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PhD Dissertation

Leaps of the chain of m-integrable derivations
in the sense of Hasse-Schmidt

Author
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Resumen

Sea k un anillo conmutativo. Los módulos de las k-derivaciones m-integrables (en el sen-
tido de Hasse-Schmidt) de una k-álgebra conmutativa forman una cadena decreciente cuyas
inclusiones pueden ser estrictas. Decimos que un entero s > 1 es un leap de una k-álgebra con-
mutativa si la (s− 1)-ésima inclusión en la cadena anterior es propia. En esta tesis, estudiamos
el conjunto que forman los leaps en diferentes contextos.

En primer lugar, consideramos k un anillo de caracteŕıstica positiva y probamos que los
leaps de cualquier k-álgebra conmutativa sólo ocurren en las potencias de la caracteŕıstica.

Luego, nos centramos en estudiar el comportamiento de los módulos de las k-derivaciones
m-integrables de una k-álgebra conmutativa finitamente generada bajo cambios de base y
probamos que si consideramos extensiones de cuerpos trascendentes puras y k-álgebras con-
mutativas finitamente presentadas, entonces el conjunto de los leaps no cambia bajo el cambio
de base. Lo mismo ocurre si consideramos extensiones separables de anillos sobre un cuerpo de
caracteŕıstica positiva y k-álgebras conmutativas finitamente generadas.

Por último calculamos el módulo de las k-derivaciones m-integrables en diferentes cur-
vas planas. Principalmente, damos los generadores de los módulos de las k-derivaciones m-
integrables, donde k es un anillo reducido de caracteŕıstica p, del cociente del anillo de poli-
nomios en dos variables con coeficientes en k sobre un ideal generado por la ecuación xn − yq
donde n o q no es múltiplo de p.

Abstract

Let k be a commutative ring. The modules of m-integrable k-derivations (in the sense of
Hasse-Schmidt) of a commutative k-algebra form a decreasing chain whose inclusions could be
strict. We say that an integer s > 1 is a leap of a commutative k-algebra if the s−1-th inclusion
of the previous chain is proper. In this thesis, we study the set of leaps in different contexts.

First, we consider a commutative ring k of positive characteristic and we prove that leaps
of any commutative k-algebra only happen at powers of the characteristic.

Thereafter, we focus on studying the behavior of the modules ofm-integrable k-derivations of
a commutative finitely generated k-algebra under base change and we prove that if we consider
pure transcendental field extensions and commutative finitely presented k-algebras, then the set
of leaps does not change under the base change. The same happens if we consider separable ring
extensions over a field of positive characteristic and commutative finitely generated k-algebras.

Finally, we compute the modules of m-integrable k-derivations of different plane curves.
Mainly, we give the generators of the modules of m-integrable k-derivations, where k is a
reduced ring of characteristic p > 0, of the quotient of the polynomial ring in two variables
with coefficients in k over the ideal generated by the equation xn − yq where n or q is not
multiple of p.
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Introduction

Background

Let k be a commutative ring and A a commutative k-algebra. A Hasse-Schmidt derivation of A
over k of length m ≥ 0 (or m =∞) is a sequence D = (D0, D1, . . . , Dm) (or D = (D0, D1, . . .))
of k-linear endomorphisms of A such that D0 is the identity map and the following Leibniz
identity holds:

Dr(xy) =
∑
i+j=r

Di(x)Dj(y)

for all x, y ∈ A and all r ≥ 0. We write HSk(A;m) for the set of Hasse-Schmidt derivations of
A over k of length m ≥ 1 or m =∞.

Any Hasse-Schmidt derivation D = (Id, D1, D2, . . .) ∈ HSk(A;m) can be associated with a
k-algebra homomorphism ϕ : A→ A[|µ|]m = A[|µ|]/〈µm+1〉 such that ϕ(x) ≡ x mod µ for all
x ∈ A given by ϕ(x) = x + D1(x)µ + · · · + Dm(x)µm. A group structure (non-commutative
in general) can be defined on the set of Hasse-Schmidt derivations HSk(A;m). Namely, if
D,D′ ∈ HSk(A;m), D′′ := D ◦ D′ ∈ HSk(A;m) such that D′′r =

∑
i+j=rDi ◦ D′j. Moreover,

for all r ≥ 1, the rth component Dr of a Hasse-Schmidt derivation turns out to be a k-linear
differential operator of order ≤ r vanishing at 1. In particular, D1 is a k-derivation of A (in
classical sense) and we can identify the additive group of k-derivations of A, which is denoted
by Derk(A), with the group of Hasse-Schmidt derivations of length 1.

An important notion related with the theory of Hasse-Schmidt derivations is m-integrability
for m ≥ 1 or m = ∞. We say that a k-derivation δ ∈ Derk(A) is m-integrable if there exists
D ∈ HSk(A;m), which is called an m-integral of δ, such that D1 = δ, or in other words, if the k-
algebra map ϕδ : a ∈ A 7→ a+δ(a)µ ∈ A[|µ|]1 can be lifted to a k-algebra map ϕ : A→ A[|µ|]m.
The set of all m-integrable k-derivations is an A-submodule of Derk(A) for all m ≥ 1 or m =∞,
which is denoted by IDerk(A;m) and it is clear that

Derk(A) = IDerk(A; 1) ⊇ IDerk(A; 2) ⊇ · · · ⊇ IDerk(A;∞).

If k is a ring of characteristic 0, i.e. if Q ⊆ k, then any k-derivation δ is ∞-integrable,
since we can take D = (δi/i!) as an ∞-integral of δ. The same property holds if A is 0-
smooth over k (cf. [Ma2, §25] and [Ma2, Th. 27.1]) or if A is a “normal crossing singularity”,
i.e. A = k[x1, . . . , xd]/〈x1 · · ·xe〉 or A = k[|x1, . . . , xd|]/〈x1 · · ·xe〉 for e ≤ d. However, in
[Ma1] we can already find examples of k-derivations that are not ∞-integrable in the case
where k is a ring of positive characteristic p > 0 (Fp ⊆ k). These examples also implicitly
prove the existence of k-derivations which are (m−1)-integrable but not m-integrable for some
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m ≥ 1. That implies that, if k has positive characteristic, the chain of modules of m-integrable
derivations could have strict inclusions, i.e. there could be some positive integers m for which
IDerk(A;m− 1) 6= IDerk(A;m). In that case, we say that A has a leap at m and we denote by
Leapsk(A) the set of leaps of A over k.

The notion of Hasse-Schmidt derivation was introduced by H. Hasse and F.K. Schmidt in
[H-S] in the case where k is a field of positive characteristic and A a field of algebraic functions
over k. P. Ribemboin studied them in a general setting in [Ri1] and [Ri2] and they have been
used in different contexts, for instance W. Traves proved in [Tr] that if A is a smooth algebra
of finite type over a field k, then the ring of differential operators of A over k equals the Hasse-
Schmidt algebra of A over k, i.e. the subalgebra of Endk(A) generated by all components of all
Hasse-Schmidt derivations, or P. Vojta used Hasse-Schmidt derivations to describe jet spaces
in [Vo].

The problem of deciding when a derivation is∞-integrable or not has been studied by several
authors such as W.C. Brown in [Br]. One of the first results we can find about the modules of
integrable derivations is due to A. Seidenberg. In [Se], he proved the following result: Let A
be a domain and Σ its quotient field. Let us denote A′ the ring of all elements of Σ which are
quasi-integral i.e. α ∈ A′ if there is d ∈ A, d 6= 0 such that dαs ∈ A for all s ≥ 0 (note that if A
is notherian then A′ coincides with the integral closure of A) and we consider D ∈ HS(Σ;∞).
Then, if Dr(A) ⊆ A for all r ≥ 0, then Dr(A

′) ⊆ A′ for all r ≥ 0. Hence, we can deduce
that any ∞-integrable derivation of A can be extended to an ∞-integrable derivation of A′.
However, this result is not true when A has positive characteristic and we consider D ∈ Der(Σ)
instead of a Hasse-Schmidt derivation of length ∞.

Another interesting result about integrability is due to S. Molinelli. She showed that if (A;m)
is a local domain of characteristic p > 0, Â its completion and k a coefficient field of Â then,

we have that rank
(
{δ ∈ Der(A) | δ̂ ∈ IDerk(Â)}

)
≤ dimA (see [Mo, Corollary 2.3]) although

the rank of Derk(Â) could be strictly greater than dim(A) = dim(Â). In [Ma1], H. Matsumura,
in addition to giving the aforementioned examples, proved some sufficient conditions for ∞-
integrability, for instance if k → A is a separable field extension, all k-derivations are ∞-
integrable.

Later, M. Fernández Lebrón and L. Narváez Macarro used the module of ∞-integrable
derivations to generalize a result of M. Nomura ([Ma2, Th. 30.6]) in [F-N] and in [Na1], L.
Narváez Macarro proved that there is a canonical map of graded A-algebras υ : ΓA IDerk(A)→
gr DiffA/k, where ΓA(∗) denotes the divided power algebra functor and gr DiffA/k is the graded
ring of the filtered ring of k-linear differential operators of A, such that υ equals to the canonical
map of graded A-algebras SymA Derk(A) → gr DiffA/k if k has characteristic zero and υ is an
isomorphism whenever IDerk(A) = Derk(A) and Derk(A) is a finitely generated projective
A-module.

More recently, some results about finite integrability have been given. In [Na2], L. Narváez
Macarro showed that if A is a finitely presented k-algebra and m is an integer, the property
of being m-integrable for a k-derivation δ of A is a local property, i.e. δ is m-integrable if and
only if the induced derivation δp : Ap → Ap is m-integrable for each prime ideal p ⊆ A ([Na2,
Th. 3.2.6]).
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We would also like to highlight the work of D. Hoffmann and P. Kowalski in [H-K1] and
[H-K2] where they generalized, among others, a result of H. Matsumura ([Ma1]). Namely, they
proved that if k is a field of characteristic p > 0 and k ⊆ A is a separable (not necessarily
algebraic) field extension, then any iterative Hasse-Schmidt derivation D ∈ HSk(A; pm) for
some m ≥ 1 (that is, for all i, j ∈ N, we have that Di ◦Dj =

(
i+j
i

)
Di+j) can be extended to an

iterative Hasse-Schmidt derivation of A (over k) of infinite length.

The chain of modules of m-integrable derivations of a k-algebra A seems to reflect some
specific properties of singularities in non-zero characteristic, and so, in our opinion, it deserves
to be studied.

Results of this thesis

In this work we focus on the study of leaps of a commutative k-algebra, where k is a commutative
ring. Let us state now the main results of this thesis.

I (Theorem 2.5.1). If k is a commutative ring of characteristic p > 0 and A is a commutative
k-algebra, leaps of A only occur at powers of p > 0, i.e. Leapsk(A) ⊆ {pτ | τ ≥ 1}.

Let us consider a ring extension k → L and a commutative finitely generated k-algebra A,
we give a (L⊗k A)-linear base change map for m-integrable k-derivations, which we denote by
ΦL,A
m : L ⊗k IDerk(A;m) → IDerL(L ⊗k A;m) (see section 3.2.2) and we prove the following

result (see Corollary 3.2.23 and Corollary 3.2.33):

II Let us consider a ring extension k → L and a commutative finitely generated k-algebra A.
The map ΦL,A

m is an isomorphism for all m ≥ 1 if some of the following conditions holds:

1. L = k[ti |i ∈ I] a polynomial ring in an arbitrary number of variables.

2. k is a field of characteristic p > 0 and L is a separable k-algebra.

Therefore, in both cases, Leapsk(A) = LeapsL(L⊗k A).

We also give a counterexample (3.2.14) for the surjectivity of ΦL,A
m and from 1., we deduce

that if k → L is a pure transcendental field extension and A is a finitely presented k-algebra,
then ΦL,A

m is also bijective for all m ≥ 1 (Corollary 3.2.25).

Finally, we give some explicit computations of generators of modules of m-integrable deriva-
tions of some “plane curves singularities”. Our main computations concern the curve xn − yq.
We show the following results.

III (Corollary 4.1.4). Let k be a commutative reduced ring of characteristic p > 0 and A =
k[x, y]/〈h〉 where h = xn − yq with n, q 6= 0. Let α := valp(n) be the p-adic valuation of n,
s = n/pα, m the remainder of the division of q by p and β := valp(q −m). Then, we have the
following properties.

1. If n, q 6= 0 mod p then, Leapsk(A) = ∅.

2. If n = 0 mod p and q = 1 then, Leapsk(A) = ∅.



IV

3. If α,m ≥ 1 and q ≥ 2, then

Leapsk(A) =

{ {
pα, pα+β

}
if s = 1, α ≤ β, m = 1

{pα} otherwise

4. If α = 0 (i.e. n 6= 0 mod p) and m = 0 (i.e. q = 0 mod p) then, Leapsk(A) =
Leapsk(A

′) where A′ = k[x, y]/〈xq − yn〉.

Moreover, if k is a unique factorization domain, m = 0, α, β ≥ 1 and we denote τ =
min{α, β} ≥ 1, n′ = n/pτ and q′ = q/pτ , we have that

Leapsk(A) = {pτ} ∪ {ipτ | i ∈ Leapsk (B)} where B = k[x, y]/
〈
xn
′ − yq′

〉

From the computation of leaps of k[|x, y|]/〈x3 − y5 + x2y2〉 and the previous result we can
deduce the following result:

Proposition 4.3.3. Leaps of irreducible algebroid plane curve over an algebraically closed
field are not determined by the semigroup of the curve.

In addiction, from the computation of leaps of k[x, y]/I and k[x, y]/I where I = 〈x2, y2〉
and I is its integral closure we have the following result.

Lemma 4.3.4. Leaps are not the same up integral closure of ideals.

The last two results answer two questions proposed by Professor H. Mourtada.

Contents of the chapters

This text is organized as follows: In chapter 1, we recall main definitions of the theory of
the Hasse-Schmidt derivations. In the first section, we give the definition of Hasse-Schmidt
derivations and some properties. We also define what is meant by logarithmic Hasse-Schmidt
derivations and we recall the main object of our work: modules of m-integrable derivations.
In section 1.2, we consider a polynomial ring and we see some properties of Hasse-Schmidt
derivations in this particular case. Moreover, we prove the relationship between integrable
derivations of the quotient of a polynomial ring over 〈h〉 and over 〈hp〉 where h is a polynomial,
when k is a unique factorization domain. In section 1.3, we recall a generalization of Hasse-
Schmidt derivations that we use to describe a special Hasse-Schmidt derivation in section 2. In
the last section of this chapter we talk about substitution maps and how they act on Hasse-
Schmidt derivations.

Chapter 2 is devoted to prove I. We start this chapter with some numerical and technical
results that will be useful in the rest of the chapter. In section 2.2 we associate with any
Hasse-Schmidt derivation a special Hasse-Schmidt derivation that we use to prove the main
theorem of this chapter. In section 2.3 we prove that any k-algebra does not have leaps at
certain integers. Namely, if k is any commutative ring and A any commutative k-algebra, we
show that A does not have leaps at any integers invertible in k; If the characteristic of k is
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p = 2, then we prove that A does not have a leap at 6, and if the characteristic of k is p 6= 2,
then we prove that A does not have a leap at 2p. In section 2.4, we give an integral of the first
component of a Hasse-Schmidt derivation that might not be zero and in the last section, we
prove our main result of this chapter, namely that if k is a commutative ring of characteristic
p > 0 and A is any commutative k-algebra, A only has leaps at powers of p.

The aim of chapter 3 is to prove II. In the first section of this chapter, we see that an
I-logarithmic Hasse-Schmidt derivation of a polynomial ring R = k[x1, . . . , xd] over a ring k
of positive characteristic (where I ⊆ R is an ideal) can be decomposed in two Hasse-Schmidt
derivations if its first component is zero. In the next section, we recall some classical results of
base change maps for k-derivations and we generalize these maps for integrable k-derivations,
which is denoted by ΦL,A

m : L⊗IDerk(A;m)→ IDerL(L⊗kA;m) where k → L is a commutative
ring extension and A a commutative k-algebra. We see that ΦL,A

m is not surjective in general
giving a counterexample when k → L is an algebraic non-separable field extension and we prove
that if k → L is a pure transcendental field extension and A is a finitely presented k-algebra,
then ΦL,A

m is surjective and the same happens if L is a separable k-algebra where k is a field of
positive characteristic and A is a finitely generated k-algebra.

In chapter 4, we prove III. Namely, in section 4.1 we compute the modules of m-integrable k-
derivations, where k is a reduced ring of characteristic p > 0, of the quotients of the polynomial
ring in two variables over the ideal generated by the equation xn − yq when n or q is not a
multiple of p. Thanks to this, we can describe the integrable derivations of k[x, y]/〈xn − yq〉
when n and q are both multiples of p and k is a unique factorization domain. In section 4.2
we compute the modules of integrable derivations in three examples taken from [Gr] assuming
that k is a domain of positive characteristic and showing that there exist singular curves with
no leaps. In the last section of this chapter we prove Proposition 4.3.3 and Lemma 4.3.4.

Further developments

To conclude this introduction, we would like to comment some of the problems related with
m-integrability that remain open and that we would like to study in the near future.

As we have already said, the study of the chain of modules of m-integrable derivations
could help us with singularities in positive characteristic but there are still many questions to
solve, for instance: are leaps related with some known invariant of singularities? or, how leaps
behave under geometric constructions, such as blowing-ups? It could also be interesting to
know more about the relationship between Hasse-Schmidt derivations and jet spaces (see [Vo]),
and therefore with arc spaces. In addition, we would also like to understand the meaning of
the absence of leaps for a singularity in positive characteristic: does it mean that the behavior
of such a singularity is “closer” (in some sense) to the behavior of singularities in characteristic
0?

One of the main problems in the theory of Hasse-Schmidt derivations is to compute where
leaps occur. We know that in characteristic zero and if A is 0-smooth over k, Leapsk(A) = ∅ and
we have proven that if k has positive characteristic then, Leapsk(A) ⊆ {pτ | τ ≥ 1} (Theorem
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2.5.1). However, we do not know what happens when the base ring is not any one of these
types, for instance if k = Z. We also do not know if any set of leaps is possible, that is, if given
m ≥ 1 positive integer or infinity, there is a ring with m leaps. In view of the results of chapter
4, we can say that there are rings with 1, 2 or 3 leaps but we can expect that longer sets of
leaps are possible, and to check this, new algorithms are needed.

Another interesting question is the one proposed by L. Narváez Macarro in [Na2, Q. 3.6.5]:
Assume that the base ring k is a field of positive characteristic or Z, or perhaps a more general
noetherian ring, and A a finitely generated k-algebra. Is there an integer n ≥ 1 such that
IDerk(A;n) = IDerk(A;∞)? Or at least, is the descending chain of A-modules IDerk(A; 1) ⊇
IDerk(A; 2) ⊇ · · · stationary? And, what about more general base rings k? This problem can
be seen as a problem of “extensions of k-linear maps” in the following way:

Let A be a finitely generated k-algebra. Then, A can be seen as a quotient of a polynomial
ring k[x1, . . . , xd] over an ideal I ⊆ R. Let us assume that I = 〈f1, . . . , fr〉 and we have
δ ∈ IDerk(A;m). By definition of m-integrability, we have that there is a k-linear map ϕ : A→
A[|µ|]m associated with an m-integral of δ and fi(ϕ(x1), . . . , ϕ(xd)) = 0 mod µm+1. Then, to
prove that δ ∈ IDerk(A;∞) it would be enough to extend ϕ to ϕ′ : A → A[|µ|], i.e. to find
ϕ′(xj) ∈ A[|µ|] for all j = 1, . . . , d such that fi(ϕ

′(x1), . . . , ϕ′(xd)) = 0. This extension seems
to be related with Artin’s Approximation Theorem, and deserves futher study.

It may also be interesting to know necessary and sufficient conditions for a Hasse-Schmidt
derivation to be extended to a Hasse-Schmidt derivation of higher length. For instance, we
can study the relationship between the integrability of the Hasse-Schmidt derivation D and the
integrability of the derivations associated with D, εi(D) for i ≥ 1 (see [Na4] and section 1.1.2).
In characteristic zero, any Hasse-Schmidt derivation is determined by these derivations so, does
the integrability of a Hasse-Schmidt derivation D depend, or is related with the integrability
of the εi(D)?

On the other hand, we want to continue studying the base change map ΦL,A
m : L ⊗k

IDerk(A;m)→ IDerL(AL;m) for any k-algebra A, any ring extension k → L and any m ≥ 1 or
m =∞ that we have defined in chapter 3, specially the surjectivity of ΦL,A

m . Although we know
that ΦL,A

m is not surjective in general, we have seen that if L is a polynomial ring in an arbitrary
number of variables or k → L is a separable field extension where k is a field of characteristic
p > 0 and A is finitely generated k-algebra, then ΦL,A

m is surjective. Both cases are examples
of 0-smooth base change, so a natural question would be whether the base change map is an
isomorphism under this general hypothesis.

Finally, if A is a finitely presented k-algebra we know that m-integrability with m ≥ 1 an
integer is a local property (see [Na2]) but we do not know how the modules of m-integrable
derivation of a local ring behave under completion. We know that if δ ∈ Derk(A) ism-integrable,
then its induced δ̂ : Â→ Â is m-integrable but, is it true its converse?



Chapter 1

Hasse-Schmidt derivations

Hasse-Schmidt derivations were introduced by H. Hasse and F.K. Schmidt in [H-S]. In this text,
we are interested in a particular notion originated in the theory of Hasse-Schmidt derivations:
The module of m-integrable derivations, where m ∈ N or m =∞. In this chapter we will recall
its definition and we will give necessary properties for the rest of the chapters.

1.1 Introduction to Hasse-Schmidt derivations

In this section we recall the main definitions and properties of Hasse-Schmidt derivations. Most
of the results presented in this section can be found in [Ma2, §27], [Na2] and [Na3]. In this
chapter, k will be a commutative ring and A a commutative k-algebra.

We will start by setting the following notation: We denote N := N ∪ {∞} and, for each
integer m ≥ 1, we will write A[|µ|]m := A[|µ|]/〈µm+1〉 and A[|µ|]∞ := A[|µ|].

Definition 1.1.1 A Hasse-Schmidt derivation (HS-derivation for short) of A (over k) of length
m ≥ 1 (resp. of length ∞) is a sequence D := (D0, D1, . . . , Dm) (resp. D = (D0, D1, . . .)) of
k-linear maps Dr : A→ A, satisfying the conditions:

D0 = IdA, Dr(xy) =
∑
β+γ=r

Dβ(x)Dγ(y)

for all x, y ∈ A and for all r. We write HSk(A;m) (resp. HSk(A;∞) = HSk(A)) for the set of
HS-derivations of A (over k) of length m (resp. ∞).

The Dr component is a k-linear differential operator of order ≤ r vanishing at 1 if r ≥ 1.
In particular, D1 is a k-derivation.

Any HS-derivation D ∈ HSk(A;m) is determined by the k-algebra homomorphism

ϕD : A −→ A[|µ|]m

x 7−→
m∑
r≥0

Dr(x)µr

1
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satisfying ϕD(x) ≡ x mod µ. If we denote

Hom◦k−alg(A,A[|µ|]m) := {f ∈ Homk−alg(A,A[|µ|]m) | f(x) ≡ x mod µ ∀x ∈ A},

we have a bijection

D ∈ HSk(A;m) 7−→ ϕD ∈ Hom◦k−alg(A,A[|µ|]m).

Moreover, any ϕ ∈ Hom◦k−alg(A,A[|µ|]m) can be uniquely extended to a k-algebra automor-
phism ϕµ : A[|µ|]m → A[|µ|]m with ϕµ(µ) = µ. Hence, we can define a group structure on
Hom◦k−alg(A,A[|µ|]m) given by the composition. That is, for each ϕ, ϕ′ ∈ Hom◦k−alg(A,A[|µ|]m),

ϕ ◦ ϕ′ := ϕµ ◦ ϕ′ ∈ Hom◦k−alg(A,A[|µ|]m).

Therefore, HSk(A;m) inherits a canonical group structure (non-commutative in general) where
the identity is I = (Id, 0, . . . , 0) and we denote byD∗ ∈ HSk(A;m) the inverse ofD ∈ HSk(A;m).
Namely, for each D,D′ ∈ HSk(A;m), D′′ := D ◦D′ is the HS-derivation of length m associated
with the k-algebra homomorphism ϕD′′ = ϕµD ◦ ϕD′ which is explicitly given by

D′′r =
∑
β+γ=r

Dβ ◦D′γ

for all r. Observe that (Id, D1) ∈ HSk(A; 1) 7→ D1 ∈ Derk(A) is a group isomorphism. We have
the following result:

Lemma 1.1.2 [Na3, §4] Let k be a ring, A a k-algebra and m ∈ N. Then, the map

D ∈ HSk(A;m) 7−→

[
ϕD : x ∈ A 7→

m∑
r=0

Dr(x)µr

]
∈ Hom◦k−alg (A,A[|µ|]m)

is a group isomorphism.

Moreover, we can obtain an expression for composition of several HS-derivations.

Lemma 1.1.3 Let Da ∈ HSk(A;m) be an ordered family of HS-derivations for a = 1, . . . , t.
We denote D := ◦ta=1D

a = D1 ◦D2 ◦ · · · ◦Dt ∈ HSk(A;m). Then, Dr =
∑
|β|=rD

1
β1
◦ · · · ◦Dt

βt

for all 0 ≤ r ≤ m where |β| := β1 + · · ·+ βt.

Proof. We prove the result by induction on t ≥ 2. If t = 2, we have the lemma thanks to the
definition of the composition. Let us suppose that the result is true for t− 1 and we will prove
it for t. In this case, for all r ≥ 0,

Dr =
((
◦t−1
a=1D

a
)
◦Dt

)
r

=
∑
β+γ=r

(
◦t−1
a=1D

a
)
β
◦Dt

γ =
∑
β+γ=r

 ∑
β1+···+βt−1=β

D1
β1
◦ · · · ◦Dt−1

βt−1

 ◦Dt
γ

=
∑

β1+···+βt−1+βt=r

D1
β1
◦ · · · ◦Dt−1

βt−1
◦Dt

βt
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and the lemma has been proved.
�

Any HS-derivation D of A over k of length m can be understood as a power series

m∑
r=0

Drµ
r ⊆ Endk(A)[|µ|]m

and so we can consider HSk(A;m) as a subgroup of the group of units of Endk(A)[|µ|]m and
we can give a explicitly expression of the inverse (with respect to the group structure) of any
HS-derivation.

Lemma 1.1.4 [Na3, Prop. 9] For each D ∈ HSk(A;m), its inverse D∗ is given by D∗0 = Id
and, for all r ≥ 1

D∗r =
r∑

d=1

(−1)d
∑

β∈P(r,d)

Dβ1 ◦ · · · ◦Dβd

where P(r, d) := {β = (β1, . . . , βd) | βi ∈ N, βi 6= 0, |β| = r}.

Observe that if B is a commutative k-algebra such that A is isomorphic to B (as k-algebra),
then HSk(A;m) is isomorphic to HSk(B,m) (as group) for all m ≥ 1. Namely,

Lemma 1.1.5 Let f : A→ B be a k-algebra isomorphism. Then, the map

HSk(A;m) −→ HSk(B;m)
(Dr)r 7−→ Df := (f ◦Dr ◦ f−1)r

is a group isomorphism.

In this text we mainly use three operations on HS-derivations: Let D ∈ HSk(A;m) be a
HS-derivation of length m ∈ N.

1. For each x ∈ A, the sequence x •D = (xrDr)r ∈ HSk(A;m).

2. Let 1 ≤ n ≤ m be an integer, the truncation τmn(D) is given by τmn(D) = (Id, D1, . . . , Dn) ∈
HSk(A;n).

3. For each integer n ≥ 1, we define D[n] ∈ HSk(A;mn) as

D[n]r =

{
Dr/n if r = 0 mod n
0 otherwise

It is easy to prove the following relationships between these operations:

Lemma 1.1.6 [Na2, §1.2] Let D ∈ HSk(A;m) be a HS-derivation of length m ∈ N, n ≥ 1 and
q ≤ m. The following properties hold:

1. (xn •D) [n] = x • (D[n]) for all x ∈ A.
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2. τmn,m′n(D[n]) = (τmm′(D))[n] for all 1 ≤ m′ ≤ m.

3. τmq(x •D) = x • (τmq(D)) for all x ∈ A.

The following lemma is clear.

Lemma 1.1.7 Let D ∈ HSk(A;m) be a HS-derivation of length m ∈ N and δ ∈ Derk(A).
Then, D ◦ (Id, δ)[m] = (Id, δ)[m] ◦D.

Definition 1.1.8 For each HS-derivation D ∈ HSk(A;m) such that D 6= I, we denote

`(D) := min{h ≥ 1 | Dh 6= 0} = ord(D − I)

and for D = I, `(D) =∞.

It is easy to see the following lemma (see [Na3, §5]).

Lemma 1.1.9 If D,E ∈ HSk(A;m), then `(D ◦ E) ≥ min{`(D), `(E)}. In particular, if
`(D), `(E) ≥ n, then `(D ◦ E) ≥ n and (D ◦ E)n = Dn + En.

Let us recall the following result.

Proposition 1.1.10 [Na3, Prop. 7] For each D ∈ HSk(A;m) we have that Dr is a k-linear
differential operator of order ≤ br/`(D)c for all 0 ≤ r ≤ m.

Definition 1.1.11 For each D ∈ HSk(A;m) and e ∈ N such that 1 < e ≤ m, if Dj = 0 for all
j 6= 0 mod e, we denote `(D; e) = dm/ee if m <∞ and `(D; e) =∞ if m =∞. Otherwise,

`(D; e) := min{h ≥ 0 | Dhe+α 6= 0 for some α ∈ {1, . . . , e− 1}}.

Lemma 1.1.12 Let D,E ∈ HSk(A;m) and e ∈ N such that 1 < e ≤ m. The following
properties hold.

1. `(D) ≥ e if and only if `(D; e) ≥ 1.

2. `(D[e]; e) = m if m <∞ and `(D[e]; e) =∞ when m =∞.

3. If `(D; e) = i ≥ 1 and `(E; je) ≥ i/j where 1 ≤ j ≤ i, then `(D ◦ E; e) ≥ i.

Proof. The first two statements are obvious, we will prove the third one. We denote D′ =
D ◦ E. To show that `(D′; e) ≥ i, we have to see that D′r = 0 for all r < ie such that
r 6= 0 mod e. Let us consider r with these properties. Since 1 ≤ i/j ≤ `(E; je), we have that
ie ≤ `(E; je)je, so we have that Eγ = 0 for all γ 6= 0 mod je such that γ ≤ ie. Thanks to this,

D′r =
∑
β+γ=r

Dβ ◦ Eγ =
r∑

γ=0

Dr−γ ◦ Eγ =

br/jec∑
γ=0

Dr−jeγ ◦ Ejeγ.

Note that r − jeγ 6= 0 mod e and r − jeγ < ie − jeγ ≤ ie. Then, Dr−jeγ = 0 because
`(D; e) = i. Hence, D′r = 0 and `(D′; e) ≥ i.

�
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Lemma 1.1.13 Let D ∈ HSk(A;m) be a HS-derivation of length m ∈ N and 1 < e ≤ m an
integer. Let us assume that `(D; e) = i ≥ 1. Then, for all α = 0, . . . , e−1 such that ie+α ≤ m,
Die+α ∈ Derk(A).

Proof. From the definition of HS-derivation,

Die+α(xy) =
∑

β+γ=ie+α

Dβ(x)Dγ(y) =
ie∑
β=0

Dβ(x)Die+α−β(y) +
α∑
β=1

Die+β(x)Dα−β(y).

In the second term, Dα−β = 0 for all β 6= α because 0 < α− β < e and `(D; e) ≥ 1. In the first
one, since `(D; e) = i, if β 6= 0 mod e, then Dβ = 0, so we can write the previous equation as:

Die+α(xy) =
i∑

β=0

Dβe(x)Die+α−βe(y) +Die+α(x)y.

Note that if β 6= 0, then ie+ α− βe < ie. Moreover, ie+ α− βe 6= 0 mod e, so Die+α−βe = 0.
Then,

Die+α(xy) = xDie+α(y) +Die+α(x)y

i.e. Die+α is a k-derivation of A for all α = 0, . . . , e− 1.
�

Lemma 1.1.14 Let m > 1 be an integer and n ∈ N. If D ∈ HSk(A;mn) is a HS-derivation
such that `(D;m) = n then, there exists D′ ∈ HSk(A;n) such that D′r = Dmr for all r ≤ n.

Proof. We have to prove that D′ = (Dmr)r is a HS-derivation. It is obvious that D′r are
k-linear maps. Moreover, D′0 = D0 = Id and

D′r(xy) = Dmr(xy) =
∑

β+γ=mr

Dβ(x)Dγ(y) =
∑

mβ+mγ=mr

Dmβ(x)Dmγ(y) =
∑
β+γ=r

D′β(x)D′γ(y)

where the third equality holds thanks to `(D;m) = n. Hence, D′ ∈ HSk(A;n).
�

1.1.1 Logarithmic derivations

Let us consider k a commutative ring, A a commutative k-algebra and I ⊆ A an ideal. Remem-
ber that a k-derivation δ : A→ A is called I-logarithmic if δ(I) ⊆ I. The set of I-logarithmic
k-derivations is an A-submodule of Derk(A) and will be denoted by Derk(log I). This concept
can be generalized for the HS-derivations as can be seen in [Na2]. In this section, we recall this
generalization and give some technical results.

Definition 1.1.15 Let D ∈ HSk(A;m) where m ∈ N and I ⊆ A an ideal.

• We say that D is I-logarithmic if Dr(I) ⊆ I for all r. The set of I-logarithmic HS-
derivations is denoted by HSk(log I;m) and HSk(log I) := HSk(log I;∞). In particular
we have that Derk(log I) ≡ HSk(log I; 1).
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• More generally, for n ≤ m, D is n− I-logarithmic if τmn(D) ∈ HSk(log I;n).

The following lemma is clear.

Lemma 1.1.16 HSk(log I;m) is a subgroup of HSk(A;m) for all m ∈ N.

Definition 1.1.17 Let I ⊆ A be an ideal. An I-differential operator is a (k-linear) differential
operator H : A→ A such that H(I) ⊆ I.

Lemma 1.1.18 Let D ∈ HSk(A;m) be a HS-derivation with length m ∈ N and n, s ≥ 1
positive integers such that n ≤ m. If D is (n− 1)− I-logarithmic then, D[s] ∈ HSk(A;ms) is
(ns− 1)− I-logarithmic.

Proof. Let us consider r < ns. By definition D[s]r = 0 if r 6= 0 mod s and D[s]r = Dr/s

if r = 0 mod s. Since r/s < n, Dr/s is an I-differential operator. So, D[s] is (ns − 1) − I-
logarithmic.

�

Lemma 1.1.19 Let I ⊆ A be an ideal and let us consider an ordered family D1, . . . , Dt ∈
HSk(A;m) of (m−1)−I-logarithmic HS-derivations. We denote D := D1◦· · ·◦Dt ∈ HSk(A;m).
Then, D is (m− 1)− I-logarithmic and

Dm =
t∑

a=1

Da
m +Hm

where Hm is an I-differential operator of order ≤ m.

Proof. Thanks to Lemma 1.1.3, we have that

(
D1 ◦ · · · ◦Dt

)
r

=
∑
|β|=r

D1
β1
◦ · · · ◦Dt

βt =
t∑

a=1

Da
r +Hr where Hr =

∑
|β|=r
βi<r

D1
β1
◦ · · · ◦Dt

βt .

For each β ∈ Nt such that |β| = r, we have that D1
β1
◦ · · · ◦Dt

βt
is a differential operator of order

≤ r and, since r ≤ m, this term is an I-differential operator. So, Hr is also an I-differential
operator or order ≤ r for all r ≤ m. If r < m, then the first summand is an I-differential
operator, so D is (m− 1)− I-logarithmic and we have the result.

�

Corollary 1.1.20 Let I ⊆ A be an ideal. If D ∈ HSk(A;m) is (m − 1) − I-logarithmic and
E ∈ HSk(log I;m), then D◦E ∈ HSk(A;m) is (m−1)−I-logarithmic and (D ◦ E)m = Dm+Hm

where Hm is an I-differential operator of order ≤ m.

Proof. By Lemma 1.1.19, we have that D ◦ E is (m − 1) − I-logarithmic and (D ◦ E)m =
Dm+Em+H ′m where H ′m is an I-differential operator of order ≤ m. Since Em is an I-differential
operator of order ≤ m, we have the corollary.

�
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1.1.2 Euler derivation

In this section we recall Euler derivation defined in [Na4] associated with a HS-derivation that
will allow us to prove certain property about integrability in the sense of Hasse-Schmidt. From
now on, k will be a commutative ring, A a commutative k-algebra and we denote T = Endk(A).

Let us denote the Euler derivation as χ = µ
∂

∂µ
: k[|µ|]→ k[|µ|] and

χT : T [|µ|]m −→ T [|µ|]m
m∑
r≥0

Drµ
r 7−→

m∑
r≥0

Drχ(µr) =
m∑
r≥0

rDrµ
r.

Definition 1.1.21 [Na4, Def. 1.2.11] Let D ∈ HSk(A;m), i.e. D =
∑

rDrµ
r ∈ T [|µ|]m.

Then,

ε(D) := D∗χT (D) =
∑
r>0

( ∑
β+γ=r

γD∗β ◦Dγ

)
µr.

If we consider the expression of D∗ given in Lemma 1.1.4, we can see that:

ε(D) =
∑
r>0

 r∑
d=1

(−1)d−1

 ∑
β∈P(r,d)

βdDβ1 ◦ · · · ◦Dβd

µr. (1.1)

Proposition 1.1.22 [Na4, Prop. 3.1.2] If D ∈ HSk(A;m), then ε(D) ∈ Derk(A)[|µ|]m ∩
T [|µ|]m,+ where T [|µ|]m,+ = ker(τm,0 :

∑
aiµ

i ∈ T [|µ|]m 7→ a0 ∈ T ).

For each 0 < r ≤ m, we denote εr(D) =
∑r

d=1(−1)d−1
(∑

β∈P(r,d) βdDβ1 ◦ · · · ◦Dβd

)
. The

previous proposition tells us that εr(D) ∈ Derk(A).

Lemma 1.1.23 Let us consider D ∈ HSk(A;m). For all r > 0, there exists a differential
operator Hr of order ≤ r such that

εr(D) = rDr +Hr.

Moreover, if D is (m−1)−I-logarithmic, then Hr is an I-differential operator for all 0 < r ≤ m.

Proof. Remember that

P(r, d) = {β ∈ Nd | βi 6= 0, |β| = r}.

Hence, P(r, 1) = {r} and, if we take β ∈ P(r, d) with d ≥ 2, we have that βi < r for all
i = 1, . . . , d. Taking into account the equation (1.1), we have that

εr(D) = rDr +Hr where Hr =
r∑

d=2

 ∑
β∈P(r,d)

βdDβ1 ◦ · · · ◦Dβd

 .
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Then, Hr is a differential operator of order ≤ r which depends on Di for all i < r. Thanks to
this, if D is (m− 1)− I-logarithmic, Hr is an I-differential operator for all 0 < r ≤ m and we
have the lemma.

�

1.1.3 Integrable derivations

In this section, we recall the notion of n-integrable derivation (see [Ma1], [Na2]). Modules of
n-integrable derivations will be the main object of study in the following chapters and sections.
We will see, among other things, where leaps occur or how a change of base ring affects them.
From now on, k will be a commutative ring, A a commutative k-algebra and I ⊆ A an ideal.

Definition 1.1.24 Let D ∈ HSk(A;m) where m ∈ N and n ≥ m.

• D is n-integrable if there exists E ∈ HSk(A, n) such that τnm(E) = D. Any such E will
be called an n-integral of D. If D is ∞-integrable we simply say that D is integrable.
If m = 1, we write IDerk(A;n) for the set of n-integrable derivations and IDerk(A) :=
IDerk(A;∞).

• If D ∈ HSk(log I;m), we say that D is I-logarithmically n-integrable if there exists
E ∈ HSk(log I;n) such that E is an n-integral of D. We denote IDerk(log I;n) the
set of I-logarithmically n-integrable derivations (i.e. for m = 1) and IDerk(log I) :=
IDerk(log I,∞).

The following lemma is clear thanks to the group structure of HS-derivations and operation
1.

Lemma 1.1.25 The set IDerk(A;n) (resp. IDerk(log I;n)) is an A-submodule of Derk(A)
(resp. Derk(log I)) for all n ∈ N.

Moreover, if we have a k-algebra isomorphism, A ∼= B, then there exists a bijection between
IDerk(A;n) and IDerk(B;n) for all n ∈ N. Namely,

Lemma 1.1.26 If f : A→ B is an isomorphism of k-algebras. Then, the map

γf,n : IDerk(A;n) → IDerk(B;n)
δ 7→ δf := (f ◦ δ ◦ f−1)

is a bijection for all n ∈ N.

Proof. If δ ∈ IDerk(A;n) ⊆ Derk(A), it is obvious that δf ∈ Derk(B;n). Moreover, by defi-
nition, there exists D ∈ HSk(A;n) such that δ = D1. By Lemma 1.1.5, Df := (f ◦Dr ◦ f−1) ∈
HSk(B;n) and Df

1 = f ◦D1 ◦ f−1 = δf . So, δf ∈ IDerk(B;n). Hence, γf,n is well-defined and
its inverse is γf−1,n.

�

Let us suppose that δ ∈ IDerk(A;n). Then, there exists D ∈ HSk(A;n) such that D1 = δ.
So, τn,n−1(D) ∈ HSk(A;n− 1) is an (n− 1)-integral of δ. Hence, IDerk(A;n) ⊆ IDerk(A;n− 1)
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(the same occur when we consider I-logarithmically n-integrable derivations). Then, we obtain
the chain of A-modules

Derk(A) = IDerk(A; 1) ⊇ IDerk(A; 2) ⊇ IDerk(A; 3) ⊇ · · · .

However, equality is not true in general, that is, there may be an (n − 1)-integrable deriva-
tion that is not n-integrable. For example, let us consider k = Fp, A = k[x]/〈xp〉 and
∂x the derivation induced by the derivative with respect to x in A. It is easy to see that
∂x ∈ IDerk(A; p− 1), it is enough to consider the HS-derivation associated with the k-algebra
homomorphism x ∈ A 7→ x+ µ ∈ A[|µ|]p−1. But, ∂x 6∈ IDerk(A; p), otherwise there would exist
a well-defined k-algebra homomorphism of the form

ϕ : x ∈ A 7→ x+ µ+ a2µ
2 + · · ·+ apµ

p ∈ A[|µ|]p

but ϕ(xp) = xp + µp 6≡ 0 mod 〈xp〉!!!. Actually, IDerk(A; p) = 〈x∂x〉 (it is enough to consider
the HS-derivation x ∈ A 7→ x+ xµ ∈ A[|µ|]p). Then,

IDerk(A; p− 1) ) IDerk(A; p)

and we say that A has a leap at p.

Definition 1.1.27 Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1 if
the inclusion IDerk(A; s − 1) ) IDerk(A; s) is proper. The set of leaps of A over k is denoted
by Leapsk(A).

Let k be a ring of characteristic 0 (i.e. k ⊇ Q) and A a k-algebra. Then, IDerk(A;n) =
Derk(A) for all n ∈ N (if δ ∈ Derk(A), it is enough to take D := (δr/r!)r ∈ HSk(A) as an
integral). So, Leapsk(A) = ∅. If k is a ring of characteristic p > 0 (i.e. Fp ⊆ k) we will prove, in
chapter 2, that leaps only occur at powers of p. For the moment, we have the following results
related with the integrability of a HS-derivation over a ring k of any characteristic.

We recall that a k-algebra A is 0-smooth over k if it has the following property: for any k-
algebra C, any ideal N of C satisfying N2 = 0, and any k-algebra homomorphism u : A→ C/N ,
there exists a lifting v : A→ C of u to C, as a k-algebra homomorphism. In terms of diagrams,
we have that

A C/N

k C

u

v

We have the following results.

Theorem 1.1.28 [Ma2, Th. 27.1] If A is 0-smooth over k, then any HS-derivation of length
m <∞ over k is ∞-integrable.

Proposition 1.1.29 [Na2, Ex. 2.1.11](normal crossings). Let us take h =
∏e

i=1 xi ∈ R =
k[x1, . . . , xd]. Then IDerk(R/〈h〉) = Derk(R/〈h〉).
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Lemma 1.1.30 Let m > 1 and n > 0 be two integers and D ∈ HSk(A;mn) (resp. D ∈
HSk(log I;mn)) a HS-derivation such that `(D;m) = n. Then, D is (n + 1)m − 1-integrable
(resp. I-logarithmically (n+1)m−1-integrable) and there is an integral D′ ∈ HSk(A; (n+1)m−1)
(resp. D′ ∈ HSk(log I; (n+ 1)m− 1)) of D such that `(D′;m) = n+ 1.

Proof. Let δ1, . . . , δm−1 ∈ Derk(A) be k-derivations and let us consider the sequence

D′ = (Id, D′1, . . . , D
′
mn, D

′
mn+1, . . . , D

′
mn+m−1) := (Id, D1, . . . , Dmn, δ1, . . . , δm−1).

We claim that D′ ∈ HSk(A; (n+ 1)m− 1). If this is true, D′ is an (n+ 1)m− 1-integral of D.
To prove this claim we have to show that the following equality holds for all α = 1, . . . ,m−1:

D′mn+α(xy) := δα(xy) =
mn+α∑
β=0

D′β(x)D′mn+α−β(y).

By hypothesis, Dβ = 0 for all β 6= 0 mod m and β ≤ mn. Since D′β = Dβ for all β ≤ mn,

mn+α∑
β=0

D′β(x)D′mn+α−β(y) =
mn∑
β=0

Dβ(x)D′mn+α−β(y) +
mn+α∑
γ=mn+1

D′γ(x)D′mn+α−γ(y)

=
n∑
β=0

Dβm(x)D′(n−β)m+α(y) +
α∑
γ=1

D′mn+γ(x)D′α−γ(y).

In the first term, if β > 0, then 0 < (n − β)m + α < mn and (n − β)m + α 6= 0 mod m, so
D′(n−β)m+α = D(n−β)m+α = 0. In the second one, if γ 6= α, then D′α−γ = Dα−γ = 0 because
0 < α− γ < m. So,

mn+α∑
β=0

D′β(x)D′mn+α−β(y) = xD′mn+α(y) +D′mn+α(x)y = xδα(y) + δα(x)y = δα(xy).

Observe that, for each α = 1, . . . ,m−1, we can choose any k-derivation to be δα. In particular,
we can put δα = 0 for all α. In that case, `(D′;m) = n+ 1. Thanks to this, we can deduce the
lemma for D ∈ HSk(log I;mn).

�

1.2 Hasse-Schmidt derivations on polynomial rings

Let us consider R = k[xi | i ∈ I] the polynomial ring over a commutative ring k in an arbitrary
number of variables and I ⊆ R an ideal. In this section, we recall some general results about
integrability of k-derivations in polynomial rings. Moreover, if k is a unique factorization domain
of characteristic p > 0 (i.e. Fp ⊆ k), we give the relationship between 〈h〉-logarithmically n-
integrable derivations and 〈hp〉-logarithmically n-integrable derivations where h is a polynomial
of R. In this text, we denote by ∂i : R→ R the partial derivative with respect to xi.

The following result is a straightforward consequence of Theorem 1.1.28.
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Proposition 1.2.1 Any HS-derivation of R (over k) of length m ≥ 1 is integrable.

Let us consider a k-algebra A, I ⊆ A an ideal and m ∈ N. We denote by ΠI
HS,m :

HSk(log I;m)→ HSk(A/I;m) the map defined as:

D ∈ HSk(log I;m) 7−→ ΠI
HS,m(D) = D =

(
Dr

)
∈ HSk(A/I;m), Dr(x+ I) = Dr(x)+ I ∀x ∈ A

and we denote by ΠI
m : IDerk(log I;m)→ IDerk(A/I;m) the map given by:

δ ∈ IDerk(log I;m) 7−→ ΠI
m(δ) = δ ∈ IDerk(A/I;m), δ(x+ I) = δ(x) + I ∀x ∈ A.

The proof of the following proposition is analogous to that of Proposition 1.3.4 of [Na2].

Proposition 1.2.2 If R = k[xi | i ∈ I] and I ⊆ R is an ideal, then the map ΠI
HS,m :

HSk(log I;m)→ HSk(R/I;m) is a surjective group homomorphism for all m ∈ N.

The following result generalizes Corollary 2.1.9 of [Na2] for integrable derivations.

Corollary 1.2.3 If R = k[xi | i ∈ I] and I ⊆ R is an ideal, then the map ΠI
m : IDerk(log I;m)→

IDerk(R/I;m) is a surjective homomorphism of R-modules for all m ∈ N.

Proof. Let δ ∈ IDerk(R/I;m) be an m-integral derivation. From the definition, there exists
E ∈ HSk(R/I;m) an m-integral of δ. By Proposition 1.2.2, there exists D ∈ HSk(log I;m) such
that ΠI

HS,m(D) = E. Then, D1 ∈ IDerk(log I;m) and ΠI
m(D1) = D1 = E1 = δ.

�

Corollary 1.2.4 Let I be an ideal of R = k[xi | i ∈ I]. Then, R/I has a leap at s > 1 if and
only if the inclusion IDerk(log I; s− 1) ) IDerk(log I; s) is proper.

Remark 1.2.5 If A = k[|x1, . . . , xd|] is the formal power series ring over k and I ⊆ A is an
ideal then, ΠI

HS,m and ΠI
n are surjective in a similar way to Proposition 1.2.2 and Corollary

1.2.3 and we have Corollary 1.2.4.

Let us consider R = k[x1, . . . , xd] a polynomial ring in a finite number of variables. Then,
it is clear that the following short sequence of R-modules is exact:

0→ I(Derk(R))→ Derk(log I)
ΠI1−→ Derk(R/I)→ 0.

The same occurs when we consider integrable derivations:

Proposition 1.2.6 Let m ∈ N, R = k[x1, . . . , xd] and I ⊆ R an ideal. Then, the following
short sequence of R-modules is exact:

0→ I(Derk(R))→ IDerk(log I;m)
ΠIm−−→ IDerk(R/I;m)→ 0.
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Proof. First, note that if δ ∈ Derk(R) and h ∈ I, then hδ ∈ IDerk(log I;m) (it is enough
to consider h •D where D ∈ HSk(R;m) is an integral of δ) and it is clear that I(Derk(R)) →
IDerk(log I;m) is injective. From Corollary 1.2.3, ΠI

m is surjective. So, we have to prove that
ker ΠI

m = I(Derk(R)).

Let h ∈ I and δ ∈ Derk(R). Then, ΠI
m(hδ) = hδ where hδ(r + I) = (hδ)(r) + I = 0.

So, I(Derk(R)) ⊆ ker ΠI
m. Now, let us consider δ ∈ ker ΠI

m. Then δ = 0 i.e. δ(r) ∈ I for
all r ∈ R. Since Derk(R) is finitely generated by ∂i : R → R for all i = 1, . . . , d, we have
that δ =

∑d
i=1 bi∂i. Hence, δ(xi) = bi ∈ I for all i = 1, . . . , d and δ ∈ I(Derk(R)). Therefore,

ker ΠI
m = I(Derk(R)) and the proposition is proved.

�

Let us recall the following two results.

Proposition 1.2.7 [Na2, Prop. 2.2.4] Let R be k[x1, . . . , xd] or k[|x1, . . . , xd|]. Let us con-
sider f ∈ R, I = 〈f〉, and J0 = 〈∂1(f), . . . , ∂d(f)〉 the gradient ideal. If δ : R → R is
an I-logarithmic k-derivation with δ ∈ J0 Derk(R), then δ admits an I-logarithmic integral
D ∈ HSk(log I) with Di(f) = 0 for all i > 1. In particular, if δ(f) = 0, the integral D can be
taken with ϕD(f) = f .

Theorem 1.2.8 [Tr, Th. 1.2] Let R be k[x1, . . . , xd] or k[|x1, . . . , xd|]. Let us consider I ⊆ R
an ideal generated by quasi-homogeneous polynomials with respect to the weights w(xr) ≥ 0.
Then, the Euler vector field χ =

∑d
r=0w(xr)xr∂r is I-logarithmically (∞-)integrable. In fact,

an I-logarithmic integral of χ is the HS-derivation associated with the map R → R[|µ|] given
by

xr 7−→ xr

(
1

1− µ

)w(xr)

, r = 1, . . . , d.

1.2.1 Ip-logarithmic derivations

In this section let us consider R = k[x1, . . . , xd] the polynomial ring in d variables over a unique
factorization domain (UFD) k of characteristic p > 0 (i.e. Fp ⊆ k) and h ∈ R a polynomial. We
want to describe the module of n-integrable derivations of A = R/〈hp〉 for all n ∈ N from the
modules of n-integrable derivations of R/〈h〉. Thanks to Corollary 1.2.3, it is enough to study
the relationship between 〈h〉-logarithmically n-integrable derivations and 〈hp〉-logarithmically
n-integrable derivations. From now on, k will be a commutative ring and R = k[x1, . . . , xd].
We start with two general results.

Lemma 1.2.9 Let k be a ring of characteristic p > 0, A a commutative k-algebra and h ∈ A.
Consider D ∈ HSk(A;m) with m ∈ N and τ ≥ 0. Then, for all i ≤ m, the following identity
holds:

Di

(
hp

τ )
=

{
0 if pτ - i
Di/pτ (h)p

τ
if pτ |i.

Proof. Let ϕ : A→ A[|µ|]m be the k-algebra homomorphism determined by D. Then,

m∑
i≥0

Di

(
hp

τ )
µi = ϕ

(
hp

τ )
= ϕ(h)p

τ

=
m∑
j≥0

Dj(h)p
τ

µjp
τ

mod
〈
µm+1

〉



13

and we obtain the result by equating the coefficients in the above equation. �

Lemma 1.2.10 Let k be a commutative ring, A a commutative k-algebra, n ∈ N and m ≤ n.
Consider g ∈ A and D ∈ HSk(A;n). Suppose that D is m − 〈g〉-logarithmic. Then, for all
r ≥ 1, D is m− 〈gr〉-logarithmic and, if m ∈ N, we have that

Dm+1(gr) ∈ rgr−1Dm+1(g) + 〈gr〉. (1.2)

Proof. First, we will prove that D is m − 〈gr〉-logarithmic for all r ≥ 1. We proceed by
induction on r ≥ 1. When r = 1, the result is obvious from the hypothesis. Let us suppose
that D is m− 〈gr−1〉-logarithmic, i.e. Dβ(gr−1) ∈ 〈gr−1〉 for all β ≤ m. From the definition of
HS-derivation, for all j ≤ m,

Dj (gr) =
∑
β+γ=j

Dβ

(
gr−1

)
Dγ(g) ∈ 〈gr〉.

So, D is m− 〈gr〉-logarithmic for all r ≥ 1. Now, we will prove (1.2) by induction on r ≥ 1. It
is obvious for r = 1, let us suppose that Dm+1(gr−1) ∈ (r − 1)gr−2Dm+1(g) + 〈gr−1〉. From the
definition of HS-derivation,

Dm+1 (gr) = Dm+1

(
gr−1

)
g +Dm+1(g)gr−1 +

∑
β+γ=m+1
β,γ 6=0

Dβ

(
gr−1

)
Dγ(g) ∈ rgr−1Dm+1(g) + 〈gr〉

and the lemma is proved. �

From now on, k will be a unique factorization domain and R = k[x1, . . . , xd].

Proposition 1.2.11 If f, g ∈ R are coprime then, for all n ∈ N, we have that

HSk(log fg;n) = HSk(log f ;n) ∩ HSk(log g;n).

Proof.

⊇. Let D ∈ HSk(log f ;n) ∩ HSk(log g;n). By definition, Di(f) ∈ 〈f〉 and Di(g) ∈ 〈g〉 for all
i ≤ n. Then Di(fg) =

∑
β+γ=iDβ(f)Dγ(g) ∈ 〈fg〉, so D ∈ HSk(log fg;n).

⊆. Let D ∈ HSk(log fg;n). This implies that Di(fg) ∈ 〈fg〉 for all i ≤ n. We will prove the
result by induction on i. When i = 1, then D1(fg) = D1(f)g+D1(g)f ∈ 〈fg〉 ⊆ 〈f〉, 〈g〉.
So, D1(f)g ∈ 〈f〉. Since g and f are coprime, D1(f) ∈ 〈f〉. For g is analogous.

Now let us assume that Di(f) ∈ 〈f〉 and Di(g) ∈ 〈g〉 for all i < n. By definition,

Dn(fg) = Dn(f)g +Dn(g)f +
∑
β+γ=n
β,γ 6=0

Dβ(f)Dγ(g) ∈ 〈fg〉 ⇒ Dn(f)g +Dn(g)f ∈ 〈fg〉

and we can proceed as in case i = 1.

�
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Corollary 1.2.12 If f, g ∈ R are coprime then, for all n ∈ N,

IDerk(log fg;n) ⊆ IDerk(log f ;n) ∩ IDerk(log g;n).

Proof. If δ ∈ IDerk(log fg;n) then, there exists D ∈ HSk(log fg;n) an n-integral of δ. By
Proposition 1.2.11, D ∈ HSk(log f ;n) ∩ HSk(log g;n) so, δ ∈ IDerk(log f ;n) ∩ IDerk(log g;n).

�

In general, equality in Corollary 1.2.12 does not hold. For example, consider k = F2 and
f = y and g = x2 − y two polynomials of k[x, y]. Then ∂x ∈ IDerk(log f ; 2) ∩ IDerk(log g; 2), it
is enough to consider the k-algebra homomorphisms:

R → R[|µ|]2
x 7→ x+ µ
y 7→ y

and
R → R[|µ|]2
x 7→ x+ µ
y 7→ y + µ2

The first one is an f -logarithmic 2-integral of ∂x and, the second one is a g-logarithmic 2-
integral of this derivation. However, ∂x 6∈ IDerk(log fg; 2). To see this, let us consider a generic
2-integral of ∂x:

ϕ : R → R[|µ|]2
x 7→ x+ µ+ u2µ

2

y 7→ y + v2µ
2

Then,
ϕ(fg) = y(x2 − y) + (x2v2 + y)µ2.

In order for ϕ to be fg-logarithmic, x2v2 + y ∈ 〈fg〉. So, it should exist F ∈ k[x, y] such that
x2v2 + y = F (x2 − y)y but, if we consider the coefficient of y in this equality, we have that
1 = 0!!!.

Corollary 1.2.13 Let f1, . . . , fm ∈ R. If fi,fj are coprime whenever i 6= j then, for all n ∈ N
we have:

HSk(log f1 · · · fm;n) =
⋂
i HSk(log fi;n) and IDerk(log f1 · · · fm;n) ⊆

⋂
i IDerk(log fi;n).

Proof. The result is obtained thanks to Proposition 1.2.11 and Corollary 1.2.12 by induction
on m. �

From now on, k will be a UFD of characteristic p > 0 and R = k[x1, . . . , xd].

Lemma 1.2.14 Let f be an irreducible polynomial, a ≥ 1 and n ∈ N. Let us consider D ∈
HSk(R;n) such that Di(f

a)p ∈ 〈fap〉 for all i ≤ n. Then, D ∈ HSk(log fa;n).

Proof. We write a = spα where α = valp(a) ≥ 0 is the p-adic valuation of a and s ≥ 1. By
Lemma 1.2.9,

Di

(
f sp

α)
=

{
0 if pα - i
Di/pα(f s)p

α
if pα|i.

Hence, if n < pα, we have the lemma. So, let us consider n ≥ pα. Moreover, we can focus on
the case i = jpα ≤ n. It is enough to show that D is m − 〈f〉-logarithmic where m = bn/pαc
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if n ∈ N and m =∞ if n =∞ because, if this is true, we have that D is m− 〈f s〉-logarithmic
by Lemma 1.2.10, and Di(f

a) = Di(f
spα) = Dj(f

s)p
α ∈ 〈fa〉 for all i = jpα ≤ n and we deduce

that D ∈ HSk(log fa;n).

Let us consider j ≤ m an integer. Since jpα ≤ n we have that

Dj (f s)p
α+1

= Djpα
(
f sp

α)p ∈ 〈f spα+1
〉
. (1.3)

We proceed by induction on j ≥ 1. If j = 1, D1 (f s) = sf s−1D1(f) by definition of derivation.
Taking into account the previous expression, we have that

D1 (f s)p
α+1

= sf (s−1)pα+1

D1(f)p
α+1 ∈

〈
f sp

α+1
〉
. (1.4)

Since R is UFD and f, s 6= 0, D1(f)p
α+1 ∈

〈
fp

α+1
〉
⊆ 〈f〉 and hence D1(f) ∈ 〈f〉.

Let us assume that Dl(f) ∈ 〈f〉 for all l < j ≤ m, i.e. D is (j − 1) − 〈f〉-logarithmic.
Thanks to the hypothesis, we can use Lemma 1.2.10, and we have

Dj (f s) = sf s−1Dj(f) + Ff s

for some F ∈ R. Taking into account (1.3),

sf (s−1)pα+1

Dj(f)p
α+1

+ F pα+1

f sp
α+1 ∈

〈
f sp

α+1
〉
⇒ sf (s−1)pα+1

Dj(f)p
α+1 ∈

〈
f sp

α+1
〉
.

Observe that it is the same condition that (1.4), so we can deduce that Dj(f) ∈ 〈f〉.
�

Proposition 1.2.15 Let k be a UFD of characteristic p > 0 and R = k[x1, . . . , xd] the polyno-
mial ring over k. Let h be a polynomial of R. For all n ∈ N, we have that

IDerk(log h;n) = IDerk (log hp;np) .

Proof.

⊆. Let D1 ∈ IDerk(log h;n) and D ∈ HSk(log h;n) an integral of D1. If n < ∞, from
Proposition 1.2.1, D is np-integrable, so let D′ be an np-integral of D. If n =∞, we put
D′ = D. Observe that D′1 = D1 so, if D′ ∈ HSk (log hp;np) then D1 ∈ IDerk(log hp;np).
We have to see that D′i(h

p) ∈ 〈hp〉 for all i ≤ np.

By Lemma 1.2.9,

D′i (h
p) =

{
0 if p - i
D′i/p(h)p if p|i.

Then, we can focus on i = jp where 1 ≤ j ≤ n. Note that D′j = Dj for all 1 ≤ j ≤ n, so
D′i (h

p) = D′j(h)p = Dj(h)p ∈ 〈hp〉. Therefore, D′i(h
p) ∈ 〈hp〉 for all i ≤ np and we have

the inclusion.
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⊇. Let D1 ∈ IDerk (log hp;np) and D ∈ HSk (log hp;np) an np-integral of D1. Let h =
ha1

1 · · ·hamm be the factorization of h in irreducible factors i.e., hi is irreducible and ai ≥ 1
for all i = 1, . . . ,m and hi 6= hj if i 6= j. Then, haii and h

aj
j are coprime whenever i 6= j,

and therefore, ha1p
1 , . . . , hampm are coprime too. By Corollary 1.2.13,

D ∈ HSk (log hp;np) =
⋂
i

HSk (log haipi ;np) .

Hence,
Dj(h

ai
i )p = Djp(h

aip
i ) ∈ 〈haipi 〉

for all 0 ≤ j ≤ n. By Lemma 1.2.14, τnp,n(D) ∈ HSk(log haii ;n) for all i = 1, . . . ,m. So,

τnp,n(D) ∈
⋂

HSk(log haii ;n) = HSk(log h;n)

Therefore D1 ∈ IDerk(log h;n).

�

Corollary 1.2.16 For all τ ≥ 0 and n ∈ N, we have that

IDerk(log h;n) = IDerk
(
log hp

τ

;npτ
)
.

Proof. By induction on τ using Proposition 1.2.15. �

Proposition 1.2.17 Let k be a UFD of characteristic p > 0, R = k[x1, . . . , xd] the polynomial
ring over k, h ∈ R and τ ≥ 1. We denote A := R/

〈
hp

τ〉
and A′ := R/〈h〉. Then,

Leapsk(A) =

{
{npτ | n ∈ Leapsk(A

′)} if Derk (log h) = Derk(R)
{npτ | n ∈ Leapsk(A

′)} ∪ {pτ} if Derk (log h) 6= Derk(R).

Proof. By Corollary 1.2.4, s ∈ Leapsk(A) if and only if the inclusion IDerk
(
log hp

τ
; s− 1

)
)

IDerk
(
log hp

τ
; s
)

is proper. First of all, we will prove the next two equalities:

1. For s < pτ , IDerk
(
log hp

τ
; s
)

= Derk(R).

The inclusion ⊆ is always true. Let D1 ∈ Derk(R) = IDerk(R) and D ∈ HSk(R) an integral.
Since s < pτ , for all j ≤ s, pτ - j. By Lemma 1.2.9, Dj

(
hp

τ )
= 0 ∈

〈
hp

τ〉
for all j ≤ s. Then,

any derivation D1 has a hp
τ
-logarithmic s-integral and the other inclusion holds. So, A does

not have a leap at s.

2. Let s be an integer such that npτ < s < (n+1)pτ for some n ≥ 1. Then, IDerk
(
log hp

τ
; s
)

=
IDerk

(
log hp

τ
;npτ

)
.

Since s > npτ , the inclusion ⊆ is true. Let D1 ∈ IDerk
(
log hp

τ
;npτ

)
. By definition there exists

an integral D ∈ HSk
(
log hp

τ
;npτ

)
of D1. By Proposition 1.2.1, we can consider D′ ∈ HSk(R; s)

an integral of D. Hence, for all j such that npτ < j ≤ s < (n + 1)pτ , pτ - j and, by Lemma
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1.2.9, D′j
(
hp

τ )
= 0 ∈

〈
hp

τ〉
. Since D′l = Dl for all l ≤ npτ , D′ ∈ HSk

(
log hp

τ
; s
)
. Therefore,

D1 ∈ IDerk
(
log hp

τ
; s
)

and A does not have a leap at s.

Thanks to these two equalities we know that the leaps are given on s = npτ for some n ≥ 1.
Let us suppose that s = pτ . By Corollary 1.2.16 and the point 1.,

Derk (R) = IDerk
(
log hp

τ

; s− 1
)
⊇ IDerk

(
log hp

τ

; pτ = s
)

= Derk (log h) .

Hence, A has a leap at pτ if and only if Derk(log h) 6= Derk(R). Now, let us consider s = npτ

for n ≥ 2. By Corollary 1.2.16 and the point 2.

IDerk (log h;n− 1) = IDerk
(
log hp

τ
; (n− 1)pτ

)
= IDerk

(
log hp

τ
;npτ − 1

)
⊇ IDerk

(
log hp

τ
;npτ

)
= IDerk (log h;n) .

Then, A has a leap at s = npτ if and only if n is a leap of R/〈h〉 and we have proved the result.
�

1.3 Multivariate Hasse-Schmidt derivations

In this section we recall a generalization of the HS-derivations and its group structure. This
generalization will be used in chapter 2. We also remember a particular multivariate HS-
derivation called external product of HS-derivations. Most of the result of this section can be
found in [Na3].

Throughout this section, k will be a commutative ring and A a commutative k-algebra. Let
q ≥ 1 be an integer and let us call s = {s1, . . . , sq} a set of q variables.

The monoid Nq is endowed with a natural partial ordering. Namely, for α, β ∈ Nq, we define

α ≤ β ⇔ ∃γ ∈ Nq such that β = α + γ ⇔ αi ≤ βi ∀i = 1, . . . , q.

The support of a series a =
∑

α aαs
α ∈ A[|s|] is Supp(a) := {α ∈ Nq | aα 6= 0}. The order

of a non-zero series a =
∑

α aαs
α ∈ A[|s|] is

ord(a) := min{|α| | α ∈ Supp(a)}

and if a = 0 we define ord(a) :=∞.

Definition 1.3.1 We say that a subset ∆ ⊆ Nq is a co-ideal of Nq if whenever α ∈ ∆ and
α′ ≤ α, then α′ ∈ ∆.

For example, for β ∈ Nq, nβ := {α ∈ Nq | α ≤ β} is a co-ideal of Nq.

Definition 1.3.2 For each co-ideal ∆ ⊂ Nq, we denote by ∆A the ideal of A[|s|] whose elements
are the series

∑
α∈Nq aαs

α such that aα = 0 if α ∈ ∆ i.e. ∆A = {a ∈ A[|s|] | Supp(a) ⊆ ∆c}.

Let us denote A[|s|]∆ := A[|s|]/∆A. Note that if q = 1 and ∆ = {i ∈ N | i ≤ m}, then
A[|s|]∆ = A[|s|]m. From now on, ∆ will be a non-empty co-ideal.
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Definition 1.3.3 A (q,∆)-variate Hasse-Schmidt derivation ((q,∆)-variate HS-derivation for
short) of A (over k) is a family D = (Dα)α∈∆ of k-linear maps Dα : A → A, satisfying the
conditions:

D0 = IdA, Dα(xy) =
∑

β+γ=α

Dβ(x)Dγ(y)

for all x, y ∈ A and for all α ∈ ∆. We denote by HSqk(A; ∆) the set of all (q,∆)-variate
HS-derivations of A (over k) and HSqk(A) for ∆ = Nq.

For q = 1 and ∆ = {i ∈ N | i ≤ m}, a (1,∆)-variate HS-derivation is a HS-derivation of
length m in the usual way. Moreover, as in this case, for each q ≥ 1 and ∆ ⊆ Nq a co-ideal,
any (q,∆)-variate HS-derivation D of A over k can be understood as a power series∑

α∈∆

Dαs
α ⊆ Endk(A)[|s|]∆

and so we can consider HSqk(A; ∆) ⊆ Endk(A)[|s|]∆.

Lemma 1.3.4 [Na3, Corollary 1] Let k be a commutative ring, A a commutative k-algebra,
q ≥ 1 an integer and ∆ ⊆ Nq a non-empty co-ideal. Then, HSqk(A; ∆) is a group.

Namely, the group operation on HSqk(A; ∆) is explicitly given by

(D,E) ∈ HSqk(A; ∆)× HSqk(A; ∆) 7→ D ◦ E ∈ HSqk(A; ∆)

with
(D ◦ E)α =

∑
β+γ=α

Dβ ◦ Eγ.

Let us denote

Hom◦k−alg(A,A[|s|]∆) := {f ∈ Homk−alg(A,A[|s|]∆) | f(x) ≡ x mod (n0)A ∀x ∈ A}.

Lemma 1.3.5 [Na3, §5] Let k be a commutative ring, A a commutative k-algebra, q ≥ 1 an
integer, s = {s1, . . . , sq} a set of q variables and ∆ a non-empty co-ideal. Then, the map

D ∈ HSqk(A; ∆) 7−→

[
x ∈ A 7→

∑
α∈∆

Dα(x)sα

]
∈ Hom◦k−alg (A,A[|s|]∆)

is a group isomorphism.

Definition 1.3.6 Let R be a ring, q,m ≥ 1, s = {s1, . . . , sq}, t = {t1, . . . , tm} disjoint sets of
variables and ∆ ⊆ Nq and ∇ ⊆ Nm non-empty co-ideals. For each r ∈ R[|s|]∆, r′ ∈ R[|t|]∇,
the external product r � r′ ∈ R[|s t t|]∆×∇ is defined as

r � r′ :=
∑

(α,β)∈∆×∇

rαr
′
βs
αtβ.
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Proposition 1.3.7 [Na3, Prop. 6] Let D ∈ HSqk(A; ∆), E ∈ HSmk (A;∇) be HS-derivations.
Then, its external product D � E is a (s t t,∆×∇)-variate HS-derivation.

Let us consider D,E ∈ HSk(A). Then, its external product D � E ∈ HS2
k(A) is given by

(D � E)(i,j) = Di ◦ Ej for all (i, j) ∈ N2 and it is easy to prove the following result about its
inverse.

Lemma 1.3.8 Let D,E ∈ HSk(A). Then, (D � E)∗(i,j) = E∗j ◦D∗i for all (i, j) ∈ N2.

1.4 The action of substitution maps

In this section we recall the definition of substitution maps and its action on the group of
HS-derivations. Most of the result of this section can be found in [Na3, §6].

Let k be a commutative ring, A a commutative k-algebra, s = {s1, . . . , sq}, t = {t1, . . . , td},
u = {u1, . . . , ul} three sets of variables where q, d, l ≥ 1 and ∆ ⊆ Nq, ∇ ⊆ Nd and Ω ⊆ Nl

non-empty co-ideals.

Definition 1.4.1 An A-algebra map φ : A[|s|]∆ → A[|t|]∇ will be called a substitution map if
ord(φ(si)) ≥ 1 for all i = 1, . . . , q.

Definition 1.4.2 We say that a substitution map φ : A[|s|]∆ → A[|t|]∇ has constant coeffi-
cients if csβ ∈ k for all s ∈ s and all β ∈ ∇ where

φ(s) =
∑

β∈∇,0<|β|

csβt
β ∈ nA0 (t)/∇A ⊆ A[|t|]∇

with nA0 (t) = ker (
∑

α aαt
α ∈ A[|t|] 7→ a0 ∈ A). In particular, φ : A[|µ|]m → A[|µ|]n has con-

stant coefficient if φ(µ) =
∑n

i≥1 aiµ
i with ai ∈ k for all i.

It is clear that composition of substitution maps (of constant coefficients) are also substi-
tution maps (of constant coefficients).

Proposition 1.4.3 [Na3, Prop. 10] For any substitution map φ : A[|s|]∆ → A[|t|]∇, we have
that if f ∈ Hom◦k−alg(A,A[|s|]∆), then φ ◦ f ∈ Hom◦k−alg(A,A[|t|]∇).

Notation 1.4.4 Let φ : A[|s|]∆ → A[|t|]∇ be a substitution map and D ∈ HSqk(A; ∆) a (q,∆)-
variate HS-derivation. We denote by φ • D ∈ HSdk(A;∇) the (d,∇)-variate HS-derivation
determined by ϕφ•D = φ ◦ ϕD. In terms of power series, we have:

φ •D = φ •

(∑
α∈∆

Dαs
α

)
=
∑
α∈∆

φ(s)αDα.

Remark 1.4.5 Thanks to the previous expression, it is easy to see that, if φ : A[|s|]∆ → A[|t|]∇
is a substitution map and D ∈ HSqk(log I; ∆) for any I ⊆ A an ideal, i.e. Dα(I) ⊂ I for all
α ∈ ∆, then φ •D ∈ HSdk(log I;∇).
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Examples 1.4.6 The operations defined in 1.1 are examples of substitution maps. Namely, let
D ∈ HSk(A;m) be a HS-derivation of length m ∈ N.

1. For each x ∈ A, x •D = φ •D where φ : A[|µ|]m → A[|µ|]m is given by φ(µ) = xµ.

2. Let 1 ≤ n ≤ m be an integer and let us consider the projection πmn : A[|µ|]m → A[|µ|]n
(πmn(µ) = µ). Then, τmn(D) = πmn •D.

3. For each integer n ≥ 1, D[n] = φ • D where φ : A[|µ|]m → A[|µ|]mn is the substitution
map given by φ(µ) = µn.

Substitution maps of type 2. and 3. of Example 1.4.6 have constant coefficients. Moreover,
if a ∈ k, the substitution map a • (∗) of type 1. has constant coefficients too.

The following lemma comes from 8. and Prop. 11 of [Na3, §6].

Lemma 1.4.7 Let φ : A[|s|]∆ → A[|t|]∇ and ψ : A[|t|]∇ → A[|u|]Ω be substitution maps and
D,D′ ∈ HSqk(A; ∆) HS-derivations. We have the following properties:

1. If φ has constant coefficient, then φ • (D ◦D′) = (φ •D) ◦ (φ •D′).

2. ψ • (φ •D) = (ψ ◦ φ) •D.

As a straightforward consequence we obtain the following corollary.

Corollary 1.4.8 Let D,D1, . . . , Dt ∈ HSk(A,m) be HS-derivations of length m ∈ N. The
following properties hold:

1. If η ∈ k, then η • (D1 ◦ · · · ◦Dt) = (η •D1) ◦ · · · ◦ (η •Dt).

2. τmn (D1 ◦ · · · ◦Dt) = τmn (D1) ◦ · · · ◦ τmn (Dt) for any 1 ≤ n ≤ m integer.

3. (D1 ◦ · · · ◦Dt) [n] = D1[n] ◦ · · · ◦Dt[n] for any n ≥ 1.

4. D[nn′] = (D[n])[n′] for any n, n′ ≥ 1.

Proposition 1.4.9 [Na3, Prop. 11] Let φ : A[|s|]∆ → A[|t|]∇ be a substitution map of
constant coefficients. Then, (φ •D)∗ = φ •D∗ for each D ∈ HSqk(A; ∆).

Thanks to this result we can easily show the following results:

Lemma 1.4.10 Let D,E ∈ HSk(A;m) be two HS-derivations of length m ∈ N such that
τm,m−1(D) = τm,m−1(E). Then, there exists δ ∈ Derk(A) such that D = E ◦ (Id, δ)[m].

Proof. Let E∗ ∈ HSk(A;m) be the inverse of E. From Proposition 1.4.9 we have that
τm,m−1(E∗) = (τm,m−1(E))∗ = (τm,m−1(D))∗ = τm,m−1(D∗). So, E∗ ◦ D = (Id, 0, . . . , 0, δ) ∈
HSk(A;m) with δ ∈ Derk(A) (by definition of HS-derivation) and hence, D = E ◦ (Id, δ)[m].

�

Lemma 1.4.11 Let D ∈ HSk(A;m) be a HS-derivation of length m ∈ N, n, s ≥ 1 positive
integers such that n ≤ m and I ⊆ A an ideal. The following properties hold:
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a. If D is n− I-logarithmic, then D∗ is n− I-logarithmic too.

b. If D is (n− 1)− I-logarithmic, then D∗[s] ∈ HSk(A;ms) is (ns− 1)− I-logarithmic.

c. If D is (n−1)−I-logarithmic, then D∗n = −Dn+Hn where Hn is an I-differential operator
of order ≤ n.

Proof.

a. We have that τmn(D) ∈ HSk(log I;n). From Lemma 1.4.9, τmn(D∗) = (τmn(D))∗ ∈
HSk(log I;n). Hence D∗ is n− I-logarithmic.

b. From a., D∗ is (n−1)−I-logarithmic and by Lemma 1.1.18, D∗[s] is (ns−1)−I-logarithmic
for all s ≥ 1.

c. From a., D∗ is (n − 1) − I-logarithmic. Then, by Lemma 1.1.19, there exists Hn an
I-differential operator of order ≤ n such that (D ◦ D∗)n = D∗n + Dn + Hn = 0. So,
D∗n = −Dn −Hn and we have the result.

�

Lemma 1.4.12 Let I ⊆ A be an ideal and φ : A[|µ|]m → A[|µ|]n a substitution map. Let us
denote B = A/I and φB : B[|µ|]m → B[|µ|]n the substitution map induced by φ. Then, for each
D ∈ HSk(log I;m) we have that

φB •
(
ΠI

HS,m(D)
)

= ΠI
HS,n (φ •D) .

Proof. Let us write D =
∑m

i=0Diµ
i ∈ End(A)[|µ|]m and φ(µ) =

∑n
j=1 ajµ

j. Then,

φ •D =
m∑
i=0

φ(µ)iDi =
∑
β∈Nn
|β|=i

(
i

β

)
aβ1

1 · · · aβnn Diµ
β1+···+nβn mod µn+1

where
(
i
β

)
= i!/(β1! · · · βn!). So, if we denote Jj = {β = (β1, . . . , βn) ∈ Nn |

∑n
s=1 sβs = j}, we

obtain that

φ •D =
n∑
j=0

∑
β∈Jj

(
|β|
β

)
aβ1

1 · · · aβnn D|β|

µj ∈ HSk(log I;n).

Let us denote a = a + I for all a ∈ A. From the definition of the map ΠI
HS,n, ΠI

HS,n(φ •D) =

φ •D ∈ HSk(B;n) where

(φ •D)j(a+ I) = (φ •D)j(a) + I =

∑
β∈Jj

(
|β|
β

)
aβ1

1 · · · aβnn D|β|(a)

+ I

=
∑
β∈Jj

(
|β|
β

)
a1
β1 · · · anβnD|β|(a)
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where ΠI
HS,m(D) =

∑m
i=0Diµ

i ∈ HSk(B;m). So,

φ •D =
n∑
j=0

∑
β∈Jj

(
|β|
β

)
a1
β1 · · · anβnD|β|

µj.

On the other hand, φB(µ) =
∑n

j=1 ajµ
j and, analogously, we have that

φB •
(
ΠI

HS,m(D)
)

= φB

(
m∑
i=0

Diµ
i

)
=

m∑
i=0

φB(µ)iDi =
n∑
j=0

∑
β∈Jj

(
|β|
β

)
a1
β1 · · · anβnD|β|

µj.

Hence, we have the lemma.
�



Chapter 2

Leaps of modules of integrable
derivations

One of the main problems of the theory of HS-derivations is to know when a k-derivation is
n-integrable for some n ∈ N. We know that if k is a ring of characteristic 0, i.e. Q ⊆ k, then any
k-derivation of a k-algebra is (∞-)integrable. The same happens when we consider derivations
of a 0-smooth algebra over any commutative ring k (Theorem 1.1.28). In this chapter, we will
assume that k is a commutative ring of characteristic p > 0, i.e. Fp ⊆ k and A is a commutative
k-algebra and we will prove that leaps of A over k only occur at powers of p. We start this
chapter with some previous and technical results.

2.1 Previous results

2.1.1 Numerical results

The aim of this section is to expose all the numerical results used in this chapter to facilitate
the reading of its content.

Lemma 2.1.1 Let p be a prime. Then, for all m such that 1 < m < p, there exists a finite
number of elements ai ∈ F∗p (multiplicative group) such that{ ∑

i ai = 1 mod p∑
i a

m
i = 0 mod p.

Proof. Note that p > 2. Since F∗p is a cyclic group, there exists g ∈ F∗p a generator of
F∗p = {g, g2, . . . , gp−1 = 1}. So, g 6= gm for all m = 2, . . . , p − 1. We call a′0 = g and let us
consider h = gm mod p with 0 < h < p. Then, we put a′i = 1 for i = 1, . . . , p− h. In this case,

p−h∑
i=0

(a′i)
m = gm +

p−h∑
i=1

1 = gm + p− h = 0 mod p

and
p−h∑
i=0

a′i = g +

p−h∑
i=1

1 = g + p− h = g − h 6= 0 mod p

23
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because h = gm and, if g = h mod p then g = gm mod p!!!. If we define ai = a′i/(g − h), we
have the result.

�

Let us consider p a prime and n = esp
s + · · · + etp

t a positive integer expressed in base p
expansion where 1 ≤ t ≤ s and 0 ≤ ei < p with es, et 6= 0 (note that s and t can be the same
and n is a multiple of p).

Lemma 2.1.2 Let p, n, t be as above. Then,

pt = min

{
m ∈ N+ |

(
n

m

)
6= 0 mod p

}
.

Proof. We know that (
n

pt

)
=

(
es
0

)
· · ·
(
et
1

)
= et 6= 0 mod p

so, pt is in the set described in the lemma. Now, consider 0 < m < pt. If we express m in base
p expansion, then m = mlp

l + · · ·+m0 where l < t and ml 6= 0. In this case,(
n

m

)
=

(
es
0

)
· · ·
(
et
0

)
· · ·
(

0

ml

)
· · ·
(

0

m0

)
= 0 mod p

because
(

0
m1

)
= 0 mod p.

�

Lemma 2.1.3 Let p, n, t be as above and let us suppose that n is not a power of p. Then,
2pt ≤ n.

Proof. Let us consider p = 2. Since n is not a power of 2, we have s > t. Hence 2pt = pt+1 ≤
ps ≤ ps + es−1p

s−1 + · · ·+ pt = n. Let us assume that p ≥ 3. If s > t then, 2pt < ps ≤ esp
s ≤ n

and we have the inequality. Otherwise, if s = t, we have et ≥ 2 because n is not a power of p.
Therefore, 2pt ≤ etp

t = n.
�

2.1.1.1 Definition of digital root in base p

In this section we recall the definition of digital root of a positive number n in base p where p
is a prime. Although this construction is known we have not found any reference in books or
journals. From now on n will be a positive integer.

Definition 2.1.4 Let n = esp
s + · · · + e0 be a positive integer expressed in base p expansion

where es 6= 0. We define sp(n) :=
∑s

i=0 ei.

Is is clear that if 1 ≤ n ≤ p− 1, then sp(n) = n and if n ≥ p, then sp(n) < n.
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Definition 2.1.5 For each j ≥ 0, we define sjp(n) := sp(sp(· · · (sp︸ ︷︷ ︸
j times

(n)) · · · ).

Lemma 2.1.6 If p is a prime and n a positive integer, there exists j ≥ 0 such that sjp(n) =
sj+1
p (n). Moreover, if sjp(n) = sj+1

p (n) then, sjp(n) = sJp (n) for all J ≥ j.

Proof. If n ≤ p − 1, n = sp(n). Hence, the lemma holds for j = 0. If n ≥ p, then
sp(n) < n. So, if sp(n) ≤ p− 1, then s2

p(n) = sp(n) and the lemma holds for j = 1. Otherwise,
s2
p(n) < sp(n) < n. By performing this process recursively, we obtain that sjp(n) ≤ p − 1 for

some j. So, sjp(n) = sj+1
p (n) and the lemma holds for this j. Moreover, if sjp(n) = sj+1

p (n), then
sjp(n) ≤ p− 1, so sJp (n) = sjp(n) for all J ≥ j.

�

Definition 2.1.7 Let p be a prime and n a positive integer. Let us consider j = min{l ≥
0 | slp(n) = sl+1

p (n)}. The digital root of n in base p is Tp(n) := sjp(n).

For example, T2(10) = 1, T3(10) = 2, T5(10) = 2, T7(10) = 4 and Tp(10) = 10 for all p ≥ 11.

Lemma 2.1.8 Under the above conditions, Tp(n) = n mod p− 1.

Proof. Let us write n = esp
s + · · ·+ e1p + e0. Taking this expression module p− 1, we have

that n = es + · · · + e1 + e0 = sp(n) mod p − 1. So, doing this process recursively, we obtain
that, for all j ≥ 0, n = sjp(n) mod p− 1. Hence, Tp(n) = n mod p− 1.

�

Lemma 2.1.9 For all x ∈ Fp and n ≥ 1, we have that xn = xTp(n) mod p.

Proof. Since Tp(n) = n mod p − 1 (Lemma 2.1.8), there exists s ∈ N such that n =
Tp(n) + s(p− 1). Hence,

xn = xTp(n)+s(p−1) = xTp(n) mod p.

�

2.1.1.2 Definition of Cp
m,e,s

Throughout this section p, s, e,m will be integers such that p, s ≥ 1. Although in principle we
do not impose any restrictions on e and m in the rest of the chapter they will always be positive
integers.

Definition 2.1.10 Let p, s,m, e be integers such that p, s ≥ 1. Then, we define

Cp
m,e,s := {j ∈ N | mpj < eps}.

Lemma 2.1.11 If e ≤ m < eps, then Cp
m,e,s is not empty and 0 ≤ maxCp

m,e,s < s.
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Proof. Cp
m,e,s 6= ∅ because j = 0 holds the inequality, so maxCp

e,m,s ≥ 0. On the other hand,
let us consider r ≥ s, then

eps ≤ epr ≤ mpr

so, r 6∈ Cp
m,e,s and we can conclude that 0 ≤ maxCp

m,e,s < s.
�

Lemma 2.1.12 Let us assume that e < m < eps with m 6= 0 mod e and we denote r =
maxCp

m,e,s. Then, mpr+1 − 1 ≥ eps.

Proof. Since r = maxCp
m,e,s, we have that mpr+1 ≥ eps. We will see that the equality never

holds. Suppose that mpr+1 = eps. From Lemma 2.1.11, r + 1 ≤ s, so m = eps−(r+1) but m is
not a multiple of e by hypothesis. Therefore, mpr+1 > eps and we have the result.

�

Let us consider p a prime and n = esp
s + · · · + etp

t a positive integer expressed in base p
expansion where 1 ≤ t ≤ s and 0 ≤ ei < p with es, et 6= 0.

Lemma 2.1.13 Let p, n, t be as above. For all m ∈ N such that 2pt + 1 ≤ m < n+ 1, we have
0 ≤ maxCp

m,n+1,t ≤ s.

Proof. Observe that 0 ∈ Cp
m,n+1,t, so these sets are not empty. Consider r > s, then

(2pt + 1)pr < (n+ 1)pt ⇔ (2pt + 1)pr−t = 2pr + pr−t < n+ 1.

The last inequality is false because n < ps+1 ≤ pr, so n + 1 < pr + 1 ≤ 2pr + pr−t. Hence,
maxCp

2pt+1,n+1,t ≤ s. Now, we consider m > 2pt + 1 and, as before, r > s, then,

(n+ 1)pt ≤ (2pt + 1)pr < mpr

where the first inequality holds because maxCp
2pt+1,n+1,t ≤ s. So, r 6∈ Cp

m,n+1,t for r > s. That
implies that maxCp

m,n+1,t ≤ s.
�

Lemma 2.1.14 With the above notation, let us assume that n is not a power of p (note that n is
a multiple of p). For each integer m such that 2pt+1 ≤ m < n+1, we denote rm = maxCp

m,n+1,t.
Then, mprm+1 − 1 ≥ (n+ 1)pt.

Proof. By definition, mprm+1 ≥ (n + 1)pt. We will see that the equality never holds. Let
us suppose that mprm+1 = (n + 1)pt. Since m < n + 1, we have that rm + 1 > t. Then,
mprm+1−t = n+ 1 so, n+ 1 has to be a multiple of p!!! Hence, mprm+1 − 1 ≥ (n+ 1)pt.

�

To illustrate the set Cp
m,e,s we give some examples for different values of p, e, s and m:

p = 2, s = 1 p = 2, s = 2

e
m

1 2 3

1 {0} ∅ ∅
2 {0, 1} {0} {0}
3 {0, 1, 2} {0, 1} {0}

e
m

1 2 3

1 {0, 1} {0} {0}
2 {0, 1, 2} {0, 1} {0, 1}
3 {0, 1, 2, 3} {0, 1, 2} {0, 1}
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p = 3, s = 1 p = 3, s = 2

e
m

1 2 3

1 {0} {0} ∅
2 {0, 1} {0} {0}
3 {0, 1} {0, 1} {0}

e
m

1 2 3

1 {0, 1} {0, 1} {0}
2 {0, 1, 2} {0, 1} {0, 1}
3 {0, 1, 2} {0, 1, 2} {0, 1}

2.1.2 Some technical lemmas

Throughout this section, k will be a commutative ring, A a commutative k-algebra and I ⊆ A
an ideal.

Lemma 2.1.15 Let D ∈ HSk(A;n) be a HS-derivation of length n ∈ N. For each m > 1, there
exists E ∈ HSk(A; (n+ 1)m− 1) such that Em = −D1 and `(E;m) = n+ 1. Moreover, if D is
I-logarithmic, then E is I-logarithmic.

Proof. We know that D′ := ((−1) •D) [m] is a HS-derivation of length mn such that D′m =
−D1 and `(D′;m) = n. By Lemma 1.1.30, there exists an integral E ∈ HSk(A; (n+ 1)m−1) of
D′ with `(E;m) = n+1. So, this derivation satisfies the lemma. Moreover, if D is I-logarithmic
then D′ is also I-logarithmic and, by Lemma 1.1.30, E is I-logarithmic too.

�

Definition 2.1.16 For each D ∈ HSk(A;n) and m > 1, we denote by ED,m ∈ HSk(A; (n +
1)m− 1) a HS-derivation holding Lemma 2.1.15.

Lemma 2.1.17 Let e, i,m be integers such that e > 1, i ≥ 1 and m ≥ ie. Let D,E ∈
HSk(A;m) be two HS-derivations such that `(D; e) = i ≥ 1 and `(E) > ie. Then, for r ≤ m,
we have

(D ◦ E)r =

{
Dr if r ≤ ie
Dr + Er if r = ie+ 1, . . . , ie+ (e− 1).

Proof. We denote D′ = D ◦ E ∈ HSk(A;m). If 0 < γ ≤ ie, then Eγ = 0, so

D′r =
∑
β+γ=r

Dβ ◦ Eγ = Dr +
r∑

γ=ie+1

Dr−γ ◦ Eγ.

Hence, if r ≤ ie, D′r = Dr. Let us consider r = ie + α ≤ m where α ∈ {1, . . . , e − 1}. Then,
the previous equation can be written as

D′ie+α = Die+α +
α∑
γ=1

Dα−γ ◦ Eie+γ.

Note that if γ 6= α, then 0 < α − γ < e and, since `(D; e) ≥ 1, Dα−γ = 0. That implies that
D′ie+α = Die+α + Eie+α for all α.

�
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Lemma 2.1.18 Let e, j,m be integers such that e > 1, j > 0 and m ≥ je and let us consider
D,E ∈ HSk(A;m) two HS-derivations such that `(D) = je and `(E; je) = dm/jee. Let us
denote D′ := D ◦ E ∈ HSk(A;m). Then, `(D′) ≥ je, `(D′; e) ≥ `(D; e), D′je = Dje + Eje and
for each i ∈ N such that j ≤ i ≤ `(D; e), we have that, for r ≤ m:

D′r = Dr if r = ie+ 1, . . . , ie+ (e− 1).

Proof. Since `(E; je) ≥ 1, `(E) ≥ je. From Lemma 1.1.9, l(D′) ≥ je. Let us denote `(D; e) =
s ≥ j. Then, (s− 1)e < m, so (s− 1)/j = (s− 1)e/je < dm/jee. Then, s− 1 < dm/jeej, i.e.,
s/j ≤ `(E; je). Hence, by Lemma 1.1.12, `(D′; e) ≥ `(D; e).

By hypothesis, Eγ = 0 for all γ 6= 0 mod je so,

D′r =
∑
β+γ=r

Dβ ◦ Eγ =
∑

β+jeγ=r

Dβ ◦ Ejeγ. (2.1)

If r = je, then γ can only take the values 0 and 1, so D′r = Dje + Eje. Let us consider i such
that j ≤ i ≤ `(D; e) and r = ie+α ≤ m where α ∈ {1, . . . , e− 1}. Then, in the equation (2.1),
β = r− jeγ = (i− jγ)e+α. Hence, when γ > 0, β < ie and it is not a multiple of e, so Dβ = 0
and the only non-zero term is when γ = 0. That means D′ie+α = Die+α for all α.

�

Lemma 2.1.19 Let e, i ≥ 1 be integers and m ≥ ie + e − 1. Let us consider D1, . . . , De−1 ∈
HSk(A;m) an ordered family of HS-derivations such that `(Da; ie+a) ≥ 2 for all a = 1, . . . , e−2
and `(De−1; ie+e−1) ≥ 1. We denote D := D1◦D2◦· · ·◦De−1 ∈ HSk(A;m). Then `(D) ≥ ie+1
and

Die+a = Da
ie+a where a = 1, . . . , e− 1.

Proof. Since `(Da; ie + a) ≥ 1 for all a = 1, . . . , e− 1, we have that `(Da) ≥ ie + a ≥ ie + 1
and, by Lemma 1.1.9, we can deduce that `(D) ≥ ie + 1. Suppose now that r = ie + a ≤ m
where a ∈ {1, . . . , e− 1}. From Lemma 1.1.3, we have that

Dr =
∑
|β|=r

D1
β1
◦ · · · ◦De−1

βe−1
.

Let us consider β = (β1, . . . , βe−1) such that |β| = r. If there is b ∈ {1, . . . , e − 1} such that
0 < βb < ie+b, then the term associated with β is zero so, we can consider βb = 0 or βb ≥ ie+b
for all b = 1, . . . , e− 1.

Let us suppose that there exist b, b′ ∈ {1, . . . , e− 1} such that βb, βb′ > 0, then,

ie+ a = r ≥ βb + βb′ ≥ ie+ b+ ie+ b′ > 2ie > r!!!

Hence, there is only one b ∈ {1, . . . , e − 1} such that βb 6= 0. Since `(Db; ie + b) ≥ 2 for all
b = 1, . . . , e − 2, we have that Db

γ = 0 for all γ = ie + b + 1, . . . , 2i(e + b) − 1 (or until m if
m ≤ 2i(e+b)−1). So, in order for the term associated with β to be not zero, if b ∈ {1, . . . , e−2},
βb = ie + b or βb = 0. On the other hand, if b = e − 1 and βb > ie + b = (i + 1)e − 1, then
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r = ie + a ≤ (i + 1)e − 1 < βb!!! So, βb = ie + b or βb = 0. Hence, we can conclude that, if
βb 6= 0, then βb = ie+ b and

βb = ie+ b = ie+ a = r ⇔ b = a.

Therefore, the only summand which is not zero is the one associated with β = (0, . . . , 0, ie +
a, 0, . . . , 0) where ie+ a is in the a-th position. So, Die+a = Da

ie+a for all a = 1, . . . , e− 1.
�

2.2 A special Hasse-Schmidt derivation

In this section, we consider k a commutative ring, A a commutative k-algebra and I ⊆ A an
ideal. We define a HS-derivation associated with another HS-derivation that will allow us to
prove that leaps only occur at powers of p.

Notation 2.2.1 Let D ∈ HSk(A) be a HS-derivation. We denote BD := φ•D ∈ HS2
k(A) where

φ : A[|µ|]→ A[|µ1, µ2|] is the substitution map of constant coefficients given by φ(µ) = µ1 +µ2.

Lemma 2.2.2 Let D ∈ HSk(A) be a HS-derivation. Then, BD
(i,j) =

(
i+j
i

)
Di+j for all (i, j) ∈ N2.

Proof. We can write D =
∑

α≥0Dαµ
α ⊆ Endk(A)[|µ|]. Then,

BD = φ •

(∑
α≥0

Dαµ
α

)
=
∑
α≥0

Dα(µ1 +µ2)α =
∑
α≥0

Dα

∑
i+j=α

(
α

j

)
µi1µ

j
2 =

∑
i+j≥0

(
i+ j

j

)
Di+jµ

i
1µ

j
2.

So,

BD
(i,j) =

(
i+ j

j

)
Di+j.

�

Lemma 2.2.3 Let D ∈ HSk(A) be an (n− 1)− I-logarithmic HS-derivation. If i+ j < n, then
BD

(i,j)(I) ⊆ I.

Proof. If i+ j < n, then Di+j(I) ⊆ I, so BD
(i,j)(I) =

(
i+j
i

)
Di+j(I) ⊆ I. �

Notation 2.2.4 Let D ∈ HSk(A) be a HS-derivation. We denote FD = D�D ∈ HS2
k(A), the

external product of D, and
(
FD
)∗ ∈ HS2

k(A) its inverse. Recall that
(
FD
)∗

(i,j)
= D∗j ◦D∗i for all

(i, j) ∈ N2 (see Lemma 1.3.8).

Lemma 2.2.5 Let D ∈ HSk(A) be an (n− 1)− I-logarithmic HS-derivation. If i, j < n, then(
FD
)∗

(i,j)
(I) ⊆ I.

Proof. Since D is (n− 1)− I-logarithmic, D∗ is (n− 1)− I-logarithmic too by Lemma 1.4.11,
a. So,

(
FD
)∗

(i,j)
(I) = D∗j ◦D∗i (I) ⊆ I.

�
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Notation 2.2.6 For each D ∈ HSk(A), we define GD := BD ◦
(
FD
)∗ ∈ HS2

k(A).

From now on, we fix D ∈ HSk(A) and we will omit the superscript in the HS-derivations
defined before, so we will write G := GD, B := BD and F := FD.

Lemma 2.2.7 For each m > 0, we have that G(m,0) = G(0,m) = 0 and G(1,m), G(m,1) ∈ Derk(A).

Proof. First, we compute G(m,0):

G(m,0) =
∑

α+β=(m,0)

Bα ◦ F ∗β =
∑

α1+β1=m

B(α1,0) ◦ F ∗(β1,0) =
∑

α1+β1=m

Dα1 ◦D∗β1
= 0.

The computation of G(0,m) is analogous. Now, by definition of multivariate HS-derivation:

G(1,m)(xy) =
∑

α1+β1=1
α2+β2=m

G(α1,α2)(x)G(β1,β2)(y)

=
∑

α2+β2=m

G(0,α2)(x)G(1,β2)(y) +
∑

α2+β2=m

G(1,α2)(x)G(0,β2)(y)

= xG(1,m)(y) +G(1,m)(x)y.

To obtain the third equality, recall that G(0,0) = Id and, thanks to the previous computation,
G(0,m) = 0 for all m ≥ 1. It is analogous for G(m,1).

�

Lemma 2.2.8 Let us suppose that D ∈ HSk(A) is (n − 1) − I-logarithmic. We have the
following properties:

1. If 0 ≤ i+ j < n, then G(i,j)(I) ⊆ I.

2. If i and j are not zero and i + j = n > 0, then G(i,j) =
(
n
i

)
Dn + H where H is an

I-differential operator of order ≤ n.

Proof.

1. If i+ j = 0, then G(i,j) = Id and, if i = 0 or j = 0 then, G(i,j) = 0 so the result is obvious
and we can suppose that i, j > 0. We have that

G(i,j) =
∑

α1+β1=i
α2+β2=j

B(α1,α2) ◦ F ∗(β1,β2).

Since i and j are not zero, 1 ≤ i, j < n−1 so, β1, β2 < n−1. Moreover, α1 +β1 +α2 +β2 =
i+j < n, so α1+α2 < n. By Lemmas 2.2.3 and 2.2.5, the terms of the sum is I-logarithmic
and G(i,j) is an I-differential operator.
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2. By definition,

G(i,j) =
∑

α+β=(i,j)

Bα ◦ F ∗β = B(i,j) +
∑

α1+β1=i
α2+β2=j
α 6=(i,j)

B(α1,α2) ◦ F ∗(β1,β2)

=

(
n

i

)
Dn +

∑
α1+β1=i
α2+β2=j
α 6=(i,j)

(
α1 + α2

α1

)
Dα1+α2 ◦D∗β2

◦D∗β1
.

If α 6= (i, j), then α1 < i or α2 < j so, α1+α2 < i+j = n and, by Lemma 2.2.3, Bα(I) ⊆ I.
Moreover, Bα is a differential operator of order ≤ |α|. On the other hand, β1, β2 < n
because i, j < n. Hence, F ∗β (I) ⊆ I (Lemma 2.2.5) and, since D∗βi is a differential operator
of order βi for i = 1, 2, we have that F ∗β is an I-differential operator of order ≤ |β|. Hence,
we can conclude that, the sum is an I-differential operator of order ≤ n.

�

In the rest of this section, k will be a commutative ring of characteristic p > 0 (i.e. Fp ⊆ k),
A a commutative k-algebra and I an ideal of A. Let n = esp

s + · · ·+ etp
t be a positive integer

expressed in base p expansion where 1 ≤ t ≤ s and 0 ≤ ei < p with es, et 6= 0 (note that t and
s could be equal). Thanks to Lemma 2.1.2, we can prove the next result.

Lemma 2.2.9 With the above notation, let us consider i, j ≥ 0 such that i+ j = n and i < pt.
If D ∈ HSk(A) is (n− 1)− I-logarithmic then, G(i,j)(I) ⊆ I.

Proof. By Lemma 2.2.7, if i = 0 or j = 0, then G(i,j) = 0 so, it is an I-differential operator. If
i, j ≥ 1, by Lemma 2.2.8, G(i,j) =

(
n
i

)
Dn +H where H is an I-differential operator. By Lemma

2.1.2,
(
n
i

)
= 0 and we have the result.

�

Let us consider the following substitution map of constant coefficients:

ϕr : A[|µ1, µ2|] −→ A[|µ|]
µ1 7−→ µr+1

µ2 7−→ µr

Notation 2.2.10 Let p be a prime and n = esp
s+ · · ·+etp

t a positive integer expressed in base
p expansion where 1 ≤ t ≤ s and 0 ≤ ei < p with es, et 6= 0. Let D ∈ HSk(A) be a HS-derivation
and let us consider GD ∈ HS2

k(A) defined in 2.2.6. We define GD,pt = τ∞,(n+1)pt
(
ϕp

t •GD
)
∈

HSk (A; (n+ 1)pt).

Lemma 2.2.11 Under the condition of Notation 2.2.10, `
(
GD,pt

)
≥ 2pt + 1. Moreover, if

D ∈ HSk(A) is (n − 1) − I-logarithmic then, GD,pt is ((n + 1)pt − 1) − I-logarithmic and

GD,pt

(n+1)pt =
(
n
pt

)
Dn +H where H is an I-differential operator of order ≤ n.
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Proof. Note that

ϕp
t•GD = ϕp

t

 ∑
(i,j)∈N2

GD
(i,j)µ

i
1µ

j
2

 =
∑

(i,j)∈N2

GD
(i,j)µ

(pt+1)i+ptj =
∑
α≥0

 ∑
(i,j):(pt+1)i+ptj=α

GD
(i,j)

µα.

Since GD
(i,j) = 0 if i or j is zero (Lemma 2.2.7), we have that GD,pt

0 = Id and for all α ≥ 1,

GD,pt

α =
∑

(i,j):(pt+1)i+ptj=α
i,j 6=0

GD
(i,j).

If α < 2pt + 1 then there is not (i, j) ∈ N2 with i, j 6= 0 such that (pt + 1)i + ptj = α, so
GD,pt

α = 0. Hence, `
(
GD,pt

)
≥ 2pt + 1. Now, we will suppose that D is (n− 1)− I-logarithmic

and will prove the rest of the lemma.

Let us consider a pair (i, j) ∈ N2 with i, j 6= 0. If i + j < n, then G(i,j) is an I-differential
operator by Lemma 2.2.8. So, we have to focus on the case when i+ j = n+ l where l ≥ 0. We
have

(pt + 1)i+ ptj = pt(i+ j) + i = pt(n+ l) + i.

If l > 0, then pt(n + l) + i > pt(n + l) ≥ pt(n + 1). So, GD
(i,j) does not appear in any

component of GD,pt .

If l = 0, then ptn+ i ≤ (n+ 1)pt if and only if i ≤ pt. So, GD
(i,j) appears in some component

of GD,pt if i ≤ pt. By Lemma 2.2.9, GD
(i,j)(I) ⊆ I if i < pt. On the other hand, if i = pt, then

j = n−pt and (pt+ 1)pt+pt(n−pt) = (n+ 1)pt. Hence, GD
(pt,n−pt) is a term of GD,pt

(n+1)pt and it is

the only component that could be not I-logarithmic. So, GD,pt is ((n+1)pt−1)−I-logarithmic
and

GD,pt

(n+1)pt = GD
(pt,n−pt)+some I-diff. op. of order ≤ n =

(
n

pt

)
Dn+some I-diff. op. of order ≤ n

where the last equality holds because of Lemma 2.2.8.

�

2.3 Some partial integrability results

In this section, k will be a commutative ring of characteristic p > 0 (i.e. Fp ⊆ k) and A a
commutative k-algebra. We will give some results about leaps of A over k. Namely, we prove
that A does not have leaps at integers which are not a multiple of p and either at the first
multiple of p which is not a power of p.

Lemma 2.3.1 Let k be a commutative ring and m an integer invertible in k. Then, any
HS-derivation of length m− 1 is m-integrable.
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Proof. Since A is a k-algebra, we can write A := R/I where R is a polynomial ring (in an
arbitrary number of variables) and I ⊆ R an ideal. Let D ∈ HSk(A;m− 1) be a HS-derivation

of A of length m − 1. Then, there exists D̃ ∈ HSk(log I;m − 1) such that ΠI
HS,m−1(D̃) =

D (see Proposition 1.2.2). Thanks to Proposition 1.2.1, we can integrate D̃. So, we have

E ∈ HSk(R;m) such that τm,m−1(E) = D̃. From Lemma 1.1.23, there exists an I-differential
operator H of order ≤ m such that εm(E) = mEm +H ∈ Derk(R). Then,

E ′ := E ◦ ((−1/m) • (Id, εm(E)))[m] = (Id, E1, . . . , Em−1,−(1/m)H) ∈ HSk(log I;m).

So, ΠI
HS,m(E ′) ∈ HSk(A;m) is an m-integral of D.

�

Remark 2.3.2 If k is a ring of characteristic 0 then, this lemma allows us to prove, in a
different way, that Leapsk(A) = ∅ for any k-algebra A.

Corollary 2.3.3 If k has characteristic p > 0 and m 6= 0 mod p then, IDerk(A;m − 1) =
IDerk(A;m), i.e. m 6∈ Leapsk(A).

Proof. If m 6= 0 mod p, then m is not a multiple of p, so m is invertible in k. Let us consider
δ ∈ IDerk(A;m − 1). By definition, there exists D ∈ HSk(A;m − 1) such that D1 = δ. From
Lemma 2.3.1, D is m-integrable, so there exists D′ ∈ HSk(A;m) such that τm,m−1(D′) = D, in
particular D′1 = δ. Hence, δ ∈ IDerk(A;m), so IDerk(A;m− 1) ⊆ IDerk(A;m). Since the other
inclusion always holds, we have the equality.

�

Proposition 2.3.4 Let k be a commutative ring of characteristic p = 2 and A a commutative
k-algebra. Then, IDerk(A; 5) = IDerk(A; 6).

Proof. We can write A := R/I where R is a polynomial ring and I ⊆ R an ideal. By Corollary
1.2.4, IDerk(A; 5) = IDerk(A; 6) if and only if IDerk(log I; 5) = IDerk(log I; 6). The inclusion
IDerk(log I; 6) ⊆ IDerk(log I; 5) is always true, so let δ ∈ IDerk(log I; 5) be an I-logarithmically
5-integrable k-derivation and let us consider D ∈ HSk(log I; 5) a 5-integral of δ. By Proposition
1.2.1, we can integrate D up to ∞. So, we have D = (Id, D1, . . . , D5, D6, . . .) ∈ HSk(R) an
integral of δ which is 5 − I-logarithmic. Let us consider G := GD ∈ HS2

k(R) defined in 2.2.6.
By Lemma 2.2.8, G(i,j)(I) ⊆ I for all i+ j ≤ 5. Moreover, G(2,4) =

(
6
2

)
D6 +H = D6 +H where

H is an I-differential operator of order ≤ 6.

On the other hand, by definition of multivariate HS-derivation and Lemma 2.2.7:

G(2,4)(xy) =
∑

α+β=(2,4)

Gα(x)Gβ(y) =
∑

α1+β1=2
α2+β2=4

G(α1,α2)(x)G(β1,β2)(y)

=
∑

α2+β2=4

G(2,α2)(x)G(0,β2)(y) +
∑

α2+β2=4

G(1,α2)(x)G(1,β2)(y)+

+
∑

α2+β2=4

G(0,α2)(x)G(2,β2)(y)

= G(2,4)(x)y +G(1,1)(x)G(1,3)(y) +G(1,3)(x)G(1,1)(y) +G(1,2)(x)G(1,2)(y) + xG(2,4)(y).
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Since G(1,j) ∈ Derk(A) by Lemma 2.2.7,

G(1,1)G(1,3)(xy) = G(1,1)

(
G(1,3)(x)y + xG(1,3)(y)

)
= G(1,1)G(1,3)(x)y +G(1,3)(x)G(1,1)(y) +G(1,1)(x)G(1,3)(y) + xG(1,1)G(1,3)(y).

Let us consider D′2 = G(2,4)−G(1,1)G(1,3). Then, D′2(xy) = D′2(x)y+G(1,2)(x)G(1,2)(y)+xD′2(y).
So, since G(1,2) ∈ Derk(R) by Lemma 2.2.7, we have that

D′ = (Id, G(1,2), G(2,4) −G(1,1)G(1,3)) ∈ HSk(R; 2).

Moreover, D′ is 1− I-logarithmic and G(1,1)G(1,3) is an I-differential operator of order ≤ 6, so
D′2 = D6 +H ′ where H ′ is an I-differential operator of order ≤ 6. Then,

D′′ = τ∞,6(D) ◦D′[3] = (Id, D1, . . . , D6 +D3G(1,2) +D6 +H ′)
= (Id, D1, . . . , D3G(1,2) +H ′) ∈ HSk(log I; 6).

Hence, IDerk(log I; 5) = IDerk(log I; 6) and we have the proposition.
�

Theorem 2.3.5 Let k be a commutative ring of characteristic p > 0 and A a commutative k-
algebra. Let n ≥ 1 be an integer such that Tp(n) 6= 1 (see Definition 2.1.7). Then, IDerk(A;n−
1) = IDerk(A, n).

Proof. SinceA is a k-algebra, we can seeA = R/I whereR is a polynomial ring (in an arbitrary
number of variables) and I ⊆ R an ideal. By Corollary 1.2.4, A does not have leap at n if and
only if IDerk(log I;n− 1) = IDerk(log I;n). The inclusion IDerk(log I;n− 1) ⊇ IDerk(log I;n)
is always true. Let us consider δ ∈ IDerk(log I;n−1) and D ∈ HSk(log I;n−1) an integral of δ.
By Proposition 1.2.1, we can integrate D up to n. So, we redefine D = (Id, D1, . . . , Dn−1, Dn) ∈
HSk(R;n) as an integral of the previous D and we obtain an integral of δ which is (n− 1)− I-
logarithmic.

Let us consider (ai)i a solution of the system of Lemma 2.1.1 where m = Tp(n). Then,

E := ◦i (ai •D) =

(
Id,
∑
i

aiD1, . . . ,
∑
i

aniDn +H

)
where H :=

∑
|β|=n:
βi<n ∀i

◦i
(
aβii Dβi

)
.

By Lemma 2.1.9,
∑
ani =

∑
a
Tp(n)
i = 0 mod p. Moreover, since Dβ(I) ⊆ I for all β < n, we

have that H is an I-differential operator of order ≤ n. So, since
∑
ai = 1 mod p,

E = (Id, D1, . . . , H) ∈ HSk(log I;n).

Therefore, δ ∈ IDerk(log I;n) and, by Corollary 1.2.4, IDerk(A;n− 1) = IDerk(A;n).
�

Corollary 2.3.6 Let k be a commutative ring of characteristic p ≥ 3 and A a commutative
k-algebra. Then, IDerk(A; 2p− 1) = IDerk(A; 2p).

Proof. Since Tp(2p) = 2, we have the result by Theorem 2.3.5. �
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2.4 Integrating the first non-vanishing component of a

Hasse-Schmidt derivation

In this section, k will be a commutative ring, A a commutative k-algebra and I ⊆ A an ideal.
We calculate an integral of the first component of a HS-derivation that could be not zero which
will be the key to prove the main theorem of section 2.5.

Hypothesis 2.4.1 Let a ≥ 1 and p ≥ 2 be integers and I ⊆ A an ideal. We say that A
satisfies the condition HI

p,a if for all M ∈ N+ not a power of p with 1 < M < pa, then
IDerk(log I;M − 1) = IDerk(log I;M).

Remark 2.4.2 Note that I can be A. In this case, the condition in Hypothesis 2.4.1 is
IDerk(A;M − 1) = IDerk(A;M).

Lemma 2.4.3 1. If A satisfies HI
p,a for some a ≥ 1, then A satisfies HI

p,s for all 1 ≤ s ≤ a.

2. If char(k) = p > 0, then A satisfies HA
p,1.

3. If char(k) = p > 0 and A = k[xi | i ∈ I], the polynomial ring in an arbitrary number of
variables, then A satisfies HI

p,1 for all ideals I ⊆ A.

Proof.

1. It is obvious.

2. If 1 < M < p, then M can not be a multiple of p, so M 6= 0 mod p. From Corollary
2.3.3, IDerk(A;M − 1) = IDerk(A;M) and we deduce that A satisfies HA

p,1.

3. From Corollary 1.2.4, we have that IDerk(log I;M − 1) = IDerk(log I;M) if and only if
A/I does not have a leap at M , i.e. if IDerk(A/I;M − 1) = IDerk(A/I;M). Since A/I

satisfies H
A/I
p,1 , for all M ∈ N+ with 1 < M < p, we have the last equality, so A satisfies

HI
p,1.

�

From now on, k will be a commutative ring, A a commutative k-algebra, I ⊆ A an ideal
and p ≥ 2 an integer.

Lemma 2.4.4 Let us assume that A satisfies HI
p,1. Let e > 1 and 0 < i < p be integers. For

each (ep− 1)− I-logarithmic HS-derivation D ∈ HSk(A; ep) such that `(D; e) = i, there exists
an (ep− 1)− I-logarithmic HS-derivation D′ ∈ HSk(A; ep) and an I-differential operator H of
order ≤ ep such that `(D′; e) ≥ i+ 1, D′r = Dr for all r ≤ ie and D′ep = Dep +H.

Proof. Since `(D; e) = i ≥ 1, from Lemma 1.1.13, we have that Die+α ∈ Derk(log I) for
all α = 1, . . . , e − 1 and, thanks to the condition HI

p,1, we know that all derivations are I-
logarithmically (p − 1)-integrable. Let Dα ∈ HSk(log I; p − 1) be an integral of Die+α, i.e.
Dα

1 = Die+α, and consider EDα,ie+α ∈ HSk(log I; (ie + α)p − 1), defined in 2.1.16, for all
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α = 1, . . . , e − 1. By Lemma 2.1.15, EDα,ie+α
ie+α = −Die+α and `(EDα,ie+α; ie + α) = p. That

means that EDα,ie+α
j = 0 for all j 6= 0 mod (ie+ α).

Since (ie + α)p − 1 > iep ≥ ep, we can truncate all these derivations until length ep. We
denote

Eα := τ(ie+α)p−1,ep

(
EDα,ie+α

)
.

Note that Eα
ie+α = −Die+α and Eα

j = 0 for all j 6= 0 mod (ie+α), so `(Eα; ie+α) = dep/ie+αe.
Moreover, `(Eα, ie+ α) ≥ 2 for all α because ie+ α < (i+ 1)e ≤ ep.

By Lemma 2.1.19, if we denote E := E1 ◦ E2 ◦ · · · ◦ Ee−1 ∈ HSk(log I; ep), we have that
`(E) > ie and Eie+α = Eα

ie+α = −Die+α for all α = 1, . . . , e− 1. Let us consider D′ = D ◦ E ∈
HSk(A; ep). From Corollary 1.1.20, D′ is (ep − 1) − I-logarithmic and D′ep = Dep + H where
H is an I-differential operator of order ≤ ep. Moreover, from Lemma 2.1.17, D′r = Dr for all
r ≤ ie and D′ie+α = Die+α + Eie+α = 0 for α = 1, . . . , e − 1, so `(D′; e) ≥ i + 1. Hence, D′

satisfies the lemma.
�

Lemma 2.4.5 Let us assume that A satisfies HI
p,1. Let e ≥ 1 be an integer and D ∈ HSk(A; ep)

an (ep − 1) − I-logarithmic HS-derivation such that `(D) ≥ e. Then, De is p-integrable and
there exists a (p−1)−I-logarithmic integral D′ ∈ HSk(A; p) of De and an I-differential operator
H of order ≤ p such that D′p = Dep +H.

Proof. First note that Dep is a differential operator of order ≤ p by Proposition 1.1.10. This
result is trivial if e = 1, so we will suppose that e > 1. We proceed by decreasing induction on
`(D; e). Note that 1 ≤ `(D; e) ≤ p because `(D) ≥ e and, by definition, `(D; e) ≤ dep/ee = p.

If `(D; e) = p, by Lemma 1.1.14, there exists D′ ∈ HSk(A; p) such that D′r = Dre for all
r = 1, . . . , p. Since D is (ep − 1) − I-logarithmic, D′r(I) = Dre(I) ⊆ I for all r < p, so D′ is
(p − 1) − I-logarithmic. Moreover, D′p = Dep so, D′ satisfies the lemma. Now, let us assume
that any HS-derivation with `(∗) ≥ e and `(∗; e) ≥ i + 1 where 1 ≤ i < p holds the result and
we take a HS-derivation D such that `(D) ≥ e and `(D; e) = i.

By Lemma 2.4.4, there exists an (ep − 1) − I-logarithmic HS-derivation D′ ∈ HSk(A; ep)
and an I-differential operator H of order ≤ ep such that `(D′; e) ≥ i + 1, D′r = Dr for all
r ≤ ie and D′ep = Dep + H. Since `(D′) ≥ e, because `(D′; e) ≥ i + 1 ≥ 1, we have that D′ep
is a differential operator of order ≤ p and, since Dep has also order ≤ p, H has order ≤ p.
Moreover, we can apply the induction hypothesis, so there exists an I-differential operator H ′

of order ≤ p and a (p − 1) − I-logarithmic integral D′′ ∈ HSk(A; p) of D′e = De such that
D′′p = D′ep +H ′ = Dep +H +H ′. Hence, we have the lemma.

�

Lemma 2.4.6 Let us assume that A satisfies HI
p,a for some a ≥ 1. Let e, s,m be integers such

that 1 ≤ s ≤ a and 1 < e ≤ m < eps. We denote r := maxCp
m,e,s (see Definition 2.1.10) and

we consider δ ∈ IDerk(log I; pr). We have the following properties:

1 If m = 0 mod e, then there exists E ∈ HSk(log I; eps − 1) such that Em = −δ and
`(E;m) = deps − 1/me.
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2 If m 6= 0 mod e, then there exists E ∈ HSk(log I; eps) such that Em = −δ and `(E;m) =
deps/me.

Proof. By Lemma 2.1.11, we have that 0 ≤ r < s ≤ a, so pr+1 ≤ pa. Thanks to the condition
HI
p,a, we have that δ ∈ IDerk (log I; pr) = IDerk (log I; pr+1 − 1). Let D ∈ HSk (log I; pr+1 − 1)

be an integral of δ. Let us consider ED,m ∈ HSk (log I,mpr+1 − 1) where ED,m
m = −δ and

`
(
ED,m;m

)
= pr+1, i.e. ED,m

α = 0 for all α 6= 0 mod m.
On the other hand, from the definition of r, mpr+1 − 1 ≥ eps − 1. Hence, if m = 0 mod e,

then E = τmpr+1−1,eps−1(ED,m) satisfies the lemma. Otherwise, if m 6= 0 mod e, by Lemma
2.1.12, mpr+1 − 1 ≥ eps. So, E = τmpr+1−1,eps(E

D,m) satisfies the lemma.
�

Lemma 2.4.7 Let us assume that A satisfies HI
p,a for some a ≥ 1. Let e, s,m be integers such

that 1 ≤ s ≤ a and 1 < e ≤ m < eps and we denote r := maxCp
m,e,s. Let D ∈ HSk(log I; eps−1)

be a HS-derivation such that `(D) ≥ m and Dm ∈ IDerk(log I; pr). Then, there exists D′ ∈
HSk(log I; eps − 1) such that `(D′) ≥ m+ 1 and D′α = Dα for all α = m+ 1, . . . , 2m− 1.

Proof. If Dm = 0, we put D′ = D and we have the lemma. Let us assume that Dm 6= 0. If
m = 0 mod e, by Lemma 2.4.6, we have E ∈ HSk(log I, eps − 1) such that Em = −Dm and
`(E,m) = beps − 1/mc. If m 6= 0 mod e, by Lemma 2.4.6, we have E ′ ∈ HSk(log I, eps) such
that E ′m = −Dm and ` (E ′;m) = beps/mc, that means E ′j = 0 for all j 6= 0 mod m. So, let us
consider E = τeps,eps−1 (E ′) ∈ HSk(log I; eps − 1). Then, Em = −Dm and Ej = 0 for all j 6= 0
mod m, i.e. `(E;m) = beps − 1/mc.

Hence, we can apply Lemma 2.1.18 to D′ = D◦E ∈ HSk(log I; eps−1) in both cases. Then,
`(D′) ≥ m and

D′α =

{
Dm + Em if α = m
Dα if α = m+ 1, . . . , 2m− 1.

Since Em = −Dm, D′m = 0 and hence, `(D′) ≥ m+ 1 and D′ satisfies the lemma.
�

Theorem 2.4.8 Let us suppose that A satisfies HI
p,a for some a ≥ 1. Let e, s ≥ 1 be two

integers such that s ≤ a and let us consider an (eps − 1) − I-logarithmic HS-derivation D ∈
HSk(A; eps) with `(D) ≥ e. Then, there exists an integral D′ ∈ HSk(A; ps) of De and an I-
differential operator H of order ≤ ps such that D′ is (ps−1)−I-logarithmic and D′ps = Deps+H.

Proof. We prove the result by induction on s ≥ 1. Observe that if s = 1, we have the theorem
from Lemma 2.4.5. So, let us assume that the theorem is true for all j such that 1 ≤ j < s ≤ a.
Moreover, we can suppose that e > 1 (if e = 1 the theorem is trivial). We will divide this proof
in several lemmas:

Lemma 2.4.9 Let D ∈ HSk(log I; eps − 1) such that `(D) ≥ m with 1 < e ≤ m < eps.
Then, Dm ∈ IDerk(log I; pr) with r = maxCp

m,e,s < s.

Proof. By Lemma 2.1.11, we have that 0 ≤ r < s. We rewrite D := τeps−1,mpr(D) ∈
HSk(log I;mpr) (note thatmpr ≤ eps−1 by definition of Cp

m,e,s). If r = 0, then it is obvious
thatDm is I-logarithmically pr-integrable. Let us suppose that r ≥ 1. Then, since 1 ≤ r <
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s ≤ a, by the induction hypothesis of the theorem, there exists D′ ∈ HSk(A; pr) an integral
of Dm such that D′ is (pr − 1)− I-logarithmic and D′pr = Dmpr + (some I-diff. op.). But
Dmpr is an I-differential operator, so D′ is I-logarithmic too and Dm is I-logarithmically
pr-integrable.

�

Lemma 2.4.10 Let D ∈ HSk(log I; eps−1) such that `(D) ≥ e > 1 and `(D; e) = i < ps.
Then, there exists D′ ∈ HSk(log I; eps − 1) such that `(D′) > ie and D′α = Dα for all
α = ie+ 1, . . . , ie+ e− 1.

Proof. Note that the only components that can be not zero before ie+ 1 are those that
are in the multiples of e. If `(D) > ie then the lemma is obvious, otherwise `(D) = je
for some 1 ≤ j ≤ i. We will prove the result by decreasing induction on 1 ≤ j ≤ i.

Let us assume that `(D) = ie. By Lemma 2.4.9, Die ∈ IDerk(log I; pr) where r =
maxCp

ie,e,s < s. From Lemma 2.4.7, there exists D′ ∈ HSk(log I; eps − 1) such that
`(D′) ≥ ie + 1 and D′α = Dα for all α = ie + 1, . . . ,min{eps − 1, 2ie − 1}. Note that
ie + e − 1 ≤ min{eps − 1, 2ie − 1}, so D′ satisfies the lemma. Let us suppose now that
the lemma is true for all derivations with `(∗) > je and we will prove it for 1 ≤ j < i.

By Lemma 2.4.9, Dje ∈ IDerk(log I; pr) where r = maxCp
je,e,s < s. From Lemma 2.4.6,

there exists E ∈ HSk(log I; eps−1) such that Eje = −Dje and `(E; je) = deps−1/jee ≥ 1.
We can apply Lemma 2.1.18 to D and E and we obtain D′ = D ◦E ∈ HSk(log I, eps− 1)
such that `(D′) ≥ je, `(D′; e) ≥ `(D; e) = i and

D′α =

{
Dje + Eje if α = je
Dα for all α = ie+ 1, . . . , ie+ e− 1.

Since `(D; e) = i, there exists a ∈ {1, . . . , e− 1} such that Die+a 6= 0 and, since D′ie+a =
Die+a, we have that `(D′; e) = i. Moreover, Eje = −Dje, so `(D′) ≥ je+1, but `(D′; e) >
j, therefore `(D′) ≥ (j + 1)e. Now, we can apply the induction hypothesis. Hence,
there exists D′′ ∈ HSk(log I; eps − 1) such that `(D′′) > ie and D′′α = D′α = Dα for all
α = ie+ 1, . . . , ie+ e− 1 and we have the lemma.

�

Lemma 2.4.11 Let D ∈ HSk(log I; eps− 1) be a HS-derivation such that `(D) > ie with
1 ≤ i < ps. Then, for all α = 1, . . . , e − 1 there exists Eα ∈ HSk(log I; eps) such that
Eα
ie+α = −Die+α and `(Eα; ie+ α) = deps/ie+ αe.

Proof. If `(D) ≥ (i + 1)e, then Die+α = 0 for all α = 1, . . . , e − 1 and we have the
result, it is enough to put Eα = I. Let us suppose that `(D) = (i + 1)e− 1. By Lemma
2.4.9, D(i+1)e−1 ∈ IDerk(log I; pre−1) where re−1 = maxCp

(i+1)e−1,e,s. Since (i+ 1)e− 1 6= 0
mod e, Lemma 2.4.6 give us the result. Let us assume that the lemma is true for all HS-
derivations such that `(∗) = ie + β with 1 ≤ j < β ≤ e− 1 and we take a HS-derivation
D ∈ HSk(log I; eps − 1) such that `(D) = ie+ j.
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As before, from Lemmas 2.4.9 and 2.4.6, there exists Ej ∈ HSk(log I; eps) such that
Ej
ie+j = −Die+j and `(Ej; ie + j) = deps/ie + je. We can apply Lemma 2.1.18 to D and

E := τeps,eps−1(Ej) obtaining D′ = D ◦ E ∈ HSk(log I; eps − 1) such that `(D′) ≥ ie + j
and

D′α =

{
Dα + Eα if α = ie+ j
Dα if α = ie+ j + 1, . . . ,min{eps − 1, 2(ie+ j)− 1}.

Note that ie+e−1 ≤ min{eps−1, 2(ie+j)−1}, so D′α = Dα for all α = ie+j+1, . . . , ie+
e− 1. Since Eie+j = −Die+j, `(D

′) > ie+ j and we can use the induction hypothesis on
D′ obtaining that, for all α = j + 1, . . . , e− 1, there exists Eα ∈ HSk(log I; eps) such that
Eα
ie+α = −D′ie+α = −Die+α and `(Eα) = deps/ie+ αe. So, we have the lemma.

�

Lemma 2.4.12 Let D ∈ HSk(A; eps) be an (eps − 1)− I-logarithmic HS-derivation with
1 ≤ `(D; e) = i < ps. Then, there exists an (eps − 1) − I-logarithmic HS-derivation
D′ ∈ HSk(A; eps) and an I-differential operator H of order ≤ eps such that `(D′; e) ≥ i+1,
D′je = Dje for all j ≤ i and D′eps = Deps +H.

Proof. Since `(D; e) = i, there exists Die+α 6= 0 for some α ∈ {1, . . . , e − 1} and
Dj = 0 for all j 6= 0 mod e with j ≤ ie. Hence, if we consider Dτ = τeps,eps−1(D) ∈
HSk(log I; eps − 1), we have that Dτ

j = 0 for all j 6= 0 mod e with j ≤ ie and Dτ
ie+α =

Die+α 6= 0. So, `(Dτ ; e) = i ≥ 1. In this case, `(Dτ ) ≥ e.

By Lemma 2.4.10, there exists D′ ∈ HSk(log I; eps− 1) such that `(D′) > ie and D′ie+α =
Die+α for all α = 1, . . . , e − 1. By Lemma 2.4.11, for each α = 1, . . . , e − 1, there
exists Eα ∈ HSk(log I; eps) such that Eα

ie+α = −D′ie+α = −Die+α and `(Eα; ie + α) =
deps/ie+αe. Note that ie+α < eps so, deps/ie+αe ≥ 2. By Lemma 2.1.19, if we denote
E = E1 ◦ · · · ◦ Ee−1 ∈ HSk(log I; eps), then `(E) ≥ ie+ 1 and Eie+α = Eα

ie+α = −Die+α.

Now, we consider D′′ = D ◦ E ∈ HSk(A; eps). By Corollary 1.1.20, D′′ is (eps − 1) − I-
logarithmic and there exists an I-differential operator H of order ≤ eps such that D′′eps =
Deps +H. On the other hand, by Lemma 2.1.17, we have that

D′′β =

{
Dβ if β ≤ ie
Dβ + Eβ if β = ie+ 1, . . . , ie+ e− 1.

Hence, D′′β = 0 for all β = ie+1, . . . , ie+e−1 so, `(D′′; e) ≥ i+1. Therefore, D′′ satisfies
the lemma.

�

Now, with the help of the previous lemmas we will finish the proof of Theorem 2.4.8. We
show this result by decreasing induction on 1 ≤ `(D; e) ≤ ps.

If `(D; e) = ps, by Lemma 1.1.14, there is D′ ∈ HSk(A; ps) such that D′α = Dαe for all
α ≤ ps. Then, D′ is a (ps − 1)− I-logarithmic ps-integral of De with D′ps = Deps and we have
the result in this case. Let us assume that the theorem is true for HS-derivation with `(∗; e) > i
for 1 ≤ i < ps and we take a HS-derivation D ∈ HSk(A; eps) with `(D; e) = i.
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By Lemma 2.4.12, there exists an I-differential operator H of order ≤ eps and (eps−1)− I-
logarithmic HS-derivation D′ ∈ HSk(A; eps) such that `(D′; e) ≥ i+1 (so `(D′) ≥ e), D′ej = Dej

for all j ≤ i and D′eps = Deps+H. Observe that Deps and D′eps are differential operators of order
≤ ps because `(D), `(D′) ≥ e (see Proposition 1.1.10). So, H has order ≤ ps. By induction
hypothesis, there exists an integral D′′ ∈ HSk(A; ps) of D′e = De and an I-differential operator
H ′ of order ≤ ps such that D′′ is (ps−1)− I-logarithmic and D′′ps = D′eps +H ′ = Deps +H+H ′.
Hence, we have the result.

�

Corollary 2.4.13 Let us suppose that A satisfies HI
p,a for some a ≥ 1. Let e, s ≥ 1 be two

integers such that s ≤ a and let us consider D ∈ HSk(log I; eps) with `(D) ≥ e. Then, De is
I-logarithmically ps-integrable.

Proof. Since D is (eps − 1)− I-logarithmic, we can apply Theorem 2.4.8. Then, there exists
an integral D′ ∈ HSk(A; ps) of De and an I-differential operator H such that D′ is (ps− 1)− I-
logarithmic and D′ps = Deps + H. Since Deps(I) ⊆ I, we have that D′ ∈ HSk(log I; ps) and we
have the result.

�

2.5 Leaps in positive characteristic

In this section we prove the main theorem of this chapter, we show that, any k-algebra, where
k is a ring of characteristic p > 0, only has leaps at powers of p.

Theorem 2.5.1 Let k be a commutative ring of characteristic p > 0 and A a commutative
k-algebra. Then, Leapsk(A) ⊆ {pτ | τ ≥ 1}.

Proof. It is enough to show that n 6∈ Leapsk(A) for n a multiple of p, not a power of p because,
if n 6= 0 mod p, by Corollary 2.3.3, we have that IDerk(A;n− 1) = IDerk(A;n). We will prove
this theorem by induction on n multiple of p, not a power of p. We have two different base cases,
when p = 2 and p 6= 2. In the first case, we have to prove that IDerk(A; 5) = IDerk(A; 6), which
is Proposition 2.3.4. In the second one, we have to prove that IDerk(A; 2p− 1) = IDerk(A; 2p),
which is Corollary 2.3.6. This concludes the base step. Let us assume that for all m < n not a
power of p, IDerk(A;m− 1) = IDerk(A;m) and we will prove the equality for n, a multiple of
p, not a power of p.

Since A is a k-algebra, we can express A = R/I where R = k[xi | i ∈ I] is a polynomial
ring whose variables xi are indexed by the set I depending on A and I ⊆ R an ideal. Then, by
Corollary 1.2.4, we have that IDerk(log I;m − 1) = IDerk(log I;m) for all m < n not a power
of p and it is enough to prove that IDerk(log I;n− 1) = IDerk(log I;n).

Let us express n = esp
s + · · · + etp

t in base p expansion where 1 ≤ t ≤ s and 0 ≤ ei < p
with es, et 6= 0. By induction hypothesis, we have that R satisfies HI

p,s (2.4.1).
Let δ ∈ IDerk(log I;n − 1) be a k-derivation and D ∈ HSk(log I;n − 1) an integral of δ.

We can integrate D up to infinite length (see Proposition 1.2.1), so we redefine D ∈ HSk(R)
the integral of D. Note that D1 = δ and D is (n − 1) − I-logarithmic. Now, we consider
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G := GD,pt ∈ HSk(R; (n+ 1)pt) the HS-derivation defined in 2.2.10. From Lemma 2.2.11, G is
((n+1)pt−1)−I-logarithmic, `(G) ≥ 2pt+1 and G(n+1)pt =

(
n
pt

)
Dn+H for some I-differential

operator H.
By Lemma 2.1.3, we have that 2pt + 1 ≤ n+ 1. If n+ 1 = 2pt + 1, from Theorem 2.4.8, we

obtain a (pt − 1) − I-logarithmic HS-derivation T ∈ HSk(R; pt) and an I-differential operator
H ′ such that Tpt = G(n+1)pt +H ′ =

(
n
pt

)
Dn +H+H ′ where H+H ′ is an I-differential operator.

Let us suppose now that 2pt + 1 < n + 1 and we denote r = maxCp
2pt+1,n+1,t. By Lemma

2.1.13, 0 ≤ r ≤ s and by definition of Cp
2pt+1,n+1,t, (2pt + 1)pr < (n + 1)pt. Hence, we can

consider τ(n+1)pt,(2pt+1)pr(G) ∈ HSk(log I; (2pt + 1)pr). If r = 0, then G2pt+1 ∈ IDerk(log I; pr).
Otherwise, r ≥ 1 and applying Corollary 2.4.13 to this HS-derivation, we have that G2pt+1 is
I-logarithmically pr-integrable. So, in both cases, we have that G2pt+1 ∈ IDerk(log I; pr). We
have two cases:

• If r < s, from induction hypothesis, G2pt+1 ∈ IDerk(log I; pr+1 − 1), i.e. there ex-
ists an integral D′ ∈ HSk(log I; pr+1 − 1) of G2pt+1 and we can consider ED′,2pt+1 ∈
HSk (log I; (2pt + 1)pr+1 − 1).

By Lemma 2.1.14, we have T = τ(2pt+1)pr+1−1,(n+1)pt
(
ED′,2pt+1

)
∈ HSk(log I; (n + 1)pt)

where T2pt+1 = −G2pt+1 and `(T ) ≥ 2pt + 1 (recall that `(ED′,2pt+1; 2pt; 1) = pr+1).

• If r = s, then G2pt+1 ∈ IDerk(log I; ps). Since ps < n < ps+1, G2pt+1 ∈ IDerk(log I;n− 1).
Let D′ ∈ HSk(log I;n − 1) be an integral of G2pt+1 and let us consider ED′;2pt+1 ∈
HSk(log I; (2pt + 1)n− 1). Note that

n(2pt + 1)− 1 > (n+ 1)pt ⇔ npt + n− 1 > pt.

Since the last inequality always holds, we have T = τ(2pt+1)n−1,(n+1)pt
(
ED′,2pt+1

)
∈ HSk(log I; (n+

1)pt) where T2pt+1 = −G2pt+1 and `(T ) ≥ 2pt + 1.

Therefore, in both cases, we can compose G and T obtaining an ((n+1)pt−1)−I-logarithmic
HS-derivation

G(2pt+2) := T ◦Gpt =
(

Id, 0, . . . , 0, G
(2pt+2)
2pt+2 , . . . , G

(2pt+2)
n+1 , . . . , G

(2pt+2)
(n+1)pt

)
∈ HSk(R; (n+ 1)pt)

where G
(2pt+1)
(n+1)pt =

(
n
pt

)
Dn +H for some I-differential operator H.

We will prove that we can obtain an ((n+ 1)pt− 1)− I-logarithmic HS-derivation G(n+1) ∈
HSk(R; (n+ 1)pt) such that `(G(n+1)) ≥ n+ 1 and G

(n+1)
(n+1)pt =

(
n
pt

)
Dn+H for some I-differential

operator H by induction. Suppose that, by doing the previous process, we obtain an ((n +
1)pt − 1)− I-logarithmic HS-derivation:

G(j) = (Id, 0, . . . , 0, G
(j)
j , . . . , G

(j)
n+1, . . . ,

(
n

pt

)
Dn +H) ∈ HSk

(
R; (n+ 1)pt

)
with H an I-differential operator and 2pt + 1 < j < n + 1. We denote r = maxCp

j,n+1,t. By

Lemma 2.1.13, 0 ≤ r ≤ s. Since jpr < (n + 1)pt, we have τ(n+1)pt,jpr
(
G(j)

)
∈ HSk(log I; jpr)

and we can deduce that G
(j)
j is I-logarithmically pr-integrable in the same way as above. We

have two cases:
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• If r < s, then G
(j)
j ∈ IDerk(log I; pr) = IDerk(log I; pr+1 − 1). Let us consider D′ ∈

HSk(log I; pr+1−1) an integral of G
(j)
j and ED′,j ∈ HSk(log I; jpr+1−1). By Lemma 2.1.14,

jpr+1 − 1 ≥ (n + 1)pt. So, we have T = τjpr+1−1,(n+1)pt
(
ED′,j

)
∈ HSk(log I; (n + 1)pt)

where Tj = −G(j)
j and `(T ) ≥ j (recall that `(ED′,j; j) = pr+1).

• If r = s, then G
(j)
j ∈ IDerk(log I; ps) = IDerk(log I;n − 1). Then, there exists D′ ∈

HSk(log I;n − 1) an integral of G
(j)
j and we can consider ED′,j ∈ HSk(log I; jn − 1).

Since jn − 1 > (2pt + 1)n − 1 > (n + 1)pt, we can define T = τjn−1,(n+1)pt
(
ED′,j

)
∈

HSk(log I; (n+ 1)pt) where Tj = −G(j)
j and `(T ) ≥ j.

Therefore, we can obtain an ((n+ 1)pt − 1)− I-logarithmic HS-derivation:

G(j+1) := T ◦G(j) = (Id, 0, . . . , 0, G
(j+1)
j+1 , . . . , G

(j+1)
n+1 , . . . ,

(
n

pt

)
Dn +H ′) ∈ HSk

(
R; (n+ 1)pt

)
where H ′ is an I-differential operator. So, we can do this process for all j such that 2pt + 1 ≤
j < n+ 1 and we obtain an ((n+ 1)pt − 1)− I-logarithmic HS-derivation:

G(n+1) = (Id, 0, . . . , 0, G
(n+1)
n+1 , . . . ,

(
n

pt

)
Dn +H ′) ∈ HSk

(
R; (n+ 1)pt

)
where H ′ is an I-differential operator. Then, we can apply Theorem 2.4.8 to G(n+1). So, in
both cases, when n+1 = 2pt+1 or not, we have that there exists a (pt−1)−I-logarithmic HS-
derivation T ∈ HSk(R; pt) and an I-differential operator H ′ such that T = (Id, T1, . . . ,

(
n
pt

)
Dn+

H ′).
Let f ∈ F∗p be the inverse of

(
n
pt

)
. So that,

D ◦ (−f • T ) [n/pt] =(
Id, D1, . . . , Dn + (−f)p

t

(
n

pt

)
Dn − fp

t

H ′ +
∑

α+β=n,α,β 6=0

Dα ◦
(
(−f · T ) [n/pt]

)
β

)
=(

Id, D1, . . . ,
∑

α+β=n,α,β 6=0

Dα ◦
(
(−f · T ) [n/pt]

)
β
− fH ′

)
∈ HSk(log I;n).

Hence, D1 = δ ∈ IDerk(log I;n) and A does not have a leap at n.
�



Chapter 3

On the behavior of integrability under
base change

The behavior of the module of k-derivations of a finitely generated k-algebra under base change
is well-known. In this chapter, we generalize the base change map for modules of k-derivations
to the modules of m-integrable k-derivations for m ≥ 1.

In this chapter we will use the following notations: Let k be a commutative ring and L a
ring extension of k. We denote R := k[x1, . . . , xd] the polynomial ring over k in d variables and,
if A is a finitely generated k-algebra, we assume that A is the quotient of R by some ideal I of
R. For any k-algebra B, we denote BL := L⊗k B.

3.1 A decomposition of logarithmic Hasse-Schmidt deriva-

tion in characteristic p > 0

Let us consider k a commutative ring of characteristic p > 0 (i.e. Fp ⊆ k), R = k[x1, . . . , xd]
and I ⊆ R an ideal. In this section we will see that any I-logarithmic HS-derivation with some
properties can be decomposed in two HS-derivations.

Notation 3.1.1 Let l ≥ 1 be an integer and D ∈ HSk(R; pl). We define:

J (l, D) := {j ∈ N | `(D) ≤ j ≤ pl, p - j}.

Note that if E ∈ HSk(R, p
l) such that `(E) ≤ `(D), then J (l, D) ⊆ J (l, E) and J (l, E) \

J (l, D) = {j ∈ N | `(E) ≤ j < `(D), p - j}. For each family F j ∈ HSk(R;m), j ∈ J (l, D),
we will write:

◦j∈J (l,D)F
j = F pl−1 ◦ · · · ◦ F `(D)

(observe that we have chosen the decreasing ordering) where F j = I if j 6∈ J (l, D).

The proof of the following lemma is clear.

Lemma 3.1.2 Let i, l be two positive integers such that i < pl and i is not a power of p. If we
denote s = maxCp

i,1,l (see Definition 2.1.10), then ips+1 > pl.

43
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Remark 3.1.3 Thanks to Theorem 2.5.1 and Corollary 1.2.4, we have that R and I satisfies
HI
p,a for all a ∈ N, so we can always apply Theorem 2.4.8 and Corollary 2.4.13.

Proposition 3.1.4 Let l ≥ 1 be an integer and let us denote sj = maxCp
j,1,l for each integer

j with 1 ≤ j ≤ pl. Then, for any
(
pl − 1

)
− I-logarithmic HS-derivation D ∈ HSk(R; pl) with

`(D) > 1, there exists:

• a
(
pl−1 − 1

)
− I-logarithmic HS-derivation T ∈ HSk(R; pl−1),

• a (psj+1 − 1)−I-logarithmic HS-derivation F j ∈ HSk(R; psj+1), for each j ∈ J (l, D), and

• an I-differential operator H of order ≤ pl

such that Tpl−1 = Dpl +H and

D = T [p] ◦
(
◦j∈J (l,D)

(
ψj • F j

))
where ψj : R[|µ|]psj+1 → R[|µ|]pl is the substitution map given by ψj(µ) = µj.

Proof. First, note that ψj is well-defined for all j ∈ J (l, D) because jpsj+1 ≥ pl by definition
of sj. Moreover, observe that ψj •E = τjpsj+1,pl(E[j]) for any E ∈ HSk(R; psj+1). If `(D) =∞,
then D = I, J (l, D) = ∅ and we may take T = I to obtain the result. Let us suppose that `(D)
is finite, i.e. 1 < `(D) ≤ pl. We proceed by decreasing induction on `(D).

Assume that `(D) = pl. Then, J (l, D) = ∅ and, by Corollary 1.4.8,

D = (Id, δ)
[
pl
]

= (Id, δ)
[
pl−1

]
[p]

So, if we put T := (Id, δ)
[
pl−1

]
, we have the result. Let us suppose that the proposition is true

for all HS-derivations such that `(∗) > i and let us take a (pl−1)−I-logarithmic HS-derivation
D ∈ HSk(R; pl) with 1 < `(D) = i < pl. We divide the proof in two cases:

1. If i is a power of p.

Let us write i = pt where t < l. Since `(D) > 1, then t ≥ 1 and we can see D ∈ HSk(R; ptpl−t).
By Theorem 2.4.8, there exists an integral F ∈ HSk(R; pl−t) of Dpt and an I-differential operator
H of order ≤ pl−t such that F is (pl−t − 1) − I-logarithmic and Fpl−t = Dpl + H. Then, by
Proposition 1.4.9 and Lemma 1.4.11, b., F ∗[pt] = (F [pt])∗ ∈ HSk(R; pl) is (pl−1)−I-logarithmic.
Moreover, (F [pt])∗pt = F ∗1 = −Dpt and, by Lemma 1.4.11, c.,

(F [pt])∗pl = F ∗pl−t = −Dpl −H + E

where E is an I-differential operator of order ≤ pl−t. We define

D′ :=
(
F
[
pt
])∗ ◦D.

By Lemma 1.1.9, D′pt = (F [pt])∗pt + Dpt = 0 so, `(D′) > i = pt and, by Lemma 1.1.19, D′ is

(pl−1)−I-logarithmic and D′
pl

= F ∗
pl−t+Dpl+some I-diff. op. of order ≤ pl = Dpl−Dpl+H

′ =
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H ′ where H ′ is an I-differential operator of order ≤ pl. So, D′ ∈ HSk(log I; pl). We apply the
induction hypothesis to D′ and we obtain that

D′ = T ′[p] ◦
(
◦j∈J (l,D′)

(
ψj • F j

))
where F j ∈ HSk(R; psj+1) is (psj+1− 1)− I-logarithmic for j ∈ J (l, D′) and T ′ ∈ HSk

(
R; pl−1

)
is
(
pl−1 − 1

)
− I-logarithmic with

T ′pl−1 = D′pl + some I-diff. op. of order ≤ pl.

Since D′ ∈ HSk(log I; pl), we have that T ′ ∈ HSk(log I; pl−1). We put F j = I ∈ HSk(log I; psj+1)
for all j ∈ J (l, D) \ J (l, D′). By Lemma 1.4.8,

D = F [pt] ◦ T ′[p] ◦
(
◦j∈J (l,D)

(
ψj • F j

))
=
(
F
[
pt−1

]
◦ T ′

)
[p] ◦

(
◦j∈J (l,D)

(
ψj • F j

))
.

By Lemma 1.1.18, F [pt−1] is (pl−1 − 1) − I-logarithmic. Moreover, F [pt−1]pl−1 = Fpl−t =
Dpl + H (recall that H is an I-differential operator of order ≤ pl−t). So, by Corollary 1.1.20,
T := F [pt−1] ◦ T ′ ∈ HSk(R; pl−1) is (pl−1 − 1) − I-logarithmic and Tpl−1 = F [pt−1]pl−1 +
some I-diff. op. of order ≤ pl = Dpl + some I-diff. op. of order ≤ pl and we have the propo-
sition in this case.

2. If i is not a power of p.

Since i is not a power of p, by Lemma 3.1.2, ipsi+1 > pl where si = maxCp
i,1,l. Then, we can

consider τpl,ipsi (D) ∈ HSk(log I; ipsi). If si ≥ 1, then Di is I-logarithmically psi-integrable by
Corollary 2.4.13. If si = 0, then Di ∈ Derk(log I). In both cases, since leaps only occur at
powers of p (Theorem 2.5.1 and Corollary 1.2.4), we have that Di is I-logarithmically (psi+1−1)-
integrable. Thanks to Proposition 1.2.1, we can integrate any I-logarithmic (psi+1− 1)-integral
of Di so, there exists F ∈ HSk(R; psi+1) a (psi+1 − 1)− I-logarithmic integral of Di. Then, by
Lemma 1.4.11, b., F ∗[i] ∈ HSk(R; ipsi+1) is (ipsi+1 − 1)− I-logarithmic. By Proposition 1.4.9,
ψi • F ∗ = (ψi • F )

∗ ∈ HSk(log I; pl) and (ψi • F )∗i = F [i]∗i = −Di.

a. If i 6= 0 mod p, by Corollary 1.1.20, and Lemma 1.1.9, D′ := D ◦ (ψi •F )∗ is (pl− 1)− I-
logarithmic with `(D′) > i and D′

pl
= Dpl +H with H an I-differential operator of order

≤ pl. We apply the induction hypothesis to D′ and we obtain that

D′ = T [p] ◦
(
◦j∈J (l,D′)

(
ψj • F j

))
⇒ D = T [p] ◦

(
◦j∈J (l,D′)

(
ψj • F j

))
◦ (ψi • F )

where T ∈ HSk(R; pl−1) is (pl−1−1)−I-logarithmic with Tpl−1 = D′
pl

+some I-diff. op. of

order ≤ pl = Dpl +H ′ where H ′ is an I-differential operator of order ≤ pl. Then, we put
F i = F ∈ HSk(R; psi+1) and F j = I ∈ HSk(log I; psj+1) for j ∈ J (l, D) \ (J (l, D′) ∪ {i})
and we have the result.

b. If i is a multiple of p, by Lemmas 1.1.19 and 1.1.9, D′ := (ψi • F )
∗ ◦ D is (pl − 1) − I-

logarithmic with `(D′) > i and D′
pl

= Dpl + H where H is an I-differential operator of

order ≤ pl. Then, we apply the induction hypothesis to D′ and we have that

D =
(
ψi • F

)
◦ T ′[p] ◦

(
◦j∈J (l,D′)

(
ψj • F j

))
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where T ′ ∈ HSk(R; pl−1) is (pl−1 − 1) − I-logarithmic with T ′
pl−1 = D′

pl
+some I-diff. op.

of order ≤ pl = Dpl + H ′ where H ′ is an I-differential operator of order ≤ pl. We put
F j = I for all j ∈ J (l, D) \ J (l, D′). On the other hand, by Corollary 1.4.8 and Lemma
1.1.6,

ψi • F = τipsi+1,pl(F [i]) = τipsi+1,pl(F [i/p][p]) = τipsi ,pl−1(F [i/p])[p].

Since F is (psi+1 − 1) − I-logarithmic, F [i/p] is (ipsi − 1) − I-logarithmic by Lemma
1.1.18 and, since ipsi > pl−1, τipsi ,pl−1(F [i/p]) ∈ HSk(log I, pl−1). By Corollary 1.1.20,

T := τipsi ,pl−1(F [i/p])◦T ′ is (pl−1−1)−I-logarithmic and Tpl−1 = T ′
pl−1 +H ′+some I-diff.

op. of order ≤ pl = Dpl +H ′′ where H ′′ is an I-differential operator of order ≤ pl. Since
D = T [p] ◦

(
◦j∈J (l,D) (ψj • F j)

)
, we have the proposition.

�

Corollary 3.1.5 Let l ≥ 1 be an integer and D ∈ HSk(R; pl) a (pl − 1) − I-logarithmic HS-
derivation with `(D) > 1. Then, there exists F ∈ HSk(log I; pl) with `(F ) > 1 and a (pl−1 −
1)− I-logarithmic HS-derivation T ∈ HSk(R; pl−1) such that D = T [p] ◦ F .

Proof. From Proposition 3.1.4, we have that

D = T [p] ◦
(
◦j∈J (l,D)

(
ψj • F i

))
for some (pl−1 − 1)− I-logarithmic HS-derivation T ∈ HSk(R; pl−1) and some (psj+1 − 1)− I-
logarithmic HS-derivation F j ∈ HSk(R; psj+1), for j ∈ J (l, D) and sj = maxCp

j,1,l. Since

ψj • F j = τjpsj+1,pl(F
j[j]) and F j[j] is (jpsj+1 − 1) − I-logarithmic by Lemma 1.1.18, we have

that ψj • F j ∈ HSk(log I; pl) because j 6= 0 mod p and, by Lemma 3.1.2, jpsj+1 > pl. Hence,
F := ◦j∈J (l,D) (ψj • F j) ∈ HSk(log I; pl). Moreover, `(F j[j]) > 1 for all j ∈ J (l, D), so
`(ψj • F j) > 1 and `(F ) > 1 by Lemma 1.1.9.

�

3.2 Base change

Let k be a commutative ring, k → L a ring extension, R = k[x1, . . . , xd] the polynomial
ring and A = R/I a commutative finitely generated k-algebra. Recall that we denote BL :=
L ⊗k B for any k-algebra B. In this section, we study the relationship between IDerk(A;m)
and IDerL(AL;m) under suitable hypotheses on the ring extension k → L. We start recalling
some classical results on derivations.

3.2.1 Base change for derivations

Let k be a commutative ring, k → L a ring extension and A a commutative k-algebra. For
each k-derivation δ : A→ A, let us denote by δ̃ : AL → AL the natural L-linear extension given
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by δ̃(c ⊗ a) = c ⊗ δ(a) for all c ∈ L and all a ∈ A. It is clear that δ̃ ∈ DerL(AL). The map

δ ∈ Derk(A) 7→ δ̃ ∈ DerL(AL), being A-linear, gives rise to an AL-linear base change map:

ΦL,A
1 : L⊗k Derk(A) = AL ⊗A Derk(A) −→ DerL(AL)

c⊗ δ 7−→ cδ̃

If R = k[x1, . . . , xd] the polynomial ring, then RL = L[x1, . . . , xd] is also a polynomial
ring. It is easy to see that, if ∂i : R→ R is the partial derivative of R with respect to xi, then
∂̃i : RL → RL is the partial derivative of RL with respect to xi. Since the modules of derivations
of a polynomial ring in a finite number of variable is free with basis the partial derivatives, if
δ =

∑d
i=1 bi∂i then δ̃ =

∑d
i=1 bi∂̃i. Hence, we can deduce the following result.

Lemma 3.2.1 Let R = k[x1, . . . , xd] be the polynomial ring and k → L a ring extension. Then,
ΦL,R

1 is an RL-module isomorphism.

Moreover, if L is free over k (as k-module), then any k-basis of L is an R-basis of RL and
we have the following lemma.

Lemma 3.2.2 Let k → L be a free ring extension and B = {ai, i ∈ I} a k-basis of L.
Let us consider δ ∈ DerL(RL). Then, there exists a finite subset J ⊆ I and a k-derivation

δj ∈ Derk(R) for each j ∈ J such that δ =
∑

j∈J aj δ̃j.

Proof. Let us consider δ =
∑d

i=1 bi∂̃i ∈ DerL(RL) where bi ∈ RL. Since B is an R-basis of
RL, there exists a finite subset J ⊆ I and unique elements bij ∈ R, 1 ≤ i ≤ d and j ∈ J , such
that bi =

∑
j∈J ajbij. Hence, we have

δ =
d∑
i=1

bi∂̃i =
d∑
i=1

∑
j∈J

ajbij ∂̃i =
∑
j∈J

aj δ̃j, with δj =

(
d∑
i=1

bij∂i

)
∈ Derk(R)

and the lemma is proved.
�

We denote Ie = IRL = IL[x1, . . . , xd] the extended ideal of I in RL. It is clear that ΦL,R
1

induce two RL-module homomorphisms:

ΦL,R,I
1 : L⊗Derk(log I) −→ Derk(log Ie)

and
ΦL,R

ind,I : L⊗k I(Derk(R))→ Ie DerL(RL).

Lemma 3.2.3 Let k → L be a ring extension and I ⊆ R an ideal. We have the following
properties:

a. ΦL,R
ind,I is surjective.

b. If L is flat over k, then ΦL,R
ind,I is bijective and ΦL,R,I

1 is injective.
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Proof.

a. Let δ ∈ Ie DerL(RL) ⊆ DerL(RL). Then δ =
∑d

i=1 bi∂̃i where bi ∈ Ie for all i = 1, . . . , d.
Since bi ∈ Ie = IL[x1, . . . , xd], there is a finite set J and elements hij ∈ I and lij ∈ L,
1 ≤ i ≤ d and j ∈ J , such that bi =

∑
j∈J lijhij. Then,

δ =

j∑
i=1

∑
j∈J

lijhij ∂̃i =
∑
j∈J

lij δ̃j with δj =
d∑
i=1

hij∂i ∈ I(Derk(R)).

Hence, we can deduce that ΦL,R
ind,I is surjective.

b. ΦL,R
ind,I is always surjective thanks to previous point. Since L is flat over k and ΦL,R

1 is

bijective, then it is clear that ΦL,R
ind,I and ΦL,R,I

1 are both injective.

�

Let A be a finitely generated k-algebra, i.e. A = R/I where R = k[x1, . . . , xd] and I ⊆ R
an ideal. Then, with the previous notation, we have the following commutative diagram:

L⊗k (I(Derk(R))) L⊗k Derk(log I) L⊗k Derk(A) 0

0 Ie DerL(RL) DerL(log Ie) DerL(AL) 0.

ΦL,Rind,I ΦL,R,I1 ΦL,A1
(3.1)

From Proposition 1.2.6, this diagram has exact rows and if L is flat over k, then the top
row is also left exact.

The proof of the following proposition follows from the diagram (3.1), the previous lemma
and (cf. [Gro, Prop. 16.5.11]).

Proposition 3.2.4 Under the above hypotheses, if k → L is a flat ring extension, then the
following properties are equivalent:

a. The map ΦL,R,I
1 : L⊗k Derk(log I)→ DerL(log Ie) is an isomorphism.

b. The map ΦL,A
1 : L⊗k Derk(A)→ DerL(AL) is an isomorphism.

Moreover, both properties hold if I is finitely generated (i.e. if A is finitely presented over k).

We also have the following result for any commutative finitely generated k-algebra A = R/I,
with I ⊆ R an ideal.

Proposition 3.2.5 Under the above hypotheses, if k → L is a free ring extension (L is a
free k-module) and A = R/I is a finitely generated k-algebra, then properties a. and b. in
Proposition 3.2.4 hold.
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Proof. Since L is a flat extension of k, after Proposition 3.2.4 we only need to prove that the
map ΦL,R,I

1 : L⊗k Derk(log I)→ DerL(log Ie) is surjective. Let B = {ai, i ∈ I} be a k-basis of
L and δ : RL → RL an Ie-logarithmic derivation. By Lemma 3.2.2, there exists a finite subset
J of I and δj ∈ Derk(R) for each j ∈ J such that

δ =
∑
j∈J

aj δ̃j.

Let us consider h ∈ I. Since δ ∈ Derk(log Ie), we have that δ(h) ∈ Ie. Hence, there is a subset
I0 of I and gl ∈ I for all l ∈ I0 such that

δ(h) =
∑
j∈J

ajδj(h) =
∑
l∈I0

algl.

Then, δj(h) = gj ∈ I if j ∈ I0 and δj(h) = 0 otherwise. Therefore, δj ∈ Derk(log I) and, since

δ = ΦL,R,I
1

(∑
j∈J (aj ⊗ δj)

)
, ΦL,R,I

1 is surjective.

�

3.2.2 Base change for integrable derivations

Let k → L be a ring extension and A a k-algebra. In the previous section, we recalled the base
change map ΦL,A

1 : L ⊗ Derk(A) → DerL(AL). In this section we want to generalize this map
to the modules of m-integrable derivations for all m ∈ N. To do this, we will start extending
HS-derivations of A over k to HS-derivations of AL over L.

Proposition 3.2.6 Let A be a k-algebra, I ⊆ A an ideal, k → L a ring extension, Ie = IAL,
the extended ideal and m ∈ N. For any HS-derivation D ∈ HSk(A;m), there exists a unique

HS-derivation D̃ ∈ HSL(AL;m) such that the following diagram is commutative:

A A[|µ|]m

AL AL[|µ|]m.

ϕD

nat. nat.

ϕ
D̃

(3.2)

Moreover, if D is I-logarithmic, then D̃ is Ie-logarithmic.

Proof. Let us denote t : A → AL and tm : A[|µ|]m → AL[|µ|]m the natural maps. Then,
we define ϕD̃(c ⊗ a) = ctm(ϕD(a)) for all c ∈ L and all a ∈ A. Observe that this map is
well-defined. Moreover, since tm and ϕD are k-algebra homomorphisms and it is clear that
ϕD̃ is L-linear, ϕD̃ is an L-algebra homomorphism. In order for ϕD̃ to be a HS-derivation,
ϕD̃ ≡ Id mod µ, and this property is obtained thanks to ϕD is a HS-derivation because
ϕD̃(c⊗ a) = ctm(ϕD(a)) = ct(a) mod µ = c⊗ a mod µ for all c ∈ L and all a ∈ A.

Let us consider ϕE : AL → AL[|µ|] another L-algebra homomorphism such that the diagram
(3.2) commutes. Then, since ϕE is L-linear, for all c ∈ L and all a ∈ A,

ϕE(c⊗ a) = cϕE(1⊗ a) = cϕE(t(a)) = ctm(ϕD(a)) = ϕD̃(c⊗ a).
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Hence, D̃ is unique. Now, we assume that D is I-logarithmic. Let us consider g ∈ I. Then,
ϕD̃(1⊗g) = tm(ϕD(g)) ⊆ Ie so, for all c ∈ L and all a ∈ A, ϕD̃(g(c⊗a)) = ϕD̃(1⊗g)ϕD̃(c⊗a) ∈
Ie, i.e. D̃ is Ie-logarithmic.

�

Observe that if m = 1, we know that Derk(A) ∼= HSk(A; 1) and the extension process

D 7→ D̃ described in Proposition 3.2.6 coincides with the usual extension δ 7→ δ̃ of derivations.

Remark 3.2.7 If k → L is a free ring extension, then this map is injective. In this case, if
R = k[x1, . . . , xd], RL = L[x1, . . . , xd], D ∈ HSk(R;m) and D̃ = (D̃i)i ∈ HSL(RL;m) is the

extension of D, then D̃i|R = Di because R→ RL can be seen as an inclusion.

Lemma 3.2.8 Let A be a k-algebra, I ⊂ A an ideal, k → L a ring extension, m ∈ N, n ≤ m
an integer, D ∈ HSk(A;m) a HS-derivation and ψ : A[|µ|]m → A[|µ|]n a substitution map. The
following properties hold:

a. The map D ∈ HSk(A;m) 7→ D̃ ∈ HSL(AL;m) is a group homomorphism.

b. ψ̃ •D = ψ̃ • D̃, where ψ̃ : AL[|µ|]m → AL[|µ|]n is the substitution map induced by ψ.

c. If D is n− I-logarithmic, then D̃ is n− Ie-logarithmic.

Proof.

a. Let us consider D,E ∈ HSk(A;m). Then, D◦E is the HS-derivation associated with ϕµD ◦
ϕE (remember that ϕµD : A[|µ|]m → A[|µ|]m is the unique k-algebra automorphism which

extend ϕD and ϕµD(µ) = µ). Let us consider D̃, Ẽ ∈ HSL(AL;m) defined in Proposition

3.2.6, ϕµ
D̃

the L-algebra automorphism of D̃ and ϕẼ the L-algebra homomorphism of Ẽ.
Then, we have the following diagram

A A[|µ|]m A[|µ|]m

AL AL[|µ|]m AL[|µ|]m

ϕE

nat.

ϕµD

nat. nat.

ϕ
Ẽ

ϕµ
D̃

It is easy to see that the external square is commutative. By Proposition 3.2.6, ϕ
D̃◦E is

the unique L-algebra homomorphism with that property so, ϕ
D̃◦E = ϕµ

D̃
◦ ϕẼ. From the

definition of composition of two HS-derivation, we can deduce that D̃ ◦ E = D̃ ◦ Ẽ.

b. Let us consider ϕD the k-algebra homomorphism of D ∈ HSk(A;m). Then, ψ •D is the
HS-derivation associated with ψ ◦ ϕD. It is easy to prove that the following diagram is
commutative.

A A[|µ|]m A[|µ|]n

AL AL[|µ|]m AL[|µ|]n

ϕD

nat.

ψ

nat. nat.

ϕ
D̃ ψ̃
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As in the previous point, ϕ
ψ̃•D is the unique L-algebra homomorphism such that the

external square is commutative, so ϕ
ψ̃•D = ψ̃ ◦ ϕD̃ i.e. ψ̃ •D = ψ̃ • D̃.

c. If D is n − I-logarithmic, τmn(D) ∈ HSk(log I;n), so ˜τmn(D) ∈ HSk(log Ie;n) by Propo-

sition 3.2.6. From the previous point, ˜τmn(D) = τmn(D̃). So, D̃ ∈ HSL(AL;m) is n− Ie-
logarithmic.

�

Lemma 3.2.9 Let I ⊆ A be an ideal, B = A/I and Ie = IAL the extended ideal. Then, for
each D ∈ HSk(log I;m),

˜ΠI
HS,m(D) = ΠIe

HS,m

(
D̃
)

(observe that ˜ΠI
HS,m(D) is the extension of ΠI

HS,m(D) ∈ HSk(B;m) to BL = AL/I
e and D̃ ∈

HSL(log Ie;m) ⊆ HSL(AL;m)).

Proof. From the proof of Proposition 3.2.6, for all c ∈ L and all a ∈ A,

ϕD̃(c⊗ a) =
m∑
i=0

(c⊗Di(a))µi =
∑
i=0

(IdL⊗Di) (c⊗ a)µi.

So, D̃ = (IdL⊗Di)
m
i=0. Then,

ΠIe

HS,m

(
D̃
)

=
(
D̃i

)
i

where D̃i((c⊗a)+Ie) = (c⊗Di(a))+Ie for all (c⊗a)+Ie ∈ BL = AL/I
e.

To prove this result it is enough to show that the following diagram is commutative.

B A[|µ|]m

BL BL[|µ|]m

ϕD

tB tBm
ϕ

ΠI
e

HS,m
(D̃)

where D = ΠI
HS,m(D), tB(a+ I) = (1⊗ a) + Ie for all a ∈ A and tBm : B[|µ|]m → BL[|µ|]m is the

map induced by tB. Let us consider a ∈ A, then

ϕΠI
e

HS,m(D̃) ◦ t
B(a+ I) =

m∑
i=0

D̃i((1⊗ a) + Ie)µi =
m∑
i=0

((1⊗Di(a)) + Ie)µi.

On the other hand,

tBm ◦ ϕD(a+ I) = tBm

((
m∑
i=0

Di(a) + I

)
µi

)
=

m∑
i=0

((1⊗Di(a)) + Ie)µi.

Therefore, the lemma is proved.
�
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Corollary 3.2.10 Under the hypotheses of Lemma 3.2.8, let δ : A→ A be a k-derivation (resp.
an I-logarithmic k-derivation). If δ is m-integrable (resp. I-logarithmically m-integrable), then

δ̃ is also m-integrable (resp. Ie-logarithmically m-integrable).

Proof. Let us suppose that δ ∈ IDerk(A;m) and let us consider an m-integral D ∈ HSk(A;m)

of δ, i.e. D1 = δ. From Proposition 3.2.6, D̃ ∈ HSL(AL;m) is an m-integral of D̃1 = δ̃, i.e.

δ̃ ∈ IDerk(A;m). Moreover, if δ ∈ IDerk(log I;m), then we can consider D ∈ HSk(log I;m)

and, by Proposition 3.2.6, D̃ ∈ HSL(log Ie;m). Hence, δ̃ ∈ IDerL(log Ie;m).
�

In view of the proof of this result, if D ∈ HSk(A;m) is an m-integral of δ ∈ Derk(A), then

D̃ ∈ HSL(AL;m) is an m-integral of δ̃.
As a consequence of the above corollary, base change map ΦL,A

1 : L⊗k Derk(A)→ DerL(AL)
induce, for each m ∈ N, new AL-linear base change maps:

ΦL,A
m : L⊗k IDerk(A;m) −→ IDerL(AL;m), ΦL,A,I

m : L⊗k IDerk(log I;m)→ IDerL(log Ie;m).

From now on, we assume that L is flat over k and A a finitely generated k-algebra. Then,
we can put A = R/I where R = k[x1, . . . , xd] is a polynomial ring and I ⊂ R an ideal.

From the exact sequence in Proposition 1.2.6, we obtain for each m ∈ N a commutative
diagram with exact rows (compare with (3.1)):

0 L⊗k (I(Derk(R))) L⊗k IDerk(log I;m) L⊗k IDerk(A;m) 0

0 Ie DerL(RL) IDerL(log Ie;m) IDerL(AL;m) 0.

ΦL,Rind,I

Id⊗ΠIm

ΦL,R,Im ΦL,Am

ΠI
e
m

(3.3)
Moreover the left vertical arrow is bijective (see Lemma 3.2.3) and, since L is flat over k,

the middle vertical arrow is injective.
The proof of the following lemma is clear.

Lemma 3.2.11 Under the above hypotheses, the following properties hold:

1. ΦL,A
m is injective.

2. ΦL,R,I
m is surjective if and only if ΦL,A

m is surjective.

Remark 3.2.12 If k is a ring of characteristic 0 and L is free over k, then ΦL,A
m is bijective for

any finitely generated k-algebra thanks to Proposition 3.2.5 and equality IDerk(A) = Derk(A).

Moreover, we have the following result about leaps.

Lemma 3.2.13 Assume that L is faithfully flat over k and A a finitely generated k-algebra. If
ΦL,A
m is surjective for all m ≥ 1 then,

Leapsk(A) = LeapsL(AL).
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Proof. Since L is flat over k, we have that ΦL,A
m is bijective so, IDerL(AL;m) = IDerL(AL;m−

1) if and only if

IDerL(AL;m− 1)/ IDerL(AL;m) = 0⇔ L⊗ (IDerk(A;m− 1)/ IDerk(A;m)) = 0.

Since L is faithfully flat over k, the last equality holds if and only if IDerk(A;m−1)/ IDerk(A;m) =
0 and we have the result.

�

In the rest of this section we will study the surjectivity of ΦL,A
m .

3.2.2.1 Algebraic non-separable extensions

In this section we prove that ΦL,A
m is not surjective in general giving an example and we could

deduce that ΦL,A
m is not surjective when k → L is a non-separable algebraic field extension.

Counterexample 3.2.14 Let k = F2(s, t) be the quotient field of F2[s, t] and L = k the perfect
closure of k. Let us consider the irreducible polynomial h = x2 + y2 + tx4 + sy4 ∈ k[x, y] and
we denote A := k[x, y]/〈h〉. Then, ΦL,A

4 is not surjective.

Proof. We need to calculate the 4-integrable derivations of A (resp. AL) over k (resp. over
L). We will follow the same step of Example 7 of [Ma1]. Let us suppose that there exists
δ ∈ IDerk(A;m) and D ∈ HSk(A;m) an integral of δ. Let us consider

ϕD : A −→ A[|µ|]
x 7−→ x+ u1µ+ u2µ

2 + · · ·
y 7−→ y + v1µ+ v2µ

2 + · · ·

where ui, vi ∈ A. To ϕD be well-defined, ϕD(h) = 0, i.e.

(x+u1µ+u2µ
2+· · · )2+(y+v1µ+v2µ

2+· · · )2+t(x+u1µ+u2µ
2+· · · )4+s(y+v1µ+v2µ

2+· · · )4 = 0

The coefficient of µ2 in the previous equation is u2
1 + v2

1 = (u1 + v1)2 = 0. Since A is a domain,
u1 = v1. Let us consider the coefficient of µ4, then u2

2 + v2
2 + tu4

1 + sv4
1 = 0. We can write

w = u2 + v2 and u = u1 = v1, and we obtain the equation:

w2 + (t+ s)u4 = 0.

Let W and U be elements of k[x, y] such that W + 〈h〉 = w and U + 〈h〉 = u. Then, thanks to
the previous equation:

W 2 + (t+ s)U4 = hG (3.4)

for some G ∈ k[x, y]. Let ∂s and ∂t be the derivations that extend the partial derivations with
respect to s and t, respectively, in F2[s, t, x, y] to k[x, y] and we apply those derivations to (3.4),
obtaining:

∂t : U4 = x4G+ h∂t(G)
∂s : U4 = y4G+ h∂s(G).
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Then, if g := G+ 〈h〉, we have the following equalities in A:

∂t : u4 = x4g
∂s : u4 = y4g

⇒ (x4 − y4)g = 0.

Since A is a domain and x4 6= y4, g = 0, so u = u1 = v1 = 0. Then, we can not integrate any
non-zero derivation until length 4, i.e. IDerk(A; 4) = 0 and L⊗k IDerk(A; 4) = 0.

To prove that IDerL(AL; 4) is not zero, we calculate IDerL(log〈h〉e; 4). Thanks to Proposition
1.2.15, it is enough to calculate IDerL(logH; 2) where H = x + y + t1/2x2 + s1/2y2. Note that
J0 = 〈1〉 so, by Proposition 1.2.7, any I-logarithmic k-derivation is integrable. It is easy to see

that DerL(logH) = 〈∂̃x + ∂̃y, H∂̃x〉. Hence, thanks to Corollary 1.2.3, IDerL(AL; 4) = 〈δ1, δ2〉 6=
0 where δ1 (resp. δ2) is the derivation induced by ∂̃x+∂̃y (resp. H∂̃x) in the quotient. Therefore,

ΦL,A
4 is not surjective.

�

As straightforward consequence of this example, we have the following result.

Lemma 3.2.15 Let k → L be a non-separable algebraic field extension, A a finitely generated
k-algebra and m ≥ 1. Then, ΦL,A

m is not a surjective AL-module homomorphism, in general.

3.2.2.2 Pure transcendental extensions

In this section, we will study the surjectivity of ΦL,A
m : L⊗k IDerk(A;m)→ IDerk(AL;m) when

k → L is a pure transcendental field extension and A is a finitely presented k-algebra.

From now on, k → L will be a ring extension where L := k[ti | i ∈ I] is a polynomial
ring in an arbitrary number of variables and A a finitely generated k-algebra. We define
N(I) = {α := (αi)i∈I | αi ∈ N, αi = 0 except for a finite number of i ∈ I} and, for α ∈ N(I),
we put tα =

∏
i∈I t

αi
i . We start with some numerical results.

Lemma 3.2.16 Let n ≤ m be two positive integers. We have the following properties.

a. (bm/nc+ 1)n− 1 ≥ m.

b. If m 6= 0 mod n, then bm/nc = b(m− 1)/nc. Otherwise, bm/nc = b(m− 1)/nc+ 1.

c. If n < m such that m = 0 mod n. Then, there exists a prime factor of m which divides
m/n.

Proof.

a. Let us write m = cn+r where 0 ≤ r < n and c = bm/nc, then (c+1)n = cn+r+(n−r) >
m and we have the result.

b. If m 6= 0 mod n, then m = cn + r where 1 ≤ r < n. So, m − 1 = cn + (r − 1)
where 0 ≤ r − 1 < n. Hence, bm/nc = c = b(m − 1)/nc. If m = 0 mod n, then
m = cn. So, (c − 1)n ≤ m − 1 < cn. If we divide this inequality by n, we obtain that
c− 1 ≤ (m− 1)/n < c. Hence, b(m− 1)/nc = c− 1 and we have the lemma.
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c. Since m = 0 mod n and n < m, we have that m = cn for some c > 1. Hence, any prime
factor of c, which is also a prime factor of m, holds the lemma.

�

Definition 3.2.17 Let n be a positive integer. We define

Pn =
⋃

q is a prime factor of n

qN(I).

Lemma 3.2.18 Let n, s be two positive integers such that n 6= s. Then, there do not exist
α ∈ N(I) \ Pn and η ∈ N(I) \ Ps such that αs = ηn.

Proof. Suppose that there exist α ∈ N(I) \ Pn and η ∈ N(I) \ Ps such that αs = ηn. If there
were such a prime that divides n and s, then we could simplify it. So, we can assume that s
and n do not have prime factors in common. Now, as s and n are not the same, one of them, we
say s, has a prime factor q such that does not divide to the another one, in this case n. Since
αs = ηn, we have that αis = ηin for all i ∈ I. So, q divide ηi for all i ∈ I. Then η = qη′ ∈ Ps
and we have a contradiction.

�

Fix m > 1 an integer and consider m = qa1
1 · · · qass its prime factorization, i.e. for all

j = 1, . . . s, qj is a prime, aj > 0 and qj 6= qi if i 6= j. Let us consider β ∈ Pm. Then, we can
write β = qb11 · · · qbss η where bj ≥ 1 for some j ∈ {1, . . . , s} and η ∈ N(I) such that qj - η for any
j = 1, . . . , s, i.e. for all j there exists ηij with ij ∈ I such that qj - ηij . We can assume, without
loss of generality, that there exists an integer lβ such that 0 ≤ lβ ≤ s and aj > bj for all j ≤ lβ
and aj ≤ bj for all j > lβ. Then, we define

nβ =

{
1 if lβ = 0

qa1−b1
1 · · · q

alβ−blβ
lβ

if lβ ≥ 1.

Lemma 3.2.19 For each β ∈ Pm, there exists a unique n ∈ N with 1 ≤ n < m such that
m = 0 mod n and βn/m 6∈ Pn.

Proof. We write β = qb11 · · · qbss η, where η ∈ N(I) such that qj - η for any j = 1, . . . , s and
bj ≥ 1 for some j ∈ {1, . . . , s}. We take n = nβ. It is obvious that n divides m and 1 ≤ n < m.
We denote l := lβ to simplify the notation. We put

α :=
βn

m
=
ηqb11 · · · qbss n
qa1

1 · · · qass
.

If l = 0, then n = 1 and P1 = ∅ so, α 6∈ Pn (note that α ∈ N(I) because if l = 0, then bj ≥ aj
for all j = 1, . . . , s). If l ≥ 1, then

α =
ηqb11 · · · qbss q

a1−b1
1 · · · qal−bll

qa1
1 · · · qass

=
ηqa1

1 · · · q
al
l q

bl+1

l+1 · · · qbss
qa1

1 · · · qass
= q

bl+1−al+1

l+1 · · · qbs−ass η.
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Note that the set of primes which divide n is {q1, . . . , ql}. Hence, qj - α for all j = 1, . . . , l
(recall that qj - η). So, α 6∈ Pn.

Now, let us suppose that there exists another n′ ∈ N holding the lemma, in particular
α′ := βn′/m 6∈ Pn′ . Then, αn′ = α′n and we have a contradiction by Lemma 3.2.18.

�

Theorem 3.2.20 Let m ≥ 1 be an integer and L = k[ti | i ∈ I] a polynomial ring. Let us
consider D ∈ HSL(RL;m). Then, for all n = 1, . . . ,m there exists a finite subset Ln of N(I)\Pn
and an Nn,α ∈ HSk(R) for each α ∈ Ln such that

D = ◦mn=1

(
◦α∈Ln

(
ψn,mα • Ñn,α

))
where ψn,mα : RL[|µ|] → RL[|µ|]m is the substitution map of constant coefficients given by
ψn,mα (µ) = tαµn.

Proof. First, observe that, if E ∈ HSL(RL;m) then,

ψn,mα • E = τ∞,m ((tα • E) [n]) .

We prove this theorem by induction on m. Assume that m = 1. Then, D = (Id, D1) ∈
HSL(RL; 1). Since L is free over k and {tα, α ∈ N(I)} is a k-basis of L, from Lemma 3.2.2,
D1 ∈ DerL(RL) can be written as

D1 =
∑
α∈L1

tαδ̃α

where L1 is a finite subset of N(I) and δα ∈ Derk(R) for all α ∈ L1. Let us consider N1,α an

integral of δα for α ∈ L1. Then, Ñ1,α ∈ HSL(RL) is an integral of δ̃α. Hence,

D = ◦α∈L1

(
tα •

(
Id, δ̃α

))
= ◦α∈L1

(
τ∞,1

(
tα • Ñ1,α

))
= ◦α∈L1

(
ψ1,1
α • Ñ1,α

)
(note that the order of the composition in this equality is not important because HSL(RL; 1) ≡
DerL(R) is a commutative group) and we have the result when m = 1. Let us assume that the
theorem is true for any HS-derivation of length m−1 and we will prove it for D ∈ HSL(RL;m).
By induction hypothesis, for all n = 1, . . . ,m − 1, there exists a finite subset L′n of N(I) \ Pn
and an Nn,α ∈ HSk(R) for each α ∈ L′n such that

τm,m−1(D) = ◦m−1
n=1

(
◦α∈L′n

(
ψn,m−1
α • Ñn,α

))
. (3.5)

We define
E := ◦m−1

n=1

(
◦α∈L′n

(
ψn,mα • Ñn,α

))
where the composition are in the same order that in (3.5). Note that ψn,m−1

α = τm,m−1 ◦ ψn,mα ,
and thanks to Lemma 1.4.7 and Corollary 1.4.8, we have that:

τm,m−1(E) = ◦m−1
n=1

(
◦α∈L′n

(
τm,m−1 •

(
ψn,mα • Ñn,α

)))
= ◦m−1

n=1

(
◦α∈L′n

(
(τm,m−1 ◦ ψn,mα ) • Ñn,α

))
= τm,m−1(D).
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Then, by Lemma 1.4.10, D = E ◦ (Id, δ)[m] where δ ∈ DerL(RL). From Lemma 3.2.2, δ =∑
β∈J t

β δ̃β where J is a finite subset of N(I) and δβ ∈ Derk(R) for all β ∈ J . We denote
Γ = {n ∈ N | 1 ≤ n ≤ m− 1, m = 0 mod n}. For all n ∈ Γ, we define

Jn := {β ∈ J | β = α(m/n) for some α ∈ L′n}

and
Lm = J \ Pm.

Claim 1. For n, s ∈ Γ such that n 6= s, then Jn ∩ Js = ∅.

Let us suppose that there exists β ∈ Jn ∩Js. In this case, there exist α ∈ L′n ⊆ N(I) \Pn
and η ∈ L′s ⊆ N(I) \ Ps such that β = α(m/n) = η(m/s), i.e. αs = ηn and this can not
happen by Lemma 3.2.18.

Claim 2. Lm ∩ Jn = ∅ for all n ∈ Γ.

By Lemma 3.2.16 c., there exists a prime factor, q, of m that divides m/n. Assume that
β ∈ Jn. Then, we have that β = α(m/n) for some α ∈ L′n. Then, q|β so, β ∈ Pm.

Let us write J = tn∈ΓJn tLm tJ where J = J \ (tn∈ΓJn t Lm). Observe that J ⊆ Pm
so, from Lemma 3.2.19, for all β ∈ J , there exists a unique nβ ∈ Γ such that (βnβ)/m 6∈ Pnβ .

Therefore, if we denote J n = {β ∈ J | nβ = n} for all n ∈ Γ, we can write

J = tn∈Γ

(
Jn t J n

)
t Lm and δ =

∑
n∈Γ

∑
β∈JntJ n

tβδβ +
∑
α∈Lm

tαδα.

Now, for each n ∈ Γ we can define

L′n = {α ∈ L′n| α(m/n) ∈ Jn} and Ln = {α ∈ N(I) \ L′n| α(m/n) ∈ J n} * Pn.

Note that L′n ∩ Ln = ∅. Let us denote Ln = L′n ∪ Ln. Hence, we can express

(Id, δ) = ◦n∈Γ

(
◦α∈L′n

(
Id, tα(m/n)δ̃α(m/n)

)
◦α∈Ln

(
Id, tα(m/n)δ̃α(m/n)

))
◦
(
◦α∈Lm

(
Id, tαδ̃α

))
.

By Corollary 1.4.8 and Lemma 1.1.6, for each n ∈ Γ ∪ {m} and α ∈ Ln, we have that:(
Id, tα(m/n)δ̃α(m/n)

)
[m] =

((
tα(m/n) •

(
Id, δ̃α(m/n)

))
[m/n]

)
[n]

=
(
tα •

((
Id, δ̃α(m/n)

)
[m/n]

))
[n].

For each n ∈ Γ ∪ {m} and α ∈ Ln, let us consider Mn,α ∈ HSk(R) an integral of δα(m/n). We

know that M̃n,α is an integral of δ̃α(m/n), so M̃n,α[m/n] is an integral of
(

Id, δ̃α(m/n)

)
[m/n].

Hence, by Lemma 1.1.6, we have that

ψn,mα •
(
M̃n,α[m/n]

)
= τ∞,m

((
tα •

(
M̃n,α[m/n]

))
[n]
)

=
(
τ∞,m/n

(
tα •

(
M̃n,α[m/n]

)))
[n]

=
(
tα • τ∞,m/n

(
M̃n,α[m/n]

))
[n] =

(
tα •

((
Id, δ̃α(m/n)

)
[m/n]

))
[n]

=
(

Id, tα(m/n)δ̃α(m/n)

)
[m].
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To simplify the following expression, we put Ln = L′n = ∅ for all n ∈ {1, . . . ,m − 1} \ Γ.
Moreover, for all n ∈ {1, . . . ,m − 1}, if α ∈ L′n \ L′n then we consider δα(m/n) = 0 and
Mn,α = I ∈ HSk(R) an integral of δα(m/n). Thanks to Lemmas 1.1.7 and 1.4.7 and the previous
equation, we can write:

D = ◦m−1
n=1

(
◦α∈L′n

(
ψn,mα • Ñn,α

))
◦ ◦m−1

n=1

(
◦α∈L′n

((
Id, tα(m/n)δ̃α(m/n)

)
[m]
)

◦α∈Ln
((

Id, tα(m/n)δ̃α(m/n)

)
[m]
))
◦
(
◦α∈Lm

(
Id, tαδ̃α

)
[m]
)

= ◦m−1
n=1

(
◦α∈L′n

(
ψn,mα • Ñn,α ◦

(
Id, tα(m/n)δ̃α(m/n)

)
[m]
)
◦
(
◦α∈Ln

(
Id, tα(m/n)δ̃α(m/n)

)
[m]
))

◦
(
◦α∈Lm

(
Id, tαδ̃α

)
[m]
)

= ◦m−1
n=1

(
◦α∈L′n

(
ψn,mα • Ñn,α ◦ ψn,mα • (M̃n,α[m/n])

)
◦α∈Ln

(
ψn,mα • (M̃n,α[m/n])

))
◦
(
◦α∈Lm

(
ψm,mα • M̃m,α

))
= ◦m−1

n=1

(
◦α∈L′n

(
ψn,mα •

(
Ñn,α ◦ M̃n,α[m/n]

))
◦α∈Ln

(
ψn,mα • (M̃n,α[m/n])

))
◦
(
◦α∈Lm

(
ψm,mα • M̃m,α

))
.

Thanks to Lemma 3.2.8 b., M̃n,α[m/n] is the extension of the HS-derivation Mn,α[m/n] and,

by Lemma 3.2.8 a., Ñn,α ◦ M̃n,α[m/n] is the extension of Nn,α ◦Mn,α[m/n]. Therefore, if we
denote Ln = L′n ∪ Ln ⊆ NI \ Pn and Lm = Lm, we have the theorem.

�

Theorem 3.2.21 Let m ≥ 1 be an integer, L = k[ti | i ∈ I] a polynomial ring, I ⊆ R an
ideal and D ∈ HSL(log Ie;m). For all n = 1, . . . ,m, let Ln be a finite subset of N(I) \ Pn and
Nn,α ∈ HSk(R) for each α ∈ Ln such that

D = ◦mn=1

(
◦α∈Ln

(
ψn,mα • Ñn,α

))
where ψn,mα : RL[|µ|] → RL[|µ|]m is the substitution map given by ψn,mα (µ) = tαµn. Then, for
all n = 1, . . . ,m and α ∈ Ln, Nn,α ∈ HSk(R) is an bm/nc − I-logarithmic HS-derivation.

Proof. We prove this result by induction on m. If m = 1, we have to prove that N1,α is
1− I-logarithmic for all α ∈ L1, i.e. N1,α

1 ∈ Derk(log I) for all α ∈ L1. In this case,

D = ◦α∈L1

(
ψ1,1
α • Ñ1,α

)
= ◦α∈L1

(
τ∞,1

(
tα • Ñ1,α

))
= ◦α∈L1

(
Id, tα

(
Ñ1,α

)
1

)
.

Then,

D1 =
∑
α∈L1

tα
(
Ñ1,α

)
1
.

Since D1 is Ie-logarithmic, doing the same process of Proposition 3.2.5, we have that Nn,α

is 1 − I-logarithmic. Assume that the theorem is true for all Ie-logarithmic HS-derivation of
length m− 1 and let us take D ∈ HSL(log Ie;m) such that

D = ◦mn=1

(
◦α∈Ln

(
ψn,mα • Ñn,α

))
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where Ln ⊆ N(I) \ Pn is a finite set and Nn,α ∈ HSk(R) for all α ∈ Ln and n = 1, . . . ,m. By
Corollary 1.4.8, we have that

τm,m−1(D) = ◦m−1
n=1

(
◦α∈Lnτm,m−1 •

(
ψn,mα • Ñn,α

))
◦
(
◦α∈Lmτm,m−1 •

(
ψm,mα • Ñn,α

))
.

From Lemma 1.4.7, for any E ∈ HSL(RL), τm,m−1 • (ψn,mα • (E)) = (τm,m−1 ◦ ψn,mα ) • E =
ψn,m−1
α • E. Moreover, ψm,m−1

α • E = I. So,

τm,m−1(D) = ◦m−1
n=1

(
◦α∈Lnψn,m−1

α • Ñn,α
)
.

Hence, since τm,m−1(D) ∈ HSL(log Ie;m − 1), we can apply the induction hypothesis and we
deduce that Nn,α ∈ HSk(R) is b(m−1)/nc− I-logarithmic for all α ∈ Ln and n = 1, . . . ,m−1.
We define

En := ◦α∈Ln
(
ψn,mα • Ñn,α

)
⇒ D = E1 ◦ · · · ◦ Em

where the order of the composition in En is the same that in D.

Claim. En is (m− 1)− Ie-logarithmic.

Since Nn,α is b(m − 1)/nc − I-logarithmic, by Lemma 3.2.8 c., Ñn,α is b(m − 1)/nc −
Ie-logarithmic. Hence, tα • Ñn,α is also b(m − 1)/nc − Ie-logarithmic. From Lemma

1.1.18,
(
tα • Ñn,α

)
[n] is ((b(m− 1)/nc+ 1)n− 1) − Ie-logarithmic. By Lemma 3.2.16

a., m− 1 < (b(m− 1)/nc + 1)n− 1, so ψn,mα • Ñn,α is (m− 1)− Ie-logarithmic because
ψn,mα • ∗ = τ∞,m ((tα • ∗)[n]). Hence, by Lemma 1.1.19, En is (m− 1)− Ie-logarithmic for
all n.

Let us consider n ∈ {1, . . . ,m} such that n - m. Then, by Corollary 1.4.8,

En = ◦α∈Ln
(
ψn,mα • Ñn,α

)
= ◦α∈Lnτ∞,m

((
tα • Ñn,α

)
[n]
)

= τ∞,m

((
◦α∈Ln

(
tα • Ñn,α

))
[n]
)
.

Hence, En
m = 0 by definition of (∗)[n]. Moreover, by Lemma 3.2.16 b., b(m− 1)/nc = bm/nc,

so Nn,α is bm/nc − I-logarithmic. Therefore, to prove the theorem we have to show that Nn,α

is (m/n)− I-logarithmic for n|m. By Lemma 3.2.16 b., m/n = b(m−1)/nc+1 and, since Nn,α

is b(m− 1)/nc − I-logarithmic, it is enough to prove that Nn,α
m/n(I) ⊆ I. Note that(

ψn,mα • Ñn,α
)
m

=
(
τ∞,m

((
tα • Ñn,α

)
[n]
))

m
= tα(m/n)

(
Ñn,α

)
m/n

where
(
Ñn,α

)
m/n|R

= Nn,α
m/n by Remark 3.2.7. Therefore, by Lemma 1.1.19

En
m =

∑
α∈Ln

tα(m/n)(Ñn,α)m/n + Fn

where Fn is an Ie-differential operator. Hence, again by Lemma 1.1.19,

Dm =
m∑
n=1

En
m + F =

∑
n|m

∑
α∈Ln

tα(m/n)(Ñn,α)m/n + Fn + F
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where F is an Ie-differential operator. Since Dm is also an Ie-differential operator, we have
that ∑

n|m

∑
α∈Ln

tα(m/n)(Ñn,α)m/n is an Ie-differential operator.

Observe that α(m/n) 6= η(m/s) for all α ∈ Ln and η ∈ Ls because Ln ⊆ NI \ Pn and
Ls ∈ NI \ Ps. Otherwise, if α(m/n) = η(m/s), then αs = ηn and this is a contradiction by
Lemma 3.2.18. Doing the same process than in the proof of Proposition 3.2.5, we can deduce
that Nn,α ∈ HSk(R) is bm/nc − I-logarithmic for all α ∈ Ln and n = 1, . . . ,m.

�

Theorem 3.2.22 Let m ≥ 1 be an integer, L = k[ti | i ∈ I] a polynomial ring, A a finitely
generated k-algebra and E ∈ HSL(AL;m). Then, for all n = 1, . . . ,m there exists a finite subset
Ln ⊆ N(I) \ Pn and an Mn,α ∈ HSk(A; bm/nc) for each α ∈ Ln such that

E = ◦mn=1

(
◦α∈Ln

(
φn,mα • M̃n,α

))
where φn,mα : AL[|µ|]bm/nc → AL[|µ|]m is the substitution map of constant coefficients given by
φn,mα (µ) = tαµn.

Proof. Since A is a finitely generated k-algebra, we can take A = R/I where R = k[x1, . . . , xd]
and I ⊆ R an ideal. By Proposition 1.2.2, there existsD ∈ HSk(log Ie;m) such that ΠIe

HS;m(D) =

E. By theorems 3.2.20 and 3.2.21 for all n = 1, . . . ,m, there exists a finite subset Ln of N(I)\Pn
and an bm/nc − I-logarithmic HS-derivation Nn,α ∈ HSk(R) for each α ∈ Ln such that

D = ◦mn=1

(
◦α∈Ln

(
ψn,mα • Ñn,α

))
where ψn,mα : RL[µ|]→ RL[|µ|]m is the substitution map given by ψn,mα (µ) = tαµn.

Let us consider θn,mα : RL[|µ|]bm/nc → RL[|µ|]m the substitution map given by θn,mα (µ) =
tαµn. Then, ψn,mα = θn,mα ◦τ∞,bm/nc. So, let us rewriteNn,α = τ∞,bm/nc(N

n,α) ∈ HSk(log I; bm/nc)
and we have that

D = ◦mn=1

(
◦α∈Ln

(
θn,mα • Ñn,α

))
(recall that ˜τ∞s(N) = τ∞s(Ñ) for any N ∈ HSk(R;m) and s ≥ 1 by Lemma 3.2.8 b.). Moreover
φn,mα is the induced map by θn,mα in AL. Therefore, by Lemmas 1.4.12 and 3.2.9,

E = ΠIe

HS,m(D) = ◦mn=1

(
◦α∈Ln

(
ΠIe

HS,m

(
θn,mα • Ñn,α

)))
= ◦mn=1

(
◦α∈Ln

(
φn,mα •

(
ΠIe

HS,bm/nc(Ñ
n,α)
)))

= ◦mn=1

(
◦α∈Ln

(
φn,mα •

(
M̃n,α

)))
where M̃n,α ∈ HSL(AL;m) is the extension of ΠI

HS,bm/nc(N
n,α) ∈ HSk(A; bm/nc) and the theo-

rem is proved.
�
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Corollary 3.2.23 Let k be a ring, L = k[ti | i ∈ I] and A a finitely generated k-algebra. We
denote AL = L ⊗k A. Then, ΦL,A

m : L ⊗k IDerk(A;m) → IDerL(AL;m) is an isomorphism of
AL-modules for all m ∈ N. Moreover, Leapsk(A) = LeapsL(AL).

Proof. Since L is flat over k, from Lemma 3.2.11, ΦL,A
m is injective. To prove the surjectivity,

we take δ ∈ IDerL(AL;m). By definition of integrability, there exists E ∈ HSL(AL;m) such
that E1 = δ. By the previous theorem, we can write E as

E = ◦mn=1

(
◦α∈Ln

(
φn,mα • M̃n,α

))
where, for all n = 1, . . . ,m, Ln is a finite subset of N(I), for all α ∈ Ln, Mn,α ∈ HSk(A; bm/nc)
and φn,mα : AL[|µ|]bm/nc → AL[|µ|]m is the substitution map given by φn,mα (µ) = tαµn. If n > 1,

then ` (φn,mα •N) > 1 for all N ∈ HSL(AL;m) and if n = 1, then M1,α
1 ∈ IDerk(A;m). So,

δ = E1 =
(
◦α∈L1

(
φ1,m
α • M̃n,α

))
1

=
∑
α∈L1

tα
(
M̃n,α

)
1

= ΦL,A
m

(∑
α∈L1

(tα ⊗Mn,α
1 )

)
.

So, ΦL,A
m is surjective. Moreover, since L is faithfully flat over k, Leapsk(A) = LeapsL(AL) by

Lemma 3.2.13.
�

Let us assume that k → L is a pure transcendental field extension. Then, we can express
L = T−1L′ where L′ = k[ti | i ∈ I] and T = L′\{0}. Hence, for any finitely generated k-algebra
A, we have that

L⊗k IDerk(A;m) ∼= T−1L′ ⊗L′ L′ ⊗k IDerk(A;m) ∼= T−1L′ ⊗L′ IDerL′(AL′ ;m). (3.6)

Now, let us recall the following proposition:

Proposition 3.2.24 [Na2, Corollary 2.3.5] Let C be a commutative ring, B a finitely pre-
sented C-algebra and T ⊆ B a multiplicative set. Then, for any integer m ≥ 1, the canonical
map

T−1 IDerC(B;m)→ IDerC(T−1B;m)

is an isomorphism of (T−1B)-modules.

Hence, if A is a finitely presented k-algebra,

T−1L′ ⊗L′ IDerL′(AL′ ;m) ∼= IDerL′(T
−1L′ ⊗′L AL′ ;m) = IDerL′(AL;m) (3.7)

Moreover, it is easy to prove that if T ⊆ L′, then any HS-derivation over L′ is T−1L′-linear, so
HSL′(AL;m) = HST−1L′(AL;m) and IDerL′(AL;m) = IDerL(AL;m). Therefore, thanks to the
bijections (3.6) and (3.7), we have that

L⊗k IDerk(A;m) ∼= T−1L′ ⊗L′ IDerL′(AL′ ;m) ∼= IDerL(AL;m)

and we have proved the following corollary:

Corollary 3.2.25 Let k be a field and L a pure transcendental field extension of k. Assume
that A is a finitely presented k-algebra. Then, ΦL,A

m : L ⊗k IDerk(A;m) → IDerL(AL;m) is an
isomorphism of AL-modules for all m ∈ N. Moreover, Leapsk(A) = LeapsL(AL).
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3.2.2.3 Separable extensions

Let us consider k a field of characteristic p > 0 and L a k-algebra containing k. Remember
that L is separable over k if LK := K ⊗k L is reduced for every possible extension K of k. In
this section we prove that ΦL,A

m : L⊗k IDerk(A;m)→ IDerL(AL;m) is an isomorphism when L
is a separable algebra over k and A a finitely generated k-algebra.

Hypothesis 3.2.26 Let k be a ring of characteristic p > 0 and k → L a free ring extension.
Then, we assume that the following conditions hold.

1. For every k-linearly independent subset {ai, i ∈ I} of L, the subset {api , i ∈ I} of L
continues to be k-linearly independent.

2. For every k-basis {ai, i ∈ I} of L and every k-linearly independent set {b1, . . . , bs} of L,
there exists L ⊆ I such that {b1, . . . , bs} ∪ {ai, i ∈ L} is a k-basis of L.

In the rest of this chapter, we put R = k[x1, . . . , xd].

Hypothesis 3.2.27 Let l ≥ 1 be an integer. We say that the ideal I ⊆ R satisfies Sl if ΦL,R,I
m

is surjective of all m < pl.

Note that if k → L is a flat ring extension where k is a ring of characteristic p > 0, S1 is
satisfied for all I ⊆ R thanks to ΦL,R,I

1 is bijective and leaps only occur at powers of p.

Lemma 3.2.28 Let l ≥ 1 be an integer and k a ring of characteristic p > 0. Assume that
k → L is a free ring extension and I ⊆ R satisfies Sl. Let us consider a

(
pl − 1

)
−I-logarithmic

HS-derivation D ∈ HSL
(
RL; pl

)
. Then, for each k-basis {ai, i ∈ I} of L, there exists a finite

subset I0 ⊆ I and a
(
pl − 1

)
− I-logarithmic HS-derivation N i ∈ HSk

(
R; pl

)
for each i ∈ I0

such that if

E = ◦i∈I0
(
ai • Ñ i

)
(where we choose any order of composition) there exists a

(
pl−1 − 1

)
− Ie-logarithmic HS-

derivation T ∈ HSL
(
RL; pl−1

)
and an Ie-logarithmic HS-derivation F ∈ HSL

(
log Ie; pl

)
with

`(F ) > 1 such that

D = E ◦ T [p] ◦ F.

Proof. Since ΦL,R,I
pl−1

: L ⊗k IDerk(log I; pl − 1) → IDerL(log Ie; pl − 1) is surjective and

D1 ∈ IDerL(log Ie; pl − 1), there exists a subset I0 ⊂ I and a δi ∈ IDerk(log I; pl − 1) for
each i ∈ I0 such that

ΦL,R,I
pl−1

(∑
i∈I0

ai ⊗ δi

)
=
∑
i∈I0

aiδ̃i = D1.

Let us consider a (pl − 1)− I-logarithmic integral N i ∈ HSk(R; pl) of δi for all i ∈ I0. Then,

E := ◦i∈I0
(
ai • Ñ i

)
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is a pl-integral of D1 (note that the order of the composition is not important, E is always

an integral of D1). Since N i is (pl − 1) − I-logarithmic for all i ∈ I0, we have that Ñ i is
(pl − 1) − Ie-logarithmic (see Lemma 3.2.8 c.). Hence, by Lemmas 1.1.19 and 1.4.11, E∗ is a
(pl − 1) − Ie-logarithmic integral of −D1. Therefore, E∗ ◦D ∈ HSL(RL; pl) is a (pl − 1) − Ie-
logarithmic HS-derivation such that `(E∗ ◦ D) > 1. So, we can apply Corollary 3.1.5 to this
HS-derivation. Then, there exists a (pl−1−1)−Ie-logarithmic HS-derivation T ∈ HSL(RL; pl−1)
and F ∈ HSL(log Ie; pl) with `(F ) > 1 such that

E∗ ◦D = T [p] ◦ F ⇒ D = E ◦ T [p] ◦ F

and the result is proved. �

Theorem 3.2.29 Let l ≥ 1 be an integer and assume that k → L satisfies Hypothesis 3.2.26
and the ideal I ⊆ R satisfies Sl. Let us consider a

(
pl − 1

)
− Ie-logarithmic HS-derivation

D ∈ HSL(RL; pl). Then, for every k-basis {ai, i ∈ I} of L, there exists, for all j = 0, . . . , l,

• a finite subset Ij of I and

• a
(
pl−j − 1

)
− I-logarithmic HS-derivation N j,n,i,j−n ∈ HSk

(
R; pl−j

)
for each i ∈ Ij−n,

0 ≤ n ≤ j

such that for all j = 0, . . . , l

j⋃
m=0

{
ap

j−m

i , i ∈ Im
}

is a k-linearly independent set of L

and, if we take

Ej = ◦i∈I0
(
ap

j

i • Ñ j,j,i,0
)
◦ ◦i∈I1

(
ap

j−1

i • Ñ j,j−1,i,1
)
◦ · · · ◦ ◦i∈Ij

(
ai • Ñ j,0,i,j

)
for all j = 0, . . . , l then, there exists F ∈ HSL(log Ie; pl) with `(F ) > 1 such that

D = E0 ◦ E1[p] ◦ · · · ◦ El
[
pl
]
◦ F.

Proof. By Lemma 3.2.28, there exists a finite subset I0 ⊆ I and a (pl − 1) − I-logarithmic
HS-derivation N0,0,i,0 ∈ HSk(R; pl) for each i ∈ I0 such that, if we take E0 = ◦i∈I0 (ai •N0,0,i,0),
there exists a (pl−1−1)−Ie-logarithmic HS-derivation T 1 ∈ HSL(RL; pl−1) and F ∈ HSL(log Ie; pl)
with `(F ) > 1 such that

D = E0 ◦ T 1[p] ◦ F.
Observe that the set C0 := {ai, i ∈ I0} of L is k-linearly independent so, by Hypothesis 3.2.26
1., we have that the set Cp0 := {api , i ∈ I0} of L is also k-linearly independent and from the
point 2 in Hypothesis 3.2.26 (taking {ai, i ∈ I} as k-basis) we obtain a subset L1 ⊆ I such
that B1 = Cp0 ∪ {ai, i ∈ L1} is a k-basis of L. Note that if l 6= 1, we can apply the previous
lemma to T 1 using the k-basis B1 of L.

Assumption. Let us suppose that doing this process recursively we obtain that, for some
integer j such that 0 ≤ j ≤ l, there exists for all s = 0, . . . , j − 1,
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• a finite subset Is of I,

• a (pl−s − 1) − I-logarithmic HS-derivation N s,n,i,s−n ∈ HSk(R; pl−s) for all i ∈ Is−n and
0 ≤ n ≤ s

such that for all s = 0, . . . , j − 1,

Cs =
s⋃

m=0

{
ap

s−m

i , i ∈ Im
}

is k-linearly independent set of L

and if we take

Es = ◦i∈I0
(
ap

s

i • Ñ s,s,i,0
)
◦ ◦i∈I1

(
ap

s−1

i • ˜N s,s−1,i,1
)
◦ · · · ◦ ◦i∈Is

(
ai • Ñ s,0,i,s

)
for all s = 0, . . . , j − 1 (where we choose any order in I∗) then, there exists

• F ∈ HSL(log Ie; pl) with `(F ) > 1 and

• a (pl−j − 1)− Ie-logarithmic HS-derivation T j ∈ HSL(RL; pl−j)

such that,

D = E0 ◦ E1[p] ◦ · · · ◦ Ej−1
[
pj−1

]
◦ T j

[
pj
]
◦ F. (3.8)

�
Observe that, since Cj−1 is k-linearly independent, then Cpj−1 =

⋃j−1
m=0

{
ap

j−m

i , i ∈ Im
}

is

also a k-linearly independent finite set of L. So, there exists a subset Lj ⊆ I such that
Bj := Cpj−1 ∪ {ai, i ∈ Lj} is a k-basis of L (see Hypothesis 3.2.26 2.).

Let us suppose that j 6= l, i.e. l− j ≥ 1. Then, we can apply Lemma 3.2.28 to T j using the
k-basis Bj of L. Hence, there exists a finite subsets I ′m of Im for all m = 0, . . . , j − 1, a finite
set I ′j of Lj and a (pl−j − 1) − I-logarithmic HS-derivation N j,n,i,j−n ∈ HSk(R; pl−j) for each
0 ≤ n ≤ j and i ∈ I ′j−n such that, if we take

Ej = ◦i∈I′0
(
ap

j

i • Ñ j,j,i,0
)
◦ ◦i∈I′1

(
ap

j−1

i • Ñ j,j−1,i,1
)
◦ · · · ◦ ◦i∈I′j

(
ai • Ñ j,0,i,j

)
then, there exists F ′ ∈ HSL

(
log Ie; pl−j

)
with `(F ′) > 1 and a (pl−(j+1) − 1) − Ie-logarithmic

HS-derivation T j+1 ∈ HSL
(
RL; pl−(j+1)

)
such that

T j = Ej ◦ T j+1[p] ◦ F ′.

Note that we can take I ′m = Im for all 0 ≤ n ≤ j − 1 (it is enough to take N j,n,i,j−n = I for all

i ∈ Im\I ′m) and let us rewrite Ij := I ′j. Moreover, the subset Cj =
⋃j
m=0

{
ap

j−m

i , i ∈ Im
}
⊆ Bj

of L is k-linearly independent and, if we replace T j in (3.8), we obtain that

D = E0 ◦ · · · ◦ Ej−1
[
pj−1

]
◦ Ej[pj] ◦ T j+1[pj+1] ◦ F ′[pj] ◦ F.
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Observe that F [pj] ∈ HSL(log Ie; pl) so, F := F ′[pj] ◦ F ∈ HSL(log Ie; pl) with `(F ) > 1.
Therefore, we have the same condition that Assumption for j+ 1. So that, we can apply this
process until j = l.

Let us suppose that j = l in Assumption. Then, T l ∈ HSL(RL; 1) ≡ DerL(RL) and, by
Lemma 3.2.2 with the k-basis Bj = Bl, there exists a finite subset Il ⊆ Ll ⊆ I such that

T l = ◦i∈I0
(
ap

j

i • Ñ l,l,i,0
)
◦ ◦i∈I1

(
ap

j−1

i • Ñ l,l−1,i,1
)
◦ · · · ◦

(
◦i∈Ilai • Ñ l,0,i,l

)
where N l,n,i,l−n ∈ HSk(R; 1) for each i ∈ Il−n and 0 ≤ n ≤ l. It is obvious that

l⋃
m=0

{
ap

j−m

i , i ∈ Ij−m
}

is a k-linearly independent set of L and since D = E0 ◦ E1[p] ◦ · · · ◦ El−1[pl−1] ◦ T l[pl] ◦ F , we
have the result.

�

Theorem 3.2.30 Let k → L be a ring extension satisfying Hypothesis 3.2.26 and A a com-
mutative finitely generated k-algebra. Then, ΦL,A

m : L ⊗k IDerk(A;m) → IDerL(AL;m) is an
isomorphism of AL-modules for all m ∈ N. Moreover, Leapsk(A) = LeapsL(AL).

Proof. If ΦL,A
m is bijective, since L is faithfully flat over k, we have that Leapsk(A) =

LeapsL(AL) by Lemma 3.2.13. Moveover, by Lemma 3.2.11 1., ΦL,A
m is injective for all m ∈ N.

So, we only need to prove that ΦL,A
m is surjective.

Recall that we consider A = R/I where R = k[x1, . . . , xd] is a polynomial ring in a finite
number of variable and I ⊆ R an ideal. Then, by Lemma 3.2.11 2., ΦL,A

m is surjective if and only
if ΦL,R,I

m : L⊗k IDerk(log I;m)→ IDerL(log Ie;m) is surjective. So, we will prove that ΦL,R,I
m is

surjective for all m ∈ N. Moreover, since leaps only occur at powers of p (Theorem 2.5.1), it
is enough to see that ΦL,R,I

m is surjective when m = pl for l ≥ 0. We proceed by induction on
l ≥ 0.

The case l = 0 is Proposition 3.2.5. Now, let us assume that ΦL,R,I
m is surjective for all

m < pl with l ≥ 1, i.e. I satisfies Sl, and we prove the theorem for ΦL,R,I
pl

with l ≥ 1.

Let δ ∈ IDerL(log Ie, pl) be an L-derivation of RL, then there exists D ∈ HSk(log Ie; pl) an
integral of δ. In particular, D is (pl − 1)− Ie-logarithmic and we can apply Theorem 3.2.29 to
D. Let us consider a k-basis {ai, i ∈ I} of L. Then, for all j = 0, . . . , l, there exists

• a finite subset Ij of I and

• a (pl−j − 1)− I-logarithmic HS-derivation N j,n,i,j−n ∈ HSk(R; pl−j) for each i ∈ Ij−n and
0 ≤ n ≤ j

such that, for all j = 0, . . . , l the subset

j⋃
m=0

{
ap

j−m

i , i ∈ Im
}

of L is k-linearly independent
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and, if we take

Ej =
(
◦i∈I0a

pj

i • Ñ j,j,i,0
)
◦ · · · ◦

(
◦i∈Ijai • Ñ j,0,i,j

)
for all j = 0, . . . , l, there exists F ∈ HSL(log Ie; pl) with `(F ) > 1 such that

D = E0 ◦ E1[p] ◦ · · · ◦ El
[
pl
]
◦ F.

For each j = 0, . . . , l, N j,n,i,j−n is
(
pl−j − 1

)
− I-logarithmic for all 0 ≤ n ≤ j and i ∈ Ij−n. So,

˜N j,n,i,j−n is
(
pl−j − 1

)
− Ie-logarithmic for all 0 ≤ n ≤ j and i ∈ Ij−n (see Lemma 3.2.8 c.).

Therefore, by Lemma 1.1.19, Ej ∈ HSL(RL; pl−j) is
(
pl−j − 1

)
− Ie-logarithmic and

Ej
pl−j

=
∑
i∈I0

(
ap

j

i

)pl−j
Ñ j,j,i,0
pl−j

+ · · ·+
∑
i∈Ij

ap
l−j

i Ñ j,0,i,j
pl−j

+ some Ie-diff. op.

Hence, from Lemma 1.1.18, Ej [pj] ∈ HSL
(
RL; pl

)
is
(
pl − 1

)
− Ie-logarithmic for all j and

Ej[pj]pl = Ej
pl−j

=

j∑
k=0

∑
i∈Ik

ap
l−k

i
˜N j,j−k,i,k
pl−j

+ some Ie-diff. op.

So, by Lemma 1.1.19,

Dpl =
l∑

j=0

Ej[pj]pl + some Ie-diff. op. =
l∑

j=0

j∑
k=0

∑
i∈Ik

ap
l−k

i
˜N j,j−k,i,k
pl−j

+ some Ie-diff. op.

Since Dpl is an Ie-differential operator,

l∑
j=0

j∑
k=0

∑
i∈Ik

ap
l−k

i
˜N j,j−k,i,k
pl−j

=
∑
i∈I0

ap
l

i

(
l∑

j=0

Ñ j,j,i,0
pl−j

)
+
∑
i∈I1

ap
l−1

i

(
l∑

j=1

Ñ j,j−1,i,1
pl−j

)
+ · · ·+

∑
i∈Il

aiÑ
l,0,i,l
1

is an Ie-differential operator.

Since C :=
⋃l
k=0

{
ap

l−k

i , i ∈ Ik
}

is a k-linearly independent finite set of L and {ai, i ∈ I}
is a k-basis of L, by Hypothesis 3.2.26, there exists L ⊆ I such that C ∪{ai, i ∈ L} is a k-basis
of L. Hence, we can deduce, in the same way that in the proof of Proposition 3.2.5, that

l∑
j=0

N j,j,i,0
pl−j

is an I-differential operator for all i ∈ I0

(recall that, by Remark 3.2.7, Ñ j,j,i,0
pl−j |R

= N j,j,i,0
pl−j

).

For all i ∈ I0, let us consider Di = N0,0,i,0 ◦ N1,1,i,0[p] ◦ · · · ◦ N l,l,i,0
[
pl
]
∈ HSk(R; pl) an

integral of N0,0,i,0
1 . Since N j,j,i,0 ∈ HSk(R; pl−j) is (pl−j − 1)− I-logarithmic for all j = 0, . . . , l,
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N j,j,i,0[pj] ∈ HSk(R; pl) is (pl − 1) − I-logarithmic (Lemma 1.1.18) and by Lemma 1.1.19,
Di ∈ HSk(R; pl) is (pl − 1)− I-logarithmic and

Di
pl =

l∑
j=0

N j,j,i,0
pl−j

+ some I-differential operator.

So, Di ∈ HSk
(
log I; pl

)
and we can deduce that N0,0,i,0

1 ∈ IDerk
(
log I; pl

)
. On the other hand,

we recall that
D = E0 ◦ E1[p] ◦ · · · ◦ El

[
pl
]
◦ F

where `(F ) > 1. Then, D1 = E0
1 and, since E0 = ◦i∈I0

(
ai • Ñ0,0,i,0

)
, we have that

D1 =
∑
i∈I0

aiÑ
0,0,i,0
1 = ΦL,R,I

pl

(∑
i∈I0

(
ai ⊗N0,0,i,0

1

))

Therefore, ΦL,R,I
pl

is bijective.
�

Remark 3.2.31 If we change the condition 2. in Hypothesis 3.2.26 for

2’. There exists {ai, i ∈ I} a k-basis of L such that
{
ap

r
, i ∈ I

}
⊆ {ai, i ∈ I} for all r ≥ 1.

then, Theorems 3.2.29 and 3.2.30 are true for that basis. For example, if we take L = k[ti |i ∈
I], we can apply these theorems and we obtain that ΦL,A

m is an isomorphism.

As we said at the beginning of this section, we want to prove that ΦL,A
m : L⊗kIDerk(A : m)→

IDerL(AL;m) is an isomorphism when L is a separable extension over a field k of characteristic
p > 0. Let us recall a characterization for such type of extensions that appears in [Bo]:

Theorem 3.2.32 [Bo, §15.4. Th. 2] Let k be a field of characteristic p > 0, kp
−∞

a perfect
closure of k and L a commutative k-algebra. The following properties are equivalent:

1. L is separable.

2. There exists an extension k′ of k such that k′ is perfect and k′ ⊗k L is reduced.

3. The ring kp
−∞ ⊗k L is reduced.

4. The ring k′⊗kL is reduced for every extension k′ of k which is of finite degree and p-radical
of height ≤ 1.

5. For every family {ai} of elements of L linearly independent over k, the family {api } is
linearly independent over k.

6. There exists a basis {ai} of the vector k-space L such that the family {api } is linearly
independent over k.
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Note that if k is a field, then the second condition of Hypothesis 3.2.26 always holds and
the first one is equivalent to L being a separable k-algebra thanks to the previous theorem.
Then, if L is separable over k, L satisfies Hypothesis 3.2.26 and we have as a straightforward
consequence of Theorem 3.2.30 the following result.

Corollary 3.2.33 Let k be a field of characteristic p > 0, k → L a separable ring extension and
A a commutative finitely generated k-algebra. Then, ΦL,A

m : L⊗k IDerk(A;m)→ IDerk(AL;m)
is an isomorphism of AL-modules for all m ≥ 1. Moreover, Leapsk(A) = LeapsL(AL).



Chapter 4

Integrable derivations for some plane
curves

Although there is an algorithm to decide whether a given HS-derivation of length m− 1 can be
extended to a HS-derivation of length m or not, at present we do not know any real algorithm
to decide if a given derivation is m-integrable or not, the main difficulty is the fact that a
derivation can be m-integrable, but not necessarily any previously known (m− 1)-integral can
be extended to an m-integral. So the effective computation of a system of generators of the
modules of m-integrable derivations remains a difficult problem.

In this chapter we want to show how to calculate the modules of m-integrable derivations,
for m ∈ N, of quotient of the polynomial ring k[x, y] in two variables over an ideal generated
by certain plane curves where k will be a reduced ring of positive characteristic (i.e. Fp ⊆ k).

4.1 Integrable derivations for xn − yq

Let R = k[x, y] be the polynomial ring in two variables over a reduced ring k of characteristic
p > 0 and h = xn − yq ∈ R with n, q 6= 0. In this section we will study the modules of
m-integrable k-derivations of A = R/〈h〉 of length m ∈ N.

In this section we will use the following notations: Let α := valp(n) be the p-adic valuation
of n and s = n/pα. We will denote by m the remainder of the division of q by p and β :=
valp(q −m). We write

γ := min{i ∈ N | ipα ≥ q − 1} = d(q − 1)/pαe.

Proposition 4.1.1 Let k be a commutative reduced ring of characteristic p > 0 and R = k[x, y]
the polynomial ring over k. We set A = R/〈h〉 where h = xn − yq with n, q 6= 0. For

δ ∈ Derk(log h), we denote δ = Π
〈h〉
n (δ) (Corollary 1.2.3).

• If n, q 6= 0 mod p, then IDerk(A) = Derk(A) = 〈δ1, δ2〉 where δ1 = qx∂x + ny∂y and
δ2 = qyq−1∂x + nxn−1∂y.

• If n = 0 mod p and q = 1, then IDerk(A) = Derk(A) = 〈∂x〉.

69
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• If α,m ≥ 1 and q ≥ 2, then

IDerk(A; i) =




〈
∂x
〉

if 1 ≤ i < pα〈
x∂x, yγ∂x

〉
if pα ≤ i < pα+β〈

x∂x, yγ+1∂x

〉
if i ≥ pα+β or i =∞

if s = 1, α ≤ β, m = 1

{
〈∂x〉 if 1 ≤ i < pα〈
x∂x, yγ∂x

〉
if i ≥ pα or i =∞ otherwise.

Proof. Let δ = u∂x + v∂y be a k-derivation of R. To prove this result it is enough to show
which derivations are h-logarithmically i-integrable for i ∈ N (Corollary 1.2.3).

• n, q 6= 0 mod p.

We have to find the pairs (u, v) ∈ R2 such that δ(h) = nuxn−1 − qvyq−1 ∈ 〈h〉, i.e. the pairs
(u, v) ∈ R2 such that there exists F ∈ R holding the equation nxn−1u− qyq−1v = F (xn − yq).
Then, xn−1(nu− Fx) = yq−1(qv − Fy). Hence,{

nu− Fx = Gyq−1

qv − Fy = Gxn−1 ⇒
{
u = G(1/n)yq−1 + F (1/n)x
v = G(1/q)xn−1 + F (1/q)y.

Therefore, Derk(log h) = 〈δ1, δ2〉 where δ1 = qx∂x + ny∂y and δ2 = qyq−1∂x + nxn−1∂y. Note
that h is a quasi-homogenous polynomial with respect to the weights w(x) = q and w(y) = n.
By Theorem 1.2.8, the Euler vector field, δ1, is h-logarithmically ∞-integrable. On the other
hand, the gradient of h is J0 = 〈xn−1, yq−1〉, so δ2 ∈ J0 Derk(R) and from Proposition 1.2.7 we
know that δ2 is h-logarithmically ∞-integrable too. So, IDerk(A) = Derk(A) = 〈δ1, δ2〉.

• n = 0 mod p and q = 1.

The condition for δ to be h-logarithmic is that v ∈ 〈h〉, so Derk(log h) = 〈∂x, h∂y〉. In this
case J0 = 〈1〉. Hence, any 〈h〉-logarithmic derivation is integrable (Proposition 1.2.7). Then,
IDerk(A) = Derk(A) = 〈∂x〉.

• α,m ≥ 1 and q ≥ 2.

Note that n = spα. In order for δ to be h-logarithmic, qvyq−1 ∈ 〈h〉, i.e. qvyq−1 = F (xn − yq)
for some F ∈ R. So, (qv + Fy)yq−1 = Fxn. Hence,{

qv + Fy = Gxn

F = Gyq−1 ⇒ v = (1/q)G(xn − yq) for some G ∈ R.

Therefore, Derk(log h) = 〈∂x, h∂y〉. Since h∂y is the zero derivation on A, we can focus on the
h-logarithmically integrability of δ = u∂x with u ∈ R. Let ux ∈ R and uy ∈ k[y] such that

u = ux(x, y)x+ uy(y)⇒ δ = u∂x = uxx∂x + uy∂x.
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Since h is a quasi-homogeneous polynomial with respect to the weights w(x) = q and w(y) =
spα, the Euler vector field, χ = qx∂x, is h-logarithmically integrable, and hence also uxx∂x are.
Thanks to this and since IDerk(log h; i) is an R-module for all i,

δ ∈ IDerk(log h; i)⇔ uy∂x ∈ IDerk(log h; i).

So, we will see the integrability of δ = u∂x with u ∈ k[y]. Let us consider ϕ : R → R[|µ|] a
generic integral of u∂x:

ϕ : R −→ R[|µ|]
x 7−→ x+ uµ+ u2µ

2 + · · ·
y 7−→ y + v2µ

2 + · · ·
To show that δ is i-integrable it is enough to prove that there exist uj, vj for 2 ≤ j ≤ i

such that the coefficients of µj in ϕ(h) belong to 〈h〉 for all j ≤ i. We will denote by µj the
coefficient of µj in the equation

ϕ(h) =
(
xp

α

+ up
α

µp
α

+ up
α

2 µ
2pα + · · ·

)s
−
(
y + v2µ

2 + v3µ
3 + · · ·

)q
. (4.1)

Suppose that there exists i such that 2 ≤ i < pα. Then, µ2 = −qyq−1v2 has to belong to
〈h〉. As we saw before, that implies that v2 ∈ 〈h〉, so we can put v2 = 0. Let us assume that
vl = 0 for all 2 ≤ l < i < pα. In this case, µi = −qyq−1vi and, as the same before, we can put
vi = 0. Then, for all i < pα,

IDerk(A; i) = Derk(A) =
〈
∂x
〉

and we can write the equation (4.1) as:(
xp

α

+ up
α

µp
α

+ up
α

2 µ
2pα + · · ·

)s
−
(
y + vpαµ

pα + vpα+1µ
pα+1 + · · ·

)q ∈ 〈h〉 (4.2)

Now, let us consider
µpα = sxp

α(s−1)up
α − qyq−1vpα . (4.3)

We have to see that if there is vpα ∈ R such that µpα ∈ 〈h〉. Let F ∈ R such that sxp
α(s−1)up

α−
qyq−1vpα = F (xn − yq). Then,

xp
α(s−1)

(
sup

α − Fxpα
)

= yq−1 (mvpα − Fy)⇒ sup
α − Fxpα = Gyq−1

for some G ∈ R. Since u ∈ k[y], we can write u =
∑
uiy

i where ui ∈ k and the previous
expression implies that up

α

i = 0 for all i such that ipα < q − 1. So that ui = 0 because k is
reduced. Hence, we can write u = w(y)yγ where γ = min{i ∈ N | ipα ≥ q−1} and w(y) ∈ k[y].
Substituting the expression of u on (4.3), we can deduce that

sxp
α(s−1)wp

α

yγp
α−(q−1) − qvpα ∈ 〈h〉 ⇒ vpα ∈ (s/q)xp

α(s−1)wp
α

yγp
α−(q−1) + 〈h〉 (4.4)

Therefore, A has a leap at pα and

IDerk(A; pα) = 〈x∂x, yγ∂x〉 where γ = min{i ∈ N | ipα ≥ q − 1}.

Let us write q = tpβ + m. Note that the only case where γpα = q − 1 is q = tpβ + 1 and
α ≤ β. To see that we have to show when the equality ipα = q− 1 holds. If we substitute q, we
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obtain that ipα = tpβ +m− 1, then ipα− tpβ = m− 1. Hence, m− 1 has to be a multiple of p
and, since m < p, we have that m − 1 = 0. So, ipα = tpβ. Now, if β < α, then ipα−β = t 6= 0
mod p giving us a contradiction. So, β ≥ α, q = tpβ + 1 and i = tpβ−α.

Let us focus on the case when s = 1 and q = tpβ + 1 with α ≤ β.

• Case q = tpβ + 1, α ≤ β and s = 1. Observe that t 6= 0 because q ≥ 2 and we have that
γ = tpβ−α. We will study the integrability of w(y)yγ∂x in this particular case.

Substituting the values of q and s in the equation (4.2) and (4.4) we obtain:(
xp

α
+ up

α
µp

α
+ up

α

2 µ
2pα + · · ·

)
−

−
(
yp

β
+ vp

β

pαµ
pα+β

+ vp
β

pα+1µ
(pα+1)pβ + · · ·

)t (
y + vpαµ

pα + · · ·
)
∈ 〈h〉

and
vpα ∈ cwp

α

+ 〈h〉

for c = s/q. Let us consider i such that pα < i < pα+β. If i = jpα for some j ≥ 2, then
µi = up

α

j − ytp
β
vi. Otherwise, µi = −ytpβvi. So, wyγ∂x is h-logarithmically i-integrable

for all i < pα+β (it’s enough to put uj = vi = 0, so that µi ∈ 〈h〉). Now,

µpα+β = up
α

pβ
− ty(t−1)pβ+1vp

β

pα − ytp
β

vpα+β

has to belong to 〈h〉. So, substituting the value of vpα , we have that

up
α

pβ
− ctwpα+β

y(t−1)pβ+1 − ytpβvpα+β = G
(
xp

α − ytpβ+1
)

for some G ∈ R. The coefficient of yj with j = (t− 1)pβ + 1 in this equality is tcwp
α

0 = 0
where w0 is the independent term of w. Since R is reduced, w0 = 0. Hence, yγ∂x is not
pα+β-integrable. However, if w = w′y with w′ ∈ k[y], the previous equation is

up
α

pβ
− ctw′pα+β

yq+p
β(pα−1) − ytpβvpα+β = G

(
xp

α − ytpβ+1
)
.

Then, there exists a solution, for instance upβ = 0 and vpα+β = −ctw′pα+β
yp

β(pα−1)+1. In
conclusion, in this case A has a leap at pα+β and

IDerk
(
A; pα+β

)
=
〈
x∂x, yγ+1∂x

〉
.

Until now we saw that, for all q ≥ 2

IDerk (A; pα) =
〈
x∂x, yγ∂x

〉
where γ = min{i ∈ N | ipα ≥ q − 1}

and moreover, when q = tpβ + 1, 1 ≤ α ≤ β and s = 1, yγ∂x is not h-logarithmically integrable
but

IDerk
(
A; pα+β

)
=
〈
x∂x, yγ+1∂x

〉
.
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Let us rewrite γ := γ + 1 in the latter case. We will see that yγ∂x is integrable on A for all
q ≥ 2. Consider

ϕ : A −→ A[|µ|]
x 7−→ x+ yγµ
y 7−→ y + v1µ

pα + v2µ
2pα + · · ·

where for all i ≥ 1,

vi = Cix
pα(s−σ)yiγp

α−(τ+1)q+1 for i = τs+ σ with τ ≥ 0 and σ = 1, . . . , s,

Ci =
1

q

[(
s

i

)
−
∑
j∈Ii

Dj

]
where

(
s

i

)
= 0 if i > s,

Ii =

{
j = (j0, j1, . . . , ji−1) ∈ Ni | jr ≥ 0 ∀r = 0, . . . , i− 1, |j| = q,

i−1∑
r=1

rjr = i

}
and, for all j = (j0, j1, . . . , jl) with l ≥ 1,

Dj =

(
q

j

)
Cj1

1 · · ·C
jl
l with

(
q

j

)
=

q!

j0! · · · jl!
.

We have to prove that ϕ is well-defined. First we will see that iγpα − (τ + 1)q + 1 ≥ 0, i.e.
(τs+ σ)γpα − τq ≥ q − 1.

• When γpα > q− 1, then γpα ≥ q, but q is not multiple of p, so γpα ≥ q+ 1 and therefore

(τs+ σ)γpα − τq ≥ (τs+ σ)(q + 1)− τq = (τ(s− 1) + σ)q + τs+ σ ≥ q − 1

because s− 1 ≥ 0 and σ ≥ 1.

• Let us consider γpα = q − 1. As we have seen before, the previous equality only holds if
q = tpβ + 1 and α ≤ β. If s = 1, then we have considered γ + 1, so we are in the first
point. Therefore, we just have to consider s ≥ 2. In this case, we have to prove that
(τs+ σ)γpα − τq = (τs+ σ)(q − 1)− τq ≥ q − 1. Then

(τs+ σ)(q − 1)− τq ≥ (2τ + σ)(q − 1)− τq = (τ + σ)q − (2τ + σ).

So,

(τ + σ)q − (2τ + σ) ≥ q − 1⇔ (τ + σ − 1)q ≥ 2τ + σ − 1

and this is true because q ≥ 2 and τ + σ − 1 ≥ 0. Note that if τ + σ − 1 = 0 then τ = 0
and σ = 1, so 2τ + σ − 1 = 0 too.

Now, we have to show that ϕ(h) = 0 in A[|µ|]. The equation is:

ϕ(h) =
(
xp

α

+ yγp
α

µp
α)s − (y + v1µ

pα + v2µ
2pα + · · ·

)q
.
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Since all degrees of the monomial which appeared in this equation are multiple of pα, let us
denote µi to the coefficient of degree ipα. Then

µi =

(
s

i

)
xp

α(s−i)yiγp
α − µ̃i

where µ̃i is the coefficient of µip
α

of
(
y + v1µ

pα + v2µ
2pα + · · ·

)q
. This coefficient can be found

on (
y + v1µ

pα + · · ·+ viµ
ipα
)q

=
∑
|j|=q

(
q

j

)
yj0vj11 · · · v

ji
i µ

pα(j1+···+iji).

We just have to consider all j such that j1 + · · ·+ iji = i. Observe that there exists only one j
holding this equation such that ji 6= 0, This j is (q − 1, 0, . . . , 0, 1) where 1 is in the position i.
So, we can identify the set of all these j with Ii ∪ (q− 1, 0, . . . , 0, 1). Let us calculate a term of
µ̃i. Fixed j, we have (

q

j

)
yj0vj11 · · · v

ji
i =

(
q

j

)
Cj1

1 · · ·C
ji
i x

apαyb = Djx
apαyb

where

a =
∑

1≤τs+σ≤i

jτs+σ(s− σ) ≥ 0 and b = j0 +
∑

1≤τs+σ≤i

jτs+σ (γpα(τs+ σ)− (τ + 1)q + 1) ≥ 0.

We are going to study these exponents.

a = s
∑

1≤τs+σ≤i

jτs+σ −
∑

1≤τs+σ≤i

jτs+σσ = s(q − j0)−
∑

1≤τs+σ≤i

jτs+σσ.

On the other side, if we write i = ls+ r where l ≥ 0 and 1 ≤ r ≤ s, we have that

ls+ r = i =
∑

1≤τs+σ≤i

jτs+σ(τs+ σ) = s
∑

1≤τs+σ≤i

jτs+στ +
∑

1≤τs+σ≤i

jτs+σσ.

Then, if we denote T =
∑

1≤τs+σ≤i
jτs+στ and we substitute on a, we have

a = s(q − j0)− ((l − T )s+ r) = s(q − j0 − l + T )− r ≥ 0

If q − j0 − l + T < 1, then a < 0 so q − j0 − l + T ≥ 1 and we can write

a = (q − j0 − l + T − 1)s+ s− r.

Observe that s− r ≥ 0 because 1 ≤ r ≤ s. Now,

b = j0 + γpα
∑

1≤τs+σ≤i

jτs+σ(τs+ σ)− q
∑

1≤τs+σ≤i

jτs+στ − q
∑

1≤τs+σ≤i

jτs+σ +
∑

1≤τs+σ≤i

jτs+σ

= j0 + γpαi− qT − q(q − j0) + (q − j0) = iγpα − q(T + q − j0 − 1).
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So, (
q

j

)
yj0vj11 · · · v

ji
i = Djx

(q−j0−l+T−1)spα+(s−r)pαyiγp
α−q(T+q−j0−1).

Since xsp
α

= yq in A,(
q

j

)
yj0vj11 · · · v

ji
i = Djx

(s−r)pαyiγp
α+q(q−j0−l+T−1)−q(T+q−j0−1) = Djx

(s−r)pαyiγp
α−lq.

Recall that i = ls+ r where l ≥ 0 and 1 ≤ r ≤ s. Then, we have

µ̃i =
∑
|j|=q

j1+...+iji=i

Djx
pα(s−r)yiγp

α−lq =

(∑
j∈Ii

Dj +D(q−1,0,...,0,1)

)
xp

α(s−r)yiγp
α−lq

=

(∑
j∈Ii

Dj + qCi

)
xp

α(s−r)yiγp
α−lq =

(∑
j∈Ii

Dj + q(1/q)

[(
s

i

)
−
∑
j∈Ii

Dj

])
xp

α(s−r)yiγp
α−lq

=

(
s

i

)
xp

α(s−r)yiγp
α−lq.

So,

µi =

(
s

i

)
xp

α(s−i)yiγp
α −

(
s

i

)
xp

α(s−r)yiγp
α−lq.

If i > s, then
(
s
i

)
= 0, and hence µi = 0. If i ≤ s, then i = 0 · s+ i, i.e., l = 0 and r = i, so

µi =

(
s

i

)
xp

α(s−i)yiγp
α −

(
s

i

)
xp

α(s−i)yiγp
α

= 0.

Hence ϕ is well-defined and the proposition is proved.
�

Remark 4.1.2 Let us consider h = xn − yq ∈ R = k[x, y] with n, q 6= 0 and A = R/〈h〉.
Assume that n 6= 0 mod p and q = 0 mod p. Then, we can compute IDerk(A) thanks to
Proposition 4.1.1. Observe that the map f : A → R/〈xq − yn〉 =: B given by f(x) = y and
f(y) = x is an isomorphism of k-algebras and by Lemma 1.1.26, IDerk(A; i) = IDerk(B; i).
Hence, Leapsk(A) = Leapsk(B).

We recall the notations that we use: Let α := valp(n) be the p-adic valuation of n and
s = n/pα. We will denote by m the remainder of the division of q by p and β := valp(q −m).

As a straightforward consequence of Proposition 4.1.1 and Corollary 1.2.16, we have the
following result.

Corollary 4.1.3 Let k be a UFD of characteristic p > 0 and h = xn − yq ∈ k[x, y] with
n, q 6= 0. We denote A = k[x, y]/〈h〉. Suppose m = 0, α ≥ 1 and β = valp(q) ≥ 1. We write
τ = min{α, β} ≥ 1, n′ = n/pτ and q′ = q/pτ . Then, Derk(A) = 〈∂x, ∂y〉 and for all i ≥ 0,

IDerk(A; pτ+i) =
{
δ | δ ∈ IDerk

(
log
〈
xn
′ − yq′

〉
, pi
)}

.



76 4.1. INTEGRABLE DERIVATIONS FOR XN − Y Q

Corollary 4.1.4 Let k be a commutative reduced ring of characteristic p > 0 and A =
k[x, y]/〈h〉 where h = xn − yq with n, q 6= 0. Then, we have the following properties.

1. If n, q 6= 0 mod p then, Leapsk(A) = ∅.

2. If n = 0 mod p and q = 1 then, Leapsk(A) = ∅.

3. If α,m ≥ 1 and q ≥ 2, then

Leapsk(A) =

{ {
pα, pα+β

}
if s = 1, α ≤ β, m = 1

{pα} otherwise.

4. If α = 0 (i.e. n 6= 0 mod p) and m = 0 (i.e. q = 0 mod p) then, Leapsk(A) =
Leapsk(A

′) where A′ = k[x, y]/〈xq − yn〉.

Moreover, if k is a unique factorization domain, m = 0, α, β ≥ 1 and we denote τ =
min{α, β} ≥ 1, n′ = n/pτ and q′ = q/pτ , we have that

Leapsk(A) = {pτ} ∪ {ipτ | i ∈ Leapsk (B)} where B = k[x, y]
/〈

xn
′ − yq′

〉
.

Proof. This corollary is a consequence of Proposition 4.1.1 and Proposition 1.2.17. �

Corollary 4.1.5 Let k be a commutative reduced ring of characteristic p > 0 and A =
k[x, y]/〈h〉 where h = xn − yq such that n, q 6= 0, α,m ≥ 1 and q ≥ 2. We denote

Bi := AnnA (IDerk(A; i− 1)/ IDerk(A; i))

for i > 1. Then,

Bi =

{
〈x, yγ〉 if i = pα

〈y〉 if i = pα+β, s = 1, α ≤ β and m = 1.

Moreover, Bi ⊇ J0 = 〈yq−1〉 where J0 is the gradient ideal of h defined in Proposition 1.2.7.

Proof. Let us start with i = pα. From Proposition 4.1.1, we can deduce that

IDerk (A; pα − 1) / IDerk (A; pα) = 〈∂x〉/〈x∂x, yγ∂x〉

where ∂x ∈ Derk(A). By definition, a ∈ Bi if a∂x = 0 mod 〈x∂x, yγ∂x〉, i.e. if there exist
F,G ∈ A such that a∂x = Fx∂x+Gyγ∂x. Applying this derivation to x, we have that a ∈ 〈x, yγ〉.

Now, when α ≤ β, s = m = 1 and i = pα+β, from Proposition 4.1.1,

IDerk
(
A; pα+β − 1

)
/ IDerk

(
A; pα+β

)
= 〈x∂x, yγ∂x〉/〈x∂x, yγ+1∂x〉 = 〈yγ∂x〉/〈yγ+1∂x〉.

In this case, a ∈ Bpα+β if and only if ayγ∂x ∈ 〈yγ+1∂x〉, i.e. if (a−Fy)yγ∂x = 0 for some F ∈ A.
This implies that a ∈ 〈y〉 and we have proved the corollary.

�
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Examples 4.1.6 Let us consider k a reduced ring of characteristic p = 3 and h = x3 − y5 ∈
k[x, y], then γ = 2. According with Proposition 4.1.1 and Corollary 4.1.4, Leapsk(k[x, y]/〈h〉) =
{3} and

IDerk(k[x, y]/〈h〉; i) =

{
〈∂x〉 1 ≤ i < 3

〈x∂x, y2∂x〉 i ≥ 3.

Now, if we consider f = x3 − y4 ∈ k[x, y], then γ = 1, Leapsk(k[x, y]/〈f〉) = {3, 9} and

IDerk(k[x, y]/〈f〉; i) =


〈∂x〉 1 ≤ i < 3

〈x∂x, y∂x〉 3 ≤ i < 9

〈x∂x, y2∂x〉 i ≥ 9.

Moreover, if we assume that k is a UFD, thanks to Corollary 4.1.3 and Corollary 4.1.4, we
have that Leapsk(A) = {3, 9, 27} and

IDerk
(
k[x, y]/

〈
f 3
〉)

=


〈∂x, ∂y〉 1 ≤ i < 3

〈∂x〉 3 ≤ i < 9

〈x∂x, y∂x〉 9 ≤ i < 27

〈x∂x, y2∂x〉 i ≥ 27.

Remark 4.1.7 Note that if k is not reduced, Proposition 4.1.1 is not true. For example, if
k = F3[t]/〈t3〉 and h = x3 − y5, then t∂x ∈ IDerk(A) with the integral

A −→ A[|µ|]
x 7−→ x+ tµ
y 7−→ y

�

4.2 Other plane curves

In this section we calculate the modules of integrable derivations of the quotient of a polynomial
ring over some non-binomial plane curves. These curves have been taken from [Gr].

Curve 1.

Let k be a domain of characteristic p > 0 and t ∈ k. Let us consider h = xp + txp+1 ∈
R = k[x] and A = R/〈h〉. The module Derk(log h) is generated by (1 + tx)∂x. From Theorem
2.5.1 and Corollary 1.2.4, Derk(log h) = IDerk(log h; p− 1). Hence, we have that (1 + tx)∂x is
h-logarithmically (p − 1)-integrable. So, let us consider E ∈ HSk(log h; p − 1) an integral of
u(1 + tx)∂x where u ∈ R. From Proposition 1.2.1, there exists D ∈ HSk(R) an integral of E.
In order for D to be h-logarithmic,

Dp(x
p + txp+1) = D1(x)p + t(xD1(x)p +Dp(x)xp) = up(1 + tx)p+1 + tDp(x)xp ∈ 〈h〉

(to calculate this equality see Lemma 1.2.9). So, u ∈ 〈x〉 and IDerk(log h; p) = 〈x(1 + tx)∂x〉.
Observe that this generator is ∞-integrable, for example the k-algebra homomorphism R →
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R[|µ|] given by x 7→ x + x(1 + tx)µ is a h-logarithmic integral of x(1 + tx)∂x. In conclusion,
Leapsk(A) = {p} and

IDerk(A; i) =

{
〈(1 + tx)∂x〉 if i < p

〈x(1 + tx)∂x〉 if i ≥ p.

Curve 2.

Let k be a domain of characteristic p = 2 and h = x4+y6+y7 ∈ R = k[x, y]. Let A = R/〈h〉.
Let us consider δ = u∂x + v∂y for some u, v ∈ R. In order for δ to be h-logarithmic, vy6 ∈ 〈h〉,
that means that vy6 = F (x4 + y6 + y7) for some F ∈ R. Hence, (v − F )y6 = F (x4 + y7). So,
F = Gy6 for some G ∈ R and v = G(x4 + y6 + y7), i.e. v ∈ 〈h〉. Therefore,

Derk(log h) = 〈∂x, h∂y〉.

Since h∂y is h-logarithmically∞-integrable, we can focus on the h-logarithmically integrability
of u∂x where u ∈ R. Let us suppose that δ = u∂x ∈ IDerk(log I; 4(i − 1)) for some i ≥ 2 and
that there exists a 4(i− 1)− 〈h〉-logarithmic integral of δ of the form

ϕ : R −→ R[|µ|]
x 7−→ x+ uµ
y 7−→ y + v1µ

4 + · · ·+ vi−1µ
4(i−1)

Then, for all n ≥ 4(i − 1) such that 4 - n, the coefficient of µn in the equation ϕ(h) is zero.
Moreover, the coefficient of µ4i, that we denote it by µ̃i, is obtained from the expression(

y + v1µ
4 + · · ·+ vi−1µ

4(i−1)
)6

+
(
y + v1µ

4 + · · ·+ viµ
4(i−1)

)7

=
(
y2 + v2

1µ
8 + · · ·+ v2

i−1µ
8(i−1)

)3 (
1 + y + v1µ

4 + · · ·+ vi−1µ
4(i−1)

)
=

∑
j=(j0,...,ji−1)
|j|=3

(
3

j

)
y2j0v2j1

1 · · · v
2ji−1

i−1 µ8(j1+···+(i−1)ji−1)
(
1 + y + v1µ

4 + · · ·+ vi−1µ
4(i−1)

)

=
i−1∑
l=0

∑
j=(j0,...,ji−1)
|j|=3

(
3

j

)
vly

2j0v2j1
1 · · · v

2ji−1

i−1 µ8(j1+···+(i−1)ji−1)+4l

(4.5)

where v0 = 1 + y. Then,

µ̃i =
∑

(j,l)∈Ii

µi,j,l where µi,j,l =
∑

(j,l)∈Ii

(
3

j

)
vly

2j0v2j1
1 · · · v

2ji−1

i−1

and

Ii = {(j, l) ∈ Ni×N | 0 ≤ l < i, js ≥ 0 ∀s = 0, . . . , i−1, |j| = 3, 2(j1+· · ·+(i−1)ji−1) = i−l}.

Observe that j0 ≤ 2 for all (j, l) ∈ Ii because if j0 = 3, then js = 0 for all s = 1, . . . , i − 1, so
i− l = 0 and this is a contradiction. We have the following lemmas.
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Lemma 4.2.1 Let i ≥ 2 be an integer and let us suppose that vn ∈ 〈y2〉 for all 1 ≤ n ≤ i− 1.
Then, µ̃i ∈ 〈y8〉.

Proof. Since vn ∈ 〈y2〉,
µi,j,l ∈

〈
y2j0+4(j1+···+ji−1)

〉
.

Since j0 + j1 + · · · + ji−1 = 3 and j0 ≤ 2, we have 2j0 + 4(j1 + · · · + ji−1) = 2j0 + 4(3 − j0) =
4− 2j0 + 8 where 4− 2j0 ≥ 0. Hence,

µi,j,l ∈ 〈y8〉 for all (j, l) ∈ Ii ⇒ µ̃i ∈ 〈y8〉

and we have the result.
�

Lemma 4.2.2 Let i ≥ 2 be an integer and let us suppose that vn ∈ 〈x4〉 for all 1 ≤ n ≤ i− 1.
Then, µ̃i ∈ 〈x8〉.

Proof. Since vn ∈ 〈x4〉, we have that

µi,j,l ∈
〈
x8(j1+···+ji−1)

〉
.

Since j0 6= 3, we have 8(j1 + · · ·+ ji−1) = 8(3− j0) = 8(2− j0) + 8 where 2− j0 ≥ 0. Hence,

µi,j,l ∈ 〈x8〉 for all (j, l) ∈ Ii ⇒ µ̃i ∈ 〈x8〉.

�

Let us suppose that δ = u∂x ∈ IDerk(log I; 4(i−1)) for some i ≥ 2 and it has a 4(i−1)−〈h〉-
logarithmic integral

ϕ : R −→ R[|µ|]
x 7−→ x+ uµ
y 7−→ y + v1µ

4 + · · ·+ vi−1µ
4(i−1)

where vn ∈ 〈y2〉 (resp. vn ∈ 〈x4〉) for all n ≥ 1. By Lemma 4.2.1 (resp. Lemma 4.2.2), we have
that µ̃i = Fy8 (resp. µ̃i = Fx8) for some F ∈ R. We put vi = Fy2 (resp. vi = F (1 + y)x4) and
we define an integral of δ

ϕ′ : R −→ R[|µ|]
x 7−→ x+ uµ
y 7−→ y + v1µ

4 + · · ·+ vi−1µ
4(i−1) + viµ

4i

Then, ϕ′ is 4i−〈h〉-logarithmic. It is clear that ϕ′ is (4i−1)−〈h〉-logarithmic and the coefficient
of µ4i in ϕ′(h) is y6vi+ µ̃i ∈ 〈h〉. Therefore, if δ = u∂x ∈ IDerk(log I; 4) and there exists v ∈ 〈y2〉
or v ∈ 〈x4〉 such that

ϕ : R −→ R[|µ|]
x 7−→ x+ uµ
y 7−→ y + vµ4

is a 4 − 〈h〉-logarithmic integral of δ, then δ ∈ IDerk(log I;m) for all m ≥ 1. Thanks to this,
we will calculate modules of integrable k-derivations.
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Let us consider δ = u∂x where u ∈ R and a generic integral ϕ : R→ R[|µ|] of δ = u∂x:

ϕ : R −→ R[|µ|]
x 7−→ x+ uµ+ u2µ

2 + · · ·
y 7−→ y + v2µ

2 + · · ·

The coefficient of µi for i = 2, 3 in ϕ(h) is y6vi and they have to belong to 〈h〉. As we have
seen before, that implies that vi ∈ 〈h〉, so we can put vi = 0 for i = 2, 3 and we can write:

ϕ(h) = (x+ uµ+ u2µ
2 + · · · )4 + (y2 + v2

4µ
8 + v2

5µ
10 + · · · )3(1 + y + v4µ

4 + v5µ
5 + · · · ). (4.6)

The coefficient of µ4 in this equation is u4 + y6v4 and has to belong to 〈h〉. Let us suppose that
F ∈ R satisfies the equation

u4 + y6v4 = F
(
x4 + y6 + y7

)
. (4.7)

Let us write u =
∑
ui(x)yi ∈ (k[x])[y] and F =

∑
Fiy

i ∈ (k[x])[y]. Then,∑
u4
i y

4i =
∑

Fix
4yi + (v4 + (1 + y)F )y6.

If we consider the independent term and the coefficient of y4 in this equation, we have that
u4

0 = F0x
4 and u4

1 = F1x
4. Hence, we can deduce that u0 = uxx and u1 = uxyx for ux, uxy ∈ k[x].

Therefore u and δ can be written as

u = uxx+ uxyxy + uyy
2 ⇒ δ = uxx∂x + uxyxy∂x + uyy

2∂x

where uy ∈ R. Substituting the expression of u on (4.7), we have that

u4
xx

4+u4
xyx

4y4+u4
yy

8+y6v4 = F
(
x4 + y6 + y7

)
⇒
(
u4
x + u4

xyy
4 + F

)
x4 = y6

(
v4 + F (1 + y) + u4

yy
2
)
.

Hence, there exists G ∈ R such that{
u4
xx

4 + u4
xyy

4 + F = Gy6 ⇒ F = Gy6 + u4
xx

4 + u4
xyy

4

v4 + F (1 + y) + u4
yy

2 = Gx4

Substituting F in the second equation, we have that

v4 = G(x4 + y6 + y7) + u4
yy

2 + (u4
x + u4

xyy
4)(1 + y).

Therefore,
IDerk(log I; 4) = 〈x∂x, xy∂x, y2∂x, h∂y〉 = 〈x∂x, y2∂x, h∂y〉.

Thanks to the previous computation we can see that

R −→ R[|µ|]
x 7−→ x+ xyµ
y 7−→ y + (1 + y)y4µ4

and
R −→ R[|µ|]
x 7−→ x+ y2µ
y 7−→ y + y2µ4

are 4 − 〈h〉-logarithmic integrals of xy∂x and y2∂x respectively. So, both derivations are 〈h〉-
logarithmically m-integrable for all m ≥ 1.
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If δ ∈ IDerk(log h; 4), we have that δ = uxx∂x + uxyxy∂x + uyy
2∂x for some ux ∈ k[x] and

uxy, uy ∈ R. Since IDerk(log h;m) is an R-module and xy∂x and y2∂x are h-logarithmically
m-integrable, δ ∈ IDerk(log h;m) if and only if uxx∂x ∈ IDerk(log h;m). Therefore, we need to
see the h-logarithmically integrability of ux∂x where u ∈ k[x].

Let us consider a 4− 〈h〉-logarithmic integral ϕ : R→ R[|µ|] of ux∂x:

ϕ : R → R[|µ|]
x 7→ x+ uxµ+ u2µ

2 + · · ·
y 7→ y + v4µ

4 + v5µ
5 + · · ·

Then, v4 ∈ (1 + y)u4 + 〈h〉. Observe that the coefficient of µi for i = 5, 6, 7 in ϕ(h) (see (4.6))
is y6vi. Since we want ϕ to be h-logarithmic, y6vi ∈ 〈h〉, so we can put vi = 0. Now, the
coefficient of µ8 is

µ8 := u4
2 + y6v8 + v2

4(1 + y)y4 = u4
2 + y6v8 + (1 + y)3u8y4.

In order for µ8 to be in 〈h〉,

u4
2 + y6v8 + (1 + y)3u8y4 = F

(
x4 + y6 + y7

)
for some F ∈ R. Observe that the coefficient of y5 in the previous equation is u8

0 = 0 where
u0 is the independent term of u. Since R is a domain, u0 = 0, so u ∈ 〈x〉 and we can write
u = wx. Hence, v4 = (1 + y)w4x4 ∈ 〈x4〉 and if we put

v8 = w8(1 + y)3(1 + y)x4y4 ∈ 〈x4〉 and u2 = 0

then µ8 = 0 mod 〈h〉. Therefore,

IDerk(log h; 8) = 〈x2∂x, xy∂x, y
2∂x, h∂y〉

and
R −→ R[|µ|]
x 7−→ x+ x2µ
y 7−→ y + (1 + y)x4µ4

is a 4−〈h〉-logarithmic integral of x2∂x, so x2∂x is h-logarithmically m-integrable for all m ≥ 1.
In conclusion, Leapsk(A) = {4, 8} and

IDerk(A; i) =


〈∂x〉 if 1 ≤ i < 4

〈x∂x, y2∂x〉 if 4 ≤ i < 8

〈x2∂x, xy∂x, y2∂x〉 if i ≥ 8.

Curve 3.

Let k be a domain of characteristic p = 3 and h = x3 + y5 + x2y2 ∈ R = k[x, y]. Let
A = R/〈h〉. Let us consider δ = u∂x + v∂y. In order for δ to be h-logarithmic, δ(h) =
2uxy2 + 2vx2y+ 2vy4 ∈ 〈h〉, i.e. y(uxy+ vx2 + vy3) = F (x3 +x2y2 + y5) for some F ∈ R. Since
y is not a factor of h, we have that

uxy + vx2 + vy3 = F (x3 + x2y2 + y5)⇒ (uy − Fx2)x = (Fy2 − v)(x2 + y3)
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for some F ∈ R. Hence,{
Fy2 − v = Gx⇒ v = Fy2 −Gx
uy − Fx2 = G(x2 + y3)⇒ (u−Gy2)y = (F +G)x2 ⇒

{
u−Gy2 = Hx2 ⇒ u = Gy2 +Hx2

F +G = Hy ⇒ F = Hy −G

for some G,H ∈ R. Then, {
u = Gy2 +Hx2

v = −G(x+ y2) +Hy3.

Let us denote δ1 := x2∂x + y3∂y and δ2 := 2y2∂x + (x+ y2)∂y. Then,

Derk(log h) = 〈δ1, δ2〉.

These two derivations are h-logarithmically m-integrable for all m ≥ 1. To verify this claim,
let us consider a k-algebra homomorphism ϕ : R→ R[|µ|] given by

ϕ : R −→ R[|µ|]
x 7−→ x+ u1µ+ u2µ

2 + · · ·
y 7−→ y + v1µ+ v2µ

2 + · · ·

We start to calculating a generic coefficient of ϕ(h):

ϕ(h) = (x3 + u3
1µ

3 + u3
2µ

6 + · · · )+
(y + v1µ+ v2µ

2 + · · · )2 [(x+ u1µ+ u2µ
2 + · · · )2 + y3 + v3

1µ
3 + v3

2µ
6 + · · · ] .

The coefficient of µi in (x+ u1µ+ u2µ
2 + · · · )2 is the coefficient of µi of

(x+ u1µ+ u2µ
2 + · · ·+ uiµ

i)2 =
∑
|l|=2

(
2

l

)
xl0ul11 · · ·u

li
i µ

l1+···+ili .

Let us denote Li =
{
l = (l0, l1, . . . , li) ∈ Ni+1 | |l| = 2,

∑i
s=1 sls = i

}
and

νi3 =

{
1 if i = 0 mod 3
0 otherwise.

Then, the coefficient of µi in the term (x+ u1µ+ u2µ
2 + · · · )2 + y3 + v3

1µ
3 + v3

2µ
6 + · · · is

µ̃i =
∑
l∈Li

(
2

l

)
xl0ul11 · · ·u

li
i + νi3v

3
i/3.

Now the coefficient of µi in (y + v1µ+ v2µ
2 + · · · )2 is

µ′i =
∑
j∈Li

(
2

j

)
yj0vj11 · · · v

ji
i .

Hence, the coefficient of µi in ϕ(h) is

µi = νi3u
3
i/3 +

i∑
n=0

µ′nµ̃i−n.
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Observe that if n 6= 0, i, then µ′n and µ̃i−n do not have ui or vi as a factor of any term. Moreover,
µ′0 = y2 and µ̃0 = x2 + y3. Let j ∈ Li, then j1 + · · · + iji = i, so there exists only one j such
that ji 6= 0, namely j = (1, 0, . . . , 0, 1). Let us denote Li = Li \ {(1, 0, . . . , 0, 1)}. Then,

µi = νi3u
3
i/3 + 2

(
x2 + y3

)
yvi + 2xy2ui +

(
x2 + y3

)(∑
j∈Li

(
2

j

)
yj0vj11 · · · v

ji−1

i−1

)

+ y2

(∑
l∈Li

(
2

j

)
xl0ul11 · · ·u

li−1

i−1 + νi3v
3
i/3

)
+

i−1∑
n=1

µ′nµ̃i−n.

Let us consider the following lemma:

Lemma 4.2.3 Let u1 = x2 and v1 = y3 and i ≥ 2 an integer. Suppose that vj = 0 for all j ≥ 2
and un ∈ 〈x2〉 for all n < i. Then, there exists ui ∈ 〈x2〉 such that µi belongs to 〈h〉.

Proof. Note that L1 = {(1, 1)} and L2 = {(0, 2, 0), (1, 0, 1)}. Then,

µ2 = 2xy2u2 + (x2 + y3)v2
1 + y2u2

1 + 2yv12xu1 = 2xy2u2 + x2y6 + y9 + x4y2 + x3y4

= 2xy2u2 + x4y2 + y4(x3 + x2y2 + y5) = 2xy2u2 + x4y2 mod 〈h〉.

If we put u2 = x3, we have that µ2 ∈ 〈h〉 and the lemma is true for i = 2.
Let us assume that i ≥ 3. Let j ∈ Ln with n ≥ 3, then if js > 0 for some s ∈ {2, . . . , n}, the

term associated withj in µ′n is zero. Hence, we can assume that js = 0 for all s ≥ 2. In this case,
j1 = n ≥ 3 but j0+j1 = 2 and we have a contradiction. Therefore, µ′n = 0 for all n ≥ 3. Observe

that a similar argument can be applied to j ∈ Li in the term
(∑

j∈Li

(
2
j

)
yj0vj11 · · · v

ji−1

i−1

)
. So,

µi = νi3u
3
i/3 + 2xy2ui + y2

(∑
l∈Li

(
2

l

)
xl0ul11 · · ·u

li−1

i−1 + νi3v
3
i/3

)
+ µ′1µ̃i−1 + µ′2µ̃i−1.

Observe that µ′1 = 2yv1 and µ′2 = v2
1, so

µi =


νi3u

3
i/3 + 2xy2ui + y2

∑
l∈Li

(
2

l

)
xl0ul11 · · ·u

li−1

i−1 + 2y4µ̃i−1 + y6µ̃i−2 + y11 if i = 3

νi3u
3
i/3 + 2xy2ui + y2

∑
l∈Li

(
2

l

)
xl0ul11 · · ·u

li−1

i−1 + 2y4µ̃i−1 + y6µ̃i−2 otherwise.

Let l ∈ Ln with n ≥ 1, then l1 + · · · + ln ≥ 1 because l1 + · · · + nln = n, so l0 ≤ 1. Moreover,
since us ∈ 〈x2〉 for all 1 ≤ s < i, we have that(

2

l

)
xl0ul11 · · ·ulnn ∈

〈
x2(l1+···+ln)+l0 = x4−l0

〉
⊂
〈
x3
〉
.

The same occurs when l ∈ Li. Then, µ̃i−1 ∈ ν(i−1)3v
3
(i−1)/3+〈x3〉 and µ̃i−2 ∈ µ(i−2)3v

3
(i−2)/3+〈x3〉.

Hence,

y2
∑
l∈Li

(
2

l

)
xl0ul11 · · ·u

ji−1

i−1 + 2y4µ̃i−1 + y6µ̃i−2 = Fx3y2 + 2y4ν(i−1)3v
3
(i−1)/3 + y6ν(i−2)3v

3
(i−2)/3
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for some F ∈ R. If we put un = Fnx
2 for 1 ≤ n < i, we have that

µi =


νi3F

3
i/3x

6 + 2xy2ui + Fx3y2 + y11 if i = 3

νi3F
3
i/3x

6 + 2xy2ui + Fx3y2 + 2y13 if i = 4

νi3F
3
i/3x

6 + 2xy2ui + Fx3y2 + y15 if i = 5

νi3F
3
i/3x

6 + 2xy2ui + Fx3y2 otherwise.

Then, if we take

ui =


2νi3F

3
i/3x

2(x2 + y3) + Fx2 + 2x2y4 + x3y(x+ y2) if i = 3

2νi3F
3
i/3x

2(x2 + y3) + Fx2 + 2x3y(x+ y2)2 if i = 4

2νi3F
3
i/3x

2(x2 + y3) + Fx2 + x3y3(x+ y2)2 if i = 5

2νi3F
3
i/3x

2(x2 + y3) + Fx2 otherwise

we have the result.
�

Let us consider δ1 = x2∂x + y3∂y. Then, by Lemma 4.2.3, there exists u2 ∈ 〈x2〉 such that

R → R[|µ|]2
x 7→ x+ x2µ+ u2µ

2

y 7→ y + y3µ

is a h-logarithmic 2-integral of δ1. Doing this process recursively we can deduce that δ1 is
h-logarithmically m-integrable for all m ≥ 1. To see the h-logarithmically integrability of δ2,
we consider the following lemma:

Lemma 4.2.4 Let u1 = 2y2 and v1 = x + y2 and i ≥ 2 an integer. Suppose un ∈ 〈xy, y3〉 and
vn ∈ 〈y2〉 for all 2 ≤ n < i. Then, there exist ui ∈ 〈xy, y3〉 and vi ∈ 〈y2〉 such that µi belongs
to 〈h〉.

Proof. We will start to calculate for i = 2:

µ2 = 2(x2 + y3)yv2 + 2xy2u2 + (x2 + y3)v2
1 + y2u2

1 + xyv1u1

= 2(x2 + y3)yv2 + 2xy2u2 + (x2 + y3)(x+ y2)2 + y6 + 2xy3(x+ y2)
= 2(x2 + y3)yv2 + 2xy2u2 + y6 + (x+ y2) [(x2 + y3)y2 + x3 + xy3 + 2xy3]
= 2(x2 + y3)yv2 + 2xy2u2 + y6 mod 〈h〉.

If we put u2 = 2xy and v2 = y2 we have the result for i = 2. Let us consider i ≥ 3. We will
study each component of µi.

• For 1 ≤ n ≤ i− 1, we have that

µ′n =
∑
j∈Ln

(
2

j

)
yj0vj11 · · · vjnn =

∑
j∈Ln

(
2

j

)
yj0(x+ y2)j1vj22 · · · vjnn .

Observe that j0 ≤ 1 because n > 0 and if j0 = 2, then js = 0 for all s ≥ 1 and
0 =

∑n
s=1 sjs = n!!!. Moreover, since vs ∈ 〈y2〉 for all 2 ≤ s ≤ i− 1, if j ∈ Ln, then

yj0(x+ y2)j1vj22 · · · vjnn ∈
〈
(x+ y2)j1yj0+2(j2+···+jn)

〉
.

We fix j ∈ Ln:
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- If l1 = 0, then the term associated with l belongs to 〈y3〉 because j0+2(j2+· · ·+jn) =
4− j0 ≥ 3.

- If l1 = 1, then there exists s ∈ {0, 2, . . . , s} such that js = 1 and vs ∈ 〈y〉. So, the
term associated with j belongs to 〈xy, y3〉.

- If j1 = 2, then j0 = j2 = · · · = jn = 0 and the term is y4 + 2xy2 + x2.

Then,
µ′n ∈

〈
y3, xy, x2

〉
.

Now, we denote

µ̃′n =
∑
l∈Ln

(
2

l

)
xl0ul11 · · ·ulnn =

∑
l∈Ln

(
2

l

)
xl0(2y2)l1ul22 · · ·ulnn .

Again, l0 ≤ 1 for all l ∈ Ln. We fix l ∈ Ln and recall that us ∈ 〈xy, y3〉 for all 2 ≤ s ≤ i−1.

- If l1 = 0, then l0 = 1 or l0 = 0. In the first case, there exists ls = 1 with s ≥ 2,
so the term associated with l belongs to 〈x2y, xy3〉. Now, if l0 = 0, then the term
associated with l is in 〈xy, y3〉2 ⊆ 〈x2y2, xy4, y6〉.

- If l1 = 1, then if l0 = 1, the term associated with l belongs to 〈xy2〉. Otherwise, if
l0 = 0, then there exists ls = 1 for some s ≥ 2 and the term associated with l is in
〈xy3, y5〉.

- If l1 = 2, then li = 0 for all i = 0, 2, . . . , n and the term associated with l belongs to
〈y4〉.

Moreover, v3
i/3 ∈ 〈y6, x3〉, so

µ̃n ∈
〈
x2y, xy2, y4, x3

〉
.

Hence,
i−1∑
n=1

µ′nµ̃i−n ∈
〈
y7, x5, x3y, x2y3, xy5

〉
.

• For i ≥ 3 we denote by ηi the term

ηi :=
∑
l∈Li

(
2

l

)
xl0ul11 u

l2
2 · · ·u

li−1

i−1 =
∑
l∈Li

(
2

l

)
xl0(2y2)l1ul22 · · ·u

li−1

i−1 .

Let l ∈ Li, then l0 ≤ 1 because i ≥ 1. If l0 = 1, then there is only one ls = 1 and
sls = i, so s = i. That means that l = (1, 0, . . . , 0, 1) 6∈ Li. Moreover, if l1 = 2, then
2 < i =

∑
s sls = l1 = 2!!!. Hence, l0 = 0 for all l ∈ Li and l1 ≤ 1. We fix l ∈ Li. Since

us ∈ 〈xy, y3〉 for all 2 ≤ s ≤ i− 1 we have that:

- If l1 = 1, then there exists ls = 1 for s ≥ 2 and the term associated with l is in
〈xy3, y5〉.

- If l1 = 0, then the term associated with l belongs to 〈xy, y3〉2 ⊆ 〈x2y2, xy4, y6〉.
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Then,
ηi ∈

〈
xy3, y5, x2y

〉
.

Since v3
i/3 ∈ 〈y6, x3〉, we have that

y2(ηi + νi3v
3
i/3) ∈

〈
xy5, y7, x2y3, x3y2

〉
.

• For i ≥ 3, we denote by η′i the following term

η′i :=
∑
j∈Li

(
2

j

)
yj0vl11 v

l2
2 · · · v

li−1

i−1 =
∑
j∈Li

(
2

j

)
yj0(x+ y2)l1vl22 · · · v

li−1

i−1 .

Note that j0 = 0 and j1 ≤ 1 for same reason that in the previous point. We fix j ∈ Li.
Since vs ∈ 〈y2〉 for all 2 ≤ s ≤ i− 1, we have that:

- If j1 = 1 then there exists js = 1 for some s ≥ 2 and the term associated with j is
in 〈xy2, y4〉.

- If j1 = 0 then there exists js = 2 or js = jt = 1 for s, t ≥ 2, so the term associated
with j is in 〈y4〉.

Then
η′i ∈

〈
xy2, y4

〉
and

(x2 + y3)η′i ∈
〈
(x2 + y3)y4, x3y2, xy5

〉
.

• We have that u3
i/3 ∈ 〈y6, x3y3〉.

To sum up,

µi ∈ 2(x2 + y3)yvi + 2xy2ui +
〈
y6, x5, x3y, x2y3, xy5, (x2 + y3)y4

〉
.

So, there exists a αi ∈ k[x, y] for each i = 1, . . . , 6 such that

µi = 2(x2 + y3)yvi + 2xy2ui + α1y
6 + α2x

5 + α3x
3y + α4x

2y3 + α5xy
5 + α6(x2 + y3)y4

and we want to find ui ∈ 〈xy, y3〉, vi ∈ 〈y2〉 such that µi ∈ 〈h〉. Then, if we put

ui = 2α1xy + 2α2xy
3 + α4xy + α5y

3

vi = α1y
2 + α2xy

3 + 2α3y
2 + α6y

3

we have the result.
�

Since δ2 = 2y2∂x + (x + y2)∂y is h-logarithmic, we can apply Lemma 4.2.4, to obtain
u2 ∈ 〈xy, y3〉 and v2 ∈ 〈y2〉 such that the k-algebra homomorphism ϕ : R→ R[|µ|]2 defined by
ϕ(x) = x+2y2µ+u2µ

2 and ϕ(y) = y+(x+y2)µ+v2µ
2 is h-logarithmic. Applying Lemma 4.2.4

repeatedly, we can deduce that δ2 is h-logarithmically m-integrable for all m ≥ 1. Therefore,
Leapsk(A) = ∅ and for all m ≥ 1,

IDerk(A;m) = 〈δ1, δ2〉 where δ1 = x2∂x + y3∂y and δ2 = 2y2∂x + (x+ y2)∂y. (4.8)
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4.3 Leaps, semigroup of curves and integral closure of

ideals

In this section we give two results that were suggested by Professor H. Mourtada. The first one
tells us that leaps of an irreducible algebroid plane curve over a algebraically closed field is not
determined by the semigroup of the curve. The second one tells us that leaps of a commutative
algebra over a commutative ring are not preserved by integral closure of ideals.

Let us consider an irreducible plane algebroid curve A over the algebraically closed field k
and we denote by F its quotient field. Let us consider the integral closure A of A in F . Then,
we have the following theorem.

Theorem 4.3.1 [Ca, Th. 1.3.1] A is a complete discrete valuation ring of F . If m is the
maximal ideal of A, t ∈ m \ m2, and T is an indeterminate over k, the homomorphism given
by T ∈ k[|T |] 7→ t ∈ A is an isomorphism of k-algebras.

For such a t, we write A = k[|t|] and F = k((t)). Let v : F → Z be the normalized
natural valuation of k((t)). If z ∈ A ⊆ A, then z = s(t) with s(T ) ∈ k[|T |] and we have
v(z) = ord(s(T )) (see [Ca, §1.3]).

Definition 4.3.2 The semigroup S(A) = v(A \ {0}) ⊆ Z+ will be called semigroup of values
of A.

Proposition 4.3.3 Leaps of irreducible algebroid plane curve over an algebraically closed field
are not determined by the semigroup of the curve.

Proof. Let k be an algebraically closed field of characteristic 3 and R = k[|x, y|] the formal
power series ring in 2 variables over k. Let us consider h = x3− y5 and g = x3− y5 + x2y2 two
polynomials in R. Let us denote A = R/〈h〉 and B = R/〈g〉. These two rings are irreducible
algebroid plane curves with the same semigroup, (3, 5) (see Ch. 4.3 of [Ca]). However, they do
not have the same leaps. Note that the calculations made in Proposition 4.1.1 and Curve 3 in
the previous section are valid for R. So, by Example 4.1.6, Leapsk(A) = {3}.

On the other hand, we have that the map

f : B → R/〈x3 + y5 + x2y2〉
x 7→ x
y 7→ −y

is an isomorphism of k-algebra. Hence, by Lemma 1.1.26 and Curve 3. in the previous section
(see (4.8)), we obtain that

Derk(B) = IDerk(B;n) = 〈δ1, δ2〉

where δi = Π
〈g〉
n (δi) and δ1 = x2∂x+y3∂y and δ2 = y2∂x+(x+y2)∂y. Therefore, Leapsk(B) = ∅.

�

Let us consider k a commutative ring and A a commutative k-algebra. Remember that the
integral closure of an ideal I of A is the ideal that consists of all elements of A that are integral
over I, and is denoted I.
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Lemma 4.3.4 Under the above condition, leaps of A/I are not the same that leaps of A/I,
i.e. leaps are not the same up to integral closure of ideals.

Proof. Let us assume that k is a reduced ring of characteristic 2 and let us consider the ideal
I = 〈x2, y2〉 ⊆ R = k[x, y]. Then, its integral closure is I = 〈x2, xy, y2〉. We will calculate
modules of integrable k-derivations for A = R/I and A = R/I and will see that leaps of these
two rings are different. We start with I-logarithmic k-derivations.

Let δ = u∂x + v∂y be a k-derivation of R. Then, δ(x2) = δ(y2) = 0. So, Derk(log I) =
〈∂x, ∂y〉. Let us consider D = (Id, δ,D2) ∈ HSk(R; 2). Then, by Lemma 1.2.9, D2(x2) =
D1(x)2 = u2 ∈ 〈x2, y2〉. If we write u =

∑
uijx

iyj, then u2
00 = 0. Since k is reduced u00 = 0

and u ∈ 〈x, y〉. Analogously, D2(y2) = v2 ⇒ v ∈ 〈x, y〉. So,

IDerk(log I; 2) = 〈x∂x, y∂y, x∂y, y∂y〉

It is easy to see that all these derivations are (∞-)integrable, it is enough to consider the
k-algebra homomorphisms:

ϕxx : R → R[|µ|]
x 7→ x+ xµ
y 7→ y

ϕyx : R → R[|µ|]
x 7→ x+ yµ
y 7→ y

ϕxy : R → R[|µ|]
x 7→ x
y 7→ y + xµ

ϕyy : R → R[|µ|]
x 7→ x
y 7→ y + yµ

where ϕab is an I-logarithmic integral of a∂b for a, b ∈ {x, y}. In conclusion, Leapsk(A) = {2}
and

IDerk(A;n) =

{
〈∂x, ∂y〉 if n = 1
〈x∂x, y∂x, x∂y, y∂y〉 if n ≥ 2 or n =∞.

Now, we calculate modules of integrable k-derivations of A. Let us consider δ = u∂x+v∂y ∈
Derk(R). Then δ(x2) = δ(y2) = 0 and

δ(xy) = uy + vx = Fx2 +Gxy +Hy2 ⇒ (u−Gx−Hy)y = (Fx− v)x

Then, {
u = Gx+Hy + Lx
v = Fx+ Ly.

So,
Derk

(
log I

)
= 〈x∂x, y∂x, x∂y, y∂y〉.

Observe that ϕab is an I-logarithmic integral of a∂b for all a, b ∈ {x, y}. Therefore, Leapsk
(
A
)

=
∅ and

IDerk
(
A;n

)
= 〈x∂x, y∂x, x∂y, y∂y〉 if n ≥ 1 or n =∞

and the lemma is proved.
�
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