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Resumen

Sea k un anillo conmutativo. Los mddulos de las k-derivaciones m-integrables (en el sen-
tido de Hasse-Schmidt) de una k-algebra conmutativa forman una cadena decreciente cuyas
inclusiones pueden ser estrictas. Decimos que un entero s > 1 es un leap de una k-algebra con-
mutativa si la (s — 1)-ésima inclusién en la cadena anterior es propia. En esta tesis, estudiamos
el conjunto que forman los leaps en diferentes contextos.

En primer lugar, consideramos k£ un anillo de caracteristica positiva y probamos que los
leaps de cualquier k-algebra conmutativa solo ocurren en las potencias de la caracteristica.

Luego, nos centramos en estudiar el comportamiento de los modulos de las k-derivaciones
m-integrables de una k-algebra conmutativa finitamente generada bajo cambios de base y
probamos que si consideramos extensiones de cuerpos trascendentes puras y k-algebras con-
mutativas finitamente presentadas, entonces el conjunto de los leaps no cambia bajo el cambio
de base. Lo mismo ocurre si consideramos extensiones separables de anillos sobre un cuerpo de
caracteristica positiva y k-algebras conmutativas finitamente generadas.

Por 1ltimo calculamos el médulo de las k-derivaciones m-integrables en diferentes cur-
vas planas. Principalmente, damos los generadores de los médulos de las k-derivaciones m-
integrables, donde k£ es un anillo reducido de caracteristica p, del cociente del anillo de poli-
nomios en dos variables con coeficientes en k sobre un ideal generado por la ecuacién x™ — y?
donde n o ¢ no es miultiplo de p.

Abstract

Let k be a commutative ring. The modules of m-integrable k-derivations (in the sense of
Hasse-Schmidt) of a commutative k-algebra form a decreasing chain whose inclusions could be
strict. We say that an integer s > 1 is a leap of a commutative k-algebra if the s —1-th inclusion
of the previous chain is proper. In this thesis, we study the set of leaps in different contexts.

First, we consider a commutative ring k of positive characteristic and we prove that leaps
of any commutative k-algebra only happen at powers of the characteristic.

Thereafter, we focus on studying the behavior of the modules of m-integrable k-derivations of
a commutative finitely generated k-algebra under base change and we prove that if we consider
pure transcendental field extensions and commutative finitely presented k-algebras, then the set
of leaps does not change under the base change. The same happens if we consider separable ring
extensions over a field of positive characteristic and commutative finitely generated k-algebras.

Finally, we compute the modules of m-integrable k-derivations of different plane curves.
Mainly, we give the generators of the modules of m-integrable k-derivations, where k is a
reduced ring of characteristic p > 0, of the quotient of the polynomial ring in two variables
with coefficients in k& over the ideal generated by the equation 2" — y? where n or ¢ is not
multiple of p.
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Introduction

Background

Let k£ be a commutative ring and A a commutative k-algebra. A Hasse-Schmidt derivation of A
over k of length m > 0 (or m = 00) is a sequence D = (Dg, Dy, ..., D,,) (or D = (Dy, Dy, ...))
of k-linear endomorphisms of A such that Dy is the identity map and the following Leibniz
identity holds:
D,(zy) = Y _ Di(x)D;(y)
i+j=r

for all z,y € A and all » > 0. We write HS(A;m) for the set of Hasse-Schmidt derivations of
A over k of length m > 1 or m = oo.

Any Hasse-Schmidt derivation D = (Id, Dy, D, ...) € HSi(A;m) can be associated with a
k-algebra homomorphism ¢ : A — A[|p|]m = Al|p]]/ (g™ ) such that p(z) =z mod p for all
x € A given by p(z) =+ Di(x)p + -+ + Dp(x)p™. A group structure (non-commutative
in general) can be defined on the set of Hasse-Schmidt derivations HS;(A;m). Namely, if
D,D" € HSy(A;m), D" := Do D" € HSi(A;m) such that D = 3, D;o Dj;. Moreover,
for all » > 1, the rth component D, of a Hasse-Schmidt derivation turns out to be a k-linear
differential operator of order < r vanishing at 1. In particular, D; is a k-derivation of A (in
classical sense) and we can identify the additive group of k-derivations of A, which is denoted
by Der(A), with the group of Hasse-Schmidt derivations of length 1.

An important notion related with the theory of Hasse-Schmidt derivations is m-integrability
for m > 1 or m = co. We say that a k-derivation § € Dery(A) is m-integrable if there exists
D € HSi(A;m), which is called an m-integral of §, such that D; = §, or in other words, if the k-
algebra map 5 :a € A a+d(a)p € Al|p|]1 can be lifted to a k-algebra map ¢ : A — Al|g|]m.
The set of all m-integrable k-derivations is an A-submodule of Dery(A) for all m > 1 or m = oo,
which is denoted by IDery(A; m) and it is clear that

Derg(A) = IDerg(A;1) O IDerg(A;2) O - -+ O IDerg(A; 00).

If k£ is a ring of characteristic 0, i.e. if Q C k, then any k-derivation J is co-integrable,
since we can take D = (0'/i!) as an oo-integral of §. The same property holds if A is 0-
smooth over k (cf. [Ma2, §25] and [Ma2, Th. 27.1]) or if A is a “normal crossing singularity”,
ie. A = klry,...,xq)/{x1---xe) or A = kl|xy,...,z4]]/{x1---2.) for e < d. However, in
[Mal] we can already find examples of k-derivations that are not oo-integrable in the case
where k is a ring of positive characteristic p > 0 (F, C k). These examples also implicitly
prove the existence of k-derivations which are (m — 1)-integrable but not m-integrable for some
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m > 1. That implies that, if k£ has positive characteristic, the chain of modules of m-integrable
derivations could have strict inclusions, i.e. there could be some positive integers m for which
[Dery(A;m — 1) # IDerg(A;m). In that case, we say that A has a leap at m and we denote by
Leaps, (A) the set of leaps of A over k.

The notion of Hasse-Schmidt derivation was introduced by H. Hasse and F.K. Schmidt in
[H-5] in the case where k is a field of positive characteristic and A a field of algebraic functions
over k. P. Ribemboin studied them in a general setting in [Ri1] and [Ri2] and they have been
used in different contexts, for instance W. Traves proved in [11] that if A is a smooth algebra
of finite type over a field k, then the ring of differential operators of A over k equals the Hasse-
Schmidt algebra of A over k, i.e. the subalgebra of Endg(A) generated by all components of all
Hasse-Schmidt derivations, or P. Vojta used Hasse-Schmidt derivations to describe jet spaces
in [Vol.

The problem of deciding when a derivation is oo-integrable or not has been studied by several
authors such as W.C. Brown in [Br]. One of the first results we can find about the modules of
integrable derivations is due to A. Seidenberg. In [Sc], he proved the following result: Let A
be a domain and ¥ its quotient field. Let us denote A’ the ring of all elements of > which are
quasi-integral i.e. aw € A" if there is d € A, d # 0 such that da® € A for all s > 0 (note that if A
is notherian then A’ coincides with the integral closure of A) and we consider D € HS(X; 00).
Then, if D,.(A) C A for all » > 0, then D,(A") C A’ for all » > 0. Hence, we can deduce
that any oo-integrable derivation of A can be extended to an oc-integrable derivation of A’.
However, this result is not true when A has positive characteristic and we consider D € Der()
instead of a Hasse-Schmidt derivation of length oo.

Another interesting result about integrability is due to S. Molinelli. She showed that if (A; m)
is a local domain of characteristic p > 0, A its completion and k a coefficient field of A then,

we have that rank ({5 € Der(A) | 6 € IDerk(A)}> < dim A (see [Mo, Corollary 2.3]) although

the rank of Dery(A) could be strictly greater than dim(A) = dim(A). In [\Ma1], H. Matsumura,
in addition to giving the aforementioned examples, proved some sufficient conditions for oco-
integrability, for instance if k& — A is a separable field extension, all k-derivations are oo-
integrable.

Later, M. Fernandez Lebrén and L. Narvdez Macarro used the module of co-integrable
derivations to generalize a result of M. Nomura ([Ma2, Th. 30.6]) in [F-N] and in [Nal], L.
Narvdez Macarro proved that there is a canonical map of graded A-algebras v : T4 IDer;(A) —
gr Diff 4 /;, where I'4 (%) denotes the divided power algebra functor and gr Diff 4 is the graded
ring of the filtered ring of k-linear differential operators of A, such that v equals to the canonical
map of graded A-algebras Sym 4 Derj(A) — grDiff 4, if £ has characteristic zero and v is an

isomorphism whenever IDer;(A) = Der(A) and Der(A) is a finitely generated projective
A-module.
More recently, some results about finite integrability have been given. In [Na2|, L. Narvdez

Macarro showed that if A is a finitely presented k-algebra and m is an integer, the property
of being m-integrable for a k-derivation § of A is a local property, i.e. § is m-integrable if and
only if the induced derivation 6, : A, — A, is m-integrable for each prime ideal p C A (] ,
Th. 3.2.6]).
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We would also like to highlight the work of D. Hoffmann and P. Kowalski in | ] and
[ | where they generalized, among others, a result of H. Matsumura ([\Mal]). Namely, they
proved that if & is a field of characteristic p > 0 and & C A is a separable (not necessarily
algebraic) field extension, then any iterative Hasse-Schmidt derivation D € HSg(A;p™) for
some m > 1 (that is, for all 4, j € N, we have that D; o D; = (Zt’) D, ;) can be extended to an
iterative Hasse-Schmidt derivation of A (over k) of infinite length.

The chain of modules of m-integrable derivations of a k-algebra A seems to reflect some
specific properties of singularities in non-zero characteristic, and so, in our opinion, it deserves
to be studied.

Results of this thesis

In this work we focus on the study of leaps of a commutative k-algebra, where k is a commutative
ring. Let us state now the main results of this thesis.

I (Theorem 2.5.1). If k is a commutative ring of characteristic p > 0 and A is a commutative
k-algebra, leaps of A only occur at powers of p > 0, i.e. Leaps,(A) C{p” | 7 > 1}.

Let us consider a ring extension k¥ — L and a commutative finitely generated k-algebra A,
we give a (L ®j A)-linear base change map for m-integrable k-derivations, which we denote by
oLA [ @, IDery(A;m) — IDerp (L ®; A;m) (see section 3.2.2) and we prove the following
result (see Corollary 3.2.23 and Corollary 3.2.33):

IT Let us consider a ring extension k — L and a commutative finitely generated k-algebra A.
The map ®LA is an isomorphism for all m > 1 if some of the following conditions holds:

1. L =Ek[t; |i € I] a polynomial ring in an arbitrary number of variables.
2. k is a field of characteristic p > 0 and L is a separable k-algebra.

Therefore, in both cases, Leaps,(A) = Leaps, (L ®j A).

We also give a counterexample (3.2.14) for the surjectivity of ®&4 and from 1., we deduce
that if & — L is a pure transcendental field extension and A is a finitely presented k-algebra,
then ®L:4 is also bijective for all m > 1 (Corollary 3.2.25).

Finally, we give some explicit computations of generators of modules of m-integrable deriva-
tions of some “plane curves singularities”. Our main computations concern the curve z" — 9.
We show the following results.

IIT (Corollary 4.1.4). Let k be a commutative reduced ring of characteristic p > 0 and A =
klz,y]/(h) where h = x™ — y? with n,q # 0. Let a := val,(n) be the p-adic valuation of n,
s =n/p®, m the remainder of the division of ¢ by p and f := val,(¢ —m). Then, we have the
following properties.

1. If n,q # 0 mod p then, Leaps,(A) = 0.

2. If n =0 mod p and g =1 then, Leaps,(A) = 0.
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3. If aym >1 and q > 2, then

B {pa7pa+,8} ifs=1 a<fB m=1
Leaps,(A) = { {p°} otherwise

4. If a = 0 (i.e. n # 0 modp) and m = 0 (i.e. ¢ = 0 mod p) then, Leaps,(A) =
Leaps, (A") where A" = k[z,y]/{x? — y™).

Moreover, if k is a unique factorization domain, m = 0, o, > 1 and we denote T =
min{a, f} > 1, n' =n/p” and ¢ = q/p", we have that

Leaps,(A) = {p"} U {ip” | i € Leaps,, (B)} where B = k[x,y]|/ <x”/ — yq/>

From the computation of leaps of k[|z, y|]/(z* — y° + 2%y*) and the previous result we can
deduce the following result:

Proposition 4.3.3. Leaps of irreducible algebroid plane curve over an algebraically closed
field are not determined by the semigroup of the curve.

In addiction, from the computation of leaps of k[x,y]/I and k[x,y]/T where I = (2?,4?)
and [ is its integral closure we have the following result.

Lemma 4.3.4. Leaps are not the same up integral closure of ideals.

The last two results answer two questions proposed by Professor H. Mourtada.

Contents of the chapters

This text is organized as follows: In chapter 1, we recall main definitions of the theory of
the Hasse-Schmidt derivations. In the first section, we give the definition of Hasse-Schmidt
derivations and some properties. We also define what is meant by logarithmic Hasse-Schmidt
derivations and we recall the main object of our work: modules of m-integrable derivations.
In section 1.2, we consider a polynomial ring and we see some properties of Hasse-Schmidt
derivations in this particular case. Moreover, we prove the relationship between integrable
derivations of the quotient of a polynomial ring over (h) and over (h”) where h is a polynomial,
when k£ is a unique factorization domain. In section 1.3, we recall a generalization of Hasse-
Schmidt derivations that we use to describe a special Hasse-Schmidt derivation in section 2. In
the last section of this chapter we talk about substitution maps and how they act on Hasse-
Schmidt derivations.

Chapter 2 is devoted to prove I. We start this chapter with some numerical and technical
results that will be useful in the rest of the chapter. In section 2.2 we associate with any
Hasse-Schmidt derivation a special Hasse-Schmidt derivation that we use to prove the main
theorem of this chapter. In section 2.3 we prove that any k-algebra does not have leaps at
certain integers. Namely, if k is any commutative ring and A any commutative k-algebra, we
show that A does not have leaps at any integers invertible in k; If the characteristic of k is
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p = 2, then we prove that A does not have a leap at 6, and if the characteristic of k is p # 2,
then we prove that A does not have a leap at 2p. In section 2.4, we give an integral of the first
component of a Hasse-Schmidt derivation that might not be zero and in the last section, we
prove our main result of this chapter, namely that if k£ is a commutative ring of characteristic
p > 0 and A is any commutative k-algebra, A only has leaps at powers of p.

The aim of chapter 3 is to prove II. In the first section of this chapter, we see that an
I-logarithmic Hasse-Schmidt derivation of a polynomial ring R = k[xy,..., x4 over a ring k
of positive characteristic (where I C R is an ideal) can be decomposed in two Hasse-Schmidt
derivations if its first component is zero. In the next section, we recall some classical results of
base change maps for k-derivations and we generalize these maps for integrable k-derivations,
which is denoted by ®%4 : L ®IDery(A;m) — IDer; (L ®; A;m) where k — L is a commutative
ring extension and A a commutative k-algebra. We see that ®£4 is not surjective in general
giving a counterexample when k& — L is an algebraic non-separable field extension and we prove
that if & — L is a pure transcendental field extension and A is a finitely presented k-algebra,
then ®L4 is surjective and the same happens if L is a separable k-algebra where k is a field of
positive characteristic and A is a finitely generated k-algebra.

In chapter 4, we prove III. Namely, in section 4.1 we compute the modules of m-integrable k-
derivations, where k is a reduced ring of characteristic p > 0, of the quotients of the polynomial
ring in two variables over the ideal generated by the equation z" — y? when n or ¢ is not a
multiple of p. Thanks to this, we can describe the integrable derivations of k[z,y]/{z™ — y?)
when n and ¢ are both multiples of p and k is a unique factorization domain. In section 4.2
we compute the modules of integrable derivations in three examples taken from [(ir] assuming
that k is a domain of positive characteristic and showing that there exist singular curves with
no leaps. In the last section of this chapter we prove Proposition 4.3.3 and Lemma 4.3.4.

Further developments

To conclude this introduction, we would like to comment some of the problems related with
m-integrability that remain open and that we would like to study in the near future.

As we have already said, the study of the chain of modules of m-integrable derivations
could help us with singularities in positive characteristic but there are still many questions to
solve, for instance: are leaps related with some known invariant of singularities? or, how leaps
behave under geometric constructions, such as blowing-ups? It could also be interesting to
know more about the relationship between Hasse-Schmidt derivations and jet spaces (see [Vo]),
and therefore with arc spaces. In addition, we would also like to understand the meaning of
the absence of leaps for a singularity in positive characteristic: does it mean that the behavior
of such a singularity is “closer” (in some sense) to the behavior of singularities in characteristic
0?7

One of the main problems in the theory of Hasse-Schmidt derivations is to compute where
leaps occur. We know that in characteristic zero and if A is 0-smooth over k, Leaps; (A) = 0 and
we have proven that if k& has positive characteristic then, Leaps,(A) C {p” | 7 > 1} (Theorem
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2.5.1). However, we do not know what happens when the base ring is not any one of these
types, for instance if & = Z. We also do not know if any set of leaps is possible, that is, if given
m > 1 positive integer or infinity, there is a ring with m leaps. In view of the results of chapter
4, we can say that there are rings with 1, 2 or 3 leaps but we can expect that longer sets of
leaps are possible, and to check this, new algorithms are needed.

Another interesting question is the one proposed by L. Narvdez Macarro in | , Q. 3.6.5]:
Assume that the base ring k is a field of positive characteristic or Z, or perhaps a more general
noetherian ring, and A a finitely generated k-algebra. Is there an integer n > 1 such that
IDerg(A;n) = IDerg(A;00)? Or at least, is the descending chain of A-modules IDery(A;1) D
[Derg(A;2) O --- stationary? And, what about more general base rings k7 This problem can
be seen as a problem of “extensions of k-linear maps” in the following way:

Let A be a finitely generated k-algebra. Then, A can be seen as a quotient of a polynomial
ring k[zy,...,x4] over an ideal I C R. Let us assume that I = (fi,..., f,) and we have
d € IDery(A; m). By definition of m-integrability, we have that there is a k-linear map ¢ : A —
Al|p|]m associated with an m-integral of § and fi(p(x1),...,¢(x4)) =0 mod p™!. Then, to
prove that 6 € IDery(A;00) it would be enough to extend ¢ to ¢’ : A — A[|ul], i.e. to find
¢'(xj) € Al|p|] for all j =1,...,d such that fi(¢'(x1),...,¢ (z4)) = 0. This extension seems
to be related with Artin’s Approximation Theorem, and deserves futher study.

It may also be interesting to know necessary and sufficient conditions for a Hasse-Schmidt
derivation to be extended to a Hasse-Schmidt derivation of higher length. For instance, we
can study the relationship between the integrability of the Hasse-Schmidt derivation D and the
integrability of the derivations associated with D, g;(D) for i > 1 (see [Nal] and section 1.1.2).
In characteristic zero, any Hasse-Schmidt derivation is determined by these derivations so, does
the integrability of a Hasse-Schmidt derivation D depend, or is related with the integrability
of the ¢;(D)?

On the other hand, we want to continue studying the base change map ®L4 : L ®
[Dery(A;m) — IDery,(Ar; m) for any k-algebra A, any ring extension k — L and any m > 1 or
m = oo that we have defined in chapter 3, specially the surjectivity of ®L:4. Although we know
that ®L4 is not surjective in general, we have seen that if L is a polynomial ring in an arbitrary
number of variables or k — L is a separable field extension where £ is a field of characteristic
p > 0 and A is finitely generated k-algebra, then ®L4 is surjective. Both cases are examples
of 0-smooth base change, so a natural question would be whether the base change map is an
isomorphism under this general hypothesis.

Finally, if A is a finitely presented k-algebra we know that m-integrability with m > 1 an
integer is a local property (see [Na2]) but we do not know how the modules of m-integrable
derivation of a local ring behave under completion. We know that if 6 € Dery(A) is m-integrable,
then its induced 6 : A — A is m-~integrable but, is it true its converse?




Chapter 1

Hasse-Schmidt derivations

Hasse-Schmidt derivations were introduced by H. Hasse and F.K. Schmidt in [H-5]. In this text,
we are interested in a particular notion originated in the theory of Hasse-Schmidt derivations:
The module of m-integrable derivations, where m € N or m = oo. In this chapter we will recall
its definition and we will give necessary properties for the rest of the chapters.

1.1 Introduction to Hasse-Schmidt derivations

In this section we recall the main definitions and properties of Hasse-Schmidt derivations. Most
of the results presented in this section can be found in [Ma2, §27], [Na2] and [Na3]. In this
chapter, k& will be a commutative ring and A a commutative k-algebra.

We will start by setting the following notation: We denote N := N U {co} and, for each
integer m > 1, we will write A[|u|]m = A[|p|]/ (™) and A[|pl]e = Allp]].

Definition 1.1.1 A Hasse-Schmidt derivation (HS-derivation for short) of A (over k) of length
m > 1 (resp. of length o) is a sequence D = (Dy, D1, ..., Dy,) (resp. D = (Dy, Dy,...)) of
k-linear maps D, : A — A, satisfying the conditions:

Do =1da, Di(wy)= Y Ds(x)Dy(y)

B+y=r

for all z,y € A and for all r. We write HSg(A;m) (resp. HS(A;00) = HSk(A)) for the set of
HS-derivations of A (over k) of length m (resp. o).

The D, component is a k-linear differential operator of order < r vanishing at 1 if » > 1.
In particular, D, is a k-derivation.

Any HS-derivation D € HS;(A;m) is determined by the k-algebra homomorphism
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satisfying ¢p(x) = mod p. If we denote
Homj ., (A, Allpllm) == {f € Homy—aig(A, Al|ul]m) | f(z) =2 mod pu Va € A},
we have a bijection
D € HS,(Aim) — p € Homy_y, (A, Afll},).

Moreover, any ¢ € Homy_,, (A, A[|p|],m) can be uniquely extended to a k-algebra automor-
phism ¢* : Al|p|lm — A[|p|]m with ¢*(u) = p. Hence, we can define a group structure on
Homy_ (A, A[|p[]m) given by the composition. That is, for each o, " € Homy_ (A, Al|p]im),

oy =o€ Homy (A, Allp|lm).

Therefore, HSg(A;m) inherits a canonical group structure (non-commutative in general) where
the identity is I = (Id, 0, ..., 0) and we denote by D* € HSy(A; m) the inverse of D € HS,(A;m).
Namely, for each D, D’ € HSx(A;m), D" := Do D’ is the HS-derivation of length m associated
with the k-algebra homomorphism ¢pr = ¢, o pp which is explicitly given by

D;‘, = Z DB O D’,Y
Btvy=r

for all . Observe that (Id, Dy) € HS,(A;1) — D; € Dery(A) is a group isomorphism. We have
the following result:

Lemma 1.1.2 [Na3, §4] Let k be a ring, A a k-algebra and m € N. Then, the map

D € HSy(A;ym) — |@p:x € A Y Di(a)pu”| € Homp_, (A, Aflul]m)
r=0

18 a group isomorphism.

Moreover, we can obtain an expression for composition of several HS-derivations.

Lemma 1.1.3 Let D* € HSi(A;m) be an ordered family of HS-derivations for a = 1,... t.
We denote D := of,_D* = D' o D*o--- 0 D' € HSy(A;m). Then, D, =3 5_, Dj o---0Df
for all 0 < r < m where |B| :== 01+ -+ S;.

Proof. We prove the result by induction on ¢ > 2. If t = 2, we have the lemma thanks to the
definition of the composition. Let us suppose that the result is true for t — 1 and we will prove
it for t. In this case, for all r > 0,

D, =((oiiD") o D), = >, (ouziD*) 0D\ = ) >, DioroDi! oD
B+y=r B+y=r \Pi1++Bt—1=0F

o 1 t—1 t
o Z Dﬁlo'”ODﬁt—loDﬁt
Br1++Pi—1+Pi=r




and the lemma has been proved.

Any HS-derivation D of A over k of length m can be understood as a power series

S Dop € Endi(A) el

r=0

and so we can consider HS;(A;m) as a subgroup of the group of units of End(A)[|g|]m and
we can give a explicitly expression of the inverse (with respect to the group structure) of any
HS-derivation.

Lemma 1.1.4 [Na3, Prop. 9] For each D € HSg(A;m), its inverse D* is given by D§ = 1d
and, for all r > 1
D=3 Y Dyo-oby,
d=1 BEP(r,d)

where P(r,d) == {8 = (br,....0a) | Bi €N, B; #0, |p] =r}.

Observe that if B is a commutative k-algebra such that A is isomorphic to B (as k-algebra),
then HS;(A;m) is isomorphic to HS; (B, m) (as group) for all m > 1. Namely,

Lemma 1.1.5 Let f: A — B be a k-algebra isomorphism. Then, the map

HSy(A;m) — HSk(B;m)
(Dr)r — DI = (foDrofil)r

18 a group isomorphism.

In this text we mainly use three operations on HS-derivations: Let D € HSy(A;m) be a
HS-derivation of length m € N.

1. For each x € A, the sequence x @ D = (2" D,.), € HS(A;m).

2. Let 1 < n < m be an integer, the truncation 7,,, (D) is given by 7,,,(D) = (Id, D1, ..., D,) €
HSk(A;n).

3. For each integer n > 1, we define D[n| € HSx(A; mn) as

| Dy, ifr=0 modn
Dlnl, = { 0 otherwise

It is easy to prove the following relationships between these operations:

Lemma 1.1.6 [Na2, §1.2] Let D € HS(A;m) be a HS-derivation of length m € N, n > 1 and
qg < m. The following properties hold:

1. (z" e D)[n] = x e (D[n]) for all x € A.
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2. T (D[N]) = (Tome (D)) 0] for all 1 < m/ < m.
3. Tmg(z @ D) =z ® (7,,,(D)) for all z € A.

The following lemma is clear.

Lemma 1.1.7 Let D € HSy(A;m) be a HS-derivation of length m € N and 6 € Derg(A).
Then, D o (I1d,d)[m] = (Id,d)[m] o D.
Definition 1.1.8 For each HS-derivation D € HS,(A;m) such that D # 1, we denote
(D) :=min{h > 1| Dy, # 0} = ord(D —I)
and for D =1, {(D) = co.
It is easy to see the following lemma (see [Na3, §5]).

Lemma 1.1.9 If D,E € HSi(A;m), then {(D o E) > min{l(D),¢(E)}. In particular, if
(D), l(E)>n, then {(DoE)>n and (Do E), = D, + E,.

Let us recall the following result.

Proposition 1.1.10 [Na3, Prop. 7] For each D € HSy(A;m) we have that D, is a k-linear
differential operator of order < |r/¢(D)]| for all0 <r < m.

Definition 1.1.11 For each D € HS;(A;m) and e € N such that 1 < e <m, if D; =0 for all
Jj #0 mod e, we denote {(D;e) = [m/e] if m < oo and ¢(D;e) = oo if m = co. Otherwise,

((D;e) :=min{h >0 | Dpeya # 0 for some o € {1,...,e —1}}.

Lemma 1.1.12 Let D, E € HSi(A;m) and e € N such that 1 < e < m. The following
properties hold.

1. £(D) > e if and only if {(D;e) > 1.
2. {(Dle];e) = m if m < oo and ¢(Dle]; e) = oo when m = cc.
3. If¢(D;e) =i>1 and (E; je) > i/j where 1 < j <1, then {(D o E;e) > 1i.

Proof. The first two statements are obvious, we will prove the third one. We denote D' =
D o E. To show that ¢(D';e) > i, we have to see that D] = 0 for all r < ie such that
r # 0 mod e. Let us consider r with these properties. Since 1 <i/j < ¢(E; je), we have that
ie < U(E;je)je, so we have that E, = 0 for all v # 0 mod je such that v < i¢e. Thanks to this,

r [r/jel
D= Y DgoEy=> DiyoEy= Y Dy jeyo Eje,.
B4vy=r ~v=0 ~v=0

Note that » — jey # 0 mod e and r — jey < ie — jey < ie. Then, D,_j., = 0 because
¢(D;e) =i. Hence, D, =0 and ¢(D’;e) > 1.
O




Lemma 1.1.13 Let D € HSy(A;m) be a HS-derivation of length m € N and 1 < e < m an
integer. Let us assume that {(D;e) =1 > 1. Then, for alla =0, ...,e—1 such that ie+a < m,
Dieta € Derg(A).

Proof. From the definition of HS-derivation,

«

Dicra(zy) = Z DB Z DB Dieta- 6( ) + Z Di&&-ﬂ(x)Da—ﬂ(y)'

B+vy=ie+a B=1

In the second term, D,_z = 0 for all 5 # «a because 0 < o — < e and ¢(D;e) > 1. In the first
one, since ¢(D;e) =1, if f # 0 mod e, then D = 0, so we can write the previous equation as:

’L€+C|{ xy Z Dﬁe ze—l—a—ﬁe(y) + Die—l—a(x)y'

Note that if 8 # 0, then ie + o — e < te. Moreover, ie +a — fe # 0 mod e, 0 Djeta—pge = 0.
Then,

Die+a(xy) = xDie-l—a(y) + Die-i—a(m)y

i.e. Djerqo is a k-derivation of A for alla =0,...,e — 1.
O

Lemma 1.1.14 Let m > 1 be an integer and n € N. If D € HSy(A;mn) is a HS-derivation
such that ((D;m) = n then, there exists D" € HS,(A;n) such that D). = D, for all r < n.

Proof. We have to prove that D' = (D,,,), is a HS-derivation. It is obvious that D! are
k-linear maps. Moreover, D{j = Dy = Id and

Di(zy) = Dpr(xy) = > Dp(x)Dy(y) = > Dup(a)Duy(y) = > Djs(x)

B+y=mr mpB+my=mr B+vy=r

where the third equality holds thanks to ¢(D;m) = n. Hence, D" € HS(A;n).

1.1.1 Logarithmic derivations

Let us consider k£ a commutative ring, A a commutative k-algebra and I C A an ideal. Remem-
ber that a k-derivation § : A — A is called I-logarithmic if 6(1) C I. The set of I-logarithmic
k-derivations is an A-submodule of Dery(A) and will be denoted by Dery(log I'). This concept
can be generalized for the HS-derivations as can be seen in [Na2]. In this section, we recall this
generalization and give some technical results.

Definition 1.1.15 Let D € HSp(A;m) where m € N and I C A an ideal.

o We say that D is I-logarithmic if D.(I) C I for all r. The set of I-logarithmic HS-
derivations is denoted by HS(log I;m) and HSg(log I) := HSy(log I;00). In particular
we have that Derg(log I) = HSg(log I 1).
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e More generally, for n < m, D is n — I-logarithmic if Ty, (D) € HSk(log I;n).
The following lemma is clear.

Lemma 1.1.16 HS.(logI;m) is a subgroup of HS,(A;m) for all m € N.

Definition 1.1.17 Let I C A be an ideal. An I-differential operator is a (k-linear) differential
operator H : A — A such that H(I) C I.

Lemma 1.1.18 Let D € HS(A;m) be a HS-derivation with length m € N and n,s > 1
positive integers such that n < m. If D is (n — 1) — I-logarithmic then, D[s| € HSx(A;ms) is
(ns — 1) — I-logarithmic.

Proof. Let us consider » < ns. By definition D[s], = 0 if 7 # 0 mod s and D[s|, = D, s
if » = 0 mod s. Since r/s < n, D,/s is an I-differential operator. So, D]s] is (ns — 1) — I-
logarithmic.

O

Lemma 1.1.19 Let I C A be an ideal and let us consider an ordered family D',..., D! €
HSy(A;m) of (m—1)—I-logarithmic HS-derivations. We denote D := D'o---0D" € HS(A;m).
Then, D is (m — 1) — I-logarithmic and

t
Dy =Y _ Di+Hpy
a=1

where H,, is an [-differential operator of order < m.

Proof. Thanks to Lemma 1.1.3, we have that

t
(Dlo---th)T: ZD%IO---ngt :ZDﬁthr where H, = ZDélo.”ODtﬁt'
|Bl=r a=1 |Bl=r
Bi<r
For each 8 € N* such that |3| = r, we have that Dél o---o0Dj is a differential operator of order
< r and, since r < m, this term is an [-differential operator. So, H, is also an [-differential
operator or order < r for all » < m. If r < m, then the first summand is an [-differential

operator, so D is (m — 1) — I-logarithmic and we have the result.
O

Corollary 1.1.20 Let I C A be an ideal. If D € HS,(A;m) is (m — 1) — I-logarithmic and
E € HSi(log I;m), then DoE € HSy(A;m) is (m—1)—1-logarithmic and (D o E), = D,,+H,,

where H,, 1s an I-differential operator of order < m.

Proof. By Lemma 1.1.19, we have that D o E is (m — 1) — [-logarithmic and (D o E),, =
Dy +E,,+H! where H] is an [-differential operator of order < m. Since FE,, is an I-differential
operator of order < m, we have the corollary.

0




1.1.2 Euler derivation

In this section we recall Euler derivation defined in [Nal] associated with a HS-derivation that
will allow us to prove certain property about integrability in the sense of Hasse-Schmidt. From
now on, k will be a commutative ring, A a commutative k-algebra and we denote T' = Endy(A).

0
Let us denote the Euler derivation as y = ,u@ : kl|u|] = K[|p|] and

xr: Tllpllm — Tllplln

ZDM — ZDTX er

r>0 r>0 r>0
Definition 1.1.21 [Nal, Def. 1.2.11] Let D € HS,(A;m), d.e. D = > D" € T[|p]lm
Then,
(D) := D*xr(D Z(Z 7D50D>
r>0 \fB+vy=r

If we consider the expression of D* given in Lemma 1.1.4, we can see that:

T

(D)= (20| DD AuDsoe oDy, | | (1.1)

r>0 \ d=1 BeP(r,d)

Proposition 1.1.22 [Nal, Prop. 3.1.2] If D € HSy(A;m), then (D) € Derg(A)[|p|]m N
T(lplJm,+ where T(|pllm+ = ker(7mo : D0 aip’ € Tl|p|lm — a0 € T).

For each 0 < r < m, we denote &,(D) = Y/ (—1)¢* (Zﬁep(r,d) BaDg, 00 D5d>. The
previous proposition tells us that &,(D) € Dery(A).

Lemma 1.1.23 Let us consider D € HSi(A;m). For all v > 0, there exists a differential
operator H, of order < r such that

e.(D) =rD, + H,.

Moreover, if D is (m—1)—I-logarithmic, then H, is an I-differential operator for all0 < r < m.
Proof. Remember that

P(r,d)={BeN*| 3 #0, |8] =7}

Hence, P(r,1) = {r} and, if we take 5 € P(r,d) with d > 2, we have that §; < r for all
i=1,...,d. Taking into account the equation (1.1), we have that

&.(D) =rD, + H, where H, =Y | > BaDs, 0---0 Dy,
d=2 \ BEP(r,d)
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Then, H, is a differential operator of order < r which depends on D; for all © < r. Thanks to
this, if D is (m — 1) — I-logarithmic, H, is an [-differential operator for all 0 < r < m and we

have the lemma.
OJ

1.1.3 Integrable derivations

In this section, we recall the notion of n-integrable derivation (see [Mal], [Na2]). Modules of
n-integrable derivations will be the main object of study in the following chapters and sections.
We will see, among other things, where leaps occur or how a change of base ring affects them.
From now on, k will be a commutative ring, A a commutative k-algebra and I C A an ideal.

Definition 1.1.24 Let D € HS(A;m) where m € N and n > m.

e D is n-integrable if there exists E € HS,(A,n) such that 7,,(E) = D. Any such E will
be called an n-integral of D. If D is oco-integrable we simply say that D s integrable.
If m = 1, we write IDery(A;n) for the set of n-integrable derivations and IDery(A) :=
[Dery(A; 00).

e If D € HSi(logI;m), we say that D is I-logarithmically n-integrable if there exists
E € HSi(logI;n) such that E is an n-integral of D. We denote IDerg(log I;n) the
set of I-logarithmically n-integrable derivations (i.e. for m = 1) and IDery(logl) :=
IDer(log I, 00).

The following lemma is clear thanks to the group structure of HS-derivations and operation
1.

Lemma 1.1.25 The set IDery(A;n) (resp. IDery(logl;n)) is an A-submodule of Dery(A)
(resp. Dery(logI)) for all n € N.

Moreover, if we have a k-algebra isomorphism, A = B, then there exists a bijection between
[Derg(A;n) and IDery(B;n) for all n € N. Namely,

Lemma 1.1.26 If f : A — B is an isomorphism of k-algebras. Then, the map

Yin : IDerg(A;n) — [Dery(B;n)
§ = 0= (fodof

is a bijection for all n € N.

Proof. If § € IDery(A;n) C Derg(A), it is obvious that 6/ € Dery(B;n). Moreover, by defi-
nition, there exists D € HSy(A4;n) such that § = D;. By Lemma 1.1.5, DY :== (fo D, o f7}) €
HSk(B;n) and D{ = foDyo f7t =67, So, 6/ € IDery(B;n). Hence, vy, is well-defined and
its inverse IS Yp-1 .

O

Let us suppose that § € IDery(A;n). Then, there exists D € HS(A;n) such that Dy = §.
S0, Tpn—1(D) € HSg(A;n — 1) is an (n — 1)-integral of 6. Hence, IDery(A;n) C IDery(A;n —1)




(the same occur when we consider I-logarithmically n-integrable derivations). Then, we obtain
the chain of A-modules

Derp(A) = IDerg(A; 1) D IDerg(A;2) 2 IDerg(A;3) 2 --- .

However, equality is not true in general, that is, there may be an (n — 1)-integrable deriva-
tion that is not m-integrable. For example, let us consider £k = F,, A = k[z]/(z?) and
0, the derivation induced by the derivative with respect to z in A. It is easy to see that
0, € IDery(A;p — 1), it is enough to consider the HS-derivation associated with the k-algebra
homomorphism € A+ z+ p € Al|u|],—1. But, 9, ¢ [Dery(A;p), otherwise there would exist
a well-defined k-algebra homomorphism of the form

p:r €A T+ p+ay’+ -+ app’ € Allpl],

but ¢(aP) = 2P + p? Z 0 mod (zP)!!1. Actually, IDery(A;p) = (xd,) (it is enough to consider
the HS-derivation x € A — x + xp € Al|p|],). Then,

IDery(A;p — 1) 2 IDery(A; p)
and we say that A has a leap at p.

Definition 1.1.27 Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1 if
the inclusion 1Dery(A; s — 1) D IDerg(A; s) is proper. The set of leaps of A over k is denoted
by Leaps;(A).

Let k be a ring of characteristic 0 (i.e. £ 2 Q) and A a k-algebra. Then, IDery(A;n) =
Dery(A) for all n € N (if § € Dery(A), it is enough to take D := (6"/r!), € HS;(A) as an
integral). So, Leaps,(A) = 0. If k is a ring of characteristic p > 0 (i.e. F, C k) we will prove, in
chapter 2, that leaps only occur at powers of p. For the moment, we have the following results
related with the integrability of a HS-derivation over a ring k of any characteristic.

We recall that a k-algebra A is 0-smooth over k if it has the following property: for any k-
algebra C, any ideal N of C satisfying N? = 0, and any k-algebra homomorphism u : A — C'/N,
there exists a lifting v : A — C of u to C, as a k-algebra homomorphism. In terms of diagrams,
we have that

A —— C/N
k—— C
We have the following results.
Theorem 1.1.28 | , Th. 27.1] If A is 0-smooth over k, then any HS-derivation of length
m < oo over k is oco-integrable.
Proposition 1.1.29 [Na2, Ex. 2.1.11](normal crossings). Let us take h = [[;_jx; € R =

klxq,...,xq4]. Then IDery(R/(h)) = Deri(R/{h}).
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Lemma 1.1.30 Let m > 1 and n > 0 be two integers and D € HSg(A;mn) (resp. D €
HSi(log I;mn)) a HS-derivation such that £(D;m) = n. Then, D is (n 4+ 1)m — l-integrable
(resp. I-logarithmically (n+1)m—1-integrable) and there is an integral D" € HSy(A; (n+1)m—1)
(resp. D" € HS(log I; (n + 1)m — 1)) of D such that £(D';m) =n+ 1.

Proof. Let d1,...,0,-1 € Derg(A) be k-derivations and let us consider the sequence

/
Danrl’ ..

D' =(1d,D,,...,D!

mn?’

D;rerm 1) = (Id7 D17 c ‘7Dmn7617 s 76m71)-

We claim that D’ € HSi(A; (n+ 1)m — 1). If this is true, D’ is an (n + 1)m — l-integral of D.
To prove this claim we have to show that the following equality holds forallaa =1, ..., m—1:

mn—+o
D/

(1Y) = Z Ds(@) Dlpyy (1)

By hypothesis, Dg =0 for all 8 # 0 mod m and 8 < mn. Since Dj; = Dg for all § < mn,

mn+o mn-+o
Z D,B mn—i—a 5 Z Dﬁ mn-I—a 6<y) + Z DI ( )D;nn-&-oz 'y(y)
= mn+l

Z Dgm (x) m+a )+ Z Dmn+'y —(y).
5=0

In the first term, if 5 > 0, then 0 < (n — f)m + a« < mn and (n — B)m + a # 0 mod m, so
DE gymia = Dn-pym+a = 0. In the second one, if ~ # a, then D, = D,_, = 0 because
0<a—v5<m. So,

mn+ao

Z Dﬁ mn+a B( )—:CD;,m+a( )"‘D;rera( )y = 264(y) + da()y = da(zy).

Observe that, for each a = 1,...,m— 1, we can choose any k-derivation to be d,. In particular,
we can put 6, = 0 for all a. In that case, ¢(D’;m) = n+ 1. Thanks to this, we can deduce the
lemma for D € HS,(log I; mn).

]

1.2 Hasse-Schmidt derivations on polynomial rings

Let us consider R = k[z; | ¢ € Z] the polynomial ring over a commutative ring k in an arbitrary
number of variables and I C R an ideal. In this section, we recall some general results about
integrability of k-derivations in polynomial rings. Moreover, if k is a unique factorization domain
of characteristic p > 0 (i.e. F, C k), we give the relationship between (h)-logarithmically n-
integrable derivations and (h?)-logarithmically n-integrable derivations where A is a polynomial
of R. In this text, we denote by J; : R — R the partial derivative with respect to z;.

The following result is a straightforward consequence of Theorem 1.1.28.
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Proposition 1.2.1 Any HS-derivation of R (over k) of length m > 1 is integrable.

Let us consider a k-algebra A, I C A an ideal and m € N. We denote by Mg, -
HSk(log I;m) — HSk(A/I;m) the map defined as:

D € HS(log I;m) — Mg, (D) = D = (D,) € HSy(A/I;m), D,(x+1) = D,(z)+1 Vx € A
and we denote by ITL : IDery(log I;m) — IDer,(A/I;m) the map given by:
§ € IDery(log I;m) — ! (6) = § € IDer(A/I;m), d(x +1) =d(x) +1 Vx € A
The proof of the following proposition is analogous to that of Proposition 1.3.4 of [Na2].

Proposition 1.2.2 If R = klz; | i € I] and I C R is an ideal, then the map Iljyg,
HSy.(log I;m) — HSL(R/I;m) is a surjective group homomorphism for all m € N.

The following result generalizes Corollary 2.1.9 of [Na2] for integrable derivations.

Corollary 1.2.3 IfR = k[z; | i € Z] and I C R is an ideal, then the map 11}, : IDery.(log I; m) —
[Derp(R/I;m) is a surjective homomorphism of R-modules for all m € N.

Proof. Let 0 € IDer,(R/I;m) be an m-integral derivation. From the definition, there exists
E € HSg(R/I;m) an m-integral of §. By Proposition 1.2.2, there exists D € HS(log I;m) such
that ITf;g (D) = E. Then, D; € IDery(log I;m) and II],(Dy) = Dy = Ey = 0.

U

Corollary 1.2.4 Let I be an ideal of R = k[x; | i € Z|. Then, R/I has a leap at s > 1 if and
only if the inclusion IDerg(log I; s — 1) 2 IDerg(log I; s) is proper.

Remark 1.2.5 [f A = k[|xy,...,z4|] is the formal power series ring over k and I C A is an

ideal then, HII{&m and 11! are surjective in a similar way to Proposition 1.2.2 and Corollary
1.2.3 and we have Corollary 1.2.4.

Let us consider R = k[z1, ..., x4 a polynomial ring in a finite number of variables. Then,
it is clear that the following short sequence of R-modules is exact:

I
0 — I(Der(R)) — Dery(log I) — Dery,(R/I) — 0.
The same occurs when we consider integrable derivations:

Proposition 1.2.6 Let m € N, R = k[z1,...,24) and I C R an ideal. Then, the following
short sequence of R-modules is exact:

0 = I(Derx(R)) — IDery(log I; m) ~m Der(R/I; m) — 0.
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Proof. First, note that if § € Dery(R) and h € I, then hd € IDerg(log I;m) (it is enough
to consider h @ D where D € HS(R;m) is an integral of §) and it is clear that I(Derg(R)) —
[Dery(log I;m) is injective. From Corollary 1.2.3, TI! is surjective. So, we have to prove that
ker 12, = I(Dery(R)).

Let h € I and § € Derg(R). Then, I/ (h§) = hé where hé(r + I) = (hd)(r) + 1 = 0.
So, I(Dery(R)) C kerIT! . Now, let us consider § € kerII!. Then § = 0 ie. d(r) € I for
all 7 € R. Since Derg(R) is finitely generated by d; : R — R for all i = 1,...,d, we have
that 6 = Y27, b;9;. Hence, d(z;) = b; € I for alli = 1,...,d and 6 € I(Der(R)). Therefore,
ker [T1!, = I(Dery(R)) and the proposition is proved.

O

Let us recall the following two results.

Proposition 1.2.7 [Na2, Prop. 2.2.4] Let R be k[z1,...,xzq] or kl|x1,...,x4]. Let us con-
sider f € R, I = (f), and J° = (O(f),...,0a(f)) the gradient ideal. If 6 : R — R is
an I-logarithmic k-derivation with 6 € J°Dery(R), then & admits an I-logarithmic integral
D € HSk(logI) with D;(f) =0 for all i > 1. In particular, if §(f) = 0, the integral D can be
taken with pp(f) = f.

Theorem 1.2.8 [1r, Th. 1.2] Let R be k[x1,...,x4] or k[|zy,...,x4]]. Let us consider I C R
an ideal generated by quasi-homogeneous polynomials with respect to the weights w(x,) > 0.
Then, the Euler vector field x = Zfzow(:m)mr@r is I-logarithmically (oo-)integrable. In fact,
an I-logarithmic integral of x is the HS-derivation associated with the map R — R||u|] given

by
1 w(zr)
xrb—>xr(—> ,r=1,...,d.
I—p

1.2.1 [P-logarithmic derivations

In this section let us consider R = k[z1, ..., z4] the polynomial ring in d variables over a unique
factorization domain (UFD) k of characteristic p > 0 (i.e. F, C k) and h € R a polynomial. We
want to describe the module of n-integrable derivations of A = R/(h?) for all n € N from the
modules of n-integrable derivations of R/(h). Thanks to Corollary 1.2.3, it is enough to study
the relationship between (h)-logarithmically n-integrable derivations and (h?)-logarithmically
n-integrable derivations. From now on, k will be a commutative ring and R = k[z1,...,z4).
We start with two general results.

Lemma 1.2.9 Let k be a ring of characteristic p > 0, A a commutative k-algebra and h € A.
Consider D € HSi(A;m) with m € N and 7 > 0. Then, for all i < m, the following identity

holds: ; !
- 0 if pTti

DZ hp — T . T

( ) { D;jpr(h)P"if  pTli

Proof. Let ¢ : A — Al|u|]m be the k-algebra homomorphism determined by D. Then,

m

D D (B )t = (W) = ()" = Di(h)" " mod (™)

i>0 §>0
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and we obtain the result by equating the coefficients in the above equation. 0

Lemma 1.2.10 Let k be a commutative ring, A a commutative k-algebra, n € N and m < n.
Consider g € A and D € HSg(A;n). Suppose that D is m — (g)-logarithmic. Then, for all
r>1, D is m— (g")-logarithmic and, if m € N, we have that

Dpi1(g") € 7g" " Diiag) + (g")- (1.2)

Proof. First, we will prove that D is m — (g")-logarithmic for all » > 1. We proceed by
induction on r > 1. When r = 1, the result is obvious from the hypothesis. Let us suppose
that D is m — (¢"!)-logarithmic, i.e. Dg(g"t) € (¢"!) for all 3 < m. From the definition of
HS-derivation, for all j < m,

Di(g")= Y Ds(g"") Ds(g) € (g").
B+v=j

So, D is m — (g")-logarithmic for all » > 1. Now, we will prove (1.2) by induction on r > 1. It
is obvious for 7 = 1, let us suppose that D,,1(¢" ™) € (r — 1)¢" 2Dyni1(g) + (g ). From the
definition of HS-derivation,

Dyi1 (97) = Dimgr (97) 9+ Dina(9)g" "+ > Dy (9"") Do(9) € 79" ' Dinialg) + (g7)

B+y=m+1
By#0
and the lemma is proved. 0]
From now on, k will be a unique factorization domain and R = k[xy, ..., z4].

Proposition 1.2.11 If f g € R are coprime then, for alln € N, we have that
HSy.(log fg;n) = HSy(log f;n) N HSk(log g; n).
Proof.

D. Let D € HSi(log f;n) N HSk(log g;n). By definition, D;(f) € (f) and D;(g) € (g) for all
i <n. Then Di(fg) =>_5,,-; Ds(f)D+(g) € (fg), so D € HSi(log fg;n).
. Let D € HSi(log fg;n). This implies that D;(fg) € (fg) for all i < n. We will prove the

result by induction on . When i = 1, then Dy(fg) = D1(f)g+ D1(9)f € (fg) C (f), (9).
So, Di(f)g € (f). Since g and f are coprime, D;(f) € (f). For g is analogous.

Now let us assume that D;(f) € (f) and D;(g) € (g) for all i < n. By definition,

N

Dy(fg) = Du(f)g + Dulg)f + Y Ds(f)D5(9) € (fg) = Du(f)g + Dul9)f € (f9)

Bty=n
B:7#0

and we can proceed as in case ¢ = 1.
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Corollary 1.2.12 If f,g € R are coprime then, for alln € N,
[Dery(log fg;n) C IDerg(log f;n) N IDery(log g; n).

Proof. If 6 € IDery(log fg;n) then, there exists D € HSy(log fg;n) an n-integral of §. By
Proposition 1.2.11, D € HSy(log f;n) N HSk(log g; n) so, § € IDerk(log f;n) N IDery(log g;n).
0

In general, equality in Corollary 1.2.12 does not hold. For example, consider £ = Fy and
f =y and g = 2? — y two polynomials of k[x,y]. Then 9, € IDery(log f;2) N IDery(log g; 2), it
is enough to consider the k-algebra homomorphisms:

R — R[p: R — R[pl:
T = THN and x — zT4+p
y =y y = oyt

The first one is an f-logarithmic 2-integral of 0, and, the second one is a g-logarithmic 2-
integral of this derivation. However, 0, ¢ IDer(log fg;2). To see this, let us consider a generic
2-integral of 0,:
p: B — Rflpl,

r = T+p+ u2u2

y — y + vy’
Then,

p(fg) = y(a® —y) + (2*vs + y)u’.

In order for ¢ to be fg-logarithmic, x?vy +y € (fg). So, it should exist F' € k[z,y] such that
1?vy +y = F(2* — y)y but, if we consider the coefficient of y in this equality, we have that

1 =0

Corollary 1.2.13 Let fi,..., fm € R. If fi,f; are coprime whenever i # j then, for alln € N
we have:

HSy(log f1- - fm;n) = (), HSk(log fi;n) and IDerg(log fi -+ fim;n) C (), IDery(log fi;n).

Proof. The result is obtained thanks to Proposition 1.2.11 and Corollary 1.2.12 by induction
on m. 0

From now on, k will be a UFD of characteristic p > 0 and R = k[z1, ..., x4

Lemma 1.2.14 Let f be an irreducible polynomial, a > 1 and n € N. Let us consider D €
HSk(R;n) such that D;(f*)? € (f*) for all i < n. Then, D € HSi(log f*;n).

Proof. We write a = sp® where a = val,(a) > 0 is the p-adic valuation of @ and s > 1. By

Lemma 1.2.9,
Di p - s\ p& . al:
() { Dy (f)" i pi
Hence, if n < p*, we have the lemma. So, let us consider n > p®. Moreover, we can focus on
the case i = jp® < n. It is enough to show that D is m — (f)-logarithmic where m = |[n/p®|
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if n € N and m = oo if n = 0o because, if this is true, we have that D is m — (f*)-logarithmic
by Lemma 1.2.10, and D;(f*) = D;(f*"") = D;(f*)P" € (f?) for all i = jp* < n and we deduce
that D € HS,(log f%;n).

Let us consider j < m an integer. Since jp* < n we have that
D (f*Y" = Dy (f7°) € <fspa+1>‘ (1.3)

We proceed by induction on j > 1. If j = 1, Dy (f*) = sf*"1D;(f) by definition of derivation.
Taking into account the previous expression, we have that

a-+1

Dy (Y = s Dy e (g, (14
Since R is UFD and f,s # 0, Dy(f)*"" e <fpa+1> C (f) and hence D;(f) € (f).

Let us assume that D;(f) € (f) for all [ < j < m, ie. Dis (j — 1) — (f)-logarithmic.
Thanks to the hypothesis, we can use Lemma 1.2.10, and we have

D; (f*) = sf'Di(f) + Ff*

for some F' € R. Taking into account (1.3),
Sf(sfl)p”“Dj(f)pa“ + sz“rljfsfoc“rl c <fsp”+1> — Sf(sfl)pa“Dj (f)p““ c <fsp°‘+1> ‘

Observe that it is the same condition that (1.4), so we can deduce that D;(f) € (f).
U

Proposition 1.2.15 Let k be a UFD of characteristic p > 0 and R = klxy,...,xzq] the polyno-
mial ring over k. Let h be a polynomial of R. For alln € N, we have that

IDery(log h;n) = IDery, (log h”; np) .
Proof.

C. Let Dy € IDerg(logh;n) and D € HSg(logh;n) an integral of D;. If n < oo, from
Proposition 1.2.1, D is np-integrable, so let D" be an np-integral of D. If n = oo, we put
D" = D. Observe that D} = Dy so, if D' € HSy, (log h?; np) then Dy € IDery(log h?; np).
We have to see that D}(h?) € (h?) for all i < np.

By Lemma 1.2.9,
0 if pti
D! (hP) = } .
i (7) { Dy, (b i pli
Then, we can focus on ¢ = jp where 1 < j7 < n. Note that D;- =D, forall1 <j<n,so
D; (h?) = D}(h)? = D;(h)P € (h?). Therefore, D;(h?) € (k) for all i < np and we have
the inclusion.
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U

. Let Dy € IDery (log h?;np) and D € HSy (log h?;np) an np-integral of D;. Let h =
hi* ---h%m be the factorization of h in irreducible factors i.e., h; is irreducible and a; > 1
forall i = 1,...,m and h; # h; if i # j. Then, h{" and h;j are coprime whenever ¢ # 7,
and therefore, h{'", ... h%m? are coprime too. By Corollary 1.2.13,

D € HSy, (log h?; np) = ﬂ HSy, (log h*; np) .

Hence,
D;(hi")" = Djp(hi™") € (hi™")

for all 0 < j <n. By Lemma 1.2.14, 7,,,,,,(D) € HSy(log h{";n) for all i = 1,...,m. So,
Topn(D) € [\ HSk(log h{"; n) = HS(log h; n)

Therefore D; € IDery(logh;n).

O
Corollary 1.2.16 For all 7 > 0 and n € N, we have that
[Dery(log h;n) = IDery (log hP" in) .
Proof. By induction on 7 using Proposition 1.2.15. U

Proposition 1.2.17 Let k be a UFD of characteristic p > 0, R = k[xy, ..., z4] the polynomial
ring over k, h € R and 7 > 1. We denote A:= R/ (h*") and A" := R/(h). Then,

L (4) = {np™ | n € Leaps,(A")} if Dery, (logh) = Dery(R)
PSS T {np” | n € Leaps,(A)} U{p"}  if Dery (log h) # Dery(R).

Proof. By Corollary 1.2.4, s € Leaps;(A) if and only if the inclusion IDery (log h?";s — 1) 2
[Dery, (log hP": s) is proper. First of all, we will prove the next two equalities:

1. For s < p", IDery, (log h*"; s) = Dery(R).

The inclusion C is always true. Let D; € Derg(R) = IDerx(R) and D € HSi(R) an integral.
Since s < p7, for all j < s, p” 1 j. By Lemma 1.2.9, D, (hpT) =0¢c <hpT> for all 7 <'s. Then,
any derivation D; has a h? -logarithmic s-integral and the other inclusion holds. So, A does
not have a leap at s.

2. Let s be an integer such that np™ < s < (n+1)p” for some n > 1. Then, [Dery, (log hP": s) =
IDery, (log h?";np™).

Since s > np”, the inclusion C is true. Let D, € IDery (log hP": in). By definition there exists
an integral D € HSy, (log h*";np™) of Dy. By Proposition 1.2.1, we can consider D' € HSy(R; s)
an integral of D. Hence, for all j such that np™ < j < s < (n+ 1)p7, p” 1 j and, by Lemma
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1.2.9, D; (hpT) =0¢€ <hp7>. Since D; = D, for all [ < np”™, D' € HS; (log hpT;s). Therefore,
D, € IDery, (log hP": s) and A does not have a leap at s.

Thanks to these two equalities we know that the leaps are given on s = np” for some n > 1.
Let us suppose that s = p™. By Corollary 1.2.16 and the point 1.,

Dery (R) = IDery, (log hF s — 1) D IDery, (log R pT = s) = Dery, (logh) .

Hence, A has a leap at p” if and only if Derg(logh) # Deri(R). Now, let us consider s = np”
for n > 2. By Corollary 1.2.16 and the point 2.

[Dery, (log h;n — 1) IDery, (log hP"; (n — 1)p7) = IDery, (log hP":np™ — 1)

D IDery (log h?";np™) = IDery, (log h;n) .

Then, A has a leap at s = np” if and only if n is a leap of R/(h) and we have proved the result.
OJ

1.3 Multivariate Hasse-Schmidt derivations

In this section we recall a generalization of the HS-derivations and its group structure. This
generalization will be used in chapter 2. We also remember a particular multivariate HS-
derivation called external product of HS-derivations. Most of the result of this section can be
found in [Na3].

Throughout this section, k£ will be a commutative ring and A a commutative k-algebra. Let
¢ > 1 be an integer and let us call s = {s1,...,5,} a set of ¢ variables.

The monoid NY is endowed with a natural partial ordering. Namely, for o, 5 € N9, we define

a<pedyeNsuchthat f=a+v q; <G, Vi=1,...,q.

The support of a series a = Y a,s® € A[|s|] is Supp(a) := {o € N? | a, # 0}. The order
of a non-zero series a = ) a,s* € A[|s|] is

ord(a) := min{|a| | @ € Supp(a)}
and if @ = 0 we define ord(a) := oo.

Definition 1.3.1 We say that a subset A C NY is a co-ideal of NY if whenever o € A and
o < a, then o € A.

For example, for § € N9, ng := {a € N | a < 8} is a co-ideal of N¢.

Definition 1.3.2 For each co-ideal A C N%, we denote by A4 the ideal of A||s|] whose elements

are the series ) g 0oS” such that a, =0 if a € Ad.e. Ay = {a € A[[s|] | Supp(a) C A°}.

Let us denote A[|s||a := A[|s|]]/Aa. Note that if ¢ = 1 and A = {i € N|i < m}, then
Alls|]a = A[|s]]m. From now on, A will be a non-empty co-ideal.
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Definition 1.3.3 A (¢, A)-variate Hasse-Schmidt derivation ((q, A)-variate HS-derivation for
short) of A (over k) is a family D = (Dy)aea of k-linear maps D, : A — A, satisfying the
conditions:

Dy =1da, Da(zy) = Y Ds(w)Ds(y)

Btr=a

for all z,y € A and for all o« € A. We denote by HSL(A; A) the set of all (g, A)-variate
HS-derivations of A (over k) and HS{(A) for A = N«

For g =1and A = {i € N|i < m}, a (1, A)-variate HS-derivation is a HS-derivation of
length m in the usual way. Moreover, as in this case, for each ¢ > 1 and A C N? a co-ideal,
any (g, A)-variate HS-derivation D of A over k can be understood as a power series

Z D,s® C Endy(A)[|s|]a

aeA

and so we can consider HS} (A; A) C Endg(A)]s|]a-

Lemma 1.3.4 | , Corollary 1| Let k be a commutative ring, A a commutative k-algebra,
q > 1 an integer and A C N? a non-empty co-ideal. Then, HS{(A; A) is a group.

Namely, the group operation on HSJ(A; A) is explicitly given by
(D, E) € HS{(A; A) x HS](A; A) — Do E € HS}(A; A)

with

(Do E), = Z Dgo E,.
BHy=a

Let us denote
Homz_alg(A,AHSHA) = {f € Homy_a. (A4, A[[s]]a) | f(z) =2 mod (ng)s Vz € A}.

Lemma 1.3.5 | , 85| Let k be a commutative ring, A a commutative k-algebra, ¢ > 1 an
integer, s = {s1,...,8,} a set of ¢ variables and A a non-empty co-ideal. Then, the map

D € HS{(A;A) — |z € A Y Do(x)s”| € Homy ,,, (A, Alls]a)

acA

1S a group isomorphism.

Definition 1.3.6 Let R be a ring, g, m > 1, s = {s1,...,8.}, t = {t1,... .t} disjoint sets of
variables and A C N9 and V C N™ non-empty co-ideals. For each r € R]|s||a, 7" € R[[t|]v,
the external product r X1’ € R]|s U t|]axy is defined as

rXr = Z rar’ﬁso‘tﬁ.
(,B)EAXV




19

Proposition 1.3.7 [Na3, Prop. 6] Let D € HS{(A;A), E € HS]'(A; V) be HS-derivations.
Then, its external product DX E is a (s Ut, A x V)-variate HS-derivation.

Let us consider D, E € HS,(A). Then, its external product D X E € HS;(A) is given by
(DX E);j = D;o Ej for all (i,j) € N? and it is easy to prove the following result about its
inverse.

Lemma 1.3.8 Let D, E € HSy(A). Then, (DR E); ;) = Ej o D} for all (i, j) € N,

1.4 The action of substitution maps

In this section we recall the definition of substitution maps and its action on the group of
HS-derivations. Most of the result of this section can be found in [Na3, §6].

Let k be a commutative ring, A a commutative k-algebra, s = {sy,...,s,}, t = {t1,...,ta},
u = {uy,...,w} three sets of variables where ¢,d,l > 1 and A C N4, V C N? and 2 C N!
non-empty co-ideals.

Definition 1.4.1 An A-algebra map ¢ : Al|s||a — A[|t|]v will be called a substitution map if
ord(¢p(s;)) > 1 foralli=1,...,q.

Definition 1.4.2 We say that a substitution map ¢ : Al|s||a — A[|t|]v has constant coeffi-
cients if c; € k for all s € s and all § € V where

ds)= Y cpt? end(t)/VaC Altly
BeV,0<|B]

with ng'(t) = ker (Y, ant® € A[|t]] = ao € A). In particular, ¢ : Al|p|lm — Allulln has con-
stant coefficient if ¢p(u) = 2?21 a;p’ with a; € k for all i.

It is clear that composition of substitution maps (of constant coefficients) are also substi-
tution maps (of constant coefficients).

Proposition 1.4.3 [Na3, Prop. 10] For any substitution map ¢ : A[|s|]a — A[|t|]v, we have
that fo < Homzfalg(Aa AHSHA)? then ¢ © f < Homzfalg(Av AHt”V)

Notation 1.4.4 Let ¢ : A[|s|]a — A[|t|]v be a substitution map and D € HS{(A;A) a (¢, A)-
variate HS-derivation. We denote by ¢ @ D € HSY(A; V) the (d,V)-variate HS-derivation

determined by pgep = ¢ 0 @p. In terms of power series, we have:

beD—=ce (Z Dasa> =3 4() Da.

aEA acA

Remark 1.4.5 Thanks to the previous expression, it is easy to see that, if ¢ : A[|s||a — A[|t|]v
is a substitution map and D € HS{(log I; A) for any I C A an ideal, i.e. Dy(I) C I for all
a €A, then ¢ o D € HSY(log I; V).
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Examples 1.4.6 The operations defined in 1.1 are examples of substitution maps. Namely, let
D € HSi(A;m) be a HS-derivation of length m € N.

1. For eachx € A, v D = ¢ e D where ¢ : Al|u|lm — Al|p|]m is given by ¢(n) = xp.

2. Let 1 < n < m be an integer and let us consider the projection Ty, @ Allw|lm — Al|pl]n
(Ton () = ). Then, Tyn(D) = Tpp @ D.

3. For each integer n > 1, Din| = ¢ @ D where ¢ : Al|p|]lm — Allpt|]mn is the substitution
map given by ¢(u) = p".

Substitution maps of type 2. and 3. of Example 1.4.6 have constant coefficients. Moreover,
if a € k, the substitution map a e (x) of type 1. has constant coefficients too.

The following lemma comes from 8. and Prop. 11 of [Na3, §6].

Lemma 1.4.7 Let ¢ : Al|s||a — A[|t|]y and ¢ : A[|t|]ly — Al|ullq be substitution maps and
D, D" € HS{(A; A) HS-derwations. We have the following properties:

1. If ¢ has constant coefficient, then ¢ o (Do D) = (pe D)o (pe D).
2. pe(peD)=(po¢p)eD.

As a straightforward consequence we obtain the following corollary.

Corollary 1.4.8 Let D,D',... D' € HS,(A,m) be HS-derivations of length m € N. The
following properties hold:

1. Ifnek, thenne (D o---0D) = (ne DY) o---o(yeD.

2. Tym (DYoo DY) =7, (DY) o- 0T, (DY) for any 1 < n < m integer.
3. (D'o---0o D" [n|= D'n]o-- o D'n] for any n > 1.

4. D[nn'] = (D[n])[n'] for any n,n’ > 1.

Proposition 1.4.9 [Na3, Prop. 11] Let ¢ : A[ls|]a — A[|t|]]v be a substitution map of
constant coefficients. Then, (¢ @ D)* = ¢  D* for each D € HS}(A; A).

Thanks to this result we can easily show the following results:

Lemma 1.4.10 Let D, E € HSi(A;m) be two HS-derivations of length m € N such that
Tmm—1(D) = Tmm—1(E). Then, there exists 6 € Dery(A) such that D = E o (Id,0)[m)].

Proof. Let E* € HSig(A;m) be the inverse of E. From Proposition 1.4.9 we have that

Tmm-1(E*) = (Timm—1(E))* = (Tmm-1(D))* = Tmm-1(D*). So, E* o D = (I1d,0,...,0,0) €

HSk(A; m) with § € Derg(A) (by definition of HS-derivation) and hence, D = E o (Id, §)[m].
O

Lemma 1.4.11 Let D € HSy(A;m) be a HS-derivation of length m € N, n,s > 1 positive
integers such that n < m and I C A an ideal. The following properties hold:
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a. If D is n — I-logarithmic, then D* is n — I-logarithmic too.
b. If D is (n — 1) — I-logarithmic, then D*[s|] € HS(A;ms) is (ns — 1) — I-logarithmic.

c. If D is (n—1)—I-logarithmic, then D} = —D,,+ H,, where H,, is an I-differential operator
of order < n.

Proof.

a. We have that 7,,,(D) € HSi(log I;n). From Lemma 1.4.9, 7,,,(D*) = (Ton(D))" €
HSk(log I;n). Hence D* is n — I-logarithmic.

b. From a., D* is (n—1)—1I-logarithmic and by Lemma 1.1.18, D*[s] is (ns—1)—I-logarithmic
for all s > 1.

c. From a., D* is (n — 1) — I-logarithmic. Then, by Lemma 1.1.19, there exists H, an
I-differential operator of order < n such that (D o D*), = D! + D,, + H, = 0. So,
D} = —D,, — H, and we have the result.

O

Lemma 1.4.12 Let I C A be an ideal and ¢ : Al|p|lm — Al|p|]n a substitution map. Let us
denote B = A/I and ¢P : B[|u|]n — Bl|p|]n the substitution map induced by ¢. Then, for each
D € HSk(log I;m) we have that

¢" o (IMiys (D)) = Mg, (9@ D).

Proof. Let us write D = 77" Dip’ € End(A)|p]],n and ¢(p) = 3°7_; a;p’. Then,

peD=3 o(u'Di=) <Z>afl cag Dy mod it
=0

BEN” 6
|8]=1

where (;3) =dl/(B1!- - Bnl). So, if we denote J; = {8 = (B1,...,5,) e N* | Y7 sBs = j}, we
obtain that

qﬁoDzZ Z <|5|>afl~~ag’1D5| p € HSy(log I;n).
J=0 \peJ; B

Let us denote @ = a + I for all a € A. From the definition of the map Iljig ,, Ilf;s (¢ ® D) =
¢ e D € HS;(B;n) where

(e D)jla+1I)= (¢eD)y(a)+1=> (|5|

BeT; p

3 (I?)a—lm @Dy (a)

)afl cay"Dig(a) | +1
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where Ilfig . (D) = Y7 Dy’ € HSx(B;m). So,

GeD=Y" Z(!g!>a—lﬁl,,,mﬁn5m )

=0 \BgeJ;
On the other hand, ¢? (i) = Z?Zl @;1) and, analogously, we have that
¢ o (Mg, (D)) = ¢” (Z DiM) => oP(WDi=> | > (lﬁ! a” @Dyl | 1
i=0 i=0 j=0 \ BeJ;

Hence, we have the lemma.




Chapter 2

Leaps of modules of integrable
derivations

One of the main problems of the theory of HS-derivations is to know when a k-derivation is
n-integrable for some n € N. We know that if k is a ring of characteristic 0, i.e. Q C k, then any
k-derivation of a k-algebra is (oo-)integrable. The same happens when we consider derivations
of a 0-smooth algebra over any commutative ring k (Theorem 1.1.28). In this chapter, we will
assume that £ is a commutative ring of characteristic p > 0, i.e. F, C k and A is a commutative
k-algebra and we will prove that leaps of A over k only occur at powers of p. We start this
chapter with some previous and technical results.

2.1 Previous results

2.1.1 Numerical results

The aim of this section is to expose all the numerical results used in this chapter to facilitate
the reading of its content.

Lemma 2.1.1 Let p be a prime. Then, for all m such that 1 < m < p, there exists a finite
number of elements a; € Iy, (multiplicative group) such that

>,a;=1 modp
;a7 =0 mod p.

Proof. Note that p > 2. Since F) is a cyclic group, there exists g € F, a generator of
Fr = {g,9%...,9""' =1}. So, g # g™ forall m = 2,...,p — 1. We call aj = g and let us
consider h = ¢™ mod p with 0 < h < p. Then, we put a, =1 for i =1,...,p— h. In this case,

p—h p—h

S @)=+ 1=¢g"+p—h=0 modp

=0 =1

and

B
>
B
>

;:g—i— 1=g+p—h=g—h7é0 modp

23



24 Numerical results

because h = g™ and, if ¢ = h mod p then g = g™ mod p!!l. If we define a; = a,/(g — h), we
have the result.
O

Let us consider p a prime and n = e,p® + - -+ + e;p' a positive integer expressed in base p
expansion where 1 <t < s and 0 < ¢; < p with ey, e; # 0 (note that s and ¢ can be the same
and n is a multiple of p).

Lemma 2.1.2 Let p,n,t be as above. Then,

]Dt:min{mel\hr | (n> # 0 modp}.
m

n €s et
= e =e #0 mod
() = (5) (5) e o
so, p' is in the set described in the lemma. Now, consider 0 < m < p'. If we express m in base
p expansion, then m = nyp' + - - - + mo where | < t and m; # 0. In this case,

()= (2)-(2) 0

because (ngl) =0 mod p.

Proof. We know that

O

Lemma 2.1.3 Let p,n,t be as above and let us suppose that n is not a power of p. Then,
2pt < .

Proof. Let us consider p = 2. Since n is not a power of 2, we have s > t. Hence 2p' = p't! <
p* < p*+es1p* -+ p'=n. Let us assume that p > 3. If s > ¢ then, 2p' < p* <ep® <n
and we have the inequality. Otherwise, if s = t, we have e; > 2 because n is not a power of p.
Therefore, 2p' < e;pt = n.

O

2.1.1.1 Definition of digital root in base p

In this section we recall the definition of digital root of a positive number n in base p where p
is a prime. Although this construction is known we have not found any reference in books or
journals. From now on n will be a positive integer.

Definition 2.1.4 Let n = e,p® + -+ + eg be a positive integer expressed in base p expansion
where e; # 0. We define sy(n) :== Y7 ¢;.

Is is clear that if 1 <n <p—1, then sy(n) = n and if n > p, then s,(n) < n.
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Definition 2.1.5 For each j > 0, we define s)(n) := sp(sp(--- (sp(n)) -+ -).

j times

Lemma 2.1.6 If p is a prime and n a positive integer, there exists 5 > 0 such that sg(n) =
st (n). Moreover, if si(n) = sJ*'(n) then, si(n) = s;(n) for all J > j.

Proof. Ifn < p—1, n = s,(n). Hence, the lemma holds for j = 0. If n > p, then
sp(n) < n. So, if s,(n) < p— 1, then s2(n) = s,(n) and the lemma holds for j = 1. Otherwise,
s2(n) < sp(n) < n. By performing this process recursively, we obtain that s/(n) < p — 1 for
some j. So, s)(n) = sf,“(n)'and the lemma holds for this j. Moreover, if s7(n) = s7**(n), then
si(n) <p—1,s0s)(n) = s)(n) for all J > j.

O

Definition 2.1.7 Let p be a prime and n a positive integer. Let us consider j = min{l >
0| sb(n) = st (n)}. The digital root of n in base p is Ty(n) := s3(n).

For example, T5(10) = 1, T5(10) = 2, T5(10) = 2, 77(10) = 4 and 7,,(10) = 10 for all p > 11.

Lemma 2.1.8 Under the above conditions, T,,(n) =n mod p — 1.

Proof. Let us write n = e,p® 4+ --- 4+ e1p + eg. Taking this expression module p — 1, we have
that n = es+--- + €1 + ey = s,(n) mod p — 1. So, doing this process recursively, we obtain
that, for all j > 0, n = sg;(n) mod p — 1. Hence, T,(n) =n mod p — 1.

O
Lemma 2.1.9 For all x € F, and n > 1, we have that 2" = 2™ mod p.
Proof. Since T,(n) = n mod p — 1 (Lemma 2.1.8), there exists s € N such that n =
T,(n) + s(p — 1). Hence,

O
2.1.1.2 Definition of ¥, .

Throughout this section p, s, e, m will be integers such that p, s > 1. Although in principle we
do not impose any restrictions on e and m in the rest of the chapter they will always be positive
integers.

Definition 2.1.10 Let p, s, m,e be integers such that p,s > 1. Then, we define

C? . ={jieN|mp <ep}.

m,e,s

Lemma 2.1.11 Ife < m < ep®, then CP _ _is not empty and 0 < maxC? < s.

m,e,s m,e,s
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Proof. C? .+ () because j = 0 holds the inequality, so maxC? > 0. On the other hand,

m,e,s e,m,s

let us consider r > s, then
6p8 g epr‘ S mpr

so, r ¢ CP _ . and we can conclude that 0 < maxC? . < s.

,€,8 m,e,s

O

Lemma 2.1.12 Let us assume that e < m < ep® with m # 0 mod e and we denote r =

max C?, . .. Then, mp™™ — 1> ep®.
Proof. Since r = max (¥, , , we have that mp™ Tt > ep®. We will see that the equality never
holds. Suppose that mp"™' = ep®. From Lemma 2.1.11, r + 1 < s, so m = ep*~ Y but m is

r+1

not a multiple of e by hypothesis. Therefore, mp™™ > ep® and we have the result.

4

Let us consider p a prime and n = e,p® + --- + e,p' a positive integer expressed in base p
expansion where 1 <t < s and 0 < e; < p with ey, e; # 0.

Lemma 2.1.13 Let p,n,t be as above. For allm € N such that 2p' +1 < m < n+ 1, we have
0 <maxC}, ., <s.

Proof. Observe that 0 € C}, , 414> S0 these sets are not empty. Consider r > s, then
2p'+1)p" <(n+1p' e 2 +1)p" " =2p" +p" T <n+1.

The last inequality is false because n < p*™ < p", son+1 < p"+1 < 2p" + p"t. Hence,

4 : t
max Co g0, <8 Now, we consider m > 2p" + 1 and, as before, r > s, then,

(n+1)p" < (2p" + 1)p" < mp”

where the first inequality holds because max C’gpt sy S80S0, 1 & Chny1y for r > s. That
implies that max Cy, ., < s.
O

Lemma 2.1.14 With the above notation, let us assume thatn is not a power of p (note that n is
a multiple of p). For each integer m such that 2p'+1 < m < n+1, we denote rp,, = maxCy, ., ;.
Then, mp™™*tt —1 > (n+ 1)p'.

Proof. By definition, mp™ ™t > (n + 1)p'. We will see that the equality never holds. Let
us suppose that mp™* = (n + 1)p!. Since m < n + 1, we have that r,, + 1 > t. Then,
mp ™=t =n +1 so, n + 1 has to be a multiple of p!!! Hence, mp™ ™! —1 > (n + 1)p’.

O
To illustrate the set CF, , . we give some examples for different values of p, e, s and m:
p:278:1 p:2,522
o 2 | 3 " 1 2 3
e (&
1 {0} 0 0 1 {0,1} {0} {0}

N}

{0,1} {0} | {0} 2 {0,1,2} {0,1} | {0,1}
3 [{0,1,2} [ {0,1} [ {0} 3 [{0,1,2,3} | {0,1,2} | {0,1}
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p:378:1 p:37522
. ! 2 | 3 SN 2 3
1 {0} {0} 0 1 {0,1} | {0,1} | {0}
2 [{0,1} [ {0y [{o} 2 [{o0,1,2} | {o.1} [{0,1}
3 {0,1} [ {0,1} | {0} 3 [{0,1,2} [{0,1,2} | {0,1}

2.1.2 Some technical lemmas

Throughout this section, k& will be a commutative ring, A a commutative k-algebra and I C A
an ideal.

Lemma 2.1.15 Let D € HS,(A;n) be a HS-derivation of length n € N. For each m > 1, there
erists E € HS(A; (n + 1)m — 1) such that E,, = —D; and ((E;m) =n+ 1. Moreover, if D is
I-logarithmic, then E is I-logarithmaic.

Proof. We know that D' := ((—1) e D) [m] is a HS-derivation of length mn such that D! =
—D; and {(D’;m) = n. By Lemma 1.1.30, there exists an integral £ € HSg(A4; (n+1)m —1) of
D" with ¢(E;m) = n+1. So, this derivation satisfies the lemma. Moreover, if D is I-logarithmic

then D’ is also I-logarithmic and, by Lemma 1.1.30, F is I-logarithmic too.
O

Definition 2.1.16 For each D € HSi(A;n) and m > 1, we denote by EP™ € HSy(A; (n +
1)m — 1) a HS-derivation holding Lemma 2.1.15.

Lemma 2.1.17 Let e,i,m be integers such that e > 1, 1 > 1 and m > ie. Let D, FE €
HSk(A;m) be two HS-derivations such that {(D;e) =i > 1 and {(E) > ie. Then, for r < m,

we have
(D, if r < e
(DOE>7’_{DT+E7' ZfT:Z€+177Z€+<€_1>

Proof. We denote D' = Do E € HS(A;m). If 0 < v <'ie, then E, =0, so

D! = Z DgoE, =D, + i D,_,oE,.

B+y=r y=iet+l

Hence, if r < ie, D = D,. Let us consider r = ie + a < m where o € {1,...,e —1}. Then,
the previous equation can be written as

a
/
Die+a = Die+a + Z Da—’y O Lijetry-

7=1

Note that if v # «a, then 0 < o — v < e and, since ¢(D;e) > 1, D,—, = 0. That implies that
Dflie-l,-a - Die+a + Eie-l—a fOI“ al]. Q.

0
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Lemma 2.1.18 Let e, j,m be integers such that e > 1, 7 > 0 and m > je and let us consider
D, E € HSi(A;m) two HS-derivations such that ((D) = je and ((E;je) = [m/je|. Let us
denote D' := D o E € HSx(A;m). Then, ((D') > je, {(D';e) > {(Dse), D, = Dj. + Ej. and
for each i € N such that j < i < {(D;e), we have that, for r < m:

D, =D, ifr=ie+1,...,ie+ (e —1).

Proof. Since ¢(E;je) > 1, ¢(E) > je. From Lemma 1.1.9, [(D’) > je. Let us denote ¢(D;e) =
s> 7. Then, (s —1)e <m,so (s —1)/j = (s—1)e/je < [m/je]. Then, s —1 < [m/jelj, i.e.,
s/j < {(E;je). Hence, by Lemma 1.1.12, {(D’;e) > {(D;e).

By hypothesis, £, = 0 for all ¥ # 0 mod je so,

D,= Y DgoE,= Y DgoEj, (2.1)
B+y=r Btjer=r

If r = je, then ~ can only take the values 0 and 1, so D, = Dj. + Ej.. Let us consider i such
that j <i < /{(D;e) and r = ie+ o < m where o € {1,...,e—1}. Then, in the equation (2.1),
p=r—jey=(i—jvy)e+a. Hence, when v > 0, 5 < ie and it is not a multiple of e, so Dg =0
and the only non-zero term is when v = 0. That means D/ = Dijeyq for all a.

e+

O

Lemma 2.1.19 Let e,i > 1 be integers and m > ie +e — 1. Let us consider D', ... Dt €
HSk(A; m) an ordered family of HS-derivations such that {(D% ie+a) > 2 for alla =1,... ,e—2
and (D i ie+e—1) > 1. We denote D := D'oD?%o---0D*! € HSy(A;m). Then {(D) > ie+1
and

Die—i—a =D

fetq Wherea =1,... e—1.

Proof. Since ((D%ie+a) > 1forall a=1,...,e — 1, we have that {(D®) > ie +a > ie + 1
and, by Lemma 1.1.9, we can deduce that ¢(D) > ie + 1. Suppose now that r =ie +a < m
where a € {1,...,e —1}. From Lemma 1.1.3, we have that

D’”: ZDélo---oDZ;ll.
|Bl=r

Let us consider = (f1,...,8c_1) such that |3] = r. If there is b € {1,...,e — 1} such that
0 < B, < ie+b, then the term associated with (3 is zero so, we can consider 5, = 0 or 8, > ie+b
forallb=1,...,e—1.

Let us suppose that there exist b,0’ € {1,...,e — 1} such that 3, By > 0, then,

iet+a=1>0+ By >iet+b+ic+b > 2ie>rll

Hence, there is only one b € {1,...,e — 1} such that 8, # 0. Since £(D%ie + b) > 2 for all
b=1,...,e—2, we have that D} = 0 for all v =ie+b+1,...,2i(e +b) — 1 (or until m if
m < 2i(e+b)—1). So, in order for the term associated with § to be not zero, if b € {1,...,e—2},
By =ie+bor B = 0. On the other hand, if b =e —1 and 8, > ie+b = (i + 1)e — 1, then
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r=ite+a<(i+1le—1< !l So, B, =ie+bor f, =0. Hence, we can conclude that, if
By # 0, then 5, = ie + b and

Oy=te+b=tie+a=r<b=a.

Therefore, the only summand which is not zero is the one associated with 5 = (0,...,0,ie +
a,0,...,0) where ie 4 a is in the a-th position. So, Djerq = D, foralla=1,...,e — 1.

O

2.2 A special Hasse-Schmidt derivation

In this section, we consider k a commutative ring, A a commutative k-algebra and I C A an
ideal. We define a HS-derivation associated with another HS-derivation that will allow us to
prove that leaps only occur at powers of p.

Notation 2.2.1 Let D € HSy(A) be a HS-derivation. We denote BP := ¢e D € HSZ(A) where
o Allp]] = Allpa, p2|] is the substitution map of constant coefficients given by ¢(p) = pq + pa.

Lemma 2.2.2 Let D € HS;(A) be a HS-derivation. Then, B@j) = (iJZ.’j)DHj forall (i,7) € N2,
Proof. We can write D =} ., Dopu® C Endg(A)[|p[]. Then,

=¢°<2Dau“) > Dali+p2)*=> Do Y (?)uiu"é: > (i_;j>Di+juli/I;

a>0 a>0 a>0 i+j=a i+352>0

1+

So,

O

Lemma 2.2.3 Let D € HS,(A) be an (n— 1) — I-logarithmic HS-derivation. If i+ j < n, then

D
B, (I)C 1.

Proof. If i+ j <n, then D;;(I) C I, so BY S (1) = (") Disy(I) C I O

(7'7.7 7

Notation 2.2.4 Let D € HSy(A) be a HS-derivation. We denote FP = DX D € HS;(A), the
external product of D, and (FD)* € HS{(A) its inverse. Recall that (FD)(” = Dj o D; for all

(i,7) € N? (see Lemma 1.3.8).

Lemma 2.2.5 Let D € HSi(A) be an (n — 1) — I-logarithmic HS-derivation. If i,j < n, then
(FP)7. . (I)C 1.

(4,9

Proof. Since D is (n—1) — I-logarithmic, D* is (n — 1) — I-logarithmic too by Lemma 1.4.11,
a. So, (FP),, . (I)=DjoDi(I) C I. .
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Notation 2.2.6 For each D € HS;(A), we define GP :== BP o (FD)* € HSZ(A).

From now on, we fix D € HS;(A) and we will omit the superscript in the HS-derivations
defined before, so we will write G := G”, B := B and F := FP.

Lemma 2.2.7 For eachm > 0, we have that G0y = Gom) = 0 and G(1,m), Gm,1) € Dery(A).

Proof. First, we compute G, )

Gy = Z BioFj= Y BawoFso= Y. DaoDj =0

a+B=(m,0) a1+pfr1=m ar+pr1=m

The computation of Gg,) is analogous. Now, by definition of multivariate HS-derivation:

G(Lm)(wy> = Z Ga1,00) (%) G g1, BQ)(y)

a;+p1=1
az+B2=m

= Y Goan@)CumW + D Guan(®)Gos) ()
az+Pa=m az+LPa=m

= 2G1,m)(y) + Gm)(2)y-

To obtain the third equality, recall that G = Id and, thanks to the previous computation,
G(o,m) = 0 for all m > 1. It is analogous for G, 1).
O

Lemma 2.2.8 Let us suppose that D € HSg(A) is (n — 1) — I-logarithmic. We have the
following properties:

1. If0<i+j<mn, then Guj(I) C I.

2. If i and j are not zero and i +j = n > 0, then Ggj; = (?)Dn + H where H 1is an
I-differential operator of order < n.

Proof.

1. Ifi+j =0, then G5 = Id and, if ¢ = 0 or j = 0 then, G(; ;) = 0 so the result is obvious
and we can suppose that i, 5 > 0. We have that

Gy = Z Blayas) © Fi3, 8,)-

a1+p1=i
az+fr=j

Since 7 and j are not zero, 1 < 1,7 <n—1so, 1, 8 < n—1. Moreover, a1+ 1 +as+ s =
i4+7 < n,soa;+as < n. By Lemmas 2.2.3 and 2.2.5, the terms of the sum is /-logarithmic
and G; ;) is an I-differential operator.
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2. By definition,

Guj)= Y BaoF;=Bij+ > Blaray© Fispm)
a+B=(i,) Ofljggl:;
az+Po=
a#(‘?j)

= ()D + Z (()é1+042> a1+a20DEQOD;1.

a1 +pB1=i
ag+B2=j

If a # (i,7), then oy < i or ag < jso, o+ < i+j = nand, by Lemma 2.2.3, B,(I) C I.
Moreover, B, is a differential operator of order < |a|. On the other hand, £, < n
because 7, j < n. Hence, Fj5(I) C I (Lemma 2.2.5) and, since D}, is a differential operator
of order f; for i = 1,2, we have that Fj is an [-differential operator of order < |3]. Hence,
we can conclude that the sum is an ] differential operator of order < n.

O

In the rest of this section, k& will be a commutative ring of characteristic p > 0 (i.e. F, C k),
A a commutative k-algebra and I an ideal of A. Let n = e,p® + -+ - + e,p' be a positive integer
expressed in base p expansion where 1 <t < s and 0 < ¢; < p with ey, e; # 0 (note that ¢ and
s could be equal). Thanks to Lemma 2.1.2, we can prove the next result.

Lemma 2.2.9 With the above notation, let us consider i,j > 0 such thati+j =n and 1 < p'.
If D € HSi(A) is (n — 1) — I-logarithmic then, G ;(I) C I.

Proof. By Lemma 2.2.7, if ¢ = 0 or j = 0, then G(; ;) = 0 so, it is an /-differential operator. If
i,j > 1, by Lemma 2.2.8, G; ;) = (7;) D,, + H where H is an [-differential operator. By Lemma
2.1.2, (T:) = 0 and we have the result.

O

Let us consider the following substitution map of constant coefficients:

" Allpa, pe]] — Allp]
po o

) — oy

Notation 2.2.10 Let p be a prime and n = e p®+---+ep' a positive integer expressed in base
p expansion where 1 <t < s and 0 < e; < p with es,e; # 0. Let D € HSi(A) be a HS-derivation
and let us consider GP € HS}(A) defined in 2.2.6. We define GPP' = 7o (i1t (gppt e GP) €
HSy, (A4; (n+ 1)p").

Lemma 2.2.11 Under the condition of Notation 2.2.10, £(GD’pt) > 2pt + 1. Moreover, if
D € HS(A) is (n — 1) — I-logarithmic then, GP*" is ((n + 1)pt — 1) — I-logarithmic and

Ga’il = (”t)Dn + H where H is an I-differential operator of order < n.
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Proof. Note that

t t t i4pti a
o= [ X pint) = X clt i (e

(i,5)EN? (i,5)EN? 20\ (4,5):(p'+1)i+p'j=c

Since Gﬁ,j) =0 if ¢ or j is zero (Lemma 2.2.7), we have that Gé)’pt = Id and for all a > 1,

Dpt _ D
Gbr — Z G-

(i,9):(p* +1)i+p' j=a
1,770

If @ < 2p' + 1 then there is not (7,5) € N? with 4,5 # 0 such that (p' + 1)i + p'j = «, so
GaD’pt = 0. Hence, /¢ (GD’pt) > 2p' + 1. Now, we will suppose that D is (n — 1) — I-logarithmic
and will prove the rest of the lemma.

Let us consider a pair (i,7) € N? with 4,5 # 0. If i + j < n, then G ; is an I-differential
operator by Lemma 2.2.8. So, we have to focus on the case when ¢ +j = n+1[ where [ > 0. We
have

(P +1)i+pj=p(+j)+i=p'(n+1)+1
If I > 0, then p'(n+1)+i > p'(n+1) > p'(n+1). So, G ; ;) does not appear in any

component of GP#',
If I =0, then p'n+1i < (n+ 1)p" if and only if i < p*. So, G ) appears in some component

of GP*" if i < p'. By Lemma 2.2.9, GLZ’J (I) C Iifi<p On the other hand, 1f i = pt, then

j=n—p and (p'+1)p'+p'(n—p') = (n+1)p". Hence, G np) ) is a term of G( r
the only component that could be not I-logarithmic. So, GP*" is ((n+1)p* — 1) — I-logarithmic

and

) . and it is

D
Gor =GP

(nt1)p ot n—pt) tsome I-diff. op. of order <n = (nt> D,+some I-diff. op. of order <n
7 p
where the last equality holds because of Lemma 2.2.8.

O

2.3 Some partial integrability results

In this section, k will be a commutative ring of characteristic p > 0 (i.e. F, C k) and A a
commutative k-algebra. We will give some results about leaps of A over k. Namely, we prove
that A does not have leaps at integers which are not a multiple of p and either at the first
multiple of p which is not a power of p.

Lemma 2.3.1 Let k be a commutative ring and m an integer tnvertible in k. Then, any
HS-deriwvation of length m — 1 is m-integrable.
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Proof. Since A is a k-algebra, we can write A := R/I where R is a polynomial ring (in an
arbitrary number of variables) and I C R an ideal. Let D € HSx(A;m — 1) be a HS-derivation
of A of length m — 1. Then, there exists D € HS;(logI;m — 1) such that IT{ig (D) =
D (see Proposition 1.2.2). Thanks to Proposition 1.2.1, we can integrate D. So, we have

E € HSi(R;m) such that 7, ,,—1(F) = D. From Lemma 1.1.23, there exists an [-differential
operator H of order < m such that ¢,,(E) = mE,, + H € Derg(R). Then,

E' :=FEo((—1/m)e(Id,e,,(E)))[m] = (Id, Ey, ..., Epn_1,—(1/m)H) € HSy(log I; m).

So, Iig,, (E') € HS,(A;m) is an m-integral of D.
U

Remark 2.3.2 If k is a ring of characteristic 0 then, this lemma allows us to prove, in a
different way, that Leaps,(A) = 0 for any k-algebra A.

Corollary 2.3.3 If k has characteristic p > 0 and m # 0 mod p then, IDerp(A;m — 1) =
IDer,(A;m), i.e. m & Leaps,(A).

Proof. If m # 0 mod p, then m is not a multiple of p, so m is invertible in k. Let us consider
d € IDer(A;m — 1). By definition, there exists D € HS;(A;m — 1) such that D; = §. From
Lemma 2.3.1, D is m-integrable, so there exists D’ € HSx(A;m) such that 7, ,,—1(D’) = D, in
particular D] = 0. Hence, § € IDery(A;m), so IDery(A;m — 1) C IDery(A;m). Since the other
inclusion always holds, we have the equality.

U

Proposition 2.3.4 Let k be a commutative ring of characteristic p =2 and A a commutative

k-algebra. Then, IDery(A;5) = IDeri(A;6).

Proof. We can write A := R/I where R is a polynomial ring and / C R an ideal. By Corollary
1.2.4, IDery(A;5) = IDerg(A;6) if and only if IDery(log I;5) = IDery(log I;6). The inclusion
IDerg(log I;6) C IDerg(log I3 5) is always true, so let § € IDerg(log I;5) be an I-logarithmically
5-integrable k-derivation and let us consider D € HSy(log I;5) a 5-integral of §. By Proposition
1.2.1, we can integrate D up to oco. So, we have D = (Id, Dy, ..., Ds, Dg,...) € HSk(R) an
integral of § which is 5 — I-logarithmic. Let us consider G := GP € HS:(R) defined in 2.2.6.
By Lemma 2.2.8, G; j)(I) C I for all i + 35 < 5. Moreover, G4y = (S)D6 + H = Dg+ H where
H is an [-differential operator of order < 6.

On the other hand, by definition of multivariate HS-derivation and Lemma 2.2.7:

G(274)(xy): Z Ga(z)Gs(y) = Z G(al,QQ)(x)G(51752)(y>
a+pB=(2,4) a1+51=2
Otz+52
= > G(zaz )G 0,80 (Y Z G(ltm )G (1,6,)(y)+
az+Pa= az+PB2=
+ > G(0a2 )G 2,6,) ()
az+p2=4

= Goy@)y+Gan(®)Gaz(y) + Gz (x)Gan(y) + Guoy(r)Gaz () + 2G e (y).
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Since G(1;) € Dery(A) by Lemma 2.2.7,

GunGag(zy) = Gay (Gags(x)y+2Gas(y))
= GunGuz(@)y+ Gas(r)Gany) +Gan(@)Gas)(y) + 1Ga1Gas)(y).

Let us consider D} = G(2.4)—G(1,1)G 13- Then, Di(zy) = Diy(x)y+ G2 (2)G1,2)(y) +xD5(y).
So, since G(1,2) € Der;(R) by Lemma 2.2.7, we have that

D = (Id, G(Lg), G(274) — G(171)G(173)> € HSk(R, 2)

Moreover, D’ is 1 — I-logarithmic and G1,1)G(1,3) is an [-differential operator of order < 6, so
D), = Dg + H' where H' is an [-differential operator of order < 6. Then,

D// = Too,6<D) o D/[B] = (Id, D17 ey DG + D3G(1:2) + D6 + H,)
= (Id, Dl, cey D3G(172) + Hl) S HSk(lOg I, 6)

Hence, IDer,(log I;5) = IDer,(log I;6) and we have the proposition.
U

Theorem 2.3.5 Let k be a commutative ring of characteristic p > 0 and A a commutative k-
algebra. Letn > 1 be an integer such that T,,(n) # 1 (see Definition 2.1.7). Then, IDerg(A;n—
1) = IDerk(A, n).

Proof. Since A is a k-algebra, we can see A = R/I where R is a polynomial ring (in an arbitrary
number of variables) and I C R an ideal. By Corollary 1.2.4, A does not have leap at n if and
only if IDerg(log I;n — 1) = IDerg(log I;n). The inclusion IDerg(log I;n — 1) D IDerg(log I; n)
is always true. Let us consider § € IDerg(log I;n—1) and D € HSi(log I;n—1) an integral of .
By Proposition 1.2.1, we can integrate D up to n. So, we redefine D = (Id, D, ..., D,_1,D,) €
HSi(R;n) as an integral of the previous D and we obtain an integral of § which is (n — 1) — I-
logarithmic.
Let us consider (a;); a solution of the system of Lemma 2.1.1 where m = T,,(n). Then,

E:=o0;(a;eD) = (Id,ZaiDl,...,Za?Dn —|—H> where H := Z 0; (afiD5i> )

|B]=n:
Bi<n Vi

By Lemma 2.1.9, Y al = Za?(”) = 0 mod p. Moreover, since Dg(l) C [ for all 5 < n, we
have that H is an [-differential operator of order < n. So, since > a; =1 mod p,

E = (Id, Dy,...,H) € HSi(log I;n).
Therefore, § € IDery(log I;n) and, by Corollary 1.2.4, IDery(A;n — 1) = IDery(A;n).
O
Corollary 2.3.6 Let k be a commutative ring of characteristic p > 3 and A a commutative
k-algebra. Then, IDery(A;2p — 1) = IDerg(A; 2p).
Proof. Since T,(2p) = 2, we have the result by Theorem 2.3.5. O
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2.4 Integrating the first non-vanishing component of a
Hasse-Schmidt derivation

In this section, k will be a commutative ring, A a commutative k-algebra and I C A an ideal.
We calculate an integral of the first component of a HS-derivation that could be not zero which
will be the key to prove the main theorem of section 2.5.

Hypothesis 2.4.1 Let a > 1 and p > 2 be integers and I C A an ideal. We say that A
satisfies the condition H;{,a if for all M € N, not a power of p with 1 < M < p*, then
[Derg(log I; M — 1) = IDery(log I; M).

Remark 2.4.2 Note that I can be A. In this case, the condition in Hypothesis 2./.1 is
IDery(A; M — 1) = IDer(A; M).

Lemma 2.4.3 1. If A satisfies H], for some a > 1, then A satisfies H] , for all 1 < s < a.
2. If char(k) = p > 0, then A satisfies H}!,.

3. If char(k) = p > 0 and A = k[x; | i € Z], the polynomial ring in an arbitrary number of
variables, then A satisfies H;l for all ideals I C A.

Proof.

1. It is obvious.

2. If 1 < M < p, then M can not be a multiple of p, so M # 0 mod p. From Corollary
2.3.3, IDery(A; M — 1) = IDery(A; M) and we deduce that A satisfies H!.

3. From Corollary 1.2.4, we have that [Der(log I; M — 1) = IDery(log I; M) if and only if
A/I does not have a leap at M, i.e. if IDery(A/I; M — 1) = IDery(A/I; M). Since A/I
satisfies Hlf {I, for all M € N, with 1 < M < p, we have the last equality, so A satisfies
HI..

p,1

O

From now on, k will be a commutative ring, A a commutative k-algebra, I C A an ideal
and p > 2 an integer.

Lemma 2.4.4 Let us assume that A satisfies H]f,l. Lete > 1 and 0 < i < p be integers. For
each (ep — 1) — I-logarithmic HS-derivation D € HSg(A;ep) such that {(D;e) = i, there exists
an (ep — 1) — I-logarithmic HS-derivation D" € HSg(A; ep) and an I-differential operator H of
order < ep such that {(D';e) > i+ 1, D, = D, for all v <ie and D, = D, + H.

Proof. Since {(D;e) = i > 1, from Lemma 1.1.13, we have that Dj.;, € Dery(logI) for
all « = 1,...,e — 1 and, thanks to the condition H]fjl, we know that all derivations are I-
logarithmically (p — 1)-integrable. Let D® € HSg(logI;p — 1) be an integral of Djeiq, i.e.
D¢ = Dieiq, and consider EP"te ¢ HSy(logI; (ie + a)p — 1), defined in 2.1.16, for all
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o =1,...,e—1. By Lemma 2.1.15, EZ*** — _D, ., and ¢(EP™te: je 4 o) = p. That

) et
means that EjD P =0 for all j #0 mod (ie + ).

Since (ie + a)p — 1 > iep > ep, we can truncate all these derivations until length ep. We
denote A
B .— Tlieta)p—T.ep (ED 7ze-l—oz) )

Note that Ef., , = —Dic1o and Ef = 0 for all j # 0 mod (ie+a), so ((E%;ie+a) = [ep/ie+a].
Moreover, {(E®, ie + «) > 2 for all a because ie + a < (i + 1)e < ep.

By Lemma 2.1.19, if we denote £ := E' o E?o--- 0 E°! € HS(log I; ep), we have that
((E) >ieand Ejepq = ES = —Djeyq foralla=1,...,e — 1. Let us consider D' = Do E €
HSy.(A; ep). From Corollary 1.1.20, D" is (ep — 1) — I-logarithmic and D;, = D, + H where
H is an [-differential operator of order < ep. Moreover, from Lemma 2.1.17, D! = D, for all
r <ideand D, = Dicyoa + Eicya =0fora =1,...,e =1, 50 {(D";e) > i+ 1. Hence, D'

satisfies the lemma.
O

Lemma 2.4.5 Let us assume that A satisfies Hzil' Let e > 1 be an integer and D € HSi(A; ep)
an (ep — 1) — I-logarithmic HS-derivation such that ¢(D) > e. Then, D, is p-integrable and
there exists a (p—1) —I-logarithmic integral D" € HSy(A;p) of D. and an I-differential operator
H of order <p such that D, = D, + H.

Proof. First note that D,, is a differential operator of order < p by Proposition 1.1.10. This
result is trivial if e = 1, so we will suppose that e > 1. We proceed by decreasing induction on
¢(D;e). Note that 1 < ¢(D;e) < p because £(D) > e and, by definition, ¢{(D;e) < [ep/e]| = p.

If ¢(D;e) = p, by Lemma 1.1.14, there exists D' € HS,(A;p) such that D! = D, for all
r=1,...,p. Since D is (ep — 1) — I-logarithmic, D.(I) = D,.(I) C I for all r < p, so D’ is
(p — 1) — I-logarithmic. Moreover, D, = D, so, D' satisfies the lemma. Now, let us assume
that any HS-derivation with /(%) > e and f(x;e) > ¢ + 1 where 1 < i < p holds the result and
we take a HS-derivation D such that ¢(D) > e and ¢(D;e) = i.

By Lemma 2.4.4, there exists an (ep — 1) — I-logarithmic HS-derivation D’ € HS,(A;ep)
and an [-differential operator H of order < ep such that ¢(D";e) > i + 1, D, = D, for all
r <ie and D, = D, + H. Since £(D') > e, because {(D';e) > i+ 1 > 1, we have that D,
is a differential operator of order < p and, since D, has also order < p, H has order < p.
Moreover, we can apply the induction hypothesis, so there exists an I-differential operator H’
of order < p and a (p — 1) — I-logarithmic integral D" € HSy(A;p) of D, = D, such that
D} =D, + H = D, + H + H'. Hence, we have the lemma.

OJ

Lemma 2.4.6 Let us assume that A satisfies H;{,a for some a > 1. Let e, s, m be integers such
that 1 < s <aandl <e<m <ep’. We denote r := max C’ﬁ%evs (see Definition 2.1.10) and
we consider 6 € IDery(log I;p"). We have the following properties:

1 If m = 0 mod e, then there exists E € HSy(logI;ep® — 1) such that E,, = —§ and
U(E;m) = [ep® —1/m].
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2 If m #0 mod e, then there exists E € HSy(log I; ep®) such that E,, = —6 and ((E;m) =
[ep®/m].

Proof. By Lemma 2.1.11, we have that 0 < r < s < a, so p"*! < p® Thanks to the condition
H] ,, we have that ¢ € IDery, (log I;p") = IDer; (log I;p"*' —1). Let D € HS; (log I;p"' — 1)
be an integral of . Let us consider EP™ € HSy (log I, mp™t — 1) where EP™ = —§ and
C(EP™ m) =pt ie. EP™ =0 forall @ #0 mod m.

On the other hand, from the definition of r, mp"™*' —1 > ep® — 1. Hence, if m = 0 mod e,
then £/ = TmprJrl_l’eps_l(ED’m) satisfies the lemma. Otherwise, if m # 0 mod e, by Lemma
2.1.12, mp™™ — 1 > ep®. So, E = Tpprt1_1 cps (EP™) satisfies the lemma.

O

Lemma 2.4.7 Let us assume that A satisfies H;{,a for some a > 1. Let e, s, m be integers such
that1 < s <aand1 < e <m < ep® and we denote r := maxC?h _ .. Let D € HSy(log I;ep®—1)

be a HS-derivation such that £(D) > m and D,, € IDery(logI;p"). Then, there exists D' €
HSk(log I;ep® — 1) such that 6(D') > m+ 1 and D, = D, for allao =m+1,...,2m — 1.

Proof. If D,, =0, we put D’ = D and we have the lemma. Let us assume that D,, # 0. If
m = 0 mod e, by Lemma 2.4.6, we have £ € HSy(logI,ep® — 1) such that E,, = —D,, and
U(E,m) = |ep® —1/m]|. If m # 0 mod e, by Lemma 2.4.6, we have E' € HS,(log I, ep®) such
that £}, = —D,, and £ (E';m) = [ep®/m], that means £ = 0 for all j # 0 mod m. So, let us
consider E = T.ps eps—1 (E') € HSi(log I;ep® — 1). Then, E,, = —D,, and E; =0 for all j # 0
mod m, i.e. {(E;m) = |ep® —1/m].

Hence, we can apply Lemma 2.1.18 to D' = Do E' € HSi(log I; ep® — 1) in both cases. Then,
(D) > m and

D :{ D, +FE, ifa=m
o D, ifa=m+1,....2m—1.

Since E,, = —D,,, D!, =0 and hence, ¢(D’) > m + 1 and D’ satisfies the lemma.
O

Theorem 2.4.8 Let us suppose that A satisfies H;a for some a > 1. Let e,s > 1 be two
integers such that s < a and let us consider an (ep® — 1) — I-logarithmic HS-derivation D €
HSk(A; ep®) with £(D) > e. Then, there exists an integral D' € HSy(A;p®) of D, and an I-
differential operator H of order < p* such that D' is (p*—1)—I-logarithmic and Dy = Deps +H.

Proof. We prove the result by induction on s > 1. Observe that if s = 1, we have the theorem
from Lemma 2.4.5. So, let us assume that the theorem is true for all j such that 1 < j < s < a.
Moreover, we can suppose that e > 1 (if e = 1 the theorem is trivial). We will divide this proof
in several lemmas:

Lemma 2.4.9 Let D € HSi(log I;ep® — 1) such that {(D) > m with 1 < e < m < ep®.
Then, D,, € IDery(log I;p") with r = maxCP . < s.

Proof. By Lemma 2.1.11, we have that 0 < r < s. We rewrite D = T,ps_1mpr (D) €
HSy.(log I;mp") (note that mp” < ep®—1 by definition of C%, _ ). If r = 0, then it is obvious

that D,, is I-logarithmically p"-integrable. Let us suppose that » > 1. Then, since 1 <r <
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s < a, by the induction hypothesis of the theorem, there exists D’ € HS;(A; p") an integral
of Dy, such that D" is (p" — 1) — I-logarithmic and D, = Dy + (some I-diff. op.). But
D, is an I-differential operator, so D’ is I-logarithmic too and D,, is I-logarithmically
p’-integrable.

Lemma 2.4.10 Let D € HSi(log I;ep®—1) such that {(D) > e > 1 and {(D;e) =i < p®.
Then, there exists D' € HSy(log I;ep® — 1) such that ¢(D') > ie and D!, = D, for all
a=1te+1,...,ie+e—1.

Proof. Note that the only components that can be not zero before ie + 1 are those that
are in the multiples of e. If (D) > ie then the lemma is obvious, otherwise ¢(D) = je
for some 1 < 5 <i. We will prove the result by decreasing induction on 1 < j <.

Let us assume that ¢(D) = ie. By Lemma 2.4.9, D,. € IDerg(log;p") where r =
max Cj, ., < s. From Lemma 2.4.7, there exists D' € HSy(log/;ep® — 1) such that
((D') >ie+1and D = D, for all &« =ie+1,...,min{ep® — 1,2ie — 1}. Note that
ie + e — 1 < min{ep® — 1,2ie — 1}, so D' satisfies the lemma. Let us suppose now that

the lemma is true for all derivations with ¢(x) > je and we will prove it for 1 < j < i.

By Lemma 2.4.9, Dj. € IDer.(log I;p") where r = maxC%, < s. From Lemma 2.4.6,
there exists £ € HS;(log I; ep®—1) such that E;. = —D;. and {(E; je) = [ep®*—1/je] > 1.
We can apply Lemma 2.1.18 to D and E and we obtain D' = Do E € HS(log I, ep® — 1)

such that ¢(D") > je, {(D’;e) > ¢(D;e) =i and

D! =

[0}

Dje + Eje if a = je
{Da foralla =ie+1,...,ie+e—1.
Since ((D;e) = i, there exists a € {1,...,e — 1} such that D;.;, # 0 and, since D, , =
Dicq, we have that ¢(D’; e) = i. Moreover, E;e = —Dj., so {(D") > je+1, but {(D’;e) >
j, therefore ¢(D') > (j + 1)e. Now, we can apply the induction hypothesis. Hence,
there exists D” € HSy(log I;ep® — 1) such that ¢(D") > ie and D!, = D! = D, for all
a=1te+1,...,7%e+ e — 1 and we have the lemma.

Lemma 2.4.11 Let D € HSy(log I;ep® — 1) be a HS-derivation such that (D) > ie with
1 <i < p® Then, for alla = 1,...,e — 1 there exists E“ € HSi(log I; ep®) such that
ES o= —Dicia and ((E%;ie + ) = [ep®/ie + a].

Proof. If {(D) > (i + 1)e, then D;eiq = 0 for all @ = 1,...,e — 1 and we have the
result, it is enough to put E* = 1. Let us suppose that ¢(D) = (i + 1)e — 1. By Lemma
2.4.9, D(i11)e—1 € IDery(log I;p™—1) where 7._; = max Cf’z.ﬂ)e_l’w. Since (i+1)e—1#0
mod e, Lemma 2.4.6 give us the result. Let us assume that the lemma is true for all HS-
derivations such that ¢(x) = ie + f with 1 < j < § < e — 1 and we take a HS-derivation

D € HSi(log I;ep® — 1) such that ¢(D) = ie + j.
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As before, from Lemmas 2.4.9 and 2.4.6, there exists E/ € HSy(logl;ep®) such that
B ;= —Dicyj and ((E7;ie + j) = [ep®/ie + j]. We can apply Lemma 2.1.18 to D and
E = Tops eps—1(E7) obtaining D' = D o E € HSi(log I;ep® — 1) such that ¢(D’) > ie +j
and ‘ . .
D,:{DQ—FEQ ifa=1e+y
« D, ifa=ie+j+1,..., min{ep® —1,2(ie+j) — 1}.

Note that ie+e—1 < min{ep®—1,2(ie+j)—1},s0 D, = D, for all @« = ie+j+1,... ie+

e — 1. Since Ejetj = —Djerj, {(D') > ie + j and we can use the induction hypothesis on
D’ obtaining that, for all @ = j +1,...,e — 1, there exists E* € HS,(log I; ep®) such that
Ef o =-Di . o= Do and {(E*) = [ep’/ie + a]. So, we have the lemma.

o

Lemma 2.4.12 Let D € HS,(A;ep®) be an (ep® — 1) — I-logarithmic HS-derivation with
1 < {(D;e) =1 < p*. Then, there exists an (ep® — 1) — I-logarithmic HS-derivation
D' € HSi(A; ep®) and an I-differential operator H of order < ep® such that {(D’;e) > i+1,
D%, = Dj for all j <i and D,,. = Deps + H.

Proof. Since ¢(D;e) = i, there exists D;cyo # 0 for some a € {1,...,e — 1} and
D; = 0 for all j # 0 mod e with j < ie. Hence, if we consider D7 = 7ps ps_1(D) €
HSy.(log I;ep® — 1), we have that D} = 0 for all j # 0 mod e with j <ie and D}, , =
Djera #0. So, £(D7;e) =i > 1. In this case, {(D7) > e.

By Lemma 2.4.10, there exists D' € HSy(log I; ep® — 1) such that ¢(D’) > ie and Dj,, , =
Dijeio for all @« = 1,...,e — 1. By Lemma 2.4.11, for each a = 1,...,e — 1, there
exists £ € HSi(log I;ep®) such that B, , = —D;. ., = —Djco and {(E%ie + o) =
[ep®/ie+ . Note that ie+a < ep® so, [ep®/ie+a] > 2. By Lemma 2.1.19, if we denote
E=FE'o---0E“' € HSi(log I; ep®), then {(E) > ie+ 1 and Ejeio = B, = —Djcsa.

Now, we consider D" = D o E € HSg(A;ep®). By Corollary 1.1.20, D" is (ep® — 1) — I-
logarithmic and there exists an I-differential operator H of order < ep® such that D¢, =

D.,s + H. On the other hand, by Lemma 2.1.17, we have that

D — Dﬁ 1f6§ze
B Dg+Es if=ie+1,...ie+e—1.

Hence, D = 0 for all 3 =ie+1,... ie+e—1so0, {(D";e) > i+ 1. Therefore, D" satisfies
the lemma.

Now, with the help of the previous lemmas we will finish the proof of Theorem 2.4.8. We
show this result by decreasing induction on 1 < ¢(D;e) < p°.

If ¢(D;e) = p®, by Lemma 1.1.14, there is D’ € HS,(A;p®) such that D! = D, for all
a < p*. Then, D' is a (p* — 1) — [-logarithmic p*-integral of D, with D}, = D+ and we have
the result in this case. Let us assume that the theorem is true for HS-derivation with £(x;e) > i
for 1 < i < p® and we take a HS-derivation D € HSy(A;ep®) with ¢(D;e) = 1.
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By Lemma 2.4.12, there exists an [-differential operator H of order < ep® and (ep® —1) — I-
logarithmic HS-derivation D’ € HSi(4; ep®) such that £(D";e) > i+1 (so ((D') > e), D,; = De;
for all j <iand D;,s = Deps +H. Observe that Dy and D, . are differential operators of order
< p® because {(D),{(D") > e (see Proposition 1.1.10). So, H has order < p®. By induction
hypothesis, there exists an integral D” € HSy(A;p®) of D!, = D, and an [-differential operator
H' of order < p® such that D" is (p® — 1) — I-logarithmic and D}; = D, .+ H' = Deps + H+ H'.
Hence, we have the result.

O

Corollary 2.4.13 Let us suppose that A satisfies H;a for some a > 1. Let e,;s > 1 be two
integers such that s < a and let us consider D € HSi(log I; ep®) with (D) > e. Then, D, is
I-logarithmically p®-integrable.

Proof. Since D is (ep® — 1) — I-logarithmic, we can apply Theorem 2.4.8. Then, there exists
an integral D’ € HS,(A; p®) of D, and an I-differential operator H such that D’ is (p® —1) — I-
logarithmic and D), = Deys + H. Since Dgys(I) C I, we have that D' € HSy(log I;p°) and we
have the result.

U

2.5 Leaps in positive characteristic

In this section we prove the main theorem of this chapter, we show that, any k-algebra, where
k is a ring of characteristic p > 0, only has leaps at powers of p.

Theorem 2.5.1 Let k be a commutative ring of characteristic p > 0 and A a commutative
k-algebra. Then, Leaps,(A) C{p” | 7 > 1}.

Proof. It is enough to show that n & Leaps;(A) for n a multiple of p, not a power of p because,
if n # 0 mod p, by Corollary 2.3.3, we have that IDer;(A;n — 1) = IDerg(A;n). We will prove
this theorem by induction on n multiple of p, not a power of p. We have two different base cases,
when p = 2 and p # 2. In the first case, we have to prove that IDery(A;5) = IDer(A; 6), which
is Proposition 2.3.4. In the second one, we have to prove that IDery(A;2p — 1) = IDery(A4;2p),
which is Corollary 2.3.6. This concludes the base step. Let us assume that for all m < n not a
power of p, IDery(A;m — 1) = IDerg(A; m) and we will prove the equality for n, a multiple of
p, not a power of p.

Since A is a k-algebra, we can express A = R/I where R = k[x; | i € Z] is a polynomial
ring whose variables z; are indexed by the set Z depending on A and I C R an ideal. Then, by
Corollary 1.2.4, we have that IDerg(log I;m — 1) = IDerg(log I;m) for all m < n not a power
of p and it is enough to prove that IDery(log I;n — 1) = IDery(log I; n).

Let us express n = e,p® + --- + e;p' in base p expansion where 1 <t < sand 0 < e; < p
with e,, e; # 0. By induction hypothesis, we have that R satisfies H]f,s (2.4.1).

Let § € IDery(logI;n — 1) be a k-derivation and D € HSi(log I;n — 1) an integral of 6.
We can integrate D up to infinite length (see Proposition 1.2.1), so we redefine D € HSy(R)
the integral of D. Note that D; = 0 and D is (n — 1) — I-logarithmic. Now, we consider




41

G = GP* € HS(R; (n + 1)p!) the HS-derivation defined in 2.2.10. From Lemma 2.2.11, G is
((n+1)p' —1) — I-logarithmic, {(G) > 2p'+1 and G 41yt = (;)Dn + H for some I-differential
operator H.

By Lemma 2.1.3, we have that 2p' +1 <n+1. If n+1 = 2p* + 1, from Theorem 2.4.8, we
obtain a (p' — 1) — I-logarithmic HS-derivation 7' € HSy(R;p’) and an I-differential operator
H' such that T = Gy +H' = ( )Dn + H + H' where H + H' is an I-differential operator.

Let us suppose now that 2pf +1 < n + 1 and we denote r = max C’zpt+1 ni14 By Lemma
2.1.13, 0 < r < s and by definition of Cth+1,n+1,t= (2p' +1)p" < (n+ 1)p'. Hence, we can
consider T(,41)pt (2pt+1)r (G) € HSp(log I; (2p" + 1)p”). If r = 0, then Gopryq € IDery(log I;p").
Otherwise, » > 1 and applying Corollary 2.4.13 to this HS-derivation, we have that G,y is
I-logarithmically p"-integrable. So, in both cases, we have that Go,t41 € IDery(log I;p"). We
have two cases:

e If r < s, from induction hypothesis, Goyi 1 € IDery(logI;p"™ — 1), ie. there ex-
ists an integral D’ € HS;(logI;p"™" — 1) of Gopyq and we can consider EP"2'+1 ¢
HS. (log I; (2p' + 1)p™ ™ — 1).

By Lemma 2.1.14, we have T' = T(opt {1)prt1-1,(n41)pt (ED’,zpt+1) € HS,(log I; (n + 1)p')
where Thyei1 = —Goperq and £(T) > 2p' + 1 (recall that ((EP"2'+1;2pt 1) = prt1).

o If r = s, then Gypey1 € IDerg(log I; p®). Since p* < n < p**!, Gopeiq € Dery(log I;n —1).
Let D' € HS,(logl;n — 1) be an integral of Gopyq and let us consider EP32'+1 ¢
HSy(log I; (2p" + 1)n — 1). Note that

”(th+1)—1>(n+1)pt<:>npt+n—1>pt.

Since the last inequality always holds, we have 7" = T(2pt41)n—1,(n+1)p (ED' ,2p" +1) € HS,(log I; (n+
].) ) where Tgp +1 = —Ggp +1 and E(T) Z 2p + 1.

Therefore, in both cases, we can compose G and T obtaining an ((n+1)p'—1)—I-logarithmic
HS-derivation

G+ 7o = (Id, 0,...,0,G& 2 g gty > € HSy(R; (n+ 1)p")

2pt4+2 (n+1)pt

where GG nljj)l) = ("t)Dn + H for some [-differential operator H.

We will prove that we can obtain an ((n + 1)p* — 1) — I-logarithmic HS-derivation G+ ¢
HS.(R; (n+1)pt) such that /(G™*D) > n+1 and GEZIBpt = (;)Dn+H for some I-differential
operator H by induction. Suppose that, by doing the previous process, we obtain an ((n +

1)pt — 1) — I-logarithmic HS-derivation:
GY = (14,0,...,0,GY,...,GY),.. .., <pt) D, + H) € HS;, (R; (n + 1)p")

with H an [-differential operator and 2p' +1 < j < n + 1. We denote r = max C] ni1te BY
Lemma 2.1.13, 0 < r < s. Since jp" < (n + 1)p', we have 7,41t jpr (GY) € HSy(log I; jp")
and we can deduce that Gg-j Vis T -logarithmically p"-integrable in the same way as above. We
have two cases:
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o If r < s, then G§~j) € IDery(log I;p") = IDery(log I;p"t — 1). Let us consider D' €
HS;.(log I; p"*1—1) an integral of Gg-j) and EP'7 € HS;(log I; jp"t' —1). By Lemma 2.1.14,
Pt =1 > (n+ pt. So, we have T = Tjpr+1_1 (ny1ypt (EP7) € HSi(logI; (n + 1)p')
where T = —Gy) and ((T) > j (vecall that £(EP"7; j) = p*1).

e If r = s, then G;j) € IDerg(log I;p®) = IDerg(log;n — 1). Then, there exists D' €
HSk(log I;n — 1) an integral of Gy) and we can consider EP € HS,(logI; jn — 1).

Since jn —1 > (2p' + 1)n — 1 > (n + 1)p’, we can define T' = 7j,_1 (nj1)pt (EP) €
HSk(log I; (n + 1)p') where T; = —Gg-j) and ((T') > j.

Therefore, we can obtain an ((n 4 1)p* — 1) — I-logarithmic HS-derivation:

L st n+1 +
p

GUtY =T oGV = (14,0,...,0,GY GUrh (n>Dn + H') € HS; (R; (n+1)p')

where H' is an I-differential operator. So, we can do this process for all j such that 2p* + 1 <
J <n+ 1 and we obtain an ((n + 1)p* — 1) — I-logarithmic HS-derivation:

G+ = (14,0, .. . ,O,fofll), e (

n
pt

)Dn + H') € HS (R; (n+ 1)p")
where H' is an I-differential operator. Then, we can apply Theorem 2.4.8 to G"*1D. So, in
both cases, when n+1 = 2p’ 41 or not, we have that there exists a (p' — 1) — I-logarithmic HS-
derivation T' € HS;(R;p') and an I-differential operator H' such that 7' = (Id, T, .. ., (;)Dn +
H').

Let f € F, be the inverse of (;) So that,

Do(~feT)n/p] =

(Id, Di,....Dy+ (—f) (;) Dy~ f"H'+ > Dao((=f-T) [n/ptDﬁ) -
a+p=n,a,57#0
(Id,Dl,..., Z Dyo((—=f-T) [n/pt])ﬂ—fH’> € HSi(log I;n).
a+pB=n,a,5#£0

Hence, D; = § € IDerg(log I;n) and A does not have a leap at n.




Chapter 3

On the behavior of integrability under
base change

The behavior of the module of k-derivations of a finitely generated k-algebra under base change
is well-known. In this chapter, we generalize the base change map for modules of k-derivations
to the modules of m-integrable k-derivations for m > 1.

In this chapter we will use the following notations: Let k be a commutative ring and L a
ring extension of k. We denote R := k[z1, ..., z4] the polynomial ring over k in d variables and,
if A is a finitely generated k-algebra, we assume that A is the quotient of R by some ideal I of
R. For any k-algebra B, we denote By := L ®; B.

3.1 A decomposition of logarithmic Hasse-Schmidt deriva-
tion in characteristic p > 0

Let us consider k a commutative ring of characteristic p > 0 (i.e. F, C k), R = k[z1,..., 2]
and I C R an ideal. In this section we will see that any I-logarithmic HS-derivation with some
properties can be decomposed in two HS-derivations.

Notation 3.1.1 Let [ > 1 be an integer and D € HS,(R;p'). We define:
J(,D)={jeN| (D) <j<p, ptj}

Note that if E € HS,(R,p!) such that {(E) < (D), then J(I,D) C J(I,E) and J(I,E) \
J(I,D)={jeN|UE)<j< /D), ptj}t. For each family F? € HSy(R;m), j € J(I,D),
we will write:

OjEJ(l,D)Fj = FP'lo... o FUD)

(observe that we have chosen the decreasing ordering) where F7 =1 if j & J (I, D).

The proof of the following lemma is clear.

Lemma 3.1.2 Let i,1 be two positive integers such that i < p' and i is not a power of p. If we
denote s = max CY, | (see Definition 2.1.10), then ip*™ > p'.

43
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Remark 3.1.3 Thanks to Theorem 2.5.1 and Corollary 1.2.4, we have that R and I satisfies
H]ia for all a € N, so we can always apply Theorem 2.4.8 and Corollary 2.4.135.

Proposition 3.1.4 Let [ > 1 be an integer and let us denote s; = max Oﬁl,l for each integer
j with 1 < j <p'. Then, for any (pl — 1) — I-logarithmic HS-derivation D € HSy(R;p') with
(D) > 1, there exists:

° (plfl — 1) — I-logarithmic HS-derivation T € HSy(R;p'™1),
o a (p**t! —1)—I-logarithmic HS-derivation F? € HSy(R; p%™!), for each j € J (I, D), and
o an I-differential operator H of order < p'

such that Ty1=Dy+H and

D =T[p] o (ojeza.p) (V'  F7))
where Y7 Rl|p[] 5541 — R[|pl]p is the substitution map given by o () = /.

Proof. First, note that ¢ is well-defined for all j € J (I, D) because jp%*! > p! by definition
of s;. Moreover, observe that 1 @ /=7, .41 (E[j]) for any E € HSy(R; p**!). If £(D) = oo,
then D =1, J(I, D) = () and we may take T" = I to obtain the result. Let us suppose that ¢(D)
is finite, i.e. 1 < ¢(D) < p'. We proceed by decreasing induction on ¢(D).

Assume that /(D) = p'. Then, J(I, D) = () and, by Corollary 1.4.8,

D = (1d,9) [p'] = (1d,8) [p"] [p]

So, if we put T := (Id, 9) [pl_l}, we have the result. Let us suppose that the proposition is true
for all HS-derivations such that £(x) > i and let us take a (p' — 1) — I-logarithmic HS-derivation
D € HSy(R;p!) with 1 < ¢(D) =i < p!. We divide the proof in two cases:

1. If i is a power of p.

Let us write ¢ = p* where t < [. Since (D) > 1, then ¢ > 1 and we can see D € HSy(R; p'p'™t).
By Theorem 2.4.8, there exists an integral F' € HSy(R; p'~*) of D, and an [-differential operator
H of order < p'~* such that F is (p'~* — 1) — I-logarithmic and F,-+ = D, + H. Then, by
Proposition 1.4.9 and Lemma 1.4.11, b., F*[p] = (F[p'])* € HS(R; p') is (p'—1)—I-logarithmic.
Moreover, (F[p'])s, = Ff = =Dy and, by Lemma 1.4.11, c.,

(FIp))y = Fy o = —Dy— H+E

p p
where F is an I-differential operator of order < p'~*. We define
D = (F [ptD* oD.

By Lemma 1.1.9, D), = (F[p'])s + Dy = 0 so, £(D') > i = p' and, by Lemma 1.1.19, D’ is
(p'—1)—I-logarithmic and D;)l = F 4+ Dpyi+some I-diff. op. of order <p'=D,—Dy+H =
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H' where H' is an [-differential operator of order < p'. So, D’ € HSy(log I; p'). We apply the
induction hypothesis to D’ and we obtain that

D' =Tl o (oeumm (19 )
where F7 € HSy(R;p“™) is (p¥*! — 1) — I-logarithmic for j € J (I, D') and T" € HS}, (R; p'™?)
is (pl*1 — 1) — I-logarithmic with

Ty = D) + some I-diff. op. of order < P

Since D’ € HSy(log I;p'), we have that T" € HS(log I; p'~!). We put F? =1 € HS(log I; p%*!)
forall j € J(I,D)\ J(I,D’). By Lemma 1.4.8,

D= Flp'loT'[pl o (0jequp) (' ¢ F7)) = (F [p"'] o T") [p] © (0jequ.p) (¢ ® F)).
-1 = Fiv =

By Lemma 1.1.18, F[p'~'] is (p'~' — 1) — I-logarithmic. Moreover, F[p'~'], 8

D, + H (recall that H is an I-differential operator of order < p7). So, by Corollary 1.1.20,
T := F[p™] o T € HS(R;p'™") is (p'* — 1) — [-logarithmic and Ty = F[p'~ - +
some I-diff. op. of order < p' = D,y + some I-diff. op. of order < p' and we have the propo-
sition in this case.

2. If i is not a power of p.

Since i is not a power of p, by Lemma 3.1.2, ip**™' > p’ where s; = maxC?,,. Then, we can

consider 7, ;5 (D) € HSy(log I;ip*). If s; > 1, then D; is I-logarithmically p®*-integrable by
Corollary 2.4.13. If s; = 0, then D; € Derg(logI). In both cases, since leaps only occur at
powers of p (Theorem 2.5.1 and Corollary 1.2.4), we have that D; is [-logarithmically (p**!—1)-
integrable. Thanks to Proposition 1.2.1, we can integrate any I-logarithmic (p**! — 1)-integral
of D; so, there exists F' € HSy(R; p*it1) a (p¥™ — 1) — I-logarithmic integral of D;. Then, by
Lemma 1.4.11, b. F*[ ] € HSy(R;ip* ™) is (ip*™' — 1) — I-logarithmic. By Proposition 1.4.9,
WQF*—(WQF) € HSy(log I; p') and (¢)' @ F)f = F[i]f = —D;.

a. If i #0 mod p, by Corollary 1.1.20, and Lemma 1.1.9, D’ := Do (¢* e F)* is (p! — 1) — I-
logarithmic with (D) > i and D), = D,y + H with H an [-differential operator of order
< p!. We apply the induction hypothesis to D’ and we obtain that

=Tpl o (ojeg.on (V' @ F')) = D =Tp| o (ojezu.r) (¥ @ F7)) o (v" o F)

where T' € HS,(R; p'~ 1) is (p'~' — 1) — I-logarithmic with T -1 = D} +some I-diff. op. of
order < p' = D, + H'" where H' is an I-differential operator of order < p'. Then, we put
F' = F € HSi(R; p**) and FV =1 € HSy(log I; p**) for j € J(I, D)\ (I (I, D) U {i})
and we have the result.

b. If 7 is a multiple of p, by Lemmas 1.1.19 and 1.1.9, D' := (' @ F)" o D is (p! — 1) — I-
logarithmic with ¢(D’) > i and D), = Dy + H where H is an [-differential operator of

order < p'. Then, we apply the induction hypothesis to D’ and we have that
D= (W 'F) o T'[p] o ( jeg(,D") (W ‘F]))
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where T" € HSy(R; p'~!) is (p'~! — 1) — I-logarithmic with T = D)+some I-diff. op.
of order < p' = D, + H'" where H' is an I-differential operator of order < p'. We put
Fi=Tforall j € J(I,D)\ J(I,D"). On the other hand, by Corollary 1.4.8 and Lemma
1.1.6,

V' o F = Ty (Fli]) = Ty o (Fi/pl[p]) = Tigrs s (F[i/p]) P,

Since F is (p%*! — 1) — I-logarithmic, F[i/p] is (ip* — 1) — I-logarithmic by Lemma
1.1.18 and, since ip* > p'~', 70 u1(Fli/p]) € HSk(log I,p'~"). By Corollary 1.1.20,
T = Tipsi -1 (F [z/p]) oT"is (p'~t — 1) — I-logarithmic and T = T+ + H'+some I-diff.
op. of order <pl = D,y + H" where H" is an [-differential operator of order < p’. Since
D =T[p] o (ojez0,p) (@/}3 e FJ)), we have the proposition.

0

Corollary 3.1.5 Let | > 1 be an integer and D € HS,(R;p!) a (p' — 1) — I-logarithmic HS-
derivation with {(D) > 1. Then, there exists F' € HSy(log I;p') with ((F) > 1 and a (p'~* —
1) — I-logarithmic HS-derivation T € HSy(R;p'~') such that D = T[p| o F.

Proof. From Proposition 3.1.4, we have that

D =T[p]o ( jeg(1,D) (W’FZ))

for some (p!~* — 1) — I-logarithmic HS-derivation T € HSy(R;p'"!) and some (p%*! — 1) — I-
logarithmic HS-derivation FV € HS.(R;p>*'), for j € J(I,D) and s; = maxC¥,,. Since
Y e FI = Tipitp (F7[4]) and F7[j] is (jp* ™ — 1) — I-logarithmic by Lemma 1.1.18, we have
that 17 e IV € HSy(log I;p') because j # 0 mod p and, by Lemma 3.1.2, jp**1 > p!. Hence,
F = ojcqap) (¢ e Fi) € HS,(logI;p'). Moreover, ((Fi[j]) > 1 for all j € J(I,D), so
((¢7 @ F7) > 1 and ¢(F) > 1 by Lemma 1.1.9.

3.2 Base change

Let k£ be a commutative ring, & — L a ring extension, R = k[zi,..., x4 the polynomial
ring and A = R/I a commutative finitely generated k-algebra. Recall that we denote By, :=
L ® B for any k-algebra B. In this section, we study the relationship between IDery(A;m)
and IDery (Ar; m) under suitable hypotheses on the ring extension k& — L. We start recalling
some classical results on derivations.

3.2.1 Base change for derivations

Let k be a commutative ring, & — L a ring extension and A a commutative k-algebra. For
each k-derivation ¢ : A — A, let us denote by 6 : A, — Ay the natural L-linear extension given
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by 6(c ® a) = c®d(a) for all c € L and all a € A. It is clear that 6 € Dery(AL). The map
d € Derp(A) — 0 € Der(AL), being A-linear, gives rise to an A-linear base change map:

CDf’A : L ®y Derp(A) = AL ®4 Derg(A) — DerLEAL)
c® 5 — co

If R = k[zy,...,24) the polynomial ring, then Ry, = L[zi,...,x4) is also a polynomial
ring. It is easy to see that, if J; : R — R is the partial derivative of R with respect to x;, then
0; : R, — Ry is the partial derivative of R with respect to x;. Since the modules of derivations

of a polynomlal ring in a finite number of variable is free with basis the partial derivatives, if
0= Z b;0; then 6§ = ZZ 1 i d;. Hence, we can deduce the following result.

Lemma 3.2.1 Let R = k[xy,...,x4] be the polynomial ring and k — L a ring extension. Then,
<D1L’R is an Rp-module isomorphism.
Moreover, if L is free over k (as k-module), then any k-basis of L is an R-basis of Ry and

we have the following lemma.

Lemma 3.2.2 Let k — L be a free ring extension and B = {a;, i € I} a k-basis of L.
Let us consider 6 € Derp(Ry). Then, there exists a finite subset J C I and a k-deriwation
d; € Dery(R) for each j € J such that § =) J;.

jeg 4

Proof. Let us consider § = Zle bi(i- € Derp(Ry) where b; € Ry. Since B is an R-basis of
Ry, there exists a finite subset J C Z and unique elements b;; € R, 1 <7 < d and j € J, such
that b; = Zjej a;b;;. Hence, we have

d d
— Z b0; = ZZajbua = "a;0;, with d; = <Z bijai) € Dery(R)

i=1 jeJ JjeT i=1

and the lemma is proved.
OJ

We denote I¢ = IRy, = IL[xy, ..., x4 the extended ideal of I in Ry. It is clear that ®7"
induce two Ry-module homomorphisms:

oL [ @ Dery(log I) — Dery(log I°)

and
ot 1 L&y I(Dery(R)) — I° Dery(Ry).

Lemma 3.2.3 Let k — L be a ring extension and I C R an ideal. We have the following
properties:

oL jecti
a. iy is surjective.

b. If L is flat over k, then <I>md[ 15 bijective and CI>1L’R’I 18 ingjective.
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Proof.

a. Let 0 € I*Dery(Ry) C Derp(Ry). Then § = Zle b;0; where b; € I° for all i = 1,...,d.
Since b; € I¢ = IL[xy,...,x,), there is a finite set J and elements h;; € I and [;; € L,
1<i<dandj€ J,suchthat b; = . ;li;hi;. Then,

] d
0= Z]: S lhidi =3 10, with &= hiyd; € I(Dery(R)).
=1

i=1 jeJ jeT
LR . . .
Hence, we can deduce that @, )", is surjective.

b. @iLr;f ; is always surjective thanks to previous point. Since L is flat over £ and (PIL’R is

bijective, then it is clear that CIDif;l’fI and @f’R’I are both injective.

O

Let A be a finitely generated k-algebra, i.e. A = R/I where R = k[zy,...,z4) and [ C R
an ideal. Then, with the previous notation, we have the following commutative diagram:

L ®k (I(Derg(R))) —— L ® Derg(logl) —— L ®j Dery(A) —— 0
l(bllr/)fI l(bf,R,I l(bf,A (3.1)

0 —— I°Der,(R,) — > Derp(log I¢) ——— Dery(Ay) — 0.

From Proposition 1.2.6, this diagram has exact rows and if L is flat over k, then the top
row is also left exact.

The proof of the following proposition follows from the diagram (3.1), the previous lemma
and (cf. [Gro, Prop. 16.5.11]).

Proposition 3.2.4 Under the above hypotheses, if k — L is a flat ring extension, then the
following properties are equivalent:

a. The map ®1™" . L @, Dery(log I) — Derp(log I¢) is an isomorphism.
b. The map ®** : L @, Der(A) — Derp(AyL) is an isomorphism.

Moreover, both properties hold if I is finitely generated (i.e. if A is finitely presented over k).

We also have the following result for any commutative finitely generated k-algebra A = R/I,
with I C R an ideal.

Proposition 3.2.5 Under the above hypotheses, if k — L is a free ring extension (L is a
free k-module) and A = R/I is a finitely generated k-algebra, then properties a. and b. in
Proposition 3.2.4 hold.
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Proof. Since L is a flat extension of k, after Proposition 3.2.4 we only need to prove that the
map &' [ @, Dery(log I) — Dery(log I€) is surjective. Let B = {a;,i € T} be a k-basis of
L and ¢ : R, — Ry an I°logarithmic derivation. By Lemma 3.2.2, there exists a finite subset

J of Z and d; € Dery(R) for each j € J such that
JET

Let us consider h € I. Since § € Dery(log I¢), we have that §(h) € I°. Hence, there is a subset
Iy of T and ¢; € I for all [ € Z; such that

5(h) = a;o;(h) = ag.
jeT leTo
Then, 0;(h) = g; € I if j € Zy and §;(h) = 0 otherwise. Therefore, d; € Der,(log ) and, since
5= (Zjej(aj ® 5j)), oL is surjective.
U

3.2.2 Base change for integrable derivations

Let k — L be a ring extension and A a k-algebra. In the previous section, we recalled the base
change map &2 : L ® Der(A) — Der,(AL). In this section we want to generalize this map
to the modules of m-integrable derivations for all m € N. To do this, we will start extending
HS-derivations of A over k to HS-derivations of A, over L.

Proposition 3.2.6 Let A be a k-algebra, I C A an ideal, k — L a ring extension, I¢ = I Ay,
the extended ideal and m € N. For any HS-deriwation D € HSy(A;m), there exists a unique
HS-derivation D € HS[(Ar;m) such that the following diagram is commutative:

A —= Allul)n

natl l“"“‘ (3.2)

Ap =2 Ag[|uf]m.

Moreover, if D is I-logarithmic, then Dis I -logarithmic.

Proof. Let us denote t : A — Ay and t,, : Al|u|lmn — Ap[|]]m the natural maps. Then,
we define ¢5(c ® a) = ctp(pp(a)) for all ¢ € L and all a € A. Observe that this map is
well-defined. Moreover, since t,, and ¢p are k-algebra homomorphisms and it is clear that
¢ is L-linear, ¢ is an L-algebra homomorphism. In order for ¢z to be a HS-derivation,
¢5 = Id mod p, and this property is obtained thanks to ¢p is a HS-derivation because
ep(c®a) = cty(¢pla)) = ct(a) mod pp=c®a mod p for all c € L and all a € A.

Let us consider @i : A — Ap[|p|] another L-algebra homomorphism such that the diagram
(3.2) commutes. Then, since pg is L-linear, for all c € L and all a € A,

pr(c®a) = cpp(l©a) = cpp(t(a)) = ctn(ppla)) = pp(c® a).
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Hence, D is unique. Now, we assume that D is [-logarithmic. Let us consider g € I. Then,

pp(1®g) = tm(ep(g)) € I°so, forallc € Land alla € A, pp(g(c®a)) = pp(1Rg)pp(c®a) €
I1¢,i.e. D is I°-logarithmic.

O

Observe that if m = 1, we know that Dery(A) = HSk(A;1) and the extension process

D+ D described in Proposition 3.2.6 coincides with the usual extension § — ¢§ of derivations.

Remark 3.2.7 If k — L is a free ring extension, then this map is injective. In this case, if
R = k[x1,...,24], Ry = L[z1,...,24], D € HSg(R;m) and D = (D;); € HS(Rp;m) is the

extension of D, then D;r = D; because R — Ry, can be seen as an inclusion.

Lemma 3.2.8 Let A be a k-algebra, I C A an ideal, k — L a ring extension, m € N, n < m
an integer, D € HS,(A;m) a HS-derivation and v : Al|p|]m — Al|pl]n @ substitution map. The
following properties hold:

a. The map D € HS,(A;m) — D€ HS.(AL;m) is a group homomorphism.
b. m =1 e D, where b : Ap[|p|lm — AL[|pl]n is the substitution map induced by .
c. If D isn — I-logarithmic, then D isn— 1¢-logarithmic.

Proof.

a. Let us consider D, E € HS;(A;m). Then, Do E is the HS-derivation associated with ¢/, o
¢r (remember that ¢ : A[|u|]m — A[|ft]]m is the unique k-algebra automorphism which
extend ¢p and ¢'h(u) = ). Let us consider D, E € HSy(AL; m) defined in Proposition
3.2.6, go% the L-algebra automorphism of D and ¢z the L-algebra homomorphism of E.
Then, we have the following diagram

A =22y Allullm —2— Allullm

lﬂat . lnat . lnat .
o

Ap = Aglplln — Arllullm

It is easy to see that the external square is commutative. By Proposition 3.2.6, pz7 is

the unique L-algebra homomorphism with that property so, p7—= = go% o . From the

definition of composition of two HS-derivation, we can deduce that D o F = DoFE.

b. Let us consider pp the k-algebra homomorphism of D € HSy(A;m). Then, ¢ e D is the
HS-derivation associated with 1) o pp. It is easy to prove that the following diagram is

commutative.

A =22 Allpll —2— Allpl]n

lnat . lnat . lnat .

Ap =22 Agflulle —2 AL[lul]n
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As in the previous point, oD is the unique L-algebra homomorphism such that the

—_—

external square is commutative, so Cieb = {ﬁvo pp ie oD = zZo D.

—_—

c. If D is n — I-logarithmic, 7,,,(D) € HSy(log I;n), so Tm,(D) € HSk(log I¢;n) by Propo-
sition 3.2.6. From the previous point, Ty (D) = Ty (D). So, D € HSy(A:m) is n — I°-
logarithmic.

O

Lemma 3.2.9 Let I C A be an ideal, B = A/l and 1° = [ Ay, the extended ideal. Then, for
each D € HSg(log I;m),

s (D) = s, ., (D)

(observe that Tl (D) is the extension of Iljig,, (D) € HSy(B;m) to By = Ap/I¢ and D e
HS(log I¢;m) C HSL(AL;m)).

Proof. From the proof of Proposition 3.2.6, for all ¢ € L and all a € A,

op(c®a) = Z(c ® Dila))u' = Z (Id, ®D;) (c ® a)u'.

So, D = (Id, ®D;)™,. Then,

Hgs,m (5) = <BZ>Z where Bi((c®a)+[6) = (c®D;(a))+1° for all (c®a)+1°€ B, = Ap/I°.

To prove this result it is enough to show that the following diagram is commutative.

B —"" s Alpln
‘| b
iy (D)

By, ————— Bullpllm

where D = Ilfjg,,(D), t?(a+1) = (1®a) + I° for all a € A and t5 : B(|pl]lm — Br[|p|lm is the
map induced by tZ. Let us consider a € A, then

P (py ot (a+1) :Z a)+ 1%y Z (1@ Di(a)) + I°) i'.

HS,m

On the other hand,

tBoppla+I)=1tE ((Z +I>/L>:Z((1®Di(a))+le),ui.

Therefore, the lemma is proved.
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Corollary 3.2.10 Under the hypotheses of Lemma 3.2.8, let 6 : A — A be a k-derivation (resp.
an I-logarithmic k-derivation). If 6 is m-integrable (resp. I-logarithmically m-integrable), then
d is also m-integrable (resp. I¢-logarithmically m-integrable).

Proof. Let us suppose that § € IDery(A;m) and let us consider an m-integral D € HS;(A;m)
of 4, i.e. Dy = 9. From Proposition 3.2.6, D e HS.(Ap;m) is an m-integral of D, = g, ie.
6 € IDery(A;m). Moreover, if § € IDery(log I;m), then we can consider D € HSy(log I;m)
and, by Proposition 3.2.6, D € HS/ (log I¢;m). Hence, §e [Dery,(log I¢;m).

U

In view of the proof of this result, if D € HSy(A;m) is an m-integral of § € Dery(A), then
D € HS.(Ay;m) is an m-integral of 6.

As a consequence of the above corollary, base change map ®“* : L@, Dery(A) — Dery(AL)
induce, for each m € N, new A;-linear base change maps:

(I),Ln’A : L ® IDerg(A;m) — IDerp(Arp;m), (IDf;i;A’I : L ®j IDery(log I; m) — IDer (log I¢;m).

From now on, we assume that L is flat over k£ and A a finitely generated k-algebra. Then,
we can put A = R/I where R = k[z1,..., 4] is a polynomial ring and I C R an ideal.

From the exact sequence in Proposition 1.2.6, we obtain for each m € N a commutative
diagram with exact rows (compare with (3.1)):

I
0 —— L&, (I(Dery(R))) —— L @y, IDery(log I; m) ——oim s L @ IDery,(A; m) — 0

L,R L,R,I L,A
lq)ind,l lq)m (I)m

IE
0 —— I°Der(R,) —— > IDery(log I¢;m) i > IDerp(Ap;m) — 0.
(3.3)
Moreover the left vertical arrow is bijective (see Lemma 3.2.3) and, since L is flat over k,
the middle vertical arrow is injective.
The proof of the following lemma is clear.

Lemma 3.2.11 Under the above hypotheses, the following properties hold:
1. ®LA s injective.
2. ®LRI s surjective if and only if ®L:A is surjective.

Remark 3.2.12 Ifk is a ring of characteristic 0 and L is free over k, then ®L:4 is bijective for
any finitely generated k-algebra thanks to Proposition 3.2.5 and equality IDer(A) = Derg(A).

Moreover, we have the following result about leaps.

Lemma 3.2.13 Assume that L is faithfully flat over k and A a finitely generated k-algebra. If
OLA s surjective for all m > 1 then,

Leaps,,(A) = Leaps; (Ay).
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Proof. Since L is flat over k, we have that ®L:4 is bijective so, IDery,(Az;m) = IDery,(Ap;m—
1) if and only if

[Dery(Ar;m —1)/IDerp(Ar;m) =0 < L ® (IDerg(A;m — 1)/ IDerg(A;m)) = 0.

Since L is faithfully flat over k, the last equality holds if and only if IDery(A; m—1)/IDery(A;m) =
0 and we have the result.
O

In the rest of this section we will study the surjectivity of ®ZA4.

3.2.2.1 Algebraic non-separable extensions

In this section we prove that ®L4 is not surjective in general giving an example and we could
deduce that ®L4 is not surjective when k — L is a non-separable algebraic field extension.

Counterexample 3.2.14 Let k = Fy(s,t) be the quotient field of Fy[s,t] and L = k the perfect
closure of k. Let us consider the irreducible polynomial h = z* + y* + tz* + sy* € k[z,y] and
we denote A := k[x,y]/(h). Then, 2" is not surjective.

Proof. We need to calculate the 4-integrable derivations of A (resp. Ap) over k (resp. over
L). We will follow the same step of Example 7 of | |. Let us suppose that there exists
0 € IDeri(A;m) and D € HS;(A;m) an integral of . Let us consider

pp: A — Allul]
T o T AU+ g+
y — yF+uiptop -

where u;,v; € A. To ¢p be well-defined, ¢p(h) =0, i.e.
(z+ugptugp® 4+ - - )2+ (v ptvgp® 4 2t (wtug gt ugp® - - ) s (ydo ptvg 4 - )t =0

The coefficient of p? in the previous equation is u? + v} = (u; 4+ v1)* = 0. Since A is a domain,
u; = v;. Let us consider the coefficient of u*, then u + v3 + tu] + svf = 0. We can write
w = us + v9 and u = u; = vy, and we obtain the equation:

w* + (t+ s)u* = 0.

Let W and U be elements of k[z,y] such that W + (h) = w and U + (h) = u. Then, thanks to
the previous equation:

W2+ (t+s)U* = hG (3.4)

for some G € k[z,y]. Let 0s and 0; be the derivations that extend the partial derivations with
respect to s and t, respectively, in Fs[s, ¢, x, y] to k[z,y] and we apply those derivations to (3.4),
obtaining:

Oy Ut =2'G + hoy(G)

01 Ut =y'G + hd,(G).
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Then, if g := G + (h), we have the following equalities in A:

0, ut=ag
4

O. - u4:yg :>(1:4—y4)g:O.

Since A is a domain and 2* # y*, ¢ = 0, so u = u; = v; = 0. Then, we can not integrate any
non-zero derivation until length 4, i.e. IDery(A4;4) =0 and L ®;, [Dery(A;4) = 0.

To prove that IDery (Af; 4) is not zero, we calculate IDery (log(h)¢; 4). Thanks to Proposition
1.2.15, it is enough to calculate IDer; (log H;2) where H = x + y + t*/22% + s'/2y2. Note that
J? = (1) so, by Proposition 1.2.7, any [-logarithmic k-derivation is integrable. It is easy to see
that Der(log H) = (596 +5y, H&Q Hence, thanks to Corollary 1.2.3, IDery (Ar;4) = (61, 02) #
0 where 8, (resp. 0s) is the derivation induced by 8, +5y (resp. Hd,) in the quotient. Therefore,
<I>4L’A 1s not surjective.

O

As straightforward consequence of this example, we have the following result.

Lemma 3.2.15 Let k — L be a non-separable algebraic field extension, A a finitely generated
k-algebra and m > 1. Then, ®LA is not a surjective Ap-module homomorphism, in general.

3.2.2.2 Pure transcendental extensions

In this section, we will study the surjectivity of @24 : L @ IDery(A4;m) — IDery,(AL; m) when
k — L is a pure transcendental field extension and A is a finitely presented k-algebra.

From now on, & — L will be a ring extension where L := k[t; | i € Z] is a polynomial
ring in an arbitrary number of variables and A a finitely generated k-algebra. We define
N@ = {a = (a;)iez | @i € N, a; = 0 except for a finite number of i € I} and, for a € N&),
we put t* = [, ., t;". We start with some numerical results.

Lemma 3.2.16 Let n < m be two positive integers. We have the following properties.
a. (lm/n]+1)n—1>m.
b. If m #0 mod n, then |m/n] = [(m —1)/n]. Otherwise, |m/n] =|(m —1)/n] + 1.

c. If n < m such that m =0 mod n. Then, there exists a prime factor of m which divides

Proof.

a. Let us write m = en+r where 0 < r < nand ¢ = |m/n|, then (c+1)n = cn+r+(n—r) >
m and we have the result.

b. If m # 0 mod n, then m = e¢n +r where 1 < r <n. Soom—1=en+ (r—1)
where 0 < r — 1 < n. Hence, |m/n] = ¢ = |[(m—1)/n]. If m = 0 mod n, then
m = cn. So, (¢ —1)n < m —1 < cn. If we divide this inequality by n, we obtain that
c—1<(m—1)/n <c. Hence, |(m—1)/n| =c—1 and we have the lemma.
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c. Since m =0 mod n and n < m, we have that m = cn for some ¢ > 1. Hence, any prime
factor of ¢, which is also a prime factor of m, holds the lemma.

O

Definition 3.2.17 Let n be a positive integer. We define

q 18 a prime factor of n

Lemma 3.2.18 Let n,s be two positive integers such that n # s. Then, there do not exist
a € ND\ P, and n € ND\ P, such that as = nn.

Proof. Suppose that there exist a € N& \ P, and n € N@ \ P, such that as = nn. If there
were such a prime that divides n and s, then we could simplify it. So, we can assume that s
and n do not have prime factors in common. Now, as s and n are not the same, one of them, we
say s, has a prime factor ¢ such that does not divide to the another one, in this case n. Since
as = nn, we have that a;s = n;n for all i € Z. So, ¢ divide n; for all i € Z. Then n = qn’ € P,
and we have a contradiction.

O

Fix m > 1 an integer and consider m = ¢f*---¢% its prime factorization, i.e. for all
j=1,...5, q;is a prime, a; > 0 and ¢; # ¢; if ¢ # j. Let us consider 8 € P,,. Then, we can
write 8 = ¢t - - - ¢¥*n where b; > 1 for some j € {1,...,s} and n € N such that ¢; { n for any
j=1,...,s, ie. forall j there exists n;, with i; € Z such that g; { n;;. We can assume, without
loss of generality, that there exists an integer [z such that 0 <z < s and a; > b; for all j <lg
and a; < b; for all j > lg. Then, we define

1 if I3 =0
ng = ay,—b
s grtg” T il > 1

Lemma 3.2.19 For each B € P,,, there exists a unique n € N with 1 < n < m such that
m =0 mod n and fn/m & P,,.

Proof. We write g = qll’1 -~ gbn, where n € N@ such that gj {nforany j =1,...,s and
b; > 1 for some j € {1,...,s}. We take n = ng. It is obvious that n divides m and 1 < n < m.
We denote [ := [g to simplify the notation. We put

_ B gt -ggm

= a
m ql...gs

If | =0, then n =1 and P, = () so, a & P, (note that o € N@ because if = 0, then b, > a;
forall j=1,...,s). If { > 1, then
b1

ar |, % .. qbs
o /r]ql QI QZ+1 qS o bl+1—al+1 bs—as
= =441 Tt g 1.

al—b1 l—bl

ai .. qa at .. ga
a1 s° ) s°

«
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Note that the set of primes which divide n is {q1,...,q}. Hence, ¢; t a for all j = 1,...,1
(recall that g; 1 n). So, a & P,.
Now, let us suppose that there exists another n’ € N holding the lemma, in particular
o :=pn'/m & Pp. Then, an’ = o'n and we have a contradiction by Lemma 3.2.18.
O

Theorem 3.2.20 Let m > 1 be an integer and L = k[t; | i € Z| a polynomial ring. Let us
consider D € HSy(Rp;m). Then, for allm = 1,...,m there exists a finite subset L, of N\ P,
and an N™* € HS(R) for each o € L,, such that

D=o", (oae L @g»m . f\ﬁw’a))
where Y™ o Rpl|lpl] — Rpllpllm is the substitution map of constant coefficients given by
V) = e
Proof. First, observe that, if £ € HS;(Ry;m) then,

Y @ B = Toom (1 @ E) [n]).

We prove this theorem by induction on m. Assume that m = 1. Then, D = (Id,D;) €
HS.(Rp;1). Since L is free over k and {t*, a € N®} is a k-basis of L, from Lemma 3.2.2,
D; € Der(Ry) can be written as

D, = Z 1904

acly

where L, is a finite subset of N and 6, € Dery(R) for all @ € L;. Let us consider N® an
integral of d,, for « € L. Then, N> € HS;(Ry) is an integral of d,. Hence,

D = Cacly <ta b <Id, &)) = Onely (Too,l (ta i m)) = Oacly <¢(1£1 i ]m)

(note that the order of the composition in this equality is not important because HSy(Rp; 1) =
Der(R) is a commutative group) and we have the result when m = 1. Let us assume that the
theorem is true for any HS-derivation of length m — 1 and we will prove it for D € HSy(Rp;m).
By induction hypothesis, for all n = 1,...,m — 1, there exists a finite subset L’ of N@) \ P,
and an N™® € HSi(R) for each o € L, such that

T 1(D) = 05! (0aer;, (wim e NI ) ). (3.5)

We define o
E ="} <oa€% <¢Zm ° NW")>

where the composition are in the same order that in (3.5). Note that Y™™ ! =7, ., 1 0 ™™
and thanks to Lemma 1.4.7 and Corollary 1.4.8, we have that:

Tm,mfl(E) = O;nz_ll (anL% <7—m7m71 [} (wg’m [ ] m)))

2! (Cacsy, (Fmm-1 0 02™) @ N2 ) = 71 (D).

= O
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Then, by Lemma 1.4.10, D = E o (Id, d)[m] where § € Dery(R;). From Lemma 3.2.2, § =

> seT tﬁ(% where J is a finite subset of N®) and 65 € Dery(R) for all 3 € J. We denote
F'={neN|1<n<m-—1, m=0 modn}. Forall n € I, we define

T ={B€T|B=alm/n)for some a € L }

and
Ly =T\ Pn.
Claim 1. For n,s € I" such that n # s, then J, N 7, = 0.

Let us suppose that there exists 8 € J, N J. In this case, there exist a € L/, C N\ P,
and n € L, C N® \ P, such that 8 = a(m/n) = n(m/s), i.e. as =nn and this can not
happen by Lemma 3.2.18.

Claim 2. £,,NJ, =0 foralln € T.

By Lemma 3.2.16 c., there exists a prime factor, ¢, of m that divides m/n. Assume that
p € J,. Then, we have that § = a(m/n) for some o € L!,. Then, ¢|3 so, § € P,,.

Let us write J = UperJpn U Ly, |_|_7 where J = J \ (UnerJn U L,,). Observe that J C P,
so, from Lemma 3.2.19, for all 8 € J, there exists a unique ng € I' such that (8ng)/m & Py,.

Therefore, if we denote J,, = {8 € J | ng = n} for all n € T, we can write

T =Uner (FoUT) ULy, and 6= > 96+ > .

n€l’ Be 7, U7, aELm

Now, for each n € I" we can define
L ={ael]am/n)e T} and L,={aeND\L|alm/n)e T} L Pn.

Note that £/ N L, = 0. Let us denote £,, = £/ U L,. Hence, we can express

(1d, 6) = oper <oa€% <1d,ta<m/")5m)) OncE. (Id,ta(m/")ém)» ° <oaeﬁm (Id, tad;)) .

By Corollary 1.4.8 and Lemma 1.1.6, for each n € I' U {m} and « € L,,, we have that:

(M¢Mwm&;;;)m4: @MWM.(kugmmg)@wm)m]
- t&.((kL&;;;Q[nynD)[ny

For each n € ' U {m} and o € L,,, let us consider M™* € HS;(R) an integral of do(m/m). We

know that M™e is an integral of da(m/n), SO M"O‘[m/n] is an integral of (Id da m/n)> [m/n].
Hence, by Lemma 1.1.6, we have that

Y e <]\/47l/“[m/n]> = Toom <<to‘ o <]\/471/°‘[m/n]>> [n]) = <Toom/n (t o (M”O‘ m/n] )))
:@%&Wﬂﬁﬁmw»m:( «mwwﬁmm»

_ (Id, sex(m /) 5;:;)) (m).
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To simplify the following expression, we put £, = £/ = (@ foralln € {1,...,m —1}\ T.
Moreover, for all n € {1,...,m — 1}, if a € L], \ £, then we consider d4(m/m = 0 and
M™* =1 € HS;(R) an integral of §4(m/m). Thanks to Lemmas 1.1.7 and 1.4.7 and the previous
equation, we can write:

D= o} (oae% (wnm.Nna» og”;l( wer ((Id ta<m/">5/;//n)) [m])

oucz, ( (1,124, m/n) )) (agﬁ (14,126, [m])

e (o (72557 () ) e, (04 o)

0 (uce, (1,120, [m])

= o (oaery, (Vo o Noo o g o (MFa[m/n))) oz, (i o (72 [m/n))))
o (ancm (%U;n’m ° W))

— 01 (caer, (i o (N7 0 MP=[m/n]) ) ope, (™ o (M7 [m/n))) )
o (suce, (v o 307 ).

Thanks to Lemma 3.2.8 b., ]\%[m/n] is the extension of the HS-derivation M™*[m/n| and,
by Lemma 3.2.8 a., N o M™[m/n] is the extension of N™* o M™*[m/n|. Therefore, if we
denote L, = L' UL, CN?\ P, and L,, = L,,, we have the theorem.

U

Theorem 3.2.21 Let m > 1 be an integer, L = k[t; | i € Z] a polynomial ring, I C R an
ideal and D € HSp(log I¢;m). For alln =1,...,m, let L, be a finite subset of N©) \ P, and
N™® € HSg(R) for each a € L,, such that

D= on 1 (anLn <@/}Z’m ° m))

where Y™ = Rp[|u|] = Ri[|p]]m is the substitution map given by Y™ (u) = t*u™. Then, for
alln=1,....m and o € L,, N € HS;(R) is an |m/n| — I-logarithmic HS-derivation.

Proof. We prove this result by induction on m. If m = 1, we have to prove that N1 is
1 — I-logarithmic for all @ € Ly, i.e. N[ € Derg(logI) for all a € Ly. In this case,

D = Oacl, (wcly’l L4 m) = Oqcl, (7'0071 (ta [} m)) = Onel, <Id7ta <]/\ﬁ7/0‘) ) .
1

D, =S (Al/a) .
Y e (),
aclq
Since D; is I°-logarithmic, doing the same process of Proposition 3.2.5, we have that N™¢

is 1 — I-logarithmic. Assume that the theorem is true for all /°-logarithmic HS-derivation of
length m — 1 and let us take D € HSy (log I¢;m) such that

D=o", <an . (W;m R W))

Then,
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where L, € N@ \ P, is a finite set and N € HS,(R) for all « € L, and n = 1,...,m. By
Corollary 1.4.8, we have that

m—1 n,m N m,m N o
Tmm—1(D) = 03’5 (anLnTm,m—l b <% i Nn’a>> © (anLme,m—l ° (¢a i Nn’a>> .

From Lemma 1.4.7, for any E € HS.(RL), Tmm—1 ® (Y™ @ (E)) = (Tpm—1 0 ¢Y2™") @ E =
Yrm=1 o B. Moreover, ™" ! ¢ F =1. So,

Tmm—1(D) = o) <anLn¢Z’m_1 ° Nma) '

Hence, since 7y, ,,—1(D) € HSp(log I¢;m — 1), we can apply the induction hypothesis and we
deduce that N™® € HSg(R) is |(m —1)/n| — I-logarithmic for all « € L, and n =1,...,m— 1.
We define o
E" :=o4¢r, <¢2m ° N”"l) =D=F'o---0 E™
where the order of the composition in E™ is the same that in D.
Claim. E" is (m — 1) — I¢-logarithmic.

Since N™* is |(m — 1)/n] — I-logarithmic, by Lemma 3.2.8 c., Nmo s |(m —1)/n] —
I*-logarithmic. Hence, t* @ N™@ is also |(m — 1)/n] — I°-logarithmic. From Lemma
1.1.18, <t°‘ . NW) ] is (([(m —1)/n) + )n — 1) — I*-logarithmic. By Lemma 3.2.16
a,m—1<([(m—1)/n]+1)n—1,s0 " e Nme s (m — 1) — I°-logarithmic because
Y @k = To 1 ((t* @ %)[n]). Hence, by Lemma 1.1.19, E™ is (m — 1) — [°-logarithmic for
all n.

Let us consider n € {1,...,m} such that n t m. Then, by Corollary 1.4.8,

B et (574 ) = (4 58) ) = ( (e (174 5 ).

Hence, £, = 0 by definition of (x)[n]. Moreover, by Lemma 3.2.16 b., [(m — 1)/n] = |m/n],
so N™ is |m/n] — I-logarithmic. Therefore, to prove the theorem we have to show that N™®
is (m/n) — I-logarithmic for n|m. By Lemma 3.2.16 b., m/n = [(m —1)/n] +1 and, since N™*
is [(m —1)/n| — I-logarithmic, it is enough to prove that N7 (I) C I. Note that

(57 +7), = (rn ({0 +75) ) 0 (7).

where (W) = N:jn by Remark 3.2.7. Therefore, by Lemma 1.1.19

m/n|R
Er =N getm/m(Nra), .+ F,
acly,

where F), is an [°-differential operator. Hence, again by Lemma 1.1.19,

D,, = ZEE,’;; +F =3 (e, B+ F

nlm a€Ly
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where F' is an [°-differential operator. Since D,, is also an [I°-differential operator, we have
that
Z Z tem/m (Nmey, . is an Te-differential operator.

nlm a€Lly

Observe that a(m/n) # n(m/s) for all a € L, and n € L, because L, C NZ\ P, and
L, € N2\ P,. Otherwise, if a(m/n) = n(m/s), then as = nn and this is a contradiction by
Lemma 3.2.18. Doing the same process than in the proof of Proposition 3.2.5, we can deduce
that N™® € HSg(R) is [m/n] — I-logarithmic for all &« € L, and n =1,...,m.

O

Theorem 3.2.22 Let m > 1 be an integer, L = k[t; | i € Z] a polynomial ring, A a finitely
generated k-algebra and E € HS,(Ap;m). Then, for alln = 1,...,m there exists a finite subset
L, CNON\ P, and an M™™ € HS(A; |m/n]) for each o € L,, such that

E=0o", (anLn (gbg’m ° W))

where o™ ALl pl]mm) — ALl|ptl]m is the substitution map of constant coefficients given by
6 () =

Proof. Since A is a finitely generated k-algebra, we can take A = R/I where R = k[xq, ..., x4
and I C R anideal. By Proposition 1.2.2, there exists D € HSy(log I;m) such that Iljig,,.(D) =

E. By theorems 3.2.20 and 3.2.21 for all n = 1,...,m, there exists a finite subset L,, of NO\ P,
and an |m/n| — I-logarithmic HS-derivation N™* € HSy(R) for each a € L,, such that

D=om, (oaeLn (;pgvm . W))

where Y™ : Ry, — Ry m 1s the substitution map given ' =1 .
here 0™ : Ry[u[] = Re[|p|]m is the substituti given by Y™ () = t*u"

Let us consider 6™ : Rp[|ut|](m/n) — Rir[|t|]m the substitution map given by 60" (u) =
t*u". Then, Y™ = 02" 0T |m/m)- S0, let us rewrite N™® = 7 |/ (N™*) € HSy(log I; [m/n])
and we have that

= (o (574 7)

—_— —~

(recall that Toos(N) = Toos(N) for any N € HS,(R;m) and s > 1 by Lemma 3.2.8 b.). Moreover
o™ is the induced map by 0™ in Aj. Therefore, by Lemmas 1.4.12 and 3.2.9,

b= HIHes,m(D) = oLy (anLn <HII;S,m (eg’m . W)))
= oy (uet (027 o (s oy (V7)) ) ) = s (20 (0 0 (3772)))

Wher'e Mo e HS.(AL;m) is the extension of H{{S,Lm/nj (N™) € HS(A; |m/n]) and the theo-
rem is proved.

0




61

Corollary 3.2.23 Let k be a ring, L = k[t; | i € Z] and A a finitely generated k-algebra. We
denote A, = L @ A. Then, ®L4 . L @, IDery,(A;m) — IDery(Ap;m) is an isomorphism of
Ar-modules for all m € N. Moreover, Leaps;(A) = Leaps; (Ayr).

Proof. Since L is flat over k, from Lemma 3.2.11, &4 is injective. To prove the surjectivity,
we take 0 € IDerp(Ar;m). By definition of integrability, there exists £ € HSy(AL;m) such
that E; = 9. By the previous theorem, we can write F as

B = oy (ouct, (¢um o 170}

where, for all n = 1,...,m, L, is a finite subset of N, for all a € L,,, M™ € HS,(A; [m/n])
and @™+ Ap[|pl]im/n) = AL[|t]]m is the substitution map given by ¢2™ () = t*u™. If n > 1,
then £ (¢7™ @ N) > 1 for all N € HS;(Ap;m) and if n = 1, then M;"*® € IDer(A;m). So,

5= By = (vucns (6 0 T70)) = 37 o (177%) = ot (Z s M{W)> |

acly acly

So, ®LA4 is surjective. Moreover, since L is faithfully flat over k, Leaps,(A) = Leaps; (Az) by
Lemma 3.2.13.
U

Let us assume that k& — L is a pure transcendental field extension. Then, we can express
L=T7"'L where L' = k[t; | i € Z) and T = L'\ {0}. Hence, for any finitely generated k-algebra
A, we have that

L Rk IDerk(A; m) = TﬁlL/ X L/ X IDerk(A; m) = TﬁlL/ R IDerL: (AL/; m) (36)
Now, let us recall the following proposition:

Proposition 3.2.24 [Na2, Corollary 2.3.5| Let C' be a commutative ring, B a finitely pre-
sented C-algebra and T' C B a multiplicative set. Then, for any integer m > 1, the canonical
map

T~ 'IDerq(B;m) — IDerc(T~' B;m)

is an isomorphism of (T~ B)-modules.
Hence, if A is a finitely presented k-algebra,

T'L @p Derp (Ap;m) 2 1Dery, (T 'L &', Apym) = IDerp (Ap;m) (3.7)
Moreover, it is easy to prove that if 7 C L', then any HS-derivation over L’ is T~!L/-linear, so
HSp/ (Ar;m) = HSp-1,(Ar;m) and IDery (Ar;m) = IDer(Ar;m). Therefore, thanks to the
bijections (3.6) and (3.7), we have that

L @, IDer(A;m) = T 'L @1 IDerp (Ap;m) = IDery (Az; m)

and we have proved the following corollary:
Corollary 3.2.25 Let k be a field and L a pure transcendental field extension of k. Assume

that A is a finitely presented k-algebra. Then, ®24 . L @ IDery,(A;m) — IDery(Az;m) is an
isomorphism of Ar-modules for all m € N. Moreover, Leaps;(A) = Leaps; (AL).
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3.2.2.3 Separable extensions

Let us consider k a field of characteristic p > 0 and L a k-algebra containing k. Remember
that L is separable over k if Lx := K ®;, L is reduced for every possible extension K of k. In
this section we prove that ®L4 : [ @, IDery(A4; m) — IDery(Ar;m) is an isomorphism when L
is a separable algebra over k and A a finitely generated k-algebra.

Hypothesis 3.2.26 Let k be a ring of characteristic p > 0 and k — L a free ring extension.
Then, we assume that the following conditions hold.

1. For every k-linearly independent subset {a;, i € I} of L, the subset {a?, i € I} of L
continues to be k-linearly independent.

2. For every k-basis {a;, i € T} of L and every k-linearly independent set {by,...,bs} of L,
there exists L C T such that {by,...,bs} U{a;, i € L} is a k-basis of L.

In the rest of this chapter, we put R = k[z1,...,x4].

Hypothesis 3.2.27 Let [ > 1 be an integer. We say that the ideal I C R satisfies Sy if ®L1
is surjective of all m < p'.

Note that if £ — L is a flat ring extension where k is a ring of characteristic p > 0, Sy is
satisfied for all I C R thanks to <I>1L’R’I is bijective and leaps only occur at powers of p.

Lemma 3.2.28 Let | > 1 be an integer and k a ring of characteristic p > 0. Assume that
k — L is a free ring extension and I C R satisfies S;. Let us consider a (pl — 1) — I-logarithmic
HS-deriwvation D € HSy, (RL;pl). Then, for each k-basis {a;, i € I} of L, there exists a finite
subset Ty C T and a (pl — 1) — I-logarithmic HS-derivation N* € HSy, (R;pl) for each i € Ty
such that if

E = ojez, <ai e Kﬁ)

(where we choose any order of composition) there exists a (pl_1 — 1) — I¢-logarithmic HS-
derivation T € HSy, (RL;pl_l) and an I¢-logarithmic HS-derivation F' € HSy, (log [e;pl) with
((F) > 1 such that

D=FEoT[p]oF.
Proof. Since @;ﬂl . L ® IDery(log I;pt — 1) — IDerp(logI¢p' — 1) is surjective and
D, € IDerp(log I¢p' — 1), there exists a subset Zy C Z and a §; € IDery(log I;p' — 1) for

each i € Z; such that
q)iz’il (Z a; ® 5i> = Z a;0; = D.

€Ty €1y

Let us consider a (p' — 1) — I-logarithmic integral N* € HSy(R;p') of §; for all i € Zy. Then,

E = o4z, (a'i b Kﬁ)
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is a pl-integral of D; (note that the order of the composition is not important, F is always
an integral of D;). Since N’ is (p' — 1) — I-logarithmic for all i € Z;, we have that N7 is
(p' — 1) — I*-logarithmic (see Lemma 3.2.8 c.). Hence, by Lemmas 1.1.19 and 1.4.11, E* is a
(p' — 1) — I°-logarithmic integral of —D;. Therefore, E* o D € HSy(Ry;p') is a (p' — 1) — I*-
logarithmic HS-derivation such that ¢(E* o D) > 1. So, we can apply Corollary 3.1.5 to this
HS-derivation. Then, there exists a (p'~! —1) — I°-logarithmic HS-derivation T € HSy(Rp;p'™t)
and F' € HSp(log I¢; p') with ¢(F) > 1 such that

E*oD=TploF=D=FEoT[p|oF

and the result is proved. 0

Theorem 3.2.29 Let [ > 1 be an integer and assume that k — L satisfies Hypothesis 3.2.26
and the ideal I C R satisfies S;. Let us consider a (pl — 1) — I°-logarithmic HS-derivation
D € HSy(Ry;p'). Then, for every k-basis {a;, i € I} of L, there exists, for all j =0,...,1,

e a finite subset Z; of T and

e a (pl_j — 1) — I-logarithmic HS-derivation N/>™4i—" ¢ HS,, (R;pl_j) for each i € Z;_,,
0<n<y

such that for all 5 =0,...,1

j -
U {a’f , 1€ Im} 1s a k-linearly independent set of L

m=0

and, if we take

e~ . —~—— e~

1 J L Jj—1 .. . LA
E‘7 = OleZQ (ap [ ) N.]7.]77”0> @] OZEII <alp [ ) N.]»J_l)lal) O-+++0 OZEZJ <aZ [ ] Njaozzy.])

)

for all j =0,...,1 then, there exists F € HSp(log I¢;p') with ¢(F) > 1 such that
D=E’cE'plo---oE' [p'] o F.

Proof. By Lemma 3.2.28, there exists a finite subset Zy C Z and a (p' — 1) — I-logarithmic
HS-derivation N0 € HS,(R;p') for each i € Zy such that, if we take E° = oz, (a;  N*0:40)
there exists a (p'~!—1)—I¢-logarithmic HS-derivation T* € HSy(Rp;p' 1) and F' € HSy (log I¢; p')
with ¢(F) > 1 such that

D=FE"oT'[p|oF.

Observe that the set Cy := {a;, ¢ € Zy} of L is k-linearly independent so, by Hypothesis 3.2.26
1., we have that the set C§ := {al, i € Zy} of L is also k-linearly independent and from the
point 2 in Hypothesis 3.2.26 (taking {a;, i € Z} as k-basis) we obtain a subset £; C Z such
that By = CH U {a;, i € L1} is a k-basis of L. Note that if [ # 1, we can apply the previous
lemma to T" using the k-basis B of L.

Assumption. Let us suppose that doing this process recursively we obtain that, for some
integer 7 such that 0 < j <[, there exists for all s =0,...,5 — 1,
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e a finite subset Z, of Z,

e a (p'=% — 1) — I-logarithmic HS-derivation N*m#s=" € HS,(R;p'~*) for all i € Z,_,, and

such that for all s =0,...,7 — 1,

Cs = U {ap e Im} is k-linearly independent set of L

(2

and if we take

P P —_——

s . s—1 . .
E® = 04e1, (af ° Nsvsvlv()) 0 Ojer, <af . N575*17171> O+ 0047, <al~ ° Nsvov’vb’)

for all s =0,...,5 — 1 (where we choose any order in Z,) then, there exists
e I € HS;(log I¢p') with ¢(F) > 1 and
e a (pi7 — 1) — I*logarithmic HS-derivation 77 € HSy(Rp;p'™7)
such that,
D=E’oE'plo---o B[P o T’ [p’] o F. (3.8)
o
Observe that, since C;_; is k-linearly independent, then C;Ll = UZn;lo afjim, 1 €L, ¢ is

also a k-linearly independent finite set of L. So, there exists a subset £; C Z such that
Bj:=C; U{a; i € L;} is a k-basis of L (see Hypothesis 3.2.26 2.).

Let us suppose that j # [, i.e. [ —j > 1. Then, we can apply Lemma 3.2.28 to T7 using the
k-basis B of L. Hence, there exists a finite subsets 7, of Z,, for all m = 0,...,7 — 1, a finite
set 7/ of £; and a (p'7 — 1) — I-logarithmic HS-derivation N7"#~" € HSy(R;p'~/) for each
0<n<jandi€ I]’-_n such that, if we take

—_— P —_—

- J ... J—1 .. . . ..
E] = OiEZ(/) (af Y NJ,],7410> o OiEIi (af Y NJ,J—L%1> O+ 00y <ai Y NJuoﬂ,])
J

then, there exists F' € HS; (log I¢p'™7) with ((F’) > 1 and a (p'~U*) — 1) — I®logarithmic
HS-derivation T9F! € HS, (Ry;p'~U*Y) such that
TV = E9 o T [p] o F.

Note that we can take Z/ = Z,, for all 0 < n < j — 1 (it is enough to take N7™"=" =T for all
i € T,,\1,,) and let us rewrite Z; := Z}. Moreover, the subset C; = U {afrm, i€ Im} C B;
of L is k-linearly independent and, if we replace TV in (3.8), we obtain that

D=E'o- 0 B [y o B[] o T[] o P[] o F.
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Observe that F[p/] € HSp(logI%p') so, F = F'[p’] o F € HSy(log I¢;p!) with ¢(F) > 1.
Therefore, we have the same condition that Assumption for j + 1. So that, we can apply this
process until 7 = [.

Let us suppose that j = [ in Assumption. Then, 7% € HS;(Ry;1) = Dery(Ry) and, by
Lemma 3.2.2 with the k-basis B; = B;, there exists a finite subset Z; C £; C T such that

j —_ i1 - .
T' = ojez, (ap . val7’»0> 0 Ojer; (az7 o Nl’l_leJ) o---0 (oiezlai . vaov”l)

2 7

where Ntm4l=m € HS,(R; 1) for each i € Z;_,, and 0 < n < [. It is obvious that

l

U {afj_m, ite,m}

m=0

is a k-linearly independent set of L and since D = Eyo Ey[p]o---o EFp! o THp! o F, we
have the result.
U

Theorem 3.2.30 Let k — L be a ring extension satisfying Hypothesis 3.2.26 and A a com-
mutative finitely generated k-algebra. Then, ®4 . L ®; IDery(A;m) — IDerp(Ap;m) is an
isomorphism of Ar-modules for all m € N. Moreover, Leaps;(A) = Leaps; (Ar).

Proof. If ®L4 is bijective, since L is faithfully flat over k, we have that Leaps,(A) =
Leaps; (A7) by Lemma 3.2.13. Moveover, by Lemma 3.2.11 1., ®L4 is injective for all m € N.
So, we only need to prove that ®£4 is surjective.

Recall that we consider A = R/I where R = k[xy,...,24] is a polynomial ring in a finite
number of variable and I C R an ideal. Then, by Lemma 3.2.11 2., ®£4 is surjective if and only
if @RI [, @4 IDery,(log I;m) — IDery,(log I¢;m) is surjective. So, we will prove that ®L21 is
surjective for all m € N. Moreover, since leaps only occur at powers of p (Theorem 2.5.1), it
is enough to see that L1 is surjective when m = p' for [ > 0. We proceed by induction on
1>0.

The case | = 0 is Proposition 3.2.5. Now, let us assume that ®L%! is surjective for all
m < p! with > 1, i.e. I satisfies S;, and we prove the theorem for CIDI%R’I with [ > 1.

Let 0 € IDery(log I¢,p') be an L-derivation of Ry, then there exists D € HSi(log I¢;p') an
integral of 6. In particular, D is (p' — 1) — I°-logarithmic and we can apply Theorem 3.2.29 to
D. Let us consider a k-basis {a;, i € Z} of L. Then, for all j =0,...,[, there exists

e a finite subset Z; of 7 and

e a (p!~7 — 1) — I[-logarithmic HS-derivation N7™#—" ¢ HS,(R; p'~7) for each i € T;_,, and
(p ) g ;P )
0<n<y

such that, for all j = 0,...,[ the subset

J j—m
U {afj , 1€ Im} of L is k-linearly independent

m=0
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and, if we take

P

Ej = ( icToW; v [ ] ]m) e} (Oiezjai L] Nj,O,i,j)
for all j =0, ...,[, there exists I’ € HSy(log I¢; p') with £(F) > 1 such that
D=E’0E'plo---oE' [p'] o F.

For each j =0,...,1, N9 js (p'~J — 1) — I-logarithmic for all 0 <n < j and i € Z;_,. So,

Nm" is (pl*j — 1) — I*-logarithmic for all 0 < n < j and ¢ € Z;_,, (see Lemma 3.2.8 c.).
Therefore, by Lemma 1.1.19, EY € HS(Rp; p'™7) is (pl_j — 1) — I*logarithmic and

. ¥ pt=J
E;z_j:Z@f) N”ZO +Za Njow—i-some[e diff. op.

€Ly ZEI
Hence, from Lemma 1.1.18, E7 [p/] € HSy, (RL;pl) is (pl — 1) — [°-logarithmic for all j and

—_——

J
B[, = B = Z Z aflikN;,’]_;k’l’k + some I¢-diff. op.

k=0 i€T},

So, by Lemma 1.1.19,

!
Dpl:ZEj o+ some I°-diff. op. —ZZZ N” ]“k—l—some Ie-diff. op.
=0

7=0 k=0 i€Zy

Since D, is an I°-differential operator,

l J — —_—
=k rji—ki 14,1 1,0,i
D> D> al NFER =N "l <§ N”“))+§ a? <§ N33 Z>+---+§ a; IO
7=0 k=0 i€} i€1p i€l i€

is an I°-differential operator.

Since C := U;:o {af , 1€ Ik} is a k-linearly independent finite set of L and {a;, i € 7}

is a k-basis of L, by Hypothesis 3.2.26, there exists £ C Z such that CU{a;, i € L} is a k-basis
of L. Hence, we can deduce, in the same way that in the proof of Proposition 3.2.5, that

l—k

Z Nj 70 §s an I-differential operator for all i € T

(recall that, by Remark 3.2.7, Ngﬁ_’ﬁj’om = N5,

For all i € T, let us consider D' = N®00 o NLLA0[pl o ... o NEO [pl] € HS,(R; p!) an
integral of N)"*"?. Since N340 € HS(R;p~7) is (p'~7 — 1) — I-logarithmic for all j =0, ...,
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N33OI € HSR(R;p!) is (p' — 1) — I-logarithmic (Lemma 1.1.18) and by Lemma 1.1.19,
D' € HSy,(R;p') is (p' — 1) — I-logarithmic and

!
i yVERY ; ;
D, = g N2y + some I-differential operator.
Jj=0

So, D' € HSy, (log I;p') and we can deduce that N*** € IDery, (log I;p'). On the other hand,
we recall that
D—EoBplo-oB [p]oF

—_—

where ((F) > 1. Then, D; = E} and, since E° = o7, (ai o NQOJFO), we have that

D, = Z ai]WO _ (I)IZ,RJ (Z (ai ® N{),o,i,o)>

i€y 1€7p

LRI - .. .
Therefore, @pl’R’ is bijective.

Remark 3.2.31 If we change the condition 2. in Hypothesis 3.2.26 for
2°. There exists {a;, i € T} a k-basis of L such that {a*", i € T} C {a;, i € T} for allr > 1.

then, Theorems 3.2.29 and 3.2.50 are true for that basis. For example, if we take L = k[t; |i €
7|, we can apply these theorems and we obtain that ®L4 is an isomorphism.

As we said at the beginning of this section, we want to prove that ®%4 : L®,IDery(A : m) —
IDery,(Ar;m) is an isomorphism when L is a separable extension over a field k of characteristic
p > 0. Let us recall a characterization for such type of extensions that appears in [30]:

Theorem 3.2.32 [Bo, §15.4. Th. 2] Let k be a field of characteristic p > 0, kP~ a perfect
closure of k and L a commutative k-algebra. The following properties are equivalent:

1. L 1s separable.
2. There exists an extension k' of k such that k' is perfect and k' ® L is reduced.
3. The ring kP~ ®y L is reduced.

4. The ring k' ®y, L is reduced for every extension k' of k which is of finite degree and p-radical
of height < 1.

5. For every family {a;} of elements of L linearly independent over k, the family {al'} is
linearly independent over k.

6. There exists a basis {a;} of the vector k-space L such that the family {a?} is linearly
independent over k.
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Note that if £ is a field, then the second condition of Hypothesis 3.2.26 always holds and
the first one is equivalent to L being a separable k-algebra thanks to the previous theorem.
Then, if L is separable over k, L satisfies Hypothesis 3.2.26 and we have as a straightforward
consequence of Theorem 3.2.30 the following result.

Corollary 3.2.33 Let k be a field of characteristicp > 0, k — L a separable ring extension and
A a commutative finitely generated k-algebra. Then, ®L4 : L @ IDery,(A;m) — IDery,(Ap;m)
is an isomorphism of Ar-modules for all m > 1. Moreover, Leaps,(A) = Leaps; (Ayr).




Chapter 4

Integrable derivations for some plane
curves

Although there is an algorithm to decide whether a given HS-derivation of length m — 1 can be
extended to a HS-derivation of length m or not, at present we do not know any real algorithm
to decide if a given derivation is m-integrable or not, the main difficulty is the fact that a
derivation can be m-integrable, but not necessarily any previously known (m — 1)-integral can
be extended to an m-integral. So the effective computation of a system of generators of the
modules of m-integrable derivations remains a difficult problem.

In this chapter we want to show how to calculate the modules of m-integrable derivations,
for m € N, of quotient of the polynomial ring k[z,y] in two variables over an ideal generated
by certain plane curves where k will be a reduced ring of positive characteristic (i.e. F, C k).

4.1 Integrable derivations for z" — 3¢

Let R = k[x,y] be the polynomial ring in two variables over a reduced ring k of characteristic
p>0and h = 2" —y? € R with n,q # 0. In this section we will study the modules of
m-integrable k-derivations of A = R/(h) of length m € N.

In this section we will use the following notations: Let « := val,(n) be the p-adic valuation
of n and s = n/p®. We will denote by m the remainder of the division of ¢ by p and g :=
val,(¢ —m). We write

v:=min{i € N | ip” > ¢ -1} =[(q - 1)/p"].

Proposition 4.1.1 Let k be a commutative reduced ring of characteristicp > 0 and R = k[, y]
the polynomial ring over k. We set A = R/(h) where h = z" — y? with n,q # 0. For

§ € Dery(logh), we denote 6 = Hf@m(é) (Corollary 1.2.3).

e Ifn,qg # 0 mod p, then IDery(A) = Dery(A) = (51,8,) where §; = qz0, + nyd, and
b = qy?7 10, + na"1o,.

e Ifn=0 mod p and q = 1, then IDery(A) = Dery(A) = (9,).

69
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o Ifa,m>1andq > 2, then

[ (%) if 1 <i<p
(205, y70:)  if p* <i<p*P ifs=1, a<pB m=1
[Derg(A;i) = <:c_0x, y7+18x> if i > p**P ori = oo
(0:) if1<i<p® .
\ { <x_c9w, m> if i > p* ori = 0o otherwise.

Proof. Let 0 = ud; + vd, be a k-derivation of R. To prove this result it is enough to show
which derivations are h-logarithmically i-integrable for i € N (Corollary 1.2.3).

e n.qg#0 mod p.

We have to find the pairs (u,v) € R? such that 6(h) = nuz"' — quy?' € (h), i.e. the pairs
(u,v) € R* such that there exists F' € R holding the equation nz"'u — qy4~'v = F(2" — y?).
Then, 2" ' (nu — Fz) = y7(qu — Fy). Hence,

{ nu— Fz = Gyt { uw=G(1/n)y"™' + F(1/n)z
qu — Fy = Gz"! v==G(1/q)x" 1 + F(1/q)y.

Therefore, Dery(logh) = (d1,02) where 61 = qxd, + nyd, and dy = qy? '0, + na""'9,. Note
that h is a quasi-homogenous polynomial with respect to the weights w(x) = ¢ and w(y) = n.
By Theorem 1.2.8, the Euler vector field, ¢, is h-logarithmically oo-integrable. On the other
hand, the gradient of h is J® = ("1, y971), so § € J Dery(R) and from Proposition 1.2.7 we
know that &, is h-logarithmically oo-integrable too. So, IDery(A) = Dery(A) = (61, &2).

e n=0 modp andq=1.

The condition for § to be h-logarithmic is that v € (h), so Dery(logh) = (0., hd,). In this
case JO = (1). Hence, any (h)-logarithmic derivation is integrable (Proposition 1.2.7). Then,
IDerg(A) = Derg(A) = (0,).

e ao,m>1 and q > 2.

Note that n = sp®. In order for § to be h-logarithmic, quy?~! € (h), i.e. quy?™! = F(a™ — y9)
for some F € R. So, (qu + Fy)y?™' = Fa". Hence,

= v =(1/q)G(z" — y?) for some G € R.

qu+ Fy = Ga"
F = Gyrt

Therefore, Dery(log h) = (0,, hd,). Since h0, is the zero derivation on A, we can focus on the
h-logarithmically integrability of § = ud, with u € R. Let u, € R and u, € kly] such that

U = Uy (T, y)x + uy(y) = § = u0y = uyx0y + uy0,.
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Since h is a quasi-homogeneous polynomial with respect to the weights w(z) = ¢ and w(y) =
sp®, the Euler vector field, x = qzd,, is h-logarithmically integrable, and hence also u,z0, are.
Thanks to this and since IDerg(log h;4) is an R-module for all i,

0 € IDery(log h; 1) < u,0, € IDery(log h;i).

So, we will see the integrability of ¢ = ud, with v € k[y]. Let us consider ¢ : R — R[|u|] a
generic integral of ud,:
p: R — Ryl
T o T up A+ ugp® + -
y =y o+ opt
To show that ¢ is i-integrable it is enough to prove that there exist u;,v; for 2 < j <4

such that the coefficients of 17 in ¢(h) belong to (h) for all j < i. We will denote by p; the
coefficient of ;7 in the equation

(e (e (e (e (e S
plh) = (" il ) = (e ) (4.1)

Suppose that there exists 4 such that 2 < i < p®. Then, gy = —qy? ‘v, has to belong to
(h). As we saw before, that implies that v, € (h), so we can put v, = 0. Let us assume that
vy =0forall 2 <1 < i< p® In this case, u; = —qy? 'v; and, as the same before, we can put
v; = 0. Then, for all 7 < p?,

IDery,(A; i) = Dery,(A) = (0,)

and we can write the equation (4.1) as:
(xpa P P b " ) — (Yt v F v T ) e () (42)
Now, let us consider
fpe = sP"CTDYPY — gt=ly o (4.3)

We have to see that if there is v,e € R such that p,e € (h). Let F' € R such that sax?" (s~ Dy?® —
qy? vy = F(a™ — y?). Then,

2?67 (suP” — Fa?) = y7! (mupe — Fy) = su?” — Fa?" = Gy*™!

for some G € R. Since u € k[y|, we can write u = > w;y* where u; € k and the previous
expression implies that ufa = 0 for all ¢ such that ip* < ¢ — 1. So that u; = 0 because k is
reduced. Hence, we can write u = w(y)y” where v = min{i € N | ip® > ¢— 1} and w(y) € k[y].
Substituting the expression of u on (4.3), we can deduce that

spP" VP P @) gy € () = wpe € (s/q)at" TP P @ (p) (4.4)
Therefore, A has a leap at p* and

IDer,(4; p*) = (20,,y70,) where v = min{i € N | ip® > ¢ — 1}.

Let us write ¢ = tp® + m. Note that the only case where yp® = ¢ — 1 is ¢ = tp” + 1 and
a < . To see that we have to show when the equality ip® = g — 1 holds. If we substitute ¢, we
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obtain that ip® = tp® +m — 1, then ip® — tp® = m — 1. Hence, m — 1 has to be a multiple of p
and, since m < p, we have that m — 1 = 0. So, ip® = tp”. Now, if B < «, then ip®# =t # 0
mod p giving us a contradiction. So, 5 > «, ¢ = tp® + 1 and i = tp°~°.

Let us focus on the case when s = 1 and ¢ = tp® + 1 with a < .

o Case q=1tp° +1, a <  and s = 1. Observe that ¢ # 0 because ¢ > 2 and we have that
v = tp®~*. We will study the integrability of w(y)y’d, in this particular case.

Substituting the values of ¢ and s in the equation (4.2) and (4.4) we obtain:

(xpa +upaupa _i_uga//LQpa +...> —
RS s o ¢ o
_ (ypﬂ + 'Uga/,[,p +8 + /U];Oé+1:u’(p +1)Pﬁ + .. ) (y + "Upa,up -+ .- .) c <h>

and
vpa € cw?” + (h)

for ¢ = s/q. Let us consider i such that p® < i < p®*#. If i = jp® for some j > 2, then
pi = ui — y"’v;. Otherwise, p; = —y v;. So, wy?d, is h-logarithmically i-integrable
for all i < p**¥ (it’s enough to put u; = v; = 0, so that y; € (h)). Now,

a _ B
MpomLﬁ - U/IZ;B - ty(t 1)p5+lvga - ytpﬂvporfﬁ
has to belong to (h). So, substituting the value of vy, we have that

o a+B  (1_1)pP 5 o 8
uiﬁ — ctwP™ Tyt PTHL _ytp Vpotrs = G (acp —y'P +1>

for some G € R. The coefficient of ¢/ with j = (t — 1)p” + 1 in this equality is tcwga =0
where wy is the independent term of w. Since R is reduced, wg = 0. Hence, 370, is not
p**HP-integrable. However, if w = w'y with w’ € k[y], the previous equation is

j 2 1potB | q+pP (p*—1 tpP _ o tpP4+1
uy — ctw” Yyt oyt s = G (2" =y :

. . . at+B B (p_
Then, there exists a solution, for instance u,s = 0 and vje+s = —ctw” " yP (P*=1+1 I
conclusion, in this case A has a leap at p®*? and

IDery, (A;p“*ﬂ) = <:v_(9m, y7+18x> :

Until now we saw that, for all ¢ > 2
IDer; (A;p*) = (20,,y79,) where v =min{i € N | ip® > ¢ — 1}

and moreover, when ¢ = tp® +1,1 < o < f and s = 1, 470, is not h-logarithmically integrable
but
IDery, (A;po‘+6) = <x8x, y7+18w> )
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Let us rewrite v := v + 1 in the latter case. We will see that 370, is integrable on A for all
q > 2. Consider

p: A — Alul]
T — TH+y'u
y > Yo o

where for all 1 > 1,
v; = Cia? (57w =+ e+l o1y — 754 o with7 > 0and o = 1,..., s,
11 /s s e
Ci=-11{. —ZDj where | ) =0if7 > s,
¢\ jel; L

i—1
L;—{j_(jo,jl,...,ji_l)eNi|jT20Vr—0,...,z’—1, jl = q, erT—i}

r=1

and, for all j = (jo, j1,...,J1) with [ > 1,

. . |
J J Job- i

We have to prove that ¢ is well-defined. First we will see that iyp® — (7 + 1)g+ 1 > 0, i.e.
(ts+o)yp*—719>q— 1.

e When vp® > g — 1, then vp® > ¢, but ¢ is not multiple of p, so yp* > g+ 1 and therefore
(ts+o)yp*—19¢>(ts+o0)(g+1)—1q=(1(s—1)+0)g+Ts+0>qg—1
because s —1 > 0 and o > 1.

e Let us consider yp* = ¢ — 1. As we have seen before, the previous equality only holds if
q=1tp’ +1and a < . If s = 1, then we have considered v + 1, so we are in the first
point. Therefore, we just have to consider s > 2. In this case, we have to prove that
(ts+o)yw*—1q¢=(rs+0)(¢—1)—7q¢>q—1. Then

(rs+o)g—1)—71¢=2 (27 +0)(¢—1)—T¢=(T+0)g— (27 + 7).
So,
(T+o)g—214+0)>q—1 (t+o—-1)g>21+0—1
and this is true because ¢ > 2 and 7+ 0 —1 > 0. Note that if r+0 —1=0then 7 =0
and 0 = 1,50 21 +0 — 1 =0 too.
Now, we have to show that ¢(h) = 0 in A[|u|]. The equation is:

p(h) = (& +y™ 1) = (y + o + o™ + )"
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Since all degrees of the monomial which appeared in this equation are multiple of p®, let us
denote p; to the coefficient of degree ip®. Then

i = (j) xpa(sfi)yi'ypa B /71

where /; is the coefficient of " of (y + vi?" + vou®" + -+ )% This coefficient can be found
on

(y+ v+ o) =Y (?) POplt i i),
lil=q
We just have to consider all j such that j; +---+1¢j; = i. Observe that there exists only one j
holding this equation such that j; # 0, This j is (¢ — 1,0,...,0,1) where 1 is in the position .
So, we can identify the set of all these j with I; U (¢—1,0,...,0,1). Let us calculate a term of

;. Fixed j, we have
(q) yJOU{I . ,ng — (q) 0{1 . Cijimapayb _ Djl‘apayb
J J

ST rrels—0)20 and b=jot+ S s W(7s+0)— (74 g+ 1) > 0.

1<7s4+0<1 1<7s4+0<14

where

We are going to study these exponents.

Z jTS-I—O’ - Z jTS-FO’O- - S - .]O Z ]Ts+aa

1<7s4+0<1 1<7s4+0<1 1<rs4+0<t

On the other side, if we write ¢ = ls + 7 where [ > 0 and 1 < r < s, we have that

ls+r=1i= Z st—i-U(TS + U) =5 Z st—‘roT + Z jrs+00'

1<7s4+0<i 1<7s40<1 1<7s40<1i
Then, if we denote "= > j.s1,7 and we substitute on a, we have
1<rs4+0<14

=s(qg—jo)—((U=T)s+r)=s(¢qg—jo—1l+T)—7r>0
Ifg—jgo—1l+T<1,thena<0soq—jo—1I1+7T >1and we can write
a=(q—jo—l+T—-1)s+s—r.

Observe that s —r > 0 because 1 <r < s. Now,

b - .jO + ’Vpa Z j’rS—i—a (TS + U) —dq Z jTS+O’T —q Z st—‘ro + Z st—l-a

1<7s40<i 1<7s40<i 1<7s40<1i 1<7s40<i

= Jo+ % —qT —q(q— jo) + (¢ — jo) = ivp® — q(T + q — jo — 1).
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So,

YU

C] y 1 ). A _ « _ a . o A
( opdt ..yl = Dj:p(q Jo—lFT=1)sp+(s=m)p®y ivp® =a(T+q—jo=1)
Since 2°P" = y4 in A,
T\, jo, gt Ji — D.ps=rp® i +a(a—jo—+T-1)=q(T+q—jo=1) _ ) ,.(s=r)p% ivp*—lg
SNYyTUy e = Usx Y = ;T Y :

Recall that i = ls +r where [ > 0 and 1 < r < s. Then, we have

fi= oy, Dttty (Z Dj + D(q—l,o,...,o,1)> " eyt

o lil=a Jel;
g1t tigi=i
“(s—r), iyp™*—I S *(s—r), iyp*—l1
= (ZDj+QCi>SUp( )P qz(ZDj+Q(1/q> [(i>_ZDj])xp( )yt =la
JjEL; JjEL; Jj€el;
S

Qo ; (2
_ ) 2P (s T)ywp lg.

]
[ = (‘:) Ip“(s—i)yiw" _ (‘j) xpa(s—f)yivpa—lq.

If i > s, then (f) =0, and hence p; =0. If i < s, theni=0-s+1,ie.,l=0and r =1, so

[ = (S) xpo‘(sf'i)yi'ypa o (S) xpa(sfi)yi'ypa = 0.
7 7

Hence ¢ is well-defined and the proposition is proved.

So,

O

Remark 4.1.2 Let us consider h = 2™ — y? € R = k[z,y] with n,q # 0 and A = R/(h).
Assume that n # 0 mod p and ¢ = 0 mod p. Then, we can compute 1Dery(A) thanks to
Proposition 4.1.1. Observe that the map f : A — R/{z? —y") =: B given by f(x) =y and
fly) = z is an isomorphism of k-algebras and by Lemma 1.1.20, 1Dery(A;i) = IDery(B;1).
Hence, Leaps,(A) = Leaps,(B).

We recall the notations that we use: Let a := val,(n) be the p-adic valuation of n and
s =n/p*. We will denote by m the remainder of the division of ¢ by p and g := val,(¢ —m).

As a straightforward consequence of Proposition 4.1.1 and Corollary 1.2.16, we have the
following result.

Corollary 4.1.3 Let k be a UFD of characteristic p > 0 and h = z™ — y? € kl[z,y| with
n,q # 0. We denote A = klx,y|/(h). Suppose m =0, a > 1 and 8 = val,(¢) > 1. We write
T=min{e, B} > 1, ' =n/p” and ¢ = q/p”. Then, Dery(A) = (0,,0y) and for all i > 0,

IDery (A;p™) = {5 | § € IDery, <log <x”, — yq/> ,pi>} )
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Corollary 4.1.4 Let k be a commutative reduced ring of characteristic p > 0 and A =
klx,y|/(h) where h = z"™ — y? with n,q # 0. Then, we have the following properties.

1. If n,q # 0 mod p then, Leaps,(A) = 0.
2. Ifn=0 mod p and g =1 then, Leaps,(A) = 0.

3. Ifa,m >1 and q > 2, then

B {pa’pa"rﬁ} ifs=1, a<p, m=1
Leaps,(A) = { {p*} otherwise.

4. If a = 0 (i.e. n # 0 modp) and m = 0 (i.e. ¢ = 0 mod p) then, Leaps,(4) =
Leaps, (A") where A" = k[z,y]/{x? — y™).

Moreover, if k is a unique factorization domain, m = 0, o, > 1 and we denote T =
min{a, f} > 1, n' =n/p” and ¢ = q/p", we have that

Leaps,(A) = {p"} U {ip” | i € Leaps, (B)} where B = klz,y]/ <x"/ - yq/> :

Proof. This corollary is a consequence of Proposition 4.1.1 and Proposition 1.2.17. U

Corollary 4.1.5 Let k be a commutative reduced ring of characteristic p > 0 and A =
klx,y]/(h) where h = ™ — y? such that n,q # 0, a,m > 1 and g > 2. We denote

B; := Anny (IDery(A;i — 1)/ IDery(A; 1))
fori > 1. Then,

g ey di=p°
’ (y) ifi=p*P s=1, a < B and m = 1.

Moreover, B; 2 J° = (y4=1) where J° is the gradient ideal of h defined in Proposition 1.2.7.
Proof. Let us start with ¢ = p®. From Proposition 4.1.1, we can deduce that
IDery, (A;p* — 1) /IDery (A; p®) = (0r) / (204, y" Oy

where 0, € Derg(A). By definition, a € B; if ad, = 0 mod (x0,,y?0,), i.e. if there exist
F,G € Asuch that a0, = Fr0,+Gy"0,. Applying this derivation to x, we have that a € (x,y").
Now, when o < 8, s = m = 1 and ¢ = p*™, from Proposition 4.1.1,

IDery, (A; p**? — 1) /IDery (4; p**7) = (204, y70,) /(x00, v 0s) = (0, /(YT 0).

In this case, a € Bpa,p if and only if ay?9, € (y7719,), i.e. if (a— Fy)y?9, = 0 for some F € A.
This implies that a € (y) and we have proved the corollary.
O
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Examples 4.1.6 Let us consider k a reduced ring of characteristic p = 3 and h = 2® — y° €
klx,y], then v = 2. According with Proposition 4.1.1 and Corollary 4.1.4, Leaps(k[z,y]/(h)) =
{3} and

Dery(klz, yl/ (h); 1) = { gixai,yzax> 3§§< ’

Now, if we consider f = x* — y* € k[z,y|, then v =1, Leaps,(k[x,y]/{(f)) = {3,9} and
(0,) 1<i<3

Dery(klz, yl/{f)ii) = § (202,y0:) 3<i<9
(x0,,y?0,) 1> 0.

Moreover, if we assume that k is a UFD, thanks to Corollary 4.1.3 and Corollary 4.1.4, we
have that Leaps,(A) = {3,9,27} and

(04,0,) 1<i<3
@,) 3<i<9
(

ery, (klz,yl/ (f*)) = 20,,y0,) 9<i<2T

Remark 4.1.7 Note that if k is not reduced, Proposition 4.1.1 is not true. For exzample, if
k = T3[t]/{t?) and h = 23 — y°, then t0, € IDery(A) with the integral

A — Aflpl]
x — xT+1tu
y Y

4.2 Other plane curves

In this section we calculate the modules of integrable derivations of the quotient of a polynomial
ring over some non-binomial plane curves. These curves have been taken from [G1].

Curve 1.

Let k£ be a domain of characteristic p > 0 and t € k. Let us consider h = 2P + taP*! €
R = k[z] and A = R/(h). The module Dery(log h) is generated by (1 + tx)d,. From Theorem
2.5.1 and Corollary 1.2.4, Dery(log h) = IDery(log h;p — 1). Hence, we have that (1 + tx)0, is
h-logarithmically (p — 1)-integrable. So, let us consider £ € HS(logh;p — 1) an integral of
u(1l + tx)d, where u € R. From Proposition 1.2.1, there exists D € HS;(R) an integral of E.
In order for D to be h-logarithmic,

D,(2? + txP™) = Dy (x)? + t(z Dy (z)? + Dy(x)2?) = uP(1 + tx)*™' +tD,(z)2? € (h)

(to calculate this equality see Lemma 1.2.9). So, u € (x) and IDerg(logh;p) = (x(1 + tz)0,).
Observe that this generator is co-integrable, for example the k-algebra homomorphism R —
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R[|p|] given by « — = + x(1 + tz)u is a h-logarithmic integral of z(1 + tx)d,. In conclusion,
Leaps,(A) = {p} and
(14+tx)o,) ifi<p

IDerk(A; Z) = { <m> if 7 > D-

Curve 2.

Let k be a domain of characteristic p = 2 and h = 2*+y°+y” € R = k[z,y]. Let A= R/(h).
Let us consider 6 = ud, + vd, for some u,v € R. In order for ¢ to be h-logarithmic, vy® € (h),
that means that vy® = F(z* + ¢° + y7) for some F € R. Hence, (v — F)y® = F(z* + y"). So,
F = Gyb for some G € R and v = G(z* +4° + "), i.e. v € (h). Therefore,

Dery(log h) = (0., h0y).

Since hd, is h-logarithmically co-integrable, we can focus on the h-logarithmically integrability
of u0, where u € R. Let us suppose that § = ud, € [Derg(log;4(i — 1)) for some i > 2 and
that there exists a 4(i — 1) — (h)-logarithmic integral of § of the form

¢: B — Rp]
r — Tt+up
4 ... A=)
Yy = Yt op AU

Then, for all n > 4(i — 1) such that 4 { n, the coefficient of ™ in the equation ¢(h) is zero.
Moreover, the coefficient of %, that we denote it by ji;, is obtained from the expression

(y+ vt + -+ 0y ) 4 (y vt + 4 oY)

. 3 i—
= (Y +oipl 4+ 02 B0 (T4 y 4 vt + -+ v pttY)

3 .y i , e -
= Z ( ) yZJD,U%JI .. .U?izflMS(]1+"'+(171)‘7271) (1 +y+ U1M4 RS vz;l/f(’ 1))
)

]:(.70 ~~~~~ ji*l
j1=3

i—1
)

=0 J:(]O ~~~~~ jifl j
|j]=3

(4.5)

where vog = 1+ y. Then,
- 3 o )
i = Z Mi g1 where Wil = Z ( ) 'Ulyzjoyijl ce U?izfl
(DT, Ghez N
and
Z={(,) eN'XN |0<I<i, j,>0Vs=0,...,i—1, |j| =3, 2(j1+---+(i—1)ji_1) = i—1}.

Observe that jo < 2 for all (j,1) € Z; because if jo = 3, then jo =0foralls=1,...,i — 1, so
¢ — [ =0 and this is a contradiction. We have the following lemmas.
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Lemma 4.2.1 Let i > 2 be an integer and let us suppose that v, € (y?) for all1 <n <i—1.
Thena ﬁl € <y8>
Proof. Since v, € (%),

i1 € <y2]0+4(]1+“'+]i71)>'

Since j0+j1+"'+ji_1 =3 and jO < 2, we have 2j0+4(j1+"'+ji_1) :2j0+4(3—j0) =
4 — 2jo + 8 where 4 — 2j, > 0. Hence,

JURTRS <y8> for all (j, l) c IZ = /71 € <y8)

and we have the result.
O

Lemma 4.2.2 Let i > 2 be an integer and let us suppose that v, € (z*) for all1 <n <i—1.
Then, p; € (x®).

Proof. Since v, € (z*), we have that
fiji € <x8(]’1+"‘+]’i71)>_
Since jo # 3, we have 8(j1 + -+ + ji_1) = 8(3 — jo) = 8(2 — jo) + 8 where 2 — jo > 0. Hence,
i1 € (2%) for all (4,1) € T; = 1; € (x®).

O

Let us suppose that § = u0d, € IDer,(log I;4(i—1)) for some ¢ > 2 and it has a 4(: —1) — (h)-
logarithmic integral
¢: R — R[]
r — Tt+up
y — ytopt 4 uptt

where v, € (y*) (resp. v, € (x?)) for all n > 1. By Lemma 4.2.1 (resp. Lemma 4.2.2), we have
that z; = F'y® (resp. fi; = Fa®) for some F € R. We put v; = Fy? (resp. v; = F(1 +y)z*) and
we define an integral of §

' R — Rfjp]
r —— T+up ’ .
y +— yFopt 4o pt 4ot

Then, ¢ is 4i— (h)-logarithmic. It is clear that ¢ is (4i—1) — (h)-logarithmic and the coefficient
of u* in ¢'(h) is ySv; +1; € (h). Therefore, if § = ud, € IDerg(log I;4) and there exists v € (y?)
or v € (z*) such that
p: B — Rp]
r — Tt+up
y — y+op

is a 4 — (h)-logarithmic integral of ¢, then ¢ € IDery(logI;m) for all m > 1. Thanks to this,
we will calculate modules of integrable k-derivations.
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Let us consider 0 = ud, where u € R and a generic integral ¢ : R — R][|u|] of 6 = ud,:

p: B — Rflp]
T XA up+ ugp® 4 -
y =y o+ op’

The coefficient of u' for i = 2,3 in ¢(h) is y%v; and they have to belong to (h). As we have
seen before, that implies that v; € (h), so we can put v; = 0 for i = 2,3 and we can write:

p(h) = (z +up +ugp® + - )+ (° + i’ + o3’ + - P (1L y + o’ +osp’ + ). (4.6)

The coefficient of u* in this equation is u* + y5v, and has to belong to (h). Let us suppose that
F € R satisfies the equation

ut+ Sy = F (ZL’4 + 4%+ y7) : (4.7)
Let us write u = > u;(x)y’ € (k[z])[y] and F = Fiy* € (k[z])[y]. Then,

> ufyt =" Faty'+ (v + (1+y) Py

If we consider the independent term and the coefficient of y* in this equation, we have that
uy = Fox* and uj = Fiz*. Hence, we can deduce that ug = u,z and uy = ugy for u,, uy, € k[z].
Therefore u and d can be written as

U = Up® + UgyTY + uyy2 = 0 = U0y + UgyryO, + uyy281
where u,, € R. Substituting the expression of u on (4.7), we have that
upr g, 2ty +uyy®+ytos = F (2 + 0% + ") = (up +ugy' + F) 2t = (u+ F(1+y) + upy?) .
Hence, there exists G € R such that
{ uprt +up,yt + F = Gy° = F =Gy’ 4+ upz +uy,y*

v+ F(1+y) +uyy® = Gt

Substituting F' in the second equation, we have that
v =Gty yT) gy + (g + gyt (1 +y).

Therefore,
IDery(log I;4) = (20,, 2y0y, y*Or, h0,) = (20,, y*y, hO,).

Thanks to the previous computation we can see that

R — Rul] R — R[ul]
r — T+zTYp and r — x4+
y — y+ 1 +yyiut y — y+yut

are 4 — (h)-logarithmic integrals of xyd, and y?0, respectively. So, both derivations are (h)-
logarithmically m-integrable for all m > 1.
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If & € IDery(log h;4), we have that 0 = u,x0; + Uyyxyd, + uyy*d, for some u, € k[z] and
Uyy,u, € R. Since IDery(logh;m) is an R-module and zyd, and 3?0, are h-logarithmically
m-integrable, § € IDery(log h; m) if and only if u,x0, € IDerg(log h;m). Therefore, we need to
see the h-logarithmically integrability of uxzd, where u € k[x].

Let us consider a 4 — (h)-logarithmic integral ¢ : R — R[|u|] of uxd,:

p: B — Ryl
r o T+ uzp -+ ougp®
y =yt ot Fosp’ -

Then, vy € (1 +y)u? + (h). Observe that the coefficient of y' for i = 5,6,7 in p(h) (see (4.6))
is 3%0;. Since we want ¢ to be h-logarithmic, y%v; € (h), so we can put v; = 0. Now, the
coefficient of p® is

g = u% + ySug + vZ(l + y)y4 = ug + ySug + (1+ y)3u8y4.

In order for ug to be in (h),
uy +yPvs + (L+y)*uly* = F (' +y° +¢7)

for some F € R. Observe that the coefficient of y° in the previous equation is u§ = 0 where
up is the independent term of w. Since R is a domain, ug = 0, so u € (x) and we can write
u = wx. Hence, vq = (1 + y)wlz? € (x*) and if we put

vg = wi(1 +y)*(1 +y)r*y* € (z*) and uy =0
then ug =0 mod (h). Therefore,
IDery(log h; 8) = (220, 7y0,, y*0s, h0,)

and
R — R[|u]

r — x+2u

y — y+ (1 +y)atpt
is a 4 — (h)-logarithmic integral of z2d,, so 229, is h-logarithmically m-integrable for all m > 1.
In conclusion, Leaps,(A) = {4, 8} and

(0,) if1<i<d4

Derg(A;i) = ¢ (20y, y%0,) if4<i<8
(x20,, xy0y, y?0,) if 1 > 8.

Curve 3.

Let k be a domain of characteristic p = 3 and h = 2® + ¢° + 2%y* € R = k[z,y]. Let
A = R/(h). Let us consider § = ud, + v0,. In order for § to be h-logarithmic, d(h) =
2ury? + 2vrty + 2vy* € (R, ie. y(uzy +va* +vyd) = F(23 + 2*y* + y°) for some F € R. Since
y is not a factor of h, we have that

uzy + vz’ + vy’ = F(2® + 2% +y°) = (uy — Fr?)x = (Fy* —0)(2* + )
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for some F' € R. Hence,

Fy? —v=Gr=v=Fy* -Gz uw—Gy? = Hx? = u = Gy? + Ha?
wy—Fr2=G2*+y*) = (u—GP)y=(F+G)x*= | F+G=Hy=F=Hy—-G

for some G, H € R. Then,
u= Gy*+ Hx?
v=—G(x+y*) + Hy.

Let us denote 0y := 220, + y*9, and 83 := 24?0, + (x + y*)9,. Then,
Derk (log h) = <51, 52>

These two derivations are h-logarithmically m-integrable for all m > 1. To verify this claim,
let us consider a k-algebra homomorphism ¢ : R — R||u|] given by

p: B — Ryl
r — x+u1u+u2u2+---
y > ytuip vt 4

We start to calculating a generic coefficient of p(h):

o(h) = (2% +udpd +udps + - )+
(y+oip+vop® + - )2 [(w +urp +ugp® + - )2+ 2+ odpd +odps + -],

The coefficient of p® in (z 4+ uyp + ugu® + - -+ )? is the coefficient of p® of

. 2 _ N
(z +wp + U2N2 + -+ UiMZ)Q = Z (l)xloulll . .uézﬂlﬁ-'"-ﬁ-zlz'
=

Let us denote L; = {z = (loy 1y, L) ENFL[ I =2, S sl = z} and

. 1 ifi=0 mod3
B 7)1 0 otherwise.

Then, the coefficient of y? in the term (@ + uyp + ugp® + -+ )2 +y* + vp® + v3us + -+ is
- 2 .
Wi = Z (l)xloulf x uﬁ + l/igv?/3.
leL;
Now the coefficient of p’ in (y + vip + vop® + - -+ )? is
/ <2> Jjo,,J1 Ji
JEL; J
Hence, the coefficient of ;' in p(h) is

Hi = Vi3u?/3 + Z [ Fi -

n=0
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Observe that if n # 0,4, then p!, and p;_,, do not have u; or v; as a factor of any term. Moreover,
py =y and fig = 2® + 3. Let j € L;, then j; + --- + ij; = i, so there exists only one j such
that j; # 0, namely j = (1,0,...,0,1). Let us denote £; = L; \ {(1,0,...,0,1)}. Then,

pi = Visttyys + 2 (27 + %) yoi + 20w + (27 + o) <Z (j> Yool -vfif)

JEL;
9 i1

+ (Z (j)xloulf e Uifll + Vi31)§/3> + Zﬂéﬁz‘—n'
leL; n=1

Let us consider the following lemma:

Lemma 4.2.3 Let uy = 2* and vy = y* and i > 2 an integer. Suppose that v; =0 for all j > 2
and u, € (z%) for alln < i. Then, there exists u; € (x*) such that u; belongs to (h).

Proof. Note that L; = {(1,1)} and Ly = {(0,2,0),(1,0,1)}. Then,

po = 2xyus + (22 + y3)v? + y2u? + 2yvi2zuy = 2xyPus + 228 + 40 + 2ty + 23y?
= 2xyuy + oty + v (2 + 2% + o) = 22y2uy + 2y mod (h).
If we put uy = z?, we have that py € (h) and the lemma is true for i = 2.
Let us assume that ¢ > 3. Let j € L,, with n > 3, then if j; > 0 for some s € {2,...,n}, the

term associated withj in p, is zero. Hence, we can assume that j; = 0 for all s > 2. In this case,
j1 =n > 3 but jo+j; = 2 and we have a contradiction. Therefore, u!, = 0 for all n > 3. Observe

that a similar argument can be applied to j € £; in the term <Zj€£i (3) yj()v{i .. .U-ij’b:ll). So,

2 . -~ ~
fi = Viguys + 2wy u; + o (Z <Z>Iloulf N l/i3vi3/3> + W i1+ o1
leL;

Observe that p) = 2yv; and ph = v?, so

2 . - ~ e
Vi3u?/3 + 2zyPu; + Z (l> zuy - uitll + 2y i1 4+ Yo + oyt ifi=3
_ leL;
Hi= 3 2 2 2 lo, 11 li—1 4~ 6~ :
VigW;/3 + 2zy u; +y Z I U e 2y i Y 2 otherwise.
leL;

Let l € L, withn > 1, then l; +---+ [, > 1 because [y + --- + nl,, = n, so lop < 1. Moreover,
since u, € (z?) for all 1 < s < 4, we have that

(7)toat v @ gaesists i) ¢ ().

ghe same occurs when [ € £;. Then, p;,_; € y(i_l)gvf’i_l)/3+<x3> and [1;_o € M(i_g)gv?i_z)/3+<$3>.
ence,

2 y _ B
y? Z (l)xloulll w1 2y e+ T = Faty? 4 2y4V(z‘—1)3U?i71)/3 i y6V(¢—2)3v?i,2)/3
leL;
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for some F € R. If we put u,, = F,z? for 1 < n < i, we have that
1/13F/3x + 2xyPu; + Fady? + ¢t ifi=3
1/13F/3x + 2xyPu; + Fady? + 298 ifi =4
Hi = 1/13}723/3x + 2xyPu; + Fady? + ¢ ifi=5
1/13F/3x + 2xy2u; + Fady? otherwise.

Then, if we take

i Fyjpa®(2® +y°) + Fa? + 22°y" + 2y(v +y?) if i =3
21/ng L2 (2 + ) + Fa? 4 22%y(x + y?)? ifi=4
T 2u 1/39:2(9: +1°) + Fa? + 2%y’ (z + y?)? iti=5
20 Fyjpa® (2 + y°) + Fa? otherwise
we have the result.
U
Let us consider 6, = 229, + y*9,. Then, by Lemma 4.2.3, there exists us € (z?) such that

R = Rl
S R R
y o=yt

is a h-logarithmic 2-integral of d;. Doing this process recursively we can deduce that 0, is
h-logarithmically m-integrable for all m > 1. To see the h-logarithmically integrability of ds,
we consider the following lemma:

Lemma 4.2.4 Let u; = 2y? and vy = x +y? and i > 2 an integer. Suppose u,, € (vy,y>) and
vn € (y?) for all 2 < n < i. Then, there exist u; € (xy,y*) and v; € (y*) such that u; belongs
to (h).
Proof. We will start to calculate for ¢ = 2:

2(x? +y Nyvy + 2zy?ug + (22 + y3)v? + y?u? +a:yvlu1
= 202 + 9 )yve + 2xyup + (2% + y7) (2 + y°)* + 4 + 200 (w + 17)

2(2° +y°)yvs + 22y up + 4 + (2 + 17) (2 + 9°)y° + 2° + 2y’ + 22y
= 2(2* + y¥)yvs + 22yus +y® mod (h).

If we put us = 2xy and vy = y? we have the result for i = 2. Let us consider i > 3. We will
study each component of ;.

e For 1 <n <1i—1, we have that

=3 (j>y;ovn, S ( ) (3 y2) il - g

JELy JELy

Observe that jo < 1 because n > 0 and if jo = 2, then j, = 0 for all s > 1 and
0=>"sjs =nlll. Moreover, since vs € (y?) for all 2 < s <i—1,if j € L,, then

yjo (:C +y )le%Z .. 'Uszn c <(:lj' + y2)j1yjo+2(j2+---+jn)> _
We fix j € L,:
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- If Iy = 0, then the term associated with [ belongs to (3°) because jo+2(jo+- - +7jn) =
4 —jo = 3.

- If I; = 1, then there exists s € {0,2,...,s} such that j, = 1 and vy € (y). So, the
term associated with j belongs to (zy,y?).

- If j; = 2, then jo = jo, = - -+ = j,, = 0 and the term is y* + 22y? + 22.

Then,
1, € (y°, zy, 2*) .

Now, we denote

-~ 2 2
,U/;l _ Z <l>xloul11 .. ui:l — Z (l)xlo(QyZ)hulzz .. ’U/fff

leL, leLy,
Again, [y < 1foralll € L,. We fixl € L, and recall that u, € (xy,y®) forall2 < s <i—1.

-Ifl; =0, then l[p = 1 or [y = 0. In the first case, there exists Iy = 1 with s > 2,
so the term associated with [ belongs to (z%y,zy®). Now, if Iy = 0, then the term
associated with [ is in (xy,y®)? C (2%, zy?, 4°).

- If Iy = 1, then if Iy = 1, the term associated with [ belongs to (zy?). Otherwise, if
lo = 0, then there exists [, = 1 for some s > 2 and the term associated with [ is in

(ry®, %),
- Ifl; =2, then [; =0 for all i = 0,2,...,n and the term associated with [ belongs to
(y*).
Moreover, vf/g e (y5, %), so
[ € (@°y, xy”,y*, 2°) .

Hence,
i—1

> unfiin € (Y720 2y, 2y g

n=1

e For ¢ > 3 we denote by n; the term

2 ‘ 2 :
m = Z (Z)Iloulful; .. ui’:ll = Z (Z)I10(2y2)11u122 .. uifll

leL; leL;

Let | € L;, then [y < 1 because ¢ > 1. If [j = 1, then there is only one [y = 1 and
sls = i, so s = i. That means that [ = (1,0,...,0,1) & L£;. Moreover, if [y = 2, then
2<i=7Ysly=1 =21 Hence, [y =0foralll e £; and [ < 1. We fix [ € £;. Since
us € (zy,y?) for all 2 < s <4 — 1 we have that:

- If [y = 1, then there exists [, = 1 for s > 2 and the term associated with [ is in
(zy®,y°).
- If I; = 0, then the term associated with [ belongs to (xy,vy*)* C (z%y?, xy?, 4°).
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Then,
m € (zy’,y°, 2%y).
Since U?/3 € (y% %), we have that
y*(n; + visvyyg) € (xy® ", 2?7, 2%y?) .
e For i > 3, we denote by 7} the following term
/ 2 jo, 11, 12 li—1 2 jo 2\l o li—1
i = Z YU Uy Uy = Z Ny +yt) g
jec N jeL N

Note that jo = 0 and j; < 1 for same reason that in the previous point. We fix j € £;.
Since v, € (y?) for all 2 < s < i — 1, we have that:

- If 53 = 1 then there exists j, = 1 for some s > 2 and the term associated with j is
in (zy?,y*).
- If j; = 0 then there exists j; = 2 or js = j; = 1 for s,t > 2, so the term associated
with j is in (y%).
Then
n; € (zy® y")
and
(«* + 7)) € ((@* + )y, 2%, 2y?)

o We have that v}, € (y°,2°y°).

To sum up,
i € 2(2” + ¥ yv + 2zyu; + (y°, 2%, 2%y, 27y g, (2 + o)yt
So, there exists a a; € k[x,y| for each i = 1,...,6 such that
Wi = 2(:1:2 + y?’)yvi + 222u; + a1y’ + ana® + aszty + aur?y® + asay® + ozﬁ(xz + y3)y4
and we want to find u; € (zy,y?®), v; € (y?) such that u; € (h). Then, if we put

u; = 2002y + 2a2xy3 + oy + a5y3
v; = aqy? + awry® + 2a3y* + ay?

we have the result.

U

Since &y = 24?0, + (v + y*)9, is h-logarithmic, we can apply Lemma 4.2.4, to obtain
uy € (zy,y®) and vy € (y*) such that the k-algebra homomorphism ¢ : R — R[|u|]2 defined by
o(x) = z+2y* u+usp® and p(y) = y+ (z+y*) p+vop? is h-logarithmic. Applying Lemma 4.2.4
repeatedly, we can deduce that d, is h-logarithmically m-integrable for all m > 1. Therefore,
Leaps,(A) = 0 and for all m > 1,

IDery(A;m) = (61, 02) where 6, = 220, + 39, and 0y = 2y°0, + (x + y*)d,. (4.8)
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4.3 Leaps, semigroup of curves and integral closure of
ideals

In this section we give two results that were suggested by Professor H. Mourtada. The first one
tells us that leaps of an irreducible algebroid plane curve over a algebraically closed field is not
determined by the semigroup of the curve. The second one tells us that leaps of a commutative
algebra over a commutative ring are not preserved by integral closure of ideals.

Let us consider an irreducible plane algebroid curve A over the algebraically closed field &
and we denote by F' its quotient field. Let us consider the integral closure A of A in F'. Then,
we have the following theorem.

Theorem 4.3.1 [_ , Th. 1.3.1] A is a complete discrete valuation ring of F. If m is the
mazimal ideal of A,ie m\m?, and T is an indeterminate over k, the homomorphism given
by T € k[|T|] — t € A is an isomorphism of k-algebras.

For such a ¢, we write A = k[[t]] and F' = k((t)). Let v : F — Z be the normalized
natural valuation of k((t)). If z € A C A, then z = s(t) with s(T") € k[|T|] and we have
v(z) = ord(s(T)) (see [Ca, §1.3]).

Definition 4.3.2 The semigroup S(A) = v(A\ {0}) C Z, will be called semigroup of values
of A.

Proposition 4.3.3 Leaps of irreducible algebroid plane curve over an algebraically closed field
are not determined by the semigroup of the curve.

Proof. Let k be an algebraically closed field of characteristic 3 and R = k[|z, y|] the formal
power series ring in 2 variables over k. Let us consider h = 2® — ¢® and g = 2® — y° + 2%y? two
polynomials in R. Let us denote A = R/(h) and B = R/(g). These two rings are irreducible
algebroid plane curves with the same semigroup, (3,5) (see Ch. 4.3 of [('a]). However, they do
not have the same leaps. Note that the calculations made in Proposition 4.1.1 and Curve 3 in
the previous section are valid for R. So, by Example 4.1.6, Leaps;(A) = {3}.

On the other hand, we have that the map

f: B — R/{x®+ 1+ 2%y?)
r =
y = -y
is an isomorphism of k-algebra. Hence, by Lemma 1.1.26 and Curve 3. in the previous section
(see (4.8)), we obtain that
Dery(B) = IDery(B;n) = (1, 02)
where §; = Hflm(éi) and 0, = 220, +y39, and 0y = y?0, + (v +y*)9,. Therefore, Leaps,(B) = 0.
O
Let us consider k£ a commutative ring and A a commutative k-algebra. Remember that the

integral closure of an ideal I of A is the ideal that consists of all elements of A that are integral
over I, and is denoted I.
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Lemma 4.3.4 Under the above condition, leaps of A/I are not the same that leaps of A/I,
i.e. leaps are not the same up to integral closure of ideals.

Proof. Let us assume that k is a reduced ring of characteristic 2 and let us consider the ideal
I = (22,y*) C R = k[z,y]. Then, its integral closure is I = (22 xy,y?). We will calculate
modules of integrable k-derivations for A = R/I and A = R/I and will see that leaps of these
two rings are different. We start with /-logarithmic k-derivations.

Let & = ud, + v9, be a k-derivation of R. Then, 6(2*) = §(y*) = 0. So, Dery(logI) =
(0z,0y). Let us consider D = (Id,d, Dy) € HSg(R;2). Then, by Lemma 1.2.9, Dy(2?) =
Dy(z)? = u? € (2%, y?). If we write u = Y u;a'y’, then udy = 0. Since k is reduced ugy = 0
and u € (x,y). Analogously, Dy(y?) = v* = v € (z,y). So,

Dery(log I;2) = (x0,, Y0y, ©0y, y0y)

It is easy to see that all these derivations are (co-)integrable, it is enough to consider the
k-algebra homomorphisms:

Yre: B = Rlpl] oy B — Rlpl]
r = T+au r = x+yu
y =y y =y
Pyt R Rllpl] oy B = Ryl
r = r = x
y = ytau y = ytyp

where g, is an [-logarithmic integral of ad, for a,b € {z,y}. In conclusion, Leaps,(A) = {2}
and

(O, Oy) ifn=1

[Dery(A;n) = { (€00, Y0, 20y, ydy)  if m > 2 or n = co.

Now, we calculate modules of integrable k-derivations of A. Let us consider § = ud, +v0, €

Derg(R). Then 6(z%) = §(y*) = 0 and
S(zy) = uy +vr = Fo* + Gay + Hy* = (u — Go — Hy)y = (Fr —v)x

Then,
u=Gr+ Hy+ Lz
v=Fz+ Ly.
So, 3
Dery, (log [) = (x0y, YOy, 0y, y0,).

Observe that ¢ is an I-logarithmic integral of ad, for all a,b € {x,y}. Therefore, Leaps; (A) =
() and B
IDery, (A; n) = (20y, YOy, 0y, y0y) if n > 1 or n = oo

and the lemma is proved.
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