Grasp Quality metrics
	Quality metrics derived from the Grasp Matrix
	Quality metrics from other aspects

	Grasp generation - Deterministic shape models
	Grasp generation - Probabilistic shape models

	Grasp planning with dual manipulators

	Object detection and localization for aerial manipulation
	Introduction
	Distance based object detection
	Object detection by dense point cloud alignment
	Feature-based object detection
	Object detection and location using probabilistic model
	Multiview probabilistic object detection and location
	Extending probabilistic object segmentation using to multiple different object's priors

	Machine learning for object detection
	Bag of Words model and State Vector Machine
	Latent Dirichlet Allocation, a text-oriented non-supervised image classification
	Neuronal Networks and Deep Learning
	Evaluation of different nets in a custom Dataset of hand-tools
	Crawler detection using CNN for aerial manipulation

	Mapping and localization for aerial manipulation
	Introduction and Related Work
	Online SLAM method using stereo cameras
	Full SLAM Framework using RGB-D sensors
	Sensors and DataFrame creation
	Odometry estimator
	Database module
	Optimizer Module

	Experimental Validation of the Framework
	Experiments in Microsoft 7-scenes RGB-D Datasets
	Experiments in TUM RGB-D Datasets
	Custom dataset - Flying under the bridge

	Semantic labeling for manipulation and Augmented data for human operators

	Aerial manipulator platforms and general system architectures
	Introduction
	First approach with single manipulator
	Aerial dual manipulator
	Contact positioning tool for manipulation tasks
	Docking tool model
	Controlling the position with contact point
	Experimental Setup
	Test-bench and tool characterization
	GPS positioning characterization
	Docking and autonomous control
	Manipulation while keeping in contact

	Conclusions and Future Work
	Contributions and conclusions
	Future work

	Appendix Open resources developed
	RGBD TOOLS
	Camera Wrapper Module
	SLAM Module
	State Filtering Module
	Machine Learning Module
	Other Tools Module

	GRASPING TOOLS
	HECATONQUIROS

	List of Figures
	List of Tables
	Bibliography
	Index
	Glossary
	End/Last page
	First page

