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We present an application of the ACL2 theorem prover to reason about rewrite systems
theory. We describe the formalization and representation aspects of our work using the first-
order, quantifier-free logic of ACL2 and we sketch some of the main points of the proof effort.
First, we present a formalization of abstract reduction systems and then we show how this
abstraction can be instantiated to establish results about term rewriting. The main theorems
we mechanically proved are Newman’s lemma (for abstract reductions) and Knuth–Bendix
critical pair theorem (for term rewriting).
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1. Introduction

Formal, mechanically checked proofs not only provide verification of mathematical
results but encourage closer examination and deeper understanding of those results. We
report in this paper the status of our work on the application of the ACL2 theorem prover
to reason about abstract reductions and term rewriting systems theory; confluence, local
confluence, Noetherianity, normal forms and other related concepts have been formal-
ized in the ACL2 logic and some results about abstract reductions and term rewriting
have been mechanically proved, including Newman’s lemma and Knuth–Bendix critical
pair theorem.

ACL2 [8] is both a logic and a mechanical theorem proving system supporting it,
developed by J Moore and M. Kaufmann. The ACL2 logic is an existentially quantifier-
free, first-order logic with equality. ACL2 is also a programming language, an ap-
plicative subset of Common Lisp. The system evolved from the Boyer–Moore theorem
prover, also known as Nqthm.

The notion of rewriting or simplification is a crucial component in symbolic com-
putation: simplification procedures are needed to transform complex objects in order to
obtain equivalent but simpler objects and to compute unique representations for equiva-
lence classes (see, for example, [5]). Since ACL2 is also a programming language, this
work can be seen as a first step to obtain verified executable (and efficient, if possible)
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Common Lisp code for components of symbolic computation systems and equational
theorem provers. Although a fully verified implementation of such a system is currently
impractical, several basic algorithms can be mechanically “certified” and integrated as
part of the whole system.

We also show here how a weak logic like the ACL2 logic (no quantification, no
infinite objects, no higher order variables, etc.) can be used to represent, formalize, and
mechanically prove nontrivial theorems. In this paper, we place emphasis on describing
the formalization and representation aspects of our work and we also highlight some of
the main points of the proof effort. Due to the lack of space we will skip details of the
mechanical proofs and for the same reason some function definitions will be omitted.
We urge the interested reader to see the complete development, available on the web at
URL http://www.cs.us.es/˜jruiz/acl2-rewr. This paper is an extended
and revised version of [15,17].

The rest of the paper is organized as follows. Sections 1.1 and 1.2 present a brief
description of ACL2 and an informal presentation of the theory of abstract reductions
and term rewriting, respectively. In section 2 we present a formalization of abstract re-
ductions in the ACL2 logic, including a proof of Newman’s lemma. In section 3 we
describe the instantiation of the abstract formalization presented in the previous section
to the case of term rewriting reductions. We also present a proof of Knuth–Bendix criti-
cal pair theorem and a proof of decidability of equational theories described by complete
term rewriting systems. Finally, in section 4, we draw some conclusions and discuss fu-
ture work.

1.1. The ACL2 system

We briefly describe here the ACL2 theorem prover and its logic. The best introduc-
tion to ACL2 is [8]. To obtain more background on ACL2, see the ACL2 user’s manual
in [9]. A description of the main proof techniques used in Nqthm, also used in ACL2,
can be found in [3].

1.1.1. The logic
ACL2 stands for A Computational Logic for Applicative Common Lisp. The ACL2

logic is a quantifier-free, first-order logic with equality, describing an applicative subset
of Common Lisp. The syntax of terms is that of Common Lisp [19] (we will assume that
the reader is familiar with this language). The logic includes axioms for propositional
logic and for a number of Lisp functions and data types. Rules of inference include those
for propositional calculus, equality, and instantiation. By the principle of definition, new
function definitions (using defun) are admitted as axioms only if there exists an ordinal
measure in which the arguments of each recursive call (if any) decrease, thus proving its
termination. This ensures that no inconsistencies are introduced by new definitions.
The theory has a constructive definition of the ordinals up to ε0, in terms of lists and
natural numbers, given by the predicate e0-ordinalp and the order e0-ord-<. One



important rule of inference is the principle of induction, that permits proofs by induction
on ε0.

In addition to the definition principle, the encapsulation principle (using encap-
sulate) allows the user to introduce new function symbols by axioms constraining
them to have certain properties. To ensure consistency, witness functions having the
same properties have to be exhibited. Within the scope of an encapsulate, proper-
ties stated with defthm need to be proved for the witnesses; outside, those theorems
work as assumed axioms. The functions partially defined with encapsulate can be
seen as second order variables, representing functions with those properties. A derived
rule of inference, functional instantiation, allows some kind of second-order reasoning:
theorems about constrained functions can be instantiated with function symbols if they
are known to have the same properties (see [10]).

1.1.2. The theorem prover
The ACL2 theorem prover is inspired by Nqthm, but has been considerably im-

proved. The main proof techniques used by the prover are simplification and induction.
Simplification is a process combining term rewriting with some decision procedures (lin-
ear arithmetic, type set reasoner, etc.). Sophisticated heuristics for discovering an (often
suitable) induction scheme is one of the key points in the success of ACL2 and its pre-
decessor. A collection of definitions and proved theorems is usually stored in a certified
file of events (a book in the ACL2 terminology), that can be included in other books.

The command defthm starts a proof attempt, and, if it succeeds, the theorem
is stored as a rule (in most cases, a rewriting rule). The theorem prover is automatic
in the sense that once defthm is invoked, the user can no longer interact with the
system. However, in a deeper sense, the system is interactive. Very often, nontrivial
proofs are not found by the system in a first attempt and then the user has to guide the
prover by adding lemmas and definitions, used in subsequent proofs as rules. Inspection
of failed proofs is very useful to find those lemmas needed to “program” the system
in order to get the mechanical proof of a nontrivial result. This kind of interaction is
called “The Method” by the authors of the system (see [8]). Thus, the role of the user
is important: a typical proof effort consists of formalizing the problem in the logic and
helping the prover to find a preconceived hand proof by means of a suitable set of rewrite
rules. The mechanical proofs of the results presented here were carried out following
“The Method”.

1.2. Abstract reductions and term rewriting systems

This section provides a short introduction to basic concepts and definitions from
rewriting theory used in this paper. A complete description can be found in [1].

An abstract reduction is simply a binary relation→ defined on a set A. We will
denote as ←, ↔,

∗→ and
∗↔ respectively the inverse relation, the symmetric closure,

the reflexive-transitive closure and the equivalence closure. The following concepts are
defined with respect to a reduction relation →. An element x is in normal form (or



irreducible) if there is no z such that x → z. We say that x and y are joinable (denoted
as x ↓ y) if there exists u such that x

∗→ u
∗← y. We say that x and y are equivalent if

x
∗↔ y.

An important property to study about reduction relations is the existence of unique
normal forms for equivalent objects. A reduction relation has the Church–Rosser prop-
erty if every two equivalent objects are joinable. An equivalent property is confluence:
for all x, u, v such that u

∗← x
∗→ v, then u ↓ v. In every reduction relation with the

Church–Rosser property there are not distinct and equivalent normal forms. If in addi-
tion the relation is normalizing (i.e., every element has a normal form, denoted as x ↓)
then x

∗↔ y iff x ↓= y ↓. Provided normal forms are computable and identity in A is
decidable, then the equivalence relation

∗↔ is decidable, by means of a test for equality
of normal forms.

Another important property is termination: a reduction relation is terminating (or
Noetherian) if there is no infinite reduction sequence x0 → x1 → x2 → · · ·. Obvi-
ously, every Noetherian reduction is normalizing. The Church–Rosser property can be
localized when the reduction is terminating. In that case an equivalent property is local
confluence: for all x, u, v such that u ← x → v, then u ↓ v. This result is known as
Newman’s lemma.

An important type of reduction relation is defined on the set T (�,X) of first order
terms of a given language, where � is a set of function symbols, and X is a set of
variables. In this context, an equation is a pair of terms l = r. The reduction relation
defined by a set of equations E is defined as: s →E t if there exist l = r ∈ E and a
substitution σ of the variables in l (the matching substitution) such that σ (l) is a subterm
of s and t is obtained from s by replacing the subterm σ (l) for σ (r). This reduction
relation is of great interest in universal algebra because it can be proved that E |= s = t

iff s
∗↔E t . This implies decidability of every equational theory defined by a set of

axioms E such that→E is terminating and locally confluent. To emphasize the use of
the equation l = r from left to right as described above, we write l → r and talk about
rewrite rules. A term rewriting system (TRS) is a set of rewrite rules. Unless denoted
otherwise, E is always a set of equations (equational axioms) and R is a term rewriting
system.

Local confluence is decidable for finite and normalizing TRSs: joinability has only
to be checked for a finite number of pair of terms, called critical pairs, accounting for the
most general forms of local divergence (see [1] for a precise definition). The critical pair
theorem states that a TRS is locally confluent iff all its critical pairs are joinable. Thus,
the Church–Rosser property of terminating TRSs is a decidable property: it is enough
to check if every critical pair has a common normal form. In that case, the TRS is said
to be complete and can be used to decide its equational theory. If a terminating TRS
has a critical pair with different normal forms, there is still a chance to obtain a decision
procedure for its equational theory, adjoining that equation as a new terminating rewrite
rule. This is the basis for the well-known completion algorithm (see [1] for details).



In the sequel, we describe the formalization of these properties in the ACL2 logic
and some points of their mechanical proof. For the rest of the paper, when we talk about
“prove” we mean “mechanically prove using ACL2”.

2. Formalizing abstract reductions in ACL2

One possible way to represent abstract reduction relations in the ACL2 logic could
be simply to define them as binary Boolean functions, using encapsulate to state
their properties. Nevertheless, we adopted a slightly different approach, in order to stress
the “reduction” point of view: if x → y, more important than the relation between x and
y is the fact that y is obtained from x by applying some kind of transformation or oper-
ator. In its most abstract formulation, we can view a reduction as a binary function that,
given an element and an operator, returns another object, performing a one-step reduc-
tion. Think for example of equational reductions: elements in that case are first-order
terms and operators are the objects constituted by a position (indicating the subterm
replaced), an equation (the rule applied) and a substitution (the matching substitution).

Of course not any operator can be applied to any element. Thus, a second com-
ponent in this formalization is needed: a Boolean binary function to test if it is legal to
apply an operator to an element. Finally, a third component is introduced: since com-
putation of normal forms requires searching for legal operators to apply, we will need
a unary function that when applied to an element returns a legal operator, whenever it
exists, or nil otherwise (a reducibility test).1

The above considerations lead us to formalize the concept of abstract reductions
in ACL2, using three partially defined functions: reduce-one-step, legal and
reducible. This can be done with the following encapsulate (dots are used to
omit local events2 and technical details, as in the rest of the paper):

(encapsulate
((reduce-one-step (x op) t)
(legal (x op) t)
(reducible (x) t))
...
(defthm legal-reducible-1
(implies (reducible x) (legal x (reducible x))))

(defthm legal-reducible-2
(implies (not (reducible x)) (not (legal x op))))

...)

1 It is possible to prove some of the theorems presented here without any reference to a reducibility test (for
example, Newman’s lemma). See the web page.

2 The specific witness functions definitions are irrelevant to our discussion, since outside the encapsu-
late only the nonlocal properties are used.



The first part of every encapsulate is a signature description of the nonlocal
functions partially defined. Note that (reduce-one-step x op) is the element
obtained applying the operator op to x. The function legal is the applicability test,
i.e., (legal x op) is not nil iff it is legal to apply op to x. And reducible is
the reducibility test: (reducible x) is a legal operator applicable to x whenever
such operator exists, nil otherwise (we are assuming that nil does not represent any
operator).

The two theorems assumed above as axioms are minimal requirements for every
reduction we defined: if further properties (for example, local confluence, confluence or
Noetherianity) were assumed, they have to be stated inside the encapsulate. This is
a very abstract framework to formalize reductions in ACL2. We think that these three
functions capture the basic abstract features every reduction has. On the one hand, a
procedural aspect: the computation of normal forms, applying operators until irreducible
objects are obtained. On the other hand, a declarative aspect: every reduction relation
describes its equivalence closure. Representing reductions in this way, we can define
concepts like the Church–Rosser property, local confluence or Noetherianity and even
prove nontrivial theorems like Newman’s lemma, as we will see.

To instantiate this general framework, concrete instances of reduce-one-step,
legal and reducible have to be defined and the properties assumed here as axioms
must be proved for those concrete definitions. By functional instantiation, results about
abstract reductions can then be easily exported to concrete cases (as we will see for the
equational case).

2.1. Equivalence and proofs

Due to the constructive nature of the ACL2 logic, in order to define x
∗↔ y, we

have to include an argument with a sequence of steps x = x0 ↔ x1 ↔ x2 · · · ↔ xn = y.
This is done by the function equiv-p defined in figure 1. (equiv-p x y p) is
t if p is an abstract proof 3 justifying that x

∗↔y. This means that p is a sequence of
legal steps connecting x and y, where each proof step is a structure4 r-step with
four fields: elt1, elt2 (the elements related by the step), direct (a boolean value
indicating if the step is direct or inverse) and operator. A proof step is legal (as
defined by proof-step-p) if one of its elements is obtained by applying its operator
(which must be legal) to the other element, in the direction indicated by direct. Two
abstract proofs justifying the same equivalence will be said to be equivalent.

The Church–Rosser property and local confluence can be redefined with respect to
the form of abstract proofs (sections 2.2 and 2.3). For that purpose, we define (omitted
here) functions to recognize proofs with particular shapes (valleys and local peaks):
local-peak-p recognizes proofs of the form v ← x → u and steps-valley

recognizes proofs of the form v
∗→ x

∗← u.

3 Or simply a proof if that terminology does not arise confusion with proofs done using the ACL2 system.
4 We used the defstructure tool developed by B. Brock [4].



(defstructure r-step direct operator elt1 elt2)

(defun proof-step-p (s)
(let ((elt1 (elt1 s)) (elt2 (elt2 s))

(op (operator s)) (direct (direct s)))
(and (r-step-p s)

(implies direct
(and (legal elt1 op)

(equal (reduce-one-step elt1 op)
elt2)))

(implies (not direct)
(and (legal elt2 op)

(equal (reduce-one-step elt2 op)
elt1))))))

(defun equiv-p (x y p)
(if (endp p)

(equal x y)
(and (proof-step-p (car p))

(equal x (elt1 (car p)))
(equiv-p (elt2 (car p)) y (cdr p)))))

Figure 1. Definition of proofs and equivalence.

2.2. The Church–Rosser property and decidability

We describe how we formalized and proved the decidability of an equivalence re-
lation described by a Church–Rosser and normalizing reduction. Valley proofs can be
used to reformulate the definition of the Church–Rosser property: a reduction is Church–
Rosser iff for every abstract proof there exists an equivalent valley proof. Since the
ACL2 logic is quantifier-free, the existential quantifier in this statement has to be re-
placed by a Skolem function, which we call transform-to-valley. The concept
of being normalizing can also be reformulated in terms of abstract proofs: a reduction
is normalizing if for every element there exists an abstract proof to an equivalent irre-
ducible element. This proof is given by the (Skolem) function proof-irreducible
(note that we are not assuming Noetherianity yet). Properties defining a Church–Rosser
and normalizing reduction are encapsulated as shown in figure 2, item (a).

The function r-equiv tests if normal forms are equal. The normal form of an
element x is defined to be the last element of (proof-irreducible x):

(defun normal-form (x)
(last-of-proof x (proof-irreducible x)))

(defun r-equiv (x y)
(equal (normal-form x) (normal-form y)))



;;; (a) Definition of Church-Rosser normalizing reduction:

(encapsulate
((legal (x op) t) (reduce-one-step (x op) t)
(reducible (x) t) (transform-to-valley (x) t)
(proof-irreducible (x) t))
.....
(defthm Church-Rosser-property
(let ((valley (transform-to-valley p)))

(implies (equiv-p x y p)
(and (steps-valley valley)

(equiv-p x y valley)))))
.....
(defthm normalizing
(let* ((p-x-y (proof-irreducible x))

(y (last-of-proof x p-x-y)))
(and (equiv-p x y p-x-y)

(not (reducible y))))))

;;; (b) Main theorems proved:

(defthm if-C-R--two-ireducible-connected-are-equal
(implies (and (equiv-p x y p)

(not (reducible x))
(not (reducible y)))

(equal x y)))

(defthm r-equiv-sound
(implies (r-equiv x y)

(equiv-p x y (make-proof-common-n-f x y))))

(defthm r-equiv-complete
(implies (equiv-p x y p) (r-equiv x y))

Figure 2. Church–Rosser and normalizing implies decidability.

To prove decidability of a Church–Rosser and normalizing relation, it is enough
to prove that r-equiv is a complete and sound algorithm deciding the equiva-
lence relation described by the reduction relation. See figure 2, item (b). We also
include the main lemma used, stating that there are no distinct equivalent irre-
ducible elements. Note also that soundness is expressed in terms of a Skolem func-
tion make-proof-common-normal-form (definition omitted), which constructs a
proof justifying the equivalence. These theorems are proved quite easily, without much
guidance from the user. The main point here is that the induction scheme suggested



by the function equiv-p (and mechanically generated by the system), turns out to be
very useful in proving properties about the relation

∗↔: it resembles the intuitive idea of
“induction on the number of steps”.

2.3. Noetherianity, local confluence and Newman’s lemma

A relation is well founded on a set A if every nonempty subset has a minimal
element. A restricted notion of well-foundedness is built into ACL2, based on the fol-
lowing meta-theorem: a relation on a set A is well-founded iff there exists a function
F : A → Ord such that x < y ⇒ F(x) < F(y), where Ord is the class of all ordi-
nals. In ACL2, once a relation is proved to satisfy these requirements (and the theorem
is stored as a well-founded-relation rule), it can be used in the admissibility
test for recursive functions. A general well-founded partial order rel can be defined
in ACL2 as shown in figure 3, item (a). Since only ordinals up to ε0 are formalized
in the ACL2 logic, a limitation is imposed in the maximal order type of well-founded
relations that can be represented. Consequently, our formalization suffers from the same
restriction.5

In figure 3, item (b) a general definition of a Noetherian and locally confluent re-
duction relation is presented.6 Local confluence is easily expressed in terms of the shape
of abstract proofs involved: a relation is locally confluent iff for every local peak proof
there is an equivalent valley proof. This valley proof is assumed to be given by a function
named transform-local-peak. As for Noetherianity, our formalization relies on
the following meta-theorem: a reduction is Noetherian if and only if it is contained in a
well-founded partial ordering. Thus, the general well-founded relation rel previously
presented is used to justify Noetherianity of the general reduction relation defined: for
every element x such that a legal operator op can be applied to, then applying op to
x using reduce-one-step, produces an element less than x (with respect to rel).

The standard proof of Newman’s lemma found in the literature [1], shows con-
fluence by Noetherian induction based on the Noetherian reduction relation. Never-
theless, the formal proof we obtained is different, influenced by our abstract proof
approach. It is inspired by the one given by Klop in [11]. In our formalization, we
show that the reduction relation has the Church–Rosser property7 by defining a function
transform-to-valley and proving that for every proof p, (transform-to-
-valley p) is an equivalent valley proof. This function is defined to iteratively ap-
ply replace-local-peak (which replaces a local peak subproof by the equivalent
proof given by transform-local-peak), until there are no local peaks. This can
be seen as a normalization process acting on abstract proofs. See definition in figure 3,
item (c).

5 Nevertheless, no particular properties of ε0 are used in our proofs, except well-foundedness.
6 Name conflicts with the functions presented in the previous and next sections are avoided using Common

Lisp packages.
7 Note that we do not need to deal with confluence since the Church–Rosser property, an equivalent concept,

is proved with the same effort.



;;; (a) Well-founded partial order:

(encapsulate
((rel (x y) t) (fn (x) t))
...
(defthm rel-well-founded-relation

(and (e0-ordinalp (fn x))
(implies (rel x y) (e0-ord-< (fn x) (fn y))))

:rule-classes :well-founded-relation)

(defthm rel-transitive
(implies (and (rel x y) (rel y z)) (rel x z))))

;;; (b) Noetherian and locally confluent reduction:

(encapsulate
((legal (x op) t) (reduce-one-step (x op) t)
(reducible (x) t) (transform-local-peak (x) t))

....
(defthm locally-confluent

(let ((valley (transform-local-peak p)))
(implies (and (equiv-p x y p) (local-peak-p p))

(and (steps-valley valley)
(equiv-p x y valley)))))

(defthm Noetherian
(implies (legal x op) (rel (reduce-one-step x op) x))))

;;; (c) Definition of transform to valley:

(defun transform-to-valley (p)
(declare (xargs :measure (proof-measure p)

:well-founded-relation mul-rel))
(if (not (exists-local-peak p))

p
(transform-to-valley (replace-local-peak p))))

;;; (d) Main theorem proved:
(defthm Newman-lemma

(let ((valley (transform-to-valley p)))
(implies (equiv-p x y p)

(and (steps-valley valley)
(equiv-p x y valley)))))

Figure 3. Newman’s lemma.



The main effort was done to prove the termination of transform-to-valley
(needed for its admission), showing that in each iteration, some measure of the abstract
proof, proof-measure, decreases with respect to a well-founded relation, mul-rel:

(defthm transform-to-valley-admission
(implies (exists-local-peak p)

(mul-rel (proof-measure (replace-local-peak p))
(proof-measure p)))).

The measure proof-measure is the list of elements involved in the proof and
the relation mul-rel is defined to be the multiset extension of rel. We needed to
prove in ACL2 that the multiset extension of every well-founded relation is also well-
founded, a result interesting in its own right, and a tool that can be applied in other ACL2
termination proofs [16].

Once transform-to-valley is admitted, it is relatively easy to show that it
always returns an equivalent proof which is a valley. See figure 3, item (d). The main
point here is that both properties are proved using the induction scheme suggested by
the function transform-to-valley. When proving a conjecture (:P P X Y)
(where :P stands for a property about P, X and Y, in the ACL2 terminology), this induc-
tion scheme can be described as:

(AND (IMPLIES (AND (EXISTS-LOCAL-PEAK P)
(:P (REPLACE-LOCAL-PEAK P) X Y))

(:P P X Y))
(IMPLIES (NOT (EXISTS-LOCAL-PEAK P))

(:P P X Y)))

This induction scheme is justified by the well-foundedness of the multiset relation
mul-rel: it is a proof by induction on proof-measure. This is in contrast with the
standard proof: the formal proof obtained with this induction scheme treats the theorem
as a property of abstract proofs rather than as a property of the elements involved. This
reveals the advantage of considering abstract proofs as objects that can be transformed
to obtain new proofs.

Having established Newman’s lemma and the result described in the previous sub-
section, we prove decidability of the equivalence relation described by a locally conflu-
ent and Noetherian reduction. Note that in proving Newman’s lemma we have given
a particular “implementation” of transform-to-valley and proved as theorems
the properties about it assumed as axioms in the previous subsection. The same can
be done with proof-irreducible: since the reduction is terminating, by means
of reducible and reduce-one-step we can build an abstract proof connecting
every element to its normal form. Since we can now establish the hypothesis of the the-
orem of the previous subsection, we can easily deduce, by functional instantiation, the
decidability of the equivalence relation described by a Noetherian and locally confluent
reduction. See the web page for details.



3. Formalizing rewriting in ACL2

We defined in the previous section a very general formalization of reduction rela-
tions. The results proved can be reused for every instance of the general framework. As
a major application, we describe in this section how we formalized and reasoned about
term rewriting in ACL2.

3.1. First-order terms

Since rewriting is a reduction relation defined on the set of first order terms, we
needed to use a library of definitions and theorems formalizing the lattice theoretic prop-
erties of first-order terms: in particular, subsumption and unification algorithms were
defined and proved correct. This ACL2 library was obtained translating a previous for-
malization developed by the authors using Nqthm [14], so we will only give here a very
brief description. In this library, we represent first-order terms in prefix notation us-
ing lists. For example, the term f (x, g(y), h(x)) is represented as ’(f x (g y) (h
x)). Every consp object can be seen as a term with its car as its top function sym-
bol and its cdr as the list of its arguments. Variables are represented by atom objects.
Substitutions are represented as association lists and equations and rules as dotted pairs
of terms.

Since ACL2 mechanizes a logic of total functions, our functions acting on first-
order terms are extended in a “natural” way to deal also with Lisp objects not repre-
senting terms, although they are not in the intended domain of the functions. This is
not a problem: every function defined returns well-formed terms when its arguments are
well-formed terms. Furthermore, the guard verification mechanism of ACL2 is used to
ensure that every execution in Common Lisp of the functions verified does not evaluate
on arguments outside the intended domain (see [9] for details about guards).

Most of the functions are defined, using mutual recursion, for terms and for lists
of terms at the same time. This kind of definition suggests to the prover an induction
scheme very similar to induction on the structure of terms, which, in most cases, turns
out to be the right induction scheme. This good behavior of the system’s heuristics when
choosing induction schemes for a conjecture is crucial in the automation of our proofs.

We give a brief description of some of the functions defined in this library that
will be referenced in the sequel. The function variable-p recognizes variables.
The function instance implements the application of a substitution to a term. Espe-
cially important in this context are the functions dealing with the tree structure of terms:
position-p tests if a sequence of integers is a position of a term, occurrence re-
turns the subtree at a given position and replace-term performs a replacement of
a subterm at a given position. For a detailed description of this library, see the web
page.



3.2. Instantiating the abstract framework

The very abstract concept of operator can be instantiated for term rewriting reduc-
tions. Equational operators are structures with three fields, containing the rewriting rule
to apply, the position of the subterm to be replaced and the matching substitution:

(defstructure eq-operator rule pos matching).

As we said in section 2, every reduction relation is given by concrete versions of legal,
reduce-one-step and reducible. In the equational case:

• (eq-legal term op E) tests if the rule of the operator op is in E, and can
be applied to term at the position indicated by the operator (using the matching
substitution of the operator op).

• (eq-reduce-one-step term op) replaces the subterm indicated by the po-
sition of the operator op, by the corresponding instance (using matching) of the
right-hand side of the rule of the operator.

• (eq-reducible term E) returns a legal equational operator to apply to term,
whenever it exists, or nil otherwise.

Note that for every fixed set of equations E, a particular reduction relation is de-
fined. The equational counterpart of the abstract equivalence equiv-p can be defined
in a very similar way: (eq-equiv-p t1 t2 p E) tests if p is a proof (an equa-
tional proof ) of the equivalence of t1 and t2 in the equational theory of E. Note that
the function eq-equiv-p implements a proof checker for equational theories, thus
formalizing equational deduction in ACL2. Due to the lack of space, we do not give
the definitions here. Recall from section 2 that two theorems (assumed as axioms in the
general framework) have to be proved to state the relationship between eq-legal and
eq-reducible. We proved them, in order to be able to export results (by functional
instantiation) from the abstract case to the equational case:

(defthm eq-reducible-legal-1
(implies (eq-reducible term E)

(eq-legal term (eq-reducible term E) E)))

(defthm eq-reducible-legal-2
(implies (not (eq-reducible term E))

(not (eq-legal term op E))))

Term rewriting systems, as defined in [1], are a special case of sets of equations:
the left-hand side of the equations cannot be variables and must contain the variables
of the right-hand side. We define the function rewrite-system (omitted here) to
implement this concept.8

8 Nevertheless, the formalization described in this subsection does not assume the set of equational axioms
to be a term-rewriting system.



(defthm eq-equiv-p-reflexive
(eq-equiv-p term term nil E))

(defthm eq-equiv-p-symmetric
(implies (eq-equiv-p t1 t2 p E)

(eq-equiv-p t2 t1 (inverse-proof p) E))

(defthm eq-equiv-p-transitive
(implies (and (eq-equiv-p t1 t2 p E)

(eq-equiv-p t2 t3 q E))
(eq-equiv-p t1 t3 (proof-concat p q) E))

(defthm eq-equiv-p-stable
(implies (eq-equiv-p t1 t2 p E)

(eq-equiv-p (instance t1 sigma)
(instance t2 sigma)
(eq-proof-instance p sigma) E)))

(defthm eq-equiv-p-compatible
(implies (and (eq-equiv-p t1 t2 p E)

(position-p pos term))
(eq-equiv-p (replace-term term pos t1)

(replace-term term pos t2)
(eq-proof-context p term pos) E))

Figure 4. Congruence: an algebra of proofs.

Formalizing equational reasoning in this way, we proved a number of results about
it, as we will describe in the following sections.

3.3. Equational theories and an algebra of proofs

An equivalence relation on first-order terms is a congruence if it is stable (closed
under instantiation) and compatible (closed under subterm replacement). Equational
consequence, E |= s = t , can alternatively be defined as the least congruence relation
containing E. In order to justify that the above described formalization is appropriate, it
would be suitable to prove that, for a fixed E, the relation given by (eq-equiv-p t1
t2 p E),9 is the least congruence containing E.

In figure 4 we sketch part of that result, showing that eq-equiv-p is a con-
gruence. The ACL2 proof obtained is again a good example of the benefits gained
considering proofs as objects that can be transformed to obtain new proofs. Following

9 Formally speaking, the relation “exists p such that (eq-equiv-p t1 t2 p E)”.



Bachmair [2], we can define an “algebra” of equational proofs, given by the follow-
ing operations: proof-concat to concatenate proofs, inverse-proof to obtain
the reverse proof, eq-proof-instance, to instantiate the elements involved in the
proof and eq-proof-context to include the elements of the proof as subterms of
a common term. The empty proof nil can be seen as a proof constant. Each of these
operations corresponds with one of the properties needed to show that eq-equiv-p is
a congruence. The theorems are proved easily by ACL2, with minor help from the user.

3.4. The critical pair theorem

The main result we have proved is the critical pair theorem: a rewrite system R is
locally confluent if every critical pair obtained with rules in R is joinable.

In figure 5, item (a) a term-rewriting system (RLC) is partially defined assum-
ing the property of joinability of its critical pairs. The partially defined expression
(transform-cp l1 r1 pos l2 r2) is assumed to obtain a valley proof for the
critical pair (if it exists) determined by the rules (l1 . r1) and (l2 . r2) at the non-
variable position pos of l1. The function cp-r computes such a critical pair whenever
it exists, or it returns nil otherwise. This computation is done after renaming the vari-
ables of the rules, in order to get them standardized apart.

To prove the critical pair theorem in our formalization, we have to define a function
transform-eq-local-peak and prove that it transforms every equational local
peak proof into an equivalent valley proof. It has a very long definition (omitted here),
dealing with all possible cases of local divergences. The final theorem is shown in fig-
ure 5, item (b). Note that this theorem can be used to conclude local confluence of any
particular rewrite system with joinable critical pairs.

The ACL2 proof of this theorem is the largest proof we developed. As a basis for
our formal proof of the local confluence of (RLC), we follow Huet’s proof [6]. The proof
is obtained as a typical (but very long) interaction with the ACL2 theorem prover. The
“algebra” of equational proofs defined in the previous subsection allows us to control
the complexity of this ACL2 proof: for example, one first deals with the case in which
one of the two rewritings in the equational local peak is performed at the top the term;
later on, this result can be translated to a more general case by inclusion in a context.

As in [6], the proof is mainly structured to deal with three cases, according to
the relative positions of the subterms where the two rewriting steps (in a local peak)
may occur: disjoint rewriting, noncritical overlap and critical overlap. The main proof
effort was done to handle noncritical (or variable) overlaps. It is interesting to point
that in most textbooks and surveys this case is proved pictorially. Nevertheless, in our
mechanical proof turns out to be the most difficult part and it even requires the design of
an induction scheme not discovered by the heuristics of the prover. The critical overlap
case was easier to prove than the previous case, but we must not forget that in order to
reason properly about this case we used our library about first-order terms, where some
results about variable renamings and, more important, a verified unification algorithm
[14] were developed.



;;; (a) TRS with joinable critical pairs:

(encapsulate
((RLC () t) (transform-cp (l1 r1 pos l2 r2) t))
...
(defthm RLC-rewrite-system (rewrite-system (RLC)))

(defthm RLC-joinable-critical-pairs
(implies

(and (member (cons l1 r1) (RLC))
(member (cons l2 r2) (RLC))
(position-p pos l1)
(not (variable-p (occurence l1 pos))))

(let* ((cp-r (cp-r l1 r1 pos l2 r2))
(valley-cp (transform-cp l1 r1 pos l2 r2)))

(implies
cp-r
(and (eq-equiv-p

(lhs cp-r) (rhs cp-r) valley-cp (RLC))
(steps-valley valley-cp)))))))

;;; (b) Theorem proved:

(defun transform-eq-local-peak (p) ...)

(defthm critical-pair-theorem
(let ((valley (transform-eq-local-peak p)))

(implies (and (eq-equiv-p t1 t2 p (RLC))
(local-peak-p p))

(and (steps-valley valley)
(eq-equiv-p t1 t2 valley (RLC))))))

Figure 5. The critical pair theorem.

3.5. Reduction orderings

In order to formalize termination properties of term rewriting systems we rely on
the well-known concept of reduction ordering, i.e., well-founded ordering being stable
(closed under instantiation) and compatible (closed under replacement of subterms). We
used the following characterization: a term rewriting system R terminates iff there exists
a reduction order  that satisfies l  r for all l → r ∈ R. In figure 6, encapsulation is



(encapsulate
((red< (t1 t2) t) (fn-red< (term) t))
....
(defthm red<-well-founded-relation
(and (e0-ordinalp (fn-red< t1))

(implies (red< t1 t2)
(e0-ord-< (fn-red< t1) (fn-red< t2))))

:rule-classes :well-founded-relation)

(defthm red<-stable
(implies (red< t1 t2)

(red< (instance t1 sigma)
(instance t2 sigma))))

(defthm red<-compatible
(implies (and (position-p pos term) (red< t1 t2))

(red< (replace-term term pos t1)
(replace-term term pos t2))))

(defthm red<-transitive
(implies (and (red< x y) (red< y z)) (red< x z))))

(defun noetherian-red< (TRS)
(if (endp TRS) t
(let ((rule (car TRS)))
(and (red< (rhs rule) (lhs rule))

(noetherian-red< (cdr TRS)))))

Figure 6. A reduction order red<.

used to (partially) define a function red<, assumed to be a reduction order. The function
(noetherian-red< TRS) is defined to test if red< justifies termination of TRS.

Once red< has been assumed to be a reduction ordering and the function noe-
therian-red< has been defined, we proved that the reduction relation→R is termi-
nating, whenever R is a TRS such that (noetherian-red< R) (this result is needed
to export Newman’s lemma to the equational case):

(defthm R-Noetherian-if-subsetp-of-red<
(implies (and (noetherian-red< R)

(eq-legal term op R))
(red< (eq-reduce-one-step term op) term)))



Although the (partial) definition of the reduction ordering red< given in figure 6
works well from a theoretical point of view, the main drawback in this formalization
of reduction orderings is that it can be difficult to prove that a particular ordering (for
example, a path ordering or a Knuth–Bendix ordering [1]) is a reduction ordering, since
an ordinal measure fn-red< has to be given explicitly.

3.6. Complete term rewriting systems and decidability

As a consequence of the results presented so far, and using functional instantiation,
we can formalize and prove decidability of the equational theory described by a complete
TRS. In the following we describe the assumptions needed to define a complete TRS.

Again using encapsulate we (partially) define a term rewriting system (RC)
assumed to be complete: (RC) is terminating (justified by red<) and every critical
pair obtained from rules in (RC) have a common normal form (see figure 7). In this
formalization, the concepts of critical pairs and normal forms are implemented by the
functions cp-r (described in section 3.4) and RC-normal-form, respectively.

The function RC-normal-form is defined to compute normal forms with respect
to the term rewriting system (RC). It iteratively applies the function r-reduce until
a normal form is found. The expression (r-reduce term TRS), whose definition
we omit here, performs one step of rewriting, whenever it is possible. It traverses term
to find a subterm subsumed by the left-hand side of a rule in TRS. When such a sub-
term is found, it is replaced by the corresponding instance of the right-hand side of the
rule. If it is not found, then r-reduce returns nil (and therefore term is in normal
form). Those properties of r-reduce were mechanically verified. Note that a verified
subsumption algorithm is needed for that purpose.

It is worth pointing that a function computing the normal form of a term with
respect to a TRS would not be admitted in the ACL2 logic, since termination is not
assured in general. Instead, we assume (RC) to be terminating and we define normal
form calculation with respect to (RC).10

Having assumed the properties of figures 6 and 7, we can define a function
RC-equivalent (testing equality of normal forms) and then prove that it provides
a complete and sound algorithm to decide the equational theory of (RC):

(defun RC-equivalent (t1 t2)
(equal (RC-normal-form t1) (RC-normal-form t2)))

(defthm RC-equivalent-complete
(implies (eq-equiv-p t1 t2 p (RC))

(RC-equivalent t1 t2)))

10 Although this definition is suitable from a formal point of view, the main drawback is that
that RC-normal-form is not executable. Nevertheless, we can define an executable function
(normal-form-n n term R) that applies (at most) n reduction steps to term with respect to
the TRS R. In practice, this can be used to compute normal forms.



(encapsulate
((RC () t))
...
(defthm RC-rewrite-system (rewrite-system (RC)))

(defthm RC-Noetherian-red< (noetherian-red< (RC)))

(defun RC-normal-form (term)
(declare (xargs :measure term

:well-founded-relation red<))
(let ((red (r-reduce term (RC))))
(if red (RC-normal-form (unpack red)) term)))

(defthm RC-common-n-f-critical-pairs
(implies
(and (member (cons l1 r1) (RC))

(member (cons l2 r2) (RC))
(position-p pos l1)
(not (variable-p (occurrence l1 pos))))

(let ((cp-r (cp-r l1 r1 pos l2 r2)))
(implies
cp-r
(equal (RC-normal-form (lhs cp-r))

(RC-normal-form (rhs cp-r))))))))

Figure 7. A complete term rewriting system (RC).

(defthm RC-equivalent-sound
(implies (RC-equivalent t1 t2)

(eq-equiv-p
t1 t2
(RC-make-proof-common-n-f t1 t2) (RC))))

The proof of the two theorems above is straightforward (although some elaborated)
by means of functional instantiation of the previous theorems presented. The following
is part of the functional substitution used in this instantiation, associating to the functions
describing an abstract reduction the corresponding functions of the equational reduction
associated to (RC):

...
(reduce-one-step eq-reduce-one-step)
(reducible (lambda (term)



(eq-reducible term (RC))))
(legal (lambda (term op)

(eq-legal term op (RC))))
(equiv-p (lambda (t1 t2 p)

(eq-equiv-p t1 t2 p (RC))))
...

An important point in this decidability theorem is that the verified decision algo-
rithm RC-equivalent does not deal with equational proofs, equational proof steps or
equational operators. This is an example of compositional reasoning, or how to reason
about an implementation by using rules that transform some functions in other functions
(often less efficient) that are easier to reason about.

Note that in this case the functions eq-reducible and eq-reduce-one-step
provides a way to perform one step of rewriting, whenever it is possible: given a term
and a TRS, apply eq-reducible to obtain an equational operator and, if non-nil,
apply this operator to the term using eq-reduce-one-step. If the TRS is termi-
nating, then this method can be applied iteratively until a normal form is obtained. This
definition of normal form is appropriate for reasoning. For example, it turns out to be
useful when we define an equational counterpart of proof-irreducible, a func-
tion obtaining an equational proof connecting every element to its normal form, that is
needed to export by functional instantiation the decidability result of section 2.2. Ob-
viously, this normal form calculation can be optimized in several ways. For example, a
function computing normal forms neither needs to build an equational operator in every
rewriting step nor traverse the terms twice, searching for a legal equational operator, and
then applying the reduction step. As we described above, r-reduce is a more efficient
(although not optimal) version of one-step rewriting. The main point here is that we
used the more theoretical version to reason about normal form calculation, which turned
out to be simpler. Later on, we proved theorems relating the behavior of r-reduce
with eq-reducible and eq-reduce-one-step, showing the equivalence with
the improved version of normal form calculation, and then we stated the final version of
the theorem using r-reduce.

4. Conclusions and further work

We have presented an application of the ACL2 system to formalize and reason
about rewrite systems theory. This is a case study of using the ACL2 system as a meta-
language to formalize properties of object proof systems (abstract reductions and equa-
tional logic in this case) in it. Our formalization has the following main features:



• Abstract reduction relations and their properties are stated in a very general frame-
work, as explained in section 2. Functional instantiation is extensively used to export
results from the abstract case to the equational case.

• The concepts of abstract proofs and equational proofs are key notions in our work, as
it has been pointed repeatedly. Proofs are treated as objects that can be transformed
to obtain new proofs and this point of view has great influence both in formalization
and reasoning.

• Compositional reasoning is used, verifying some functions by using rewrite rules that
transform them in other functions, often less efficient, that are easier to reason about.

We think that the results presented here are important for two reasons. From a the-
oretical point of view, it is shown how a weak logic can be used to formalize properties
of TRSs. From a practical point of view, this is an example of how formal methods can
help in the design of symbolic computation systems. Usually, rewriting techniques are
applied to the design of proof procedures in automated deduction. We show how benefits
can be obtained in the reverse direction: automated deduction used as a tool to “certify”
components of symbolic computation systems.

Since ACL2 is also a programming language, computing and proving tasks can
be mixed. As a result of this formalization, we obtained a number of basic functions
in term rewriting, executable and verified in ACL2; for example, matching, unification,
computation of critical pairs or application of reduction steps with respect to a term
rewriting system. We verified the guards of all these functions, ensuring in this way that
they are executable in any compliant Common Lisp (with the appropriate files loaded).

It should be stressed that proving nontrivial results in a theorem prover like ACL2
is not trivial. A user expert in both the theorem prover and the subject domain is needed
(maybe that is the reason why many of the published formal proofs are about formal sys-
tems). As claimed in [8], difficulties come from “the complexity of the whole enterprise
of formal proofs”, rather than from the complexity of ACL2. A typical proof effort con-
sists of formalizing the problem and guiding the prover to a preconceived “hand proof”,
by decomposing the proof into intermediate lemmas. Nevertheless, proofs can be sim-
pler if a good library of previous results (books in the ACL2 terminology) is used. We
think our work provides a good collection of books to be reused in further verification
efforts.

The proof described here has been structured in three collection of books (see the
web page), chronologically developed in the following order (every book needs results
from its predecessor):

1. Books about abstract reductions: abstract-proofs contains basic definitions
and properties about abstract proofs, confluence proves the decidability of
the equivalence relation described by a Church–Rosser and normalizing reduction,
newman is the proof of Newman’s lemma and local-confluence is a proof,
by functional instantiation, of decidability of the equivalence relation described by a
terminating and locally confluent reduction relation.



2. Books about equational theories and rewriting: equational-theories contains
the definition and main properties of the equational theory given by a set of equational
axioms and rewriting develops the notions of reducibility, reduction orderings
and one-step rewriting.

3. The proof of the critical pair theorem is in the book critical-pairs and decid-
ability of the equational theory of a complete TRS is proved in kb-decidability.

Table 1 gives some quantitative information on the proof. The first column contains
the name of the book. The next three columns show the number of lines (including
comments), the number of definitions and the number of theorems in each book. These
numbers can give an idea of the granularity of our proof. We should say that these
sizes can be reduced, but sometimes we preferred to split definitions and theorems for
the sake of clarity. We also included a fifth column with the number of theorems that
needed hints from the user: the rest of the theorems were proved automatically by the
system. Together with the number of theorems, this can give an idea of the degree of
automation of the proofs. Most of the hints given are for disabling or enabling rules and
for using instances of previous theorems.

It is clear from the table that the main proof effort was done to prove Newman’s
lemma and the critical pair theorem. It should be emphasized also that, although not
listed in the table, the books about first-order terms [14] and multiset relations [16] are
crucial in our development.

Some related work has been done in the formalization of abstract reduction re-
lations in other theorem proving systems, mostly as part of formalizations on the
λ-calculus. For example, Huet [7] in the Coq system or Nipkow [13] in Isabelle/HOL.
A comparison is difficult because our goal was different and, more important, the logics
involved are significantly different: ACL2 logic is a much weaker logic than those of
Coq or HOL. A more related work is Shankar [18], using Nqthm. Although his work is
on the concrete reduction relation of λ-calculus and he does not deal with the abstract
case, some of his ideas are reflected in our work.

Table 1
Quantitative information on the proofs.

Book Lines Definitions Theorems Hints

abstract-proofs 284 16 17 0
confluence 387 12 31 7
newman 993 15 53 10
local-confluence 464 19 14 6
equational-theories 543 11 29 8
rewriting 720 13 38 9
critical-pairs 2129 43 112 26
kb-decidability 500 16 18 7

Total 6020 145 312 73



To our knowledge, no formalization of term rewriting systems has been done yet
and, consequently, the formal proofs of their properties presented here are the first ones
we know performed using a theorem prover.

In addition to extend the library of results about term rewriting systems, there are
also several ways in which the work presented here can be further developed, mostly de-
voted to improve efficiency of the verified algorithms and to apply the results to concrete
equational theories:

• In order to obtain certified decision procedures for some concrete equational theories,
work has to be done to formalize in ACL2 well-known terminating term orderings (re-
cursive path orderings, Knuth–Bendix orderings, etc.). As commented in section 3.5,
maybe some problems will arise due to the restricted notion of Noetherianity sup-
ported by ACL2.

• The work presented in [12] suggests another application of this work: other theorem
provers can be combined with ACL2 in order to obtain mechanically verified decision
algorithms for some equational theories.

• Although a fully verified equational reasoning system is currently impractical, it
would be desirable to improve the efficiency of the algorithms (for example, using
better data structures). Compositional reasoning can be used to reason about these
improved algorithms.

• Our original motivation when we began this formalization (and now our goal in the
long term) is to obtain a certified completion procedure written in Common Lisp. We
think the work presented here is a good starting point.
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