
Applying ACL2 to the Formalization of

Algebraic Topology: Simplicial Polynomials�

L. Lambán1, F.J. Mart́ın–Mateos2, J. Rubio1, and J.L. Ruiz–Reina2

1 Dept. of Mathematics and Computation, University of La Rioja
Edificio Vives, Luis de Ulloa s/n. 26004 Logroño, Spain

{lalamban,julio.rubio}@unirioja.es
2 Computational Logic Group

Dept. of Computer Science and Artificial Intelligence, University of Seville
E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

{fjesus,jruiz}@us.es

Abstract. In this paper we present a complete formalization, using the
ACL2 theorem prover, of the Normalization Theorem, a result in Alge-
braic Simplicial Topology stating that there exists a homotopy equiva-
lence between the chain complex of a simplicial set, and a smaller chain
complex for the same simplicial set, called the normalized chain complex.
The interest of this work stems from three sources. First, the normaliza-
tion theorem is the basis for some design decisions in the Kenzo com-
puter algebra system, a program for computing in Algebraic Topology.
Second, our proof of the theorem is new and shows the correctness of
some formulas found experimentally, giving explicit expressions for the
above-mentioned homotopy equivalence. And third, it demonstrates that
the ACL2 theorem prover can be effectively used to formalize mathemat-
ics, even in areas where higher-order tools could be thought to be more
appropriate.

1 Introduction

The origin of this work is a Computer Algebra system called Kenzo [2]. It is
a Common Lisp program created by F. Sergeraert around 1990 and devoted to
computing homology groups of topological spaces. In other words, Kenzo is a
system devoted to Algebraic Topology. The goal of Algebraic Topology is to clas-
sify or to distinguish topological spaces by observing some algebraic structures
associated with them.

Kenzo has been able to compute relevant results in the field, which have not
been confirmed or refuted by any other means (see [11]). This is the reason why it
makes sense to apply formal methods to study Kenzo and its correctness as a soft-
ware system. And when talking about mechanized theorem proving and Kenzo,
it is natural to think about ACL2 [4], a first-order theorem prover for reason-
ing about programs written in an extension of an applicative subset of Common

� Partially supported by Ministerio de Ciencia e Innovación, project MTM2009-13842,
and by European Commission FP7, STREP project ForMath.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/200977234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lisp. Although Kenzo is not programmed in such an applicative subset, we could
increase our confidence in some fragments of the Kenzo code, by formally verify-
ing applicative (and executable) versions very closely related to the original code.
Some preliminary results following this line have already been obtained [7,3].

In this paper, instead of verifying a fragment of the Kenzo code, we study a
different aspect of the problem: since the underlying mathematical theory in the
algorithms implemented in Kenzo is Algebraic Topology, we will have to formal-
ize in ACL2 the main theorems on which Kenzo is based. Here we present a first
step in this task: we show the ACL2 proof of a fundamental result in Algebraic
Topology, the so-called Normalization Theorem [5]. As we will explain, this the-
orem is like a precondition for Kenzo, allowing it to deal with simpler structures.

It turns out that the ACL2 first-order logic is enough to prove this theorem.
A symbolic setting is introduced in which the theorem can be proved by using
only simplification and induction on lists, the kind of proofs ACL2 was designed
for. Thus, this work could be considered a first milestone to formalize algebraic
topology in a first order framework.

The organization of the paper is as follows. In Section 2 we introduce the mini-
mal mathematical machinery needed to state and understand the main theorem
proved. In Section 3, we present the ACL2 definitions and theorems formally
establishing the result. In Section 4, we describe the symbolic framework of sim-
plicial polynomials, a fundamental tool for the development of the proof. The
paper ends with a section of conclusions and further work.

In our description of the formalization, we will necessarily skip many details
and some of the function definitions will be omitted. The complete source files
containing the ACL2 formalization and proof of the Normalization Theorem are
accessible at http://www.glc.us.es/fmartin/acl2/wfoe.

2 Algebraic Simplicial Topology

In this section the most important concepts needed to state the main theorem
are presented. More details can be found, for instance, in [8].

Definition 1. A simplicial set K is a graded set {Kn}n∈N together with func-
tions:

∂n
i : Kn → Kn−1, n > 0, i = 0, . . . , n,

ηn
i : Kn → Kn+1, n ≥ 0, i = 0, . . . , n,

subject to the following equations (called simplicial identities):

(1) ∂n−1
i ∂n

j = ∂n−1
j ∂n

i+1 if i ≥ j,

(2) ηn+1
i ηn

j = ηn+1
j+1 ηn

i if i ≤ j,

(3) ∂n+1
i ηn

j = ηn−1
j−1 ∂n

i if i < j,

(4) ∂n+1
i ηn

j = ηn−1
j ∂n

i−1 if i > j + 1,

(5) ∂n+1
i ηn

i = ∂n+1
i+1 ηn

i = idn,

where idn denotes the identity function on Kn.

The functions ∂n
i and ηn

i are called face and degeneracy maps, respectively.
The elements of Kn are called n-simplexes (or simplexes of dimension n).

A simplicial set is a combinatorial model of a topological space and n-simplexes
can be seen as an abstraction (and a generalization to dimension n) of the notion
of triangle, given by its vertices. Although we have do not have enough room
here to illustrate the notion of simplicial set, we get some intuition if we give
one concrete simplicial set: think of n-simplexes as non-decreasing integer lists
of length n + 1 and interpret ∂n

i and ηn
i as the functions that respectively delete

and duplicate the i-th element of a list. This simplicial set is a particular case
of a simplicial complex [1]. The notion of simplicial set is an abstraction of a
simplicial complex, where simplexes are no longer lists, but whatever elements,
where the simplicial identities hold.

If no confusion can arise, usually we remove the superindex in the face and
degeneracy maps, writing simply ∂i and ηi, respectively.

Algebraic Topology associates algebraic objects to topological spaces, and in
particular to simplicial sets. To understand this precisely, we need some algebraic
notions. A chain complex C is a sequence of pairs {Cn, dn}n∈N, where each Cn

is an abelian group and each dn is a homomorphism dn : Cn → Cn−1 (called
boundary map or differential) such that dn◦dn+1 = 0. This last property is called
the boundary property, and can be restated as Im(dn+1) ⊆ Ker(dn). Therefore,
it is possible to consider the quotient group Ker(dn)/Im(dn+1), which is called
the n-th homology group of the chain complex C, denoted Hn(C).

Given a simplicial set K, we can associate to it some homology groups in the
following way. For each n ∈ N, let us consider the free abelian group generated
by the n-simplexes Kn, group denoted by Cn(K). That is, the elements of such a
group are formal linear combinations

∑r
j=1 λjxj , where λj ∈ Z and xj ∈ Kn.

These linear combinations are called chains of simplexes or, in short, chains.
We define the homomorphisms dn : Cn(K) → Cn−1(K) first defining them over
each generator: for each x ∈ Kn, define dn(x) =

∑n
i=0(−1)i∂i(x); we then extend

them to chains by linearity. It can be proved, using the simplicial identity (1),
that these homomorphisms have the boundary property, and thus we say that
the family of pairs {(Cn(K), dn)}n∈N is the chain complex associated to the sim-
plicial set K, denoted by C(K). Its homology groups are denoted by Hn(K).
Much effort is devoted in Algebraic Topology to studying and determining such
homology groups, since it can be proved that they provide topological infor-
mation that aids in the classification of spaces. Homology groups are the main
objects to be computed by Kenzo.

There is an alternative way to associate a chain complex to a simplicial set
K, taking into account only non-degenerate simplexes. We say that a n-simplex
is degenerate if it is the result of applying a degeneracy map to a n− 1 simplex;
otherwise, it is non-degenerate. Let us denote by KND

n the set of non-degenerate
n-simplexes of K, and CN

n (K) the free abelian group Z[KND
n] generated by non-

degenerate simplexes. To get an actual chain complex, we introduce a differential
map dN

n which is defined as applying dn and then erasing, in its image, the
generators which are degenerate.

We define a family f of canonical epimorhisms fn : Cn(K) → CN
n (K) such

that fn(
∑r

j=1 λjxj) consists simply of eliminating all the addends λjxj such
that xj is a degenerate simplex. Note that the map f is compatible with respect
to the differentials; that is to say, fn−1 ◦ dn = dN

n ◦ fn. A function with this
property is called a chain morphism.

The main property of the above canonical chain morphism f is that it pre-
serves the homological information associated to a simplicial set, and this is
established by the Normalization Theorem:

Theorem 1 (Normalization Theorem). Let K be a simplicial set. Then the
canonical homomorphism f : C(K) → CN (K) induces group isomorphisms
Hn(C(K)) ∼= Hn(CN (K)), ∀n ∈ N.

The theorem explains that, from the computational point of view, it is the same
to work with C(K) as with CN (K). This justifies a fundamental implementation
decision in the Kenzo system: work only with the smaller chain complex CN (K)
to compute homology groups of a simplicial set K.

A proof of the Normalization Theorem can be found, for example, in [5] (pages
236-237). Nevertheless, we will prove the result trying a stronger and more direct
approach, more suitable for the ACL2 logic. This approach is based on the
notions of strong homotopy equivalence and reduction:

Definition 2. A strong homotopy equivalence is a 5-tuple (C, C ′, f, g, h)

C

f
��

h �� C′
g

��

where C = (M, d) and C′ = (M ′, d′) are chain complexes, f : C → C′ and
g : C′ → C are chain morphisms, h = (hi : Mi → Mi+1)i∈N is a family of
homomorphisms (called a homotopy operator), which satisfy the following three
properties for all i ∈ N:

(1) fi ◦ gi = idM ′
i

(2) di+2 ◦ hi+1 + hi ◦ di+1 + gi+1 ◦ fi+1 = idMi+1

(3) fi+1 ◦ hi = 0

If, in addition the 5-tuple satisfies the following two properties:

(4) hi ◦ gi = 0
(5) hi+1 ◦ hi = 0

then we say that it is a reduction.

This concept precisely describes a situation where the homological information
is preserved. More concretely, if (C, C′, f, g, h) is a reduction, then fn induces an
isomorphism of groups (with gn defining the corresponding inverse) between
Hn(C) and Hn(C′), ∀n > 0. Therefore the following statement describes a
stronger version of the Normalization Theorem:

Theorem 2 (Normalization Theorem, reduction version). For every simplicial
set K, there exists a reduction (C(K), CN (K), f, g, h) where f is the canonical
chain epimorphism.

An explicit definition of a possible reduction for this theorem was presented in
[10] as an experimental result. There, after running several examples, it was
conjectured (but not proved) that some possible formulas for the functions g
and h could be:

• gm =
∑

(−1)
∑ p

i=1 ai+bi ηap . . . ηa1∂b1 . . . ∂bp , where the indexes range over
0 ≤ a1 < b1 < . . . < ap < bp ≤ m, with 0 ≤ p ≤ (m + 1)/2.

• hm =
∑

(−1)ap+1+
∑ p

i=1 ai+bi ηap+1ηap . . . ηa1∂b1 . . . ∂bp , where the indexes
range over 0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ m, with 0 ≤ p ≤ (m+1)/2.

We have proved in ACL2 that, with these formulas for g and h, we have a strong
homotopy equivalence. That was the most difficult part of all our formalization
(note the complexity of the definitions above, which are very combinatorial).
After proving that, we applied some general transformations to the function h,
in such a way that we get properties (4) and (5), while preserving properties (1),
(2) and (3). That is, we proved Theorem 2 in ACL2.

3 The Normalization Theorem in ACL2

In this section, we show the main definitions and theorems formalizing the Nor-
malization Theorem in ACL2. We will leave for the next section a description of
the main aspects of the proof.

Although the syntax of ACL2 terms and formulas is that of Common Lisp,
and thus they are written using prefix notation, for the sake of readability they
will be presented using a notation closer to the usual mathematical notation
than its original Common Lisp syntax. For example, some of the functions will
be presented in infix notation. When needed, we will show the correspondence
between the ACL2 functions and the mathematical notation used instead.

3.1 Simplicial Sets and Chain Complexes

The first step in our formalization is the definition of the notion of simplicial set,
as presented in Definition 1. Since the theorem we want to prove is a result on
any simplicial set, we introduce a generic simplicial set using the encapsulation
principle. In ACL2, encapsulate allows us to introduce functions in a consistent
way, without giving a complete definition and only assuming certain properties
about them.

A simplicial set can be defined by means of three functions K, d and n. The
function K is a predicate with two arguments, such that K(m,x) is intended to
mean x ∈ Km. The functions d and n both have three arguments and they
represent the face and degeneracy maps, respectively. The intended meanings
for d(m,i,x) and n(m,i,x) are respectively ∂m

i (x) and ηm
i (x). To be generic, we

introduce them using the encapsulation principle: the only assumed properties
about K, d and n are those stating well-definedness of d and n and the five
simplicial identities. We do not list here all those properties, but for example
these are the assumptions about the well-definedness of the face map, and the
first simplicial identity:

Assumption: d-well-defined
(x ∈ Km ∧ m ∈ N

+ ∧ i ∈ N ∧ i ≤ m) → ∂m
i (x) ∈ Km−1

Assumption: simplicial-id1
(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ j ≤ i ∧ i < m ∧ 1 < m)

→ ∂m−1
i (∂m

j (x)) = ∂m−1
j (∂m

i+1(x))

The next step is to define chain complexes. Since chains are linear combinations
of simplexes of a given dimension, it is natural to represent them as lists whose
elements are (dotted) pairs formed by an integer and a simplex. We will consider
only chains in canonical form: their elements must have non-null coefficients and
have to be strictly increasingly ordered with respect to a total order (given by
the function ss-<, which is based on the ACL2 primitive function lexorder).
The main advantage of this is that the equality between chains will simply be
the ACL2 syntactical equality (equal).

The following function sc-p defines chains in a given dimension (the auxiliary
function ss-p defines the dotted pairs formed by a non-null integer and a simplex
of a given dimension):

Definition:
sc-p(m,c) :=

if endp(c) then c = nil
elseif endp(cdr(c)) then ss-p(m,first(c)) ∧ rest(c) = nil
else ss-p(m,first(c)) ∧ ss-<(m,first(c),second(c)) ∧

sc-p(m,rest(c))

The main operations we define on chains are addition and scalar product by
an integer, for each dimension m. The ACL2 functions for these operations are
add-sc-sc(m,c1,c2) and scl-prd-sc(m,k,c), whose definition we omit here. Re-
call that we have to take care of returning their result in canonical form. From
now on, we will respectively denote them as c1 + c2 and k · c (note that, for the
sake of readability, we omit the dimension).

The set of chains of a given dimension is an abelian group with respect to
addition, where the identity in this group is the zero chain (represented as nil
and denoted here as 0). It is worth mentioning that we automatically obtained
all the definitions and theorems proving the group structure of chains, as an
instance of a more generic theory about the free abelian group generated by a
generic basis. For that automatic generation we used the generic instantiation
tool described in [6].

Simplicial maps can be linearly extended on chains. For example, this is the
definition of c-d, the face map extended to chains1:

Definition: [∂m
i (c)]

c-d(m,i,c) :=
if endp(c) then c
else cons(car(first(c)),∂m

i (cdr(first(c)))) + c-d(m,i,rest(c)))

Note that this function is not a simple “mapcar” on the simplexes of a chain,
since its result is returned in canonical form. In a similar way, we define c-n,
the extension of the degeneracy map to chains. We will use the same notation
(∂m

i (c) and ηm
i (c)) to denote these maps both on simplexes and on chains.

Let us now define the differential on chains. Recall that its precise definition
is dm(c) =

∑m
i=0(−1)i∂m

i (c). The following function diff implements the corre-
sponding ACL2 recursive definition (the auxiliary function diff-aux is needed
to introduce an extra argument n for the dimension on where the function is
defined, which remains unchanged during the recursion):

Definition:
diff-aux(n,m,c) :=

if m �∈ N
+ then ∂n

0 (c)
else (−1)m · ∂n

m(c) + diff-aux(n,m− 1,c))
Definition: [dm(c)]

diff(m,c) := diff-aux(m,m,c)

The following theorem states that the above function satisfies the boundary
property, and thus we have a chain complex:

Theorem: diff-diff=0
(m ∈ N

+ ∧ c ∈ Cm+1(K)) → dm(dm+1(c)) = 0

3.2 The Normalized Chain Complex

We now describe the formalization of the normalized chain complex CN (K).
First of all we define degenerate simplexes (those that can be obtained ap-
plying a degeneracy map to another simplex) and the complementary set of
non-degenerate simplexes:

Definition: [x ∈ KD
m]

Kd(m,x) := ∃y,i (i ∈ N ∧ i < m ∧ y ∈ Km−1 ∧ ηm−1
i (y) = x)

Definition: [x ∈ KND
m]

Kn(m,x) := x ∈ Km ∧ x �∈ KD
m

1 Note the expression between square brackets in the first line of the definition of the
function. In general, this is the way we will present the notation subsequently used
in the paper for a defined function, when it is different from the actual ACL2 prefix
notation in the sources.

The existential quantifier in the definition of KD
m is introduced by defun-sk,

which is the way ACL2 provides support for first-order quantification.
Since normalized chains are linear combinations of non-degenerate simplexes

of a given dimension, we represent them in the same way as we represent general
chains, but in this case requiring non-degenerate generators. As with general
chains, the definitions and theorems corresponding to the group properties (w.r.t.
addition) of the set of normalized chains CN

m (K), are obtained automatically as
an instance of the generic theory of freely generated groups (again using the
generic instantiation tool [6]).

We also proved that it is a subgroup of Cm(K) so it makes sense to denote
c1 +c2 and k ·c the addition and scalar product of normalized chains. In general,
any function on chains can be also applied to normalized chains.

We define the canonical epimorphism f : C(K) → CN (K) simply as the func-
tion that, given an element of Cm(K), returns the normalized chain obtained by
eliminating its degenerate addends. In our formalization, the following function
F-norm defines f (here ssn-p checks the property of being a non-degenerate
addend, and it uses the function Kn above):

Definition: [fm(c)]
F-norm(m,c) :=

if endp(c) then 0
elseif ssn-p(m,first(c))

then first(c) + F-norm(m,rest(c)))
else F-norm(m,rest(c))

A key property relating the canonical chain epimorphism f and the differential on
C(K) is the following: if we apply normalization on the result of the differential
of a chain, we obtain the same result as if we apply the same operation previously
normalizing the chain. This is a consequence of the simplicial identities and it is
established by the following theorem:

Theorem: diff-n-F-norm
(m ∈ N

+ ∧ c ∈ Cm(K)) → fm−1(dm(fm(c))) = fm−1(dm(c))

The differential operation of the normalized chain complex CN (K), denoted as
dN

m(c), is defined as the result of applying the differential dm, and after that,
normalizing with fm−1:

Definition: [dN
m(c)]

diff-n(m,c) := fm−1(dm(c))

The differential property for d in C(K) (theorem diff-diff=0 in the previous
subsection), together with the property diff-n-F-norm, allows us to prove the
differential property for dN in CN (K), since for all c ∈ CN

m (K), dN
m(dN

m+1(c)) =
fm−1(dm(fm(dm+1(c)))) = fm−1(dm(dm+1(c))) = fm−1(0) = 0. The following
theorem establishes it:

Theorem: diff-n-diff-n=0
(m ∈ N

+ ∧ c ∈ CN
m+1(K)) → dN

m(dN
m+1(c)) = 0

3.3 Defining the Reduction

Once f is defined, it remains to define the functions g and h needed for the
reduction version of the Normalization Theorem. As we have said, our definitions
are based on the formulas experimentally conjectured in [10], presented at the
end of Section 2. The following function G is a recursive version of the formula for
gm (again we need an auxiliary function for dealing properly with the dimension):

Definition:
G-aux(n,m,c) :=

if m �∈ N
+ then c

else G-aux(n,m− 1,c − ηn−1
m−1(∂

n
m(c)))

Definition: [gm(c)]
G(m,c) := G-aux(m,m,c)

Some explanation is needed, to give an intuitive idea of why this recursive version
implements the explicit formula for gm of Section 2. Note that the terms in that
explicit formula are of two types: those not containing ∂m, which are precisely
the terms of gm−1, and those containing ∂m, which can be obtained composing
gm−1 with ηm−1∂m, and then applying the simplicial identities.

Now we define the function H0, the recursive version of the formula for hm

conjectured in [10] (the reason why we call it H0 instead of H will be clear soon).
For this definition, we need to define auxiliaries functions A-aux and H0-aux:

Definition:
A-aux(n,m,c) :=

if m �∈ N
+ then 0

else −A-aux(n,m− 1,ηn−1
m−1(∂

n
m(c))) +

(−1)m−1 · ηn
m(G-aux(n,m− 1,ηn−1

m−1(∂
n
m(c))))

Definition:
H0-aux(n,m,c) :=

if m �∈ N
+ then ηn

0 (c)
else H0-aux(n,m− 1,c) + (−1)m · ηn

m(c) + A-aux(n,m,c)
Definition: [h0

m(c)]
H0(m,c) := H0-aux(m,m,c)

An intuitive idea of why this recursive definition is equivalent to the explicit
definition for hm given in Section 2, is the following. Again, the terms in that
explicit definition are of two types, depending on whether they contain ∂m or
not. Those not containing ∂m are precisely the terms in hm−1+(−1)m ·ηm. Now,
the idea introducing am (i.e., A-aux) is to generate all the terms of hm containing
∂m. To see this, note that these terms can be, in turn, of two types, depending
on whether they do not contain ηm or they do. In the first case, these terms can
be obtained composing −am−1 and ηm−1∂m. In the second case, these terms can
be obtained composing ηm with every term in gm containing ∂m. And the terms
in gm containing ∂m are obtained composing gm−1 and ηm−1∂m. Note again that
we need to apply the simplicial identities to get the face and degeneracy maps
composed in the same order as they are in the explicit formula.

We realized, in the course of our proof attempt, that with this definition for h0,
we only have a strong homotopy equivalence. Fortunately, it is possible to obtain,
with a two-step transformation, a function hm from h0

m, having properties (4)
and (5) and still preserving the homotopy equivalence properties. The following
defines H by a two-step transformation from H0 (it turns out that with the first
transformation, we get (4) and with the second we get (5)):

Definition: [h1
m(c)]

H1(m,c) := h0
m(c) − h0

m(gm(fm(c)))
Definition: [hm(c)]

H(m,c) := h1
m(dm+1(h1

m(c)))

3.4 The Main Theorems

Now that we have defined the 5-tuple (C(K), CN (K), f, g, h), we present here
the main theorems proved, showing that it is a reduction:

Theorem: F-chain-morphism
(m ∈ N

+ ∧ c ∈ Cm(K)) → dN
m(fm(c)) = fm−1(dm(c))

Theorem: G-chain-morphism
(m ∈ N

+ ∧ c ∈ CN
m (K)) → gm−1(dN

m(c)) = dm(gm(c))
Theorem: F-G-H-property-1

(m ∈ N ∧ c ∈ CN
m (K)) → fm(gm(c)) = c

Theorem: F-G-H-property-2
(m ∈ N

+ ∧ c ∈ Cm(K)) → dm+1(hm(c)) + hm−1(dm(c)) = c − gm(fm(c))
Theorem: F-G-H-property-3

(m ∈ N ∧ c ∈ Cm(K)) → fm+1(hm(c)) = 0
Theorem: F-G-H-property-4

(m ∈ N ∧ c ∈ CN
m (K)) → hm(gm(c)) = 0

Theorem: F-G-H-property-5
(m ∈ N ∧ c ∈ Cm(K)) → hm+1(hm(c)) = 0

These properties establish in ACL2 the Normalization Theorem in its reduction
version. In the following section, we describe the main aspects of the proof of
these theorems. In particular, we present a framework where most of the reason-
ing was carried out: what we call the simplicial polynomial framework.

4 Simplicial Polynomials

Our ACL2 proof of the Normalization Theorem was developed following the
usual interaction with the system. Based on a hand proof, we guided the prover,
by means of a number of definitions and lemmas, suggested at a high level from
the hand proof, and at a lower level from inspection of failed proof attempts. In
this case, we also needed to do the hand proof on our own.

Roughly speaking, most of the proofs of the theorems of the previous section
can be carried out by manipulating symbolic expressions that represent sums

of compositions of face and degeneracy maps in a certain canonical way. These
expressions are what we call simplicial polynomials. Moreover, most of the lem-
mas and theorems can be proved applying induction and equational reasoning
on functions that return simplicial polynomials.

So our approach to get the proof of the Normalization Theorem was to de-
fine simplicial polynomials in ACL2 (using lists and numbers) and operations
on them resembling addition and composition of functions. We then proved the
properties showing that with respect to these operations, simplicial polynomi-
als are a ring. Guided by our hand proofs, most of the results needed for the
Normalization Theorem can be proved conveniently in the ring of simplicial poly-
nomials. Finally, we “lifted” the theorems proved in the simplicial polynomial
framework to the formalization presented in the previous section (which from
now on will be referred to as the standard formalization).

Due to the lack of space, we prefer to concentrate on the description of the
simplicial polynomial framework and how we used it as a convenient tool to get
the mechanical proof of the Normalization Theorem. For details on the mathe-
matical contents of the proof, we refer the reader to the sources.

4.1 The Ring of Simplicial Polynomials

Before describing simplicial polynomials, let us illustrate how we can represent
any composition of face and degeneracy maps using only lists and numbers. Let
∂5
5η4

3∂
5
1∂6

2η5
4 be a composition of maps defined to act on chains of dimension 5.

The first observation is that we can drop the superindexes, because once we know
on which dimension the composition is defined, then the superindex of each map
can be determined2. The second observation is that we can apply the simplicial
identities as rewrite rules to transform the composition to an equivalent canonical
form in which, from left to right, and with respect to their subindexes, there is a
strictly decreasing sequence of degeneracy maps followed by an strictly increas-
ing sequence of face maps. In our example, this equivalent canonical form is
η3η2∂1∂2∂5, which can be represented by the two-element list ((3 2) (1 2 5)).

A simplicial term is a list containing two lists of natural numbers, representing
canonical compositions. The first list (representing the degeneracies) is strictly
decreasing and the second (representing the faces) is strictly increasing. Since
simplicial terms represent functions that are applied to chains, we also have
to consider in our representation “sums” of simplicial terms, possibly with an
integer coefficient. In this context, a monomial is defined to be a (dotted) pair
of an integer and a simplicial term, and a simplicial polynomial is simply a list
of monomials. For example, the expressions p1 = 3 · η4η1∂3∂6∂7 − 2 · η1∂3∂4 and
p2 = η3∂4∂6 + 2 · η1∂3∂4 are both simplicial polynomials (for the sake of clarity
we maintain the +, η and ∂ symbols in the examples, but it has to be clear that
simplicial polynomials are represented using only lists and numbers).
2

Note that we cannot ignore the superindexes in the standard formalization of
the theorem, since our goal is to do a precise formalization of the mathematical
theory. What we will do now is to formally justify that we can prove most of the
properties without explicitly including the superindexes.

As with chains, in our ACL2 representation we will only consider simplicial
polynomials in canonical form: a true list of monomials, with non-null coeffi-
cients, and strictly increasingly ordered with respect to a fixed total order on
simplicial terms. This allows us to check the equality of two simplicial polynomi-
als by simply using the ACL2 syntactic equality equal. Thus, functional equality
is reduced to syntactic equality of first-order objects.

We can define operations on simplicial polynomials corresponding to the addi-
tion and composition of the functions they represent. For example, the addition
of p1 and p2 above is the polynomial η3∂4∂6 +3 · η4η1∂3∂6∂7 and their composi-
tion is −2 ·η1∂3∂4∂6 −4 ·η2η1∂2∂3∂4∂5 +3 ·η4η1∂4∂6∂7∂8 +6 ·η4η2η1∂2∂3∂4∂7∂8.
Of course, there is trade-off with the clean treatment of the equality: it makes
the definitions of operations between polynomials (and the proof of their pro-
perties) more difficult, since we have to return the results also in canonical form.
For example, the definition of the composition of simplicial terms and the proof
of its associativity turned out to be particularly difficult.

In our formalization, sp-p, denoted here as p ∈ P , recognizes those ACL2
objects that represent simplicial polynomials (in the following we will use bold-
face to denote polynomials). The functions add-sp-sp and cmp-sp-sp, whose
definition we omit here, respectively implement addition and composition (or
product) of simplicial polynomials, denoted respectively as p1 +p2

3, and p1 ·p2.
An interesting by-product of using simplicial polynomials, unlike the standard
formalization, is that operations are executable (particularly interesting for us,
since our long-term goal is the verification of a symbolic computation system).

We proved the properties showing that with respect to these two operations,
simplicial polynomials have a ring structure. For example, the following esta-
blishes right distributivity of composition with respect to addition:

Theorem: cmp-sp-sp-add-sp-sp-distributive-r
(p1 ∈ P ∧ p2 ∈ P ∧ p3 ∈ P) → p1 · (p2 + p3) = (p1 · p2) + (p1 · p3)

We do not list here all the ring properties proved, and we refer the reader to
the sources for a detailed description. All those properties are essential in our
formalization, and extensively used in the proofs.

It is worth pointing out that we proved all the ring properties as (functional)
instances of a more generic formalization. In the sources, the reader will find
the development of a general theory about the ring of linear combinations (with
integer coefficients) of elements of a generic monoid (a set with an associative
operation with identity). The ring of simplicial polynomials is just a particular
instance of this generic theory (a related ACL2 development for polynomials in
commutative algebra can be found in [9]). Specifically, we first proved that the
set of simplicial terms is a monoid with respect to composition, and then the
definitions of the operations on simplicial polynomials and their ring properties
were automatically generated using the generic instantiation tool [6].

3

For clarity, we are using the same symbol + that we used in the previous section for
chain addition, but they are different operations.

4.2 Formal Proofs in the Polynomial Framework

Unfortunately, there is not a direct translation of the Normalization Theorem in
the polynomial framework. The main reason is that the canonical epimorphism f
(which we recall is defined deleting the degenerate simplexes of a chain), cannot
be expressed as a simplicial polynomial. But fortunately, we can do most of the
work (or at least, the hard part) at the polynomial level. The idea is to define
polynomial versions for the differential d and for g and h, and prove, in the
simplicial polynomial ring, their main properties.

For example, this is the definition of the polynomial that represents the func-
tion gm introduced in Section 2. Here id is the ring identity with respect to
composition (i.e., the polynomial representation of the identity function):

Definition: [gm]
G-pol(m) :=

if m �∈ N
+ then id

else G-pol(m− 1) · (id − ηm−1∂m)

Note that this definition mimics, at a symbolic level, the recursive definition of
gm, but without the burden of dealing with superindexes and without explicitly
giving the chain on which it is applied. In a similar way, we can define dm and
hm, the polynomial counterparts of the functions dm and hm.

Once defined these functions, we prove a number of lemmas about them,
polynomial versions of the results we need to prove Theorem 2. For example,
this is the polynomial version of the theorem stating that gm is a chain morphism:

Theorem: G-pol-and-diff-pol-commute
m ∈ N → dm · gm = gm−1 · dm

All these properties, although with substantial differences in its difficulty, have
been proved in a similar way: applying induction suggested by the recursive
definitions and using the properties of the simplicial polynomial ring and the
simplicial identities, to prove the inductive case. Again, we refer the reader to
the source code, for details on the proofs.

4.3 Lifting Proofs from the Polynomial Framework

We now describe how we can translate the properties on polynomials, to the co-
rresponding properties in the standard framework presented in Section 3. Roughly
speaking, we can say that the “essence” of the property is already captured in
the polynomial version, but some technical details have still to be solved when
translating it: for example, the reintroduction of the superindexes or also how to
incorporate the canonical epimorphism f in results that mention it.

The key (and natural) idea is to define the functional behavior of a simplicial
polynomial by means of a function that receives a polynomial and a chain as
input, and evaluates the polynomial on the chain by applying the maps and sums
that it encodes. This function will also receive as input the expected dimension
of the chain (this will allow us to properly reintroduce the superindexes).

To illustrate how we define this evaluation function, this is the definition of
the auxiliary function used to evaluate a list of faces ld (the second element of
a simplicial term) on a chain c of dimension m:

Definition:
eval-ld(ld,m,c) :=

if endp(ld) then c
else c-d(m-len(rest(ld)),first(ld),eval-ld(rest(ld),m,c)))

Recall that c-d (presented in Subsection 3.1) is the face map, linearly extended
to chains; note also how the dimension is properly managed in the recursive call.
In a similar way, we can define the evaluation of a list of degeneracies. Extending
these, we define the evaluation of simplicial terms (eval-st), the evaluation of
monomials (eval-sm) and finally the evaluation of a polynomial p on a chain c
of dimension m, the function eval-sp(p,m,c).

Not every simplicial polynomial can be interpreted consistently as a function
on chains. Think for example in the simplicial term η5η2η1∂1∂3. It cannot be
evaluated on chains of dimension less than 5, since otherwise in the last step we
will be applying η5 to a chain of dimension less than 5. In general, in the case
that the simplicial term may be interpreted as a function on dimension m, we
say that the simplicial term is valid for m. For example, the simplicial term of
the example is valid for every dimension m > 4.

The degree of a simplicial term is an integer giving the “dimension jump”
of every function it may represent (or equivalently, it is the difference between
the number of degeneracies and the number of faces). It is clear that another
restriction we must impose on a simplicial polynomial, in order to being able to
evaluate it on chains, is that it has to be uniform (that is, all its terms have the
same degree).

We have formalized those restrictions in ACL2 by means of three functions
valid-sp, uniform-sp and degree-sp, whose definitions we omit here: valid-sp
(p,m) checks whether all the simplicial terms in p are valid for dimension m,
uniform-sp(p) checks if all the terms in p have the same degree and degree-sp(p)
is the common degree of the terms of a uniform polynomial (or 0 if it is the zero
polynomial).

Now the fundamental properties of the evaluation function eval-sp are that
for a given dimension, it behaves consistently with respect to the operations of
the ring of simplicial polynomials, whenever the input polynomials are valid for
that dimension and uniform. Note that these properties are not trivial, because
again we have to deal with the canonical form.

Theorem: eval-sp-add-sp-sp
(p1 ∈ P ∧ p2 ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ valid-sp(p1,m) ∧
valid-sp(p2,m) ∧ uniform-sp(p1) ∧ uniform-sp(p2) ∧
(endp(p1) ∨ endp(p2) ∨ degree-sp(p1) = degree-sp(p2)))
→ eval-sp(p1 + p2,m,c) = eval-sp(p1,m,c) + eval-sp(p2,m,c))

Theorem: eval-sp-cmp-sp-sp
(p1 ∈ P ∧ p2 ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ valid-sp(p2,m) ∧
valid-sp(p1,m+degree-sp(p2)) ∧ uniform-sp(p1) ∧ uniform-sp(p2))
→ eval-sp(p1 · p2,m,c) =

eval-sp(p1,m+degree-sp(p2),eval-sp(p2,m,c))

Now we can prove equivalences of the polynomial versions of the functions with
their standard versions (since they are valid and uniform polynomials). For ex-
ample, this is the result relating gm and gm (analogous theorems are proved for
dm and dm, and for hm and hm):

Theorem: G-eval-sp-G-pol
(m ∈ N ∧ c ∈ CN

m (K)) → eval-sp(gm,m,c) = gm(c)

These properties allow us to directly translate the properties proved in the poly-
nomial framework to the corresponding properties in the standard formaliza-
tion. Let us illustrate this, for example, with the case of proving that g is chain
morphism. From the property G-pol-and-diff-pol-commute at the end of the
previous subsection, and using the equivalences proved, we obtain:

Theorem: G-and-diff-commute
(m ∈ N

+ ∧ c ∈ Cm(K)) → gm−1(dm(c)) = dm(gm(c))

This property is almost the property G-chain-morphism, one of the reduction
properties needed for the Normalization Theorem. One last detail is missing,
since in that property we mention the normalized differential dN

m in the left hand
side, instead of dm. That is, we have to “incorporate” the canonical epimorphism
to the theorem. But it is easy to prove that gm applied to any degenerate sim-
plex is 0, and therefore gm(fm(c)) = gm(c) for every chain c. This means that
gm−1(dN

m(c)) = gm−1(fm−1(dm(c))) = gm−1(dm(c)) and thus we finally obtain
the theorem G-chain-morphism.

This example illustrate a typical situation in our formal proof. The main
“combinatorial” property is proved at polynomial level (usually by induction),
and then we use the equivalences and possibly some final easy simplifications to
obtain the property in the standard framework.

5 Conclusions and Further Work

The work reported in this paper shows that the ACL2 theorem prover can be ef-
fectively used to mechanize non-trivial mathematics, in fields (like Algebraic To-
pology) where higher-order tools could be thought as more appropriate. Our case
study is the Normalization Theorem, an important result in simplicial topology
establishing a link between the two chain complexes that can be naturally asso-
ciated to a simplicial set. As a by-product, our proof has been used to formally
prove the correctness of some explicit formula experimentally found in [10].

To quantify the proof effort, the complete formalization contains 99 defini-
tions and 565 lemmas and theorems (with 158 non-trivial proof hints explicitly
given), which gives an idea of the degree of automation of the proof. It is worth
pointing out that the whole development has benefited from the use of our in-
stantiation tool for generic theories described in [6]. That allowed us to obtain
in an automated way, the definitions and theorems proving the ring of simplicial
polynomials and the abelian group of chains and normalized chains, as instances
of generic theories (we have not included these automatically generated defini-
tions and lemmas in the statistics).

Simplicial polynomials turned out to be a convenient tool for the proof of the
Normalization Theorem, so our future work is to extend this technique to other
problems in algebraic topology. Our next goal is the Eilenberg-Zilber Theorem
[8]. It is a very important result giving a reduction between the chain complex
of the cartesian product of simplicial sets, CN (A × B), and the tensor product
of the corresponding chain complexes of the factors, CN (A) ⊗ CN (B). The as-
sociated algorithm is very important in Kenzo, being responsible for most of the
(exponential) complexity of many Kenzo programs. Thus the task of formalizing
it can be considered a good next step. The challenge is that in the Eilenberg-
Zilber Theorem there are two simplicial sets involved, and therefore the scope
of our techniques should be significantly extended to be applied in that case.

References

1. De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Structures for Algorithms
and Applications. Springer, Heidelberg (2010)

2. Dousson, X., Sergeraert, F., Siret, Y.: The Kenzo Program. Institut Fourier, Greno-
ble (1999), http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

3. Heras, J., Pascual, V., Rubio, J.: Proving with ACL2 the correctness of simplicial
sets in the kenzo system. In: Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564,
pp. 37–51. Springer, Heidelberg (2011)

4. Kaufmann, M., Manolios, P., Moore,J S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer, Dordrecht (2000)

5. Mac Lane, S.: Homology. Springer, Heidelberg (1963)
6. Mart́ın–Mateos, F.J., Alonso, J.A., Hidalgo, M.J., Ruiz–Reina, J.L.: A Generic

Instantiation Tool and a Case Study: A Generic Multiset Theory. In: Proceedings of
the Third International ACL2 Workshop and its Applications, pp. 188–201 (2002)

7. Mart́ın-Mateos, F.J., Rubio, J., Ruiz-Reina, J.L.: ACL2 Verification of Simplicial
Degeneracy Programs in the Kenzo System. In: Carette, J., Dixon, L., Coen, C.S.,
Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625,
pp. 106–121. Springer, Heidelberg (2009)

8. May, J.P.: Simplicial objects in Algebraic Topology. Van Nostrand, New York (1967)
9. Medina–Bulo, I., Palomo–Lozano, F., Ruiz–Reina, J.L.: A verified Common Lisp

implementation of Buchberger’s algorithm in ACL2. Journal of Symbolic Compu-
tation 45(1), 96–123 (2010)

10. Rubio, J., Sergeraert, F.: Supports Acycliques and Algorithmique. Astérisque 192,
35–55 (1990)

11. Rubio, J., Sergeraert, F.: Constructive Algebraic Topology. Bulletin Sciences
Mathématiques 126, 389–412 (2002)

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

	Applying ACL2 to the Formalization of Algebraic Topology: Simplicial Polynomials
	Introduction
	Algebraic Simplicial Topology
	The Normalization Theorem in ACL2
	Simplicial Sets and Chain Complexes
	The Normalized Chain Complex
	Defining the Reduction
	The Main Theorems

	Simplicial Polynomials
	The Ring of Simplicial Polynomials
	Formal Proofs in the Polynomial Framework
	Lifting Proofs from the Polynomial Framework

	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

