
Using Abstract Stobjs in ACL2 to Compute
Matrix Normal Forms

Laureano Lambán1, Francisco J. Mart́ın-Mateos2, Julio Rubio1, and José-Luis
Ruiz-Reina2

1 Department of Mathematics and Computation,
University of La Rioja, Logroño, Spain
{lalamban,julio.rubio}@unirioja.es

2 Department of Computer Science and Artificial Intelligence,
University of Sevilla, Seville, Spain

{fjesus,jruiz}@us.es

Abstract. We present here an application of abstract single threaded
objects (abstract stobjs) in the ACL2 theorem prover, to define a for-
mally verified algorithm that given a matrix with elements in the ring
of integers, computes an equivalent matrix in column echelon form.
Abstract stobjs allow us to define a sound logical interface between matri-
ces defined as lists of lists, convenient for reasoning but inefficient, and
matrices represented as unidimensional stobjs arrays, which implement
accesses and (destructive) updates in constant time. Also, by means of
the abstract stobjs mechanism, we use a more convenient logical repre-
sentation of the transformation matrix, as a sequence of elemental trans-
formations. Although we describe here a particular normalization algo-
rithm, we think this approach could be useful to obtain formally verified
and efficient executable implementations of a number of matrix normal
form algorithms.

Keywords: Matrices · ACL2 · Abstract stobjs · Matrix normal forms

1 Introduction

Computing normal forms of matrices is a wide subject which presents many
applications in different areas of Mathematics. For instance, one of the funda-
mental processes in Linear Algebra is the resolution of systems of linear equa-
tions, and the constructive methods to carry that task out are based on the
computation of triangular forms of a given matrix. In the same way, Smith nor-
mal form, a particular kind of equivalent diagonal matrix, plays an essential role
in the theory of finitely generated modules over a ring and, in particular, it is
a key result to determine the structure of a finitely generated abelian group.
Smith form also provides a well-known method for finding integer solutions of

Supported by Ministerio de Ciencia e Innovación, projects TIN2013-41086-P and
MTM2014-54151-P.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/200977177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

systems of linear Diophantine equations [11]. The key point of all these proce-
dures is to ensure that the output matrix (a reduced form) preserves some of
the fundamental invariants of the input matrix such as the row (column) space,
the rank, the determinant, the elementary divisors and so on.

There exists a huge range of algorithmic methods for computing normal
forms of matrices [12], which are based on well established mathematical results.
Nevertheless, it is advisable to have verified programs available in order to avoid
the possible inaccuracies which can occur during the path from algorithms to
programs. The aim is the paper is to propose a data structure and a logical
infrastructure to implement formally verified matrix normal forms algorithms,
in the ACL2 theorem prover, with special emphasis on how to efficiently execute
the verified algorithms.

The ACL2 system [1] is at the same time a programming language, a logic
for reasoning about models implemented in the language, and a theorem prover
for that logic. The programming language is an extension of an applicative sub-
set of Common Lisp, and thus the verified algorithms can be executed, under
certain conditions, in the underlying Common Lisp. ACL2 has several features
mainly devoted to get an efficient execution of the algorithms, in a sound way
with respect to the logic. Abstract single-threaded objects [1,7] is one of those
features, providing a sound logical connection between efficient concrete data
structures and more abstract data structures, convenient for reasoning. We pro-
pose here to use this feature to implement and formally verify matrix algorithms
for computing normal forms.

In particular, we describe in this paper a formally verified implementation
of an algorithm to compute a column echelon form of a matrix with elements
in the ring of integers. This formalization is done as an initial step for develop-
ing computational homological algebra in the ACL2 system and in particular to
calculating (persistent) homology [10]. But although we describe here the for-
malization of a specific normalization algorithm, we think this approach could
be generalized to other normalization algorithms as well.

The organization of the paper is as follows. The next section is devoted to
describe a formalization of matrices in ACL2, represented as lists of lists, and
also a representation for matrix normalization problems. This representation is
natural for reasoning, but has inefficiencies due to the applicative nature of Lisp
lists. Section 3 describes how we can compute using more efficient data struc-
tures, and still have the more natural representation for reasoning, by means of
ACL2 abstract single-threaded objects. In Sect. 4, we illustrate this infrastruc-
ture describing how we formally verified an algorithm for computing a column
echelon form for integer matrices. The paper ends with some discussion about
related work and conclusions. Due to the lack of space, we will omit some ACL2
definitions and skip some technical details (for example, all the functions decla-
rations). The complete source files containing the ACL2 formalization are acces-
sible at: http://www.glc.us.es/fmartin/acl2/mast-cef.

http://www.glc.us.es/fmartin/acl2/mast-cef

2 A Data Structure for Reasoning in the Logic

In this section, we describe a data structure that can be used to define a matrix
normal form algorithm. This data representation is suitable for reasoning, but
inefficient for execution, as we will see. We will refer to this as the abstract
representation.

2.1 Matrices as Lists of Lists

A very natural way to represent a 2-dimensional matrix in ACL2 is as a list
whose elements are lists of the same length, each one representing a row of the
matrix. For example, the list ’((1 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1))
represents the identity matrix of dimension 4. The following function matp is the
recognizer for well-formed matrices represented as lists of lists:

(defun matp-aux (A ncols)
(cond ((atom A) (equal A nil))

(t (and (true-listp (first A))
(equal (len (first A)) ncols)
(matp-aux (rest A) ncols)))))

(defun matp (A)
(if (atom A)

(equal A nil)
(and (consp (first A))

(matp-aux A (len (first A))))))

Note that if (matp A), then the number of rows of A is given by its length,
and the number of columns by the length of (for instance) its first element.
In our formalization, these are defined by the functions nrows-m and ncols-m,
respectively. We have also defined the function (matp-dim A m n) checking that
A is a matrix of a given size m × n. As we have said in the introduction, the
algorithm we have formalized is restricted to matrices with elements in the ring
of integers; the function integer-matp (and integer-matp-dim) recognizes the
ACL2 object that are matp and with all its elements being integers.

Accessing and updating matrix elements is done via nth and update-nth,
respectively, as defined by the following functions aref-m and update-aref-m:

(defun aref-m (A i j)
(nth j (nth i A)))

(defun update-aref-m (i j val A)
(update-nth i (update-nth j val (nth i A)) A))

Using this representation, these operations are not done in constant time,
and updating is not destructive, since it follows the usual “update by copy”

semantics of applicative lists. This is a drawback if we want efficient algorithms
on matrices. In the next section we will show how to address this issue.

A typical definition scheme for matrix operations or matrix properties is by
means of two nested loops, the outer iterating on its rows indices, and the inner
on its column indices for a fixed row. In our formalization, this is done using
two recursive functions. The following definition of the product of two matrices
illustrates this recursion scheme:

(defun matrix-product-row-col (A B P i j cA cP)
(cond ((or (not (natp j)) (not (natp cP))) P)

((>= j cP) P)
(t (let ((P1 (update-aref-m i j

(mp-res-i-j A B i j 0 cA) P)))
(matrix-product-row-col A B P1 i (1+ j) cA cP)))))

(defun matrix-product-row (A B P i rP cA cP)
(cond ((or (not (natp i)) (not (natp rP))) P)

((>= i rP) P)
(t (let ((P1 (matrix-product-row-col A B P i 0 cA cP)))

(matrix-product-row A B P1 (1+ i) rP cA cP)))))

Here mp-res-i-j implements the sum
∑

k aikbkj , and P is a matrix with the
same number of rows as A and the same number columns as B, where we store
the resulting matrix product. Thus, matrix product is defined by the following
function:

(defun matrix-product (A B)
(let* ((rA (nrows-m A))

(cA (ncols-m A))
(cB (ncols-m B))
(P (initialize-mat rA cB nil)))

(matrix-product-row A B P 0 rA cA cB)))

Using this representation for matrices, we proved a number of well-known
algebraic properties of matrix operations. For example, the following are the
statements for product associativity and right identity (where matrix-id defines
the identity matrix of a given dimension):

(defthm matrix-product-associative
(implies (and (matp A) (matp B)

(equal (nrows-m B) (ncols-m A))
(equal (nrows-m C) (ncols-m B)))

(equal (matrix-product (matrix-product A B) C)
(matrix-product A (matrix-product B C)))))

(defthm matrix-product-right-identity
(implies (integer-matp-dim A (len A) n)

(equal (matrix-product A (matrix-id n)) A)))

A general technique we used to prove most of these algebraic properties is
based on the property that (equal P Q) if P and Q are matrices of the same
dimension m×n such that pij = qij for 0 <= i < m, 0 <= j < n. We proved this
property in a general way using the ACL2 encapsulation mechanism, and then
we use it by functional instantiation, after proving the corresponding algebraic
property for the individual entries of both sides of the equality. See the book
matrices-lists-of-lists.lisp in the supporting materials, for details.

2.2 An Abstract Representation for Matrix Normal Form
Computation

Algorithms that compute matrix normal forms, often compute also transforma-
tion matrices that relate the original matrix with its normal form. For example,
in the algorithm we describe in Sect. 4, the goal is to obtain, for a given matrix
A, a matrix H in a desired normal form and an invertible transformation matrix1

T such that A ·T = H. A general description of a matrix normal form algorithm
could be the following: we operate on two matrices, initially the original matrix
and the identity matrix; at every step, an elementary transformation (or opera-
tor) is applied to the first matrix and the same transformation is applied to the
second matrix; when the algorithm stops, we have H and T with the desired
properties.

We now explain a possible data structure for such algorithms, which turns
out to be natural for reasoning. First, we will represent the matrix A being trans-
formed, using the list of lists representation described in the previous subsection.
For the transformation matrix T we adopt a different approach: although the
executable algorithm will deal with the whole matrix, in the logic it will be more
convenient to see that transformation matrix as a list of operators, describing the
sequence of elementary transformations carried out; and each operator will be a
short description of the transformation. The reason is that it is easier to prove
the properties of the transformation matrix, if we explicitly have the sequence
of elementary transformations that this matrix represents.

For our concrete normal form algorithm described in Sect. 4, it turns out
that only one type of elementary transformation is needed2: given two distinct
column indices c1 and c2 and four integers x1, x2, y1 and y2, this transformation
replaces column c1 by the linear combination of column c1 times x1 plus column
c2 times x2, and also replaces column c2 by the linear combination of column c1
times y1 plus column c2 times y2. We will call this operator a linear combination
of columns (lcc), and in the logic it will be represented as the list (c1 c2 x1
x2 y1 y2). In our formalization, the function (lcc-op l n) checks if l is such

1 Some algorithms for computing matrix normal forms, like the Smith normal form,
need to compute two transformation matrices, but similar ideas would apply in that
case.

2 Of course, other normal forms algorithms needs different elementary transformations,
and possible more than one. But again, the same ideas described here could be
applied in such cases.

operator, where c1 and c2 are less than n. And (lcc-op-seq seq n) checks if
seq is a list of lcc operators.

The above considerations lead us to the following predicate mast$ap, recog-
nizing the data representation we have just described (the prefix $a is for
“abstract”):

(defun mast$ap (x)
(and (true-listp x)

(equal (len x) 2)
(let ((A (first x))

(seq (second x)))
(cond ((atom A) (and (equal A nil) (equal seq nil)))

(t (and (integer-matp-dim A (nrows-m A) (ncols-m A))
(lcc-op-seq seq (ncols-m A))))))))

We have defined a number of functions that operate on this data structure.
The main operation is linear combination of columns. For that, we first need to
define the function lin-comb-cols-lst, which effectively carries out the linear
combination of columns on a given matrix. Note that here we have an extra
parameter max-r, which indicates a row index. This allows us to perform the
linear combination of columns only until that row, but not below (the reason is
that during the transformation process, we will be sure that there will only be
zeros below a given row):

(defun lin-comb-cols-lst-rows (A c1 c2 r max-r x1 x2 y1 y2)
(cond ((or (not (natp max-r)) (not (natp r))) A)

((> r max-r) A)
(t (let* ((Arc1 (aref-m A r c1))

(Arc2 (aref-m A r c2))
(nArc1 (+ (* x1 Arc1) (* x2 Arc2)))
(nArc2 (+ (* y1 Arc1) (* y2 Arc2)))
(nA (update-aref-m r c2 nArc2

(update-aref-m r c1 nArc1 A))))
(lin-comb-cols-lst-rows nA c1 c2 (1+ r) max-r

x1 x2 y1 y2)))))

(defun lin-comb-cols-lst (A c1 c2 max-r x1 x2 y1 y2)
(lin-comb-cols-lst-rows A c1 c2 0 max-r x1 x2 y1 y2))

Now, the following function implements the lcc transformation on our
abstract representation. Note that the transformation is only effectively carried
out on the first matrix:

(defun lin-comb-cols$a (mast$a c1 c2 max-r x1 x2 y1 y2)
(list (lin-comb-cols-lst (first mast$a) c1 c2 max-r x1 x2 y1 y2)

(cons (list c1 c2 x1 x2 y1 y2) (second mast$a))))

We would like to define our matrix normal form algorithm using this and
other functions defined on the abstract representation, but as we have said we
can improve execution if we do not use applicative lists. And also, probably, if
we were not interested in formal verification, we wouldn’t have dealt with lcc
operators, but with the whole transformation matrix instead.

3 Using Abstract Stobjs to Represent Matrices

So let us now define an executable and efficient data structure representation, and
see how we can relate it to the abstract representation described above. Efficient
execution is achieved in the ACL2 system mainly by means of two features:
guards and single threaded objects. The guard of a function is a specification
of its intended domain. Although functions in the ACL2 logic are total, guards
provide a way to specify and verify the inputs for which the function can be
safely executed directly in the underlying raw Common Lisp. A guard-verified
function respects the guards of all the functions that it calls (including itself
in case of a recursive function). All the functions involved in the algorithm of
Sect. 4 have been guard-verified.

The second feature related to efficient execution is provided by single
threaded objects (stobjs). These are data structures that allow accessing and
updating in constant time, and destructive updates on them. When an object is
declared to be single-threaded, ACL2 enforces certain syntactic restrictions on
its use, ensuring that in every moment, only one copy of the object is needed
(for example, one of these restrictions requires that if a function updates a stobj,
then it has to return the stobj). With these restrictions, the destructive updates
are consistent with the applicative functional semantics of ACL2.

Therefore, it would be good if we can execute our matrix algorithms using
stobjs. Nevertheless, although we can use arrays as fields of a stobj, those arrays
have to be 1-dimensional and accessing and updating the array is only allowed
via elementary operations, so reasoning directly using this representation could
be difficult. Fortunately, another ACL2 feature, abstract stobjs, will allow us to
define an alternative logical interface for the stobj.

3.1 A Stobj for Computing Matrix Normal Forms

Before describing the abstract stobj we have used, let us show the corresponding
stobj, where the execution will take place (we will call this the concrete repre-
sentation). In ACL2, a stobj is defined, using defstobj, as a structure with a
number of fields, where each field can be either of array type or of non-array
type. In our case, we will define a stobj with two 1-dimensional array fields, each
one storing the elements of a 2-dimensional matrix, in linearized form. The idea
is that one of the 1-dimensional arrays stores the matrix being transformed, and
the other stores the transformation matrix. We also need two non-array fields,
to store the number of rows and the number of columns of the first matrix. The
following defines this stobj (the $c suffix is for concrete):

(defstobj mast$c
(nrows$c :type (integer 0 *) :initially 0)
(ncols$c :type (integer 0 *) :initially 0)
(matrix$c :type (array integer (0)) :initially 0 :resizable t)
(trans$c :type (array integer (0)) :initially 0 :resizable t))

Array fields in stobjs are defined in the logic as ordinary lists, but for execu-
tion in the underlying Lisp, raw Lisp arrays are used. The effect of this ACL2
form is to introduce the stobj mast$c and its associated recognizers, creator,
accessors, updaters, and length and resize functions for its fields. For exam-
ple, given an index i, (matrix$ci i mast$c) and (update-matrix$ci i v
mast$c) respectively access and update (with value v) the i-th cell of the
matrix$c array. Similar functions are defined for the trans$c array. These oper-
ations are executed in constant time and the update is destructive (at the price
of syntactic restrictions on the use of the stobj). Logically speaking, they are
defined in terms of nth and update-nth.

We have defined a number of functions operating on this concrete represen-
tation. Let us show, for example, how we implement the linear combination of
columns. First, the following function performs that operation on the first matrix
(we omit some technical details):

(defexec lin-comb-cols-matrix$c-rows
(mast$c i j s r max-r x1 x2 y1 y2)

...
(cond ((> r max-r) mast$c)

(t (let* ((mat-i (mat$ci i mast$c))
(mat-j (mat$ci j mast$c))
(new-mat-i (+ (* x1 mat-i) (* x2 mat-j)))
(new-mat-j (+ (* y1 mat-i) (* y2 mat-j))))

(seq mast$c
(update-mat$ci i new-mat-i mast$c)
(update-mat$ci j new-mat-j mast$c)
(lin-comb-cols-matrix$c-rows mast$c (+ i s) (+ j s)

s (1+ r) max-r x1 x2 y1 y2))))))

(defun lin-comb-cols-matrix$c (mast$c c1 c2 max-r x1 x2 y1 y2)
(lin-comb-cols-matrix$c-rows

mast$c c1 c2 (ncols$c mast$c) 0 max-r x1 x2 y1 y2))

Here i and j are indices of positions in the 1-dimensional array (initially, c1
and c2, respectively), and r is the current row of the corresponding 2-dimensional
array (initially 0). Note that to move to the next row in both columns, we add
s (the number of columns) to both indices.

In a very similar way, we define a function lin-comb-cols-trans$c that per-
forms the same operation on the trans$c 1-dimensional array. And finally, we
sequentially apply both transformations (note that the operation on the trans-
formation matrix is performed until the last row):

(defun lin-comb-cols$c (mast$c c1 c2 max-r x1 x2 y1 y2)
(seq mast$c

(lin-comb-cols-matrix$c mast$c c1 c2 max-r x1 x2 y1 y2)
(lin-comb-cols-trans$c mast$c c1 c2

(1- (ncols$c mast$c)) x1 x2 y1 y2)))

3.2 The Abstract Stobj

Until now, we have defined an abstract representation (convenient for reasoning),
and also a concrete representation (suitable for execution). In both representa-
tions, we have defined functions that perform the main operations needed for
our matrix normal form algorithm. Now we can combine the best of both repre-
sentations, thanks to abstract stobjs.

But before we have to introduce a (non-executable) correspondence predi-
cate, describing in what sense the concrete and the abstract representations are
related. Basically: the concrete representation stores the size of the matrix in the
abstract representation; the first 1-dimensional array of the concrete represen-
tation is a linearized version of the matrix of the abstract one; and the second
1-dimensional matrix of the concrete representation is a linearized version of the
result of applying the sequence of lcc operators of the abstract representation,
to the identity matrix:

(defun-nx mast$corr (mast$c mast$a)
(let ((nrows (len (first mast$a)))

(ncols (len (first (first mast$a)))))
(and (equal nrows (nth 0 mast$c))

(equal ncols (nth 1 mast$c))
(equal (append-lst (first mast$a)) (nth 2 mast$c))
(equal (append-lst (apply-lcc-op-seq (second mast$a)

(matrix-id ncols)))
(nth 3 mast$c)))))

Here (append-lst ls) is a function that given a list of lists ls, concatenates
all of them into one single list. And apply-lcc-op-seq is a function that applies
a sequence of lcc operators to a given matrix. Here it is its definition:

(defun apply-lcc-op (op A)
(let ((c1 (nth 0 op)) (c2 (nth 1 op)) (x1 (nth 2 op))

(x2 (nth 3 op)) (y1 (nth 4 op)) (y2 (nth 5 op)))
(lin-comb-cols-lst A c1 c2 (1- (nrows-m A)) x1 x2 y1 y2)))

(defun apply-lcc-op-seq (seq A)
(cond ((endp seq) A)

(t (apply-lcc-op (first seq)
(apply-lcc-op-seq (rest seq) A)))))

Note that this function is only for specification. In particular, we apply
lin-comb-cols-lst to all the rows of the matrix and not only until a given
row, since that optimization will only make sense in the particular implementa-
tion of a normalization algorithm.

Now we can define the abstract stobj that provides a sound logical connec-
tion between both representations. In ACL2, a defabsstobj event defines an
abstract single-threaded object that is proven to satisfy a given invariant prop-
erty, and that can only be accessed or updated by some given functions called
exports. These functions have an abstract definition that ACL2 uses for reason-
ing and a different concrete implementation that ACL2 uses for execution on
a corresponding concrete stobj. In our case, this is the abstract stobj we have
defined:

(defabsstobj mast
:exports (initialize-mast

nrows ncols
aref-mat
lin-comb-cols
get-mat
get-trans))

Here initialize-mast is a function that given an initial matrix A (as a list
of lists), stores it in the abstract stobj. The abstract definition for this export
is straightforward (simply returns (list A nil)), but the concrete executable
definition is far more difficult, since it has to store each element of A and each
element of the identity matrix in the corresponding 1-dimensional arrays of the
stobj. As for lin-comb-cols, we have already presented its abstract and con-
crete definitions. These two exports update the abstract stobj, and the rest of
the exports are only accessors: nrows and ncols give the number of rows and
columns of the first matrix, aref-mat access to an element of the first matrix
by its row and column indices; and get-mat and get-trans return, respectively,
the first and the second matrices, as list of lists. Note that again this is easy
for the abstract representation (especially get-mat) but it is not trivial for the
concrete definitions.

Unless specified, the names for the corresponding concrete stobj, the cor-
respondence predicate, and for the abstract and concrete functions associated
with each export, are obtained appending the suffixes $a (abstract) or $c (con-
crete) to the names given in the defabsstobj. To accept a defabsstobj event,
all these corresponding abstract and concrete functions have to be previously
defined, their guards verified, and also a number of proof obligations automat-
ically generated by the event must be already proved. These proof obligations
guarantee that the correspondence between the abstract and the concrete repre-
sentation, the recognizer property, and the guards of the exports are preserved
after updating the stobj, and also that the abstract and the concrete correspond-
ing accessors return the same values. That is, the proof obligations essentially
guarantee that reasoning with the abstract representation and executing with

the concrete representation is logically sound. See matrices-abstobj.lisp for
the statements of all these proof obligations and a proof of them.

Once this abstract stobj is defined, we can use it as the data structure for a
matrix normal form algorithm, provided that the single-threadedness syntactic
restrictions are met. The only primitive functions we can use to access or update
the abstract stobj are the exports. We emphasize that when proving theorems
about the algorithm, ACL2 uses the abstract definitions of the exports (that is,
the ones with the $a suffix); but for execution, it uses the concrete data structure
and definitions (that is, the ones with the $c suffix).

4 An Algorithm to Compute a Column Echelon Form

We illustrate how we can use the described absstobj framework, by means of a
verified implementation of an algorithm that given a matrix of integers A, com-
putes an equivalent integer matrix C that it is in column echelon form, together
with a unimodular transformation integer matrix T such that A ·T = C. We say
that a matrix C is in column echelon form if zero columns of C precede nonzero
columns and, for each nonzero column of C, its leading entry (the last nonzero
element of the column) is above the leading entries of the following columns.
This notion of column echelon form is not exactly the same as other classical
echelon forms usually defined in the literature, such as Hermite or Howell forms.
Nevertheless, as we have said in the introduction, this has to be considered in
the context of developing ACL2 programs to compute homology groups of chain
complexes, and it turns out that this simple echelon transformation is suitable for
this task. And anyway, our main purpose here is to illustrate with this example
how we can apply the absstobj infrastructure just described.

Although the algorithm is implemented for integer matrices, it could be gen-
eralized to matrices in a more general class of rings, namely, the class of Bézout
domains. Roughly speaking, a Bézout domain is an integral domain where every
finite ideal is principal. This property is equivalent to the existence of an explicit
Greatest Common Divisor (gcd) operation providing the Bézout identity of every
pair of elements: if d is the gcd of two elements a and b, there exist two elements
x and y such that d = ax+ by. Note that in a ring we do not have in general the
inverse of an element, so we cannot apply here usual techniques employed when
the entries are in a field (like Gaussian elimination).

4.1 Definition of the Algorithm

Let us now present the ACL2 implementation of the column echelon form algo-
rithm. First, a key ingredient is the extended Euclides algorithm which, besides
the greatest common divisor of two integers, computes the coefficients of the
Bézout identity. In particular, we have defined a function (bezout a b) such
that given two integers a and b, returns a tuple of integers (g s1 t1 s2 t2) such
that g = gcd(a, b), s1a + t1b = d and s2a + t2b = 0. Note that these properties
can be expressed in matrix form:

(a b) ·
(
s2 s1
t2 t1

)

= (0 gcd(a, b))

This 2×2 matrix has the property that it is unimodular (determinant 1 or −1)
and thus invertible in the ring of integers. It is an elementary transformation
matrix that can be also easily generalized to size n×n, in such a way that right
multiplication by this elementary matrix is just like applying a lcc operator.
Essentially, the algorithm iteratively applies this transformation with the aim of
obtaining the zero entries needed in the echelon form. This is done from the last
row to the first one, and in every row, from a given column to the first one.

The following functions implement the algorithm operating on the abstract
stobj mast. This means that the only elementary operations we can apply
to mast are the exports specified in its defabsstobj. The first function is
cef-bezout-row-col below, which given a row index (- i 1) and column
indices (- c 1) and (- j 1), apply the lcc transformation on those columns,
and thus obtaining a zero in the position of row (- i 1) and column (- c 1),
using as pivot the entry of the same row and column (- j 1). This is done when
we already know that the entries of the given columns that are below the given
row are already zero, so it is justified to do the linear combination only until
that row:

(defun cef-bezout-row-col (mast c i j)
(mv-let (g s1 t1 s2 t2)

(bezout (aref-mat mast (- i 1) (- c 1))
(aref-mat mast (- i 1) (- j 1)))

(lin-comb-cols mast (- c 1) (- j 1) (- i 1) s2 t2 s1 t1)))

Given the position of a pivot, this lcc transformation is applied for all the
columns to the left, obtaining zeros in the row of the pivot, until the column of the
pivot. This recursive process is carried out by the function cef-reduct-row-col
and initiated by the function cef-reduct-row, from a given pair of row and
column indices:

(defun cef-reduct-row-col (mast c i j)
(cond ((zp c) mast)

(t (seq mast
(cef-bezout-row-col mast c i j)
(cef-reduct-row-col mast (- c 1) i j)))))

(defun cef-reduct-row (mast i j)
(cond ((zp j) mast)

(t (cef-reduct-row-col mast (- j 1) i j))))

To get the echelon form, we iteratively apply this process from the last row
to the first one. We also have to take into account that the column of the pivot
is changing from one row to the next, depending on the result obtained after
reducing that row. If we have a zero in the position of the pivot, the column of
the pivot is unchanged. Otherwise is decremented by one:

(defun cef-row-col (mast i j)
(cond ((or (zp i) (zp j)) mast)

(t (let ((mast (cef-reduct-row mast i j)))
(if (= (aref-mat mast (- i 1) (- j 1)) 0)

(cef-row-col mast (- i 1) j)
(cef-row-col mast (- i 1) (- j 1)))))))

Given an input matrix A (represented as lists of lists). The algorithm is initi-
ated calling the export initialize-mast, and then the function cef-row-col,
starting in the last row and columns:

(defun cef (A mast)
(seq mast

(initialize-mast mast A)
(cef-row-col mast (nrows mast) (ncols mast))))

Note that the above function cef receives as input the mast abstract stobj
and thus, due to the single-threadedness requirements, it has to return also the
abstract stobj. Nevertheless, we can define a function cef-matrix in which the
input and output are not explicitly connected to the stobj. This can be done
using mast locally (by means of with-local-stobj), and finally returning the
computed matrices represented as lists of lists (using the exports get-mat and
get-trans):

(defun cef-matrix (A)
(with-local-stobj mast

(mv-let (mast mat trans)
(seq mast

(cef A mast)
(mv mast (get-mat mast) (get-trans mast)))

(mv mat trans))))

4.2 Main Theorems Proved

We proved in ACL2 the following theorems, stating that given an integer matrix
A, the algorithm cef-matrix computes an equivalent integer matrix that is in
column echelon normal form:

(defthm cef-cef-matrix
(implies (integer-matp A)

(let ((H (first (cef-matrix A))))
(and (integer-matp-dim H (nrows-m A) (ncols-m A))

(cef-p H)))))

(defthm matrix-product-cef-matrix
(implies (integer-matp A)

(let ((H (first (cef-matrix A)))

(TR (second (cef-matrix A))))
(and (integer-matp-dim TR (ncols-m A) (ncols-m A))

(equal (matrix-product A TR) H)))))

(defthm inverse-matrix-cef-matrix
(implies (integer-matp A)

(let ((TR (second (cef-matrix A)))
(TR-INV (cef-matrix-transinv A)))

(and (equal (matrix-product TR TR-INV)
(matrix-id (ncols-m A)))

(equal (matrix-product TR-INV TR)
(matrix-id (ncols-m A)))))))

In the first of three above theorems, the function cef-p is a predicate checking
that a matrix is in column echelon form. The result is proved by defining a more
general invariant about the form of the matrix during the transformation process;
the stopping condition of the algorithm and this invariant implies the theorem.

The second theorem establishes that the second matrix computed by the
algorithm is indeed the transformation matrix. This is also an invariant of the
process, and note that we have to deal also with the fact that we do the lin-
ear combination only until a given row, since from that row on, we have zeros.
Additionally, we need to prove the relation between the linear combination of
columns carried out by lin-comb-cols and the matrix product by the elemen-
tary transformation matrix that can be obtained from a lcc operator.

Finally the third theorem establishes that the transformation matrix is invert-
ible, where (cef-matrix-transinv A) is a function that obtains the inverse of
the transformation matrix computed by the algorithm. We emphasize that the
abstract representation is specially convenient, among other reasons, for defining
this function and proving the theorem. This is its definition:

(defun-nx cef-matrix-transinv (A)
(let ((res (cef A ’(nil nil))))

(apply-lcc-op-seq
(inv-lcc-op-seq (second res)) (matrix-id (ncols-m A)))))

Given a lcc operator whose coefficients have been obtained as the result of
an application of the extended Euclides algorithm, then we can prove that there
exists a corresponding lcc operator describing the inverse linear combination
(that is, the operator is invertible). Given a sequence of lcc invertible operators,
the function inv-lcc-op-seq, obtains the reversed sequence of the inverses of
each operator. We apply this function to the sequence of operators stored in
the second element of the final abstract stobj computed by the algorithm, and
then we apply this inverse sequence to the identity matrix. Note that we are
taking advantage from the fact that our abstract representation contains the lcc
operators explicitly (although our executable concrete representation deals only
with the transformation matrix, not with the abstract operators).

For details about the ACL2 proof of these theorems, we urge the inter-
ested reader to consult the supporting materials, books matrices-abstobj-
properties.lisp and cef-mast.lisp.

4.3 Experimental Results

To check how this formally verified abstract stobj implementation influences the
execution performance of the algorithm, we tested it on several random matrices
of different sizes. We compared it to two other implementations of the same
algorithm: an analogous unverified ACL23 implementation, that uses matrices
represented as applicative lists of lists, instead of the abstract stobj; and also
an iterative version of the same algorithm in Python 3, using (mutable) lists,
which have accesses and updates in constant time. For each size, we generated
a number of matrices, and averaged the execution time obtained.

Table 1. Execution times for ran-
dom matrices

Size 10 20 30 40

List 0.00 0.01 0.54 153.83

Mast 0.00 0.01 0.53 151.96

Python 0.00 0.01 0.59 55.90

Table 2. Execution times for random first
column based matrices

Size 160 170 180 190 200

List 32.82 42.07 53.36 65.79 82.62

Mast 0.19 0.23 0.27 0.33 0.38

Python 2.62 3.10 3.60 4.71 5.81

In the Table 1, we show the execution time for random matrices until size
40×40. We see that for sizes below 30×30, the execution times are good for the
three implementations. Nevertheless, for sizes 40× 40 and bigger, the execution
times become unacceptable for both ACL2 implementations, and even for the
Python implementation. Nevertheless, we conjecture that the data structures
used are not responsible of this slow down: this algorithm and other dealing
with integers matrices, usually generate very big numbers. A naive treatment of
the arithmetic operations is not enough for dealing with this complexity (and
the techniques usually applied [6,12] are out of the scope of this paper).

To concentrate on how the data structures used really influence the execution
times, we generate matrices of sizes until 200 × 200, in which only the first
column is random, and the rest of the columns are multiples of the first one. In
this way, the arithmetic operations are very straightforward, and the execution
times essentially come from accessing and updating the arrays. These execution
times are shown in the Table 2. We can see that the applicative ACL2 version
is also very slow for that sizes, but the ACL2 abstract stobjs implementation is
fast, and even better than the Python implementation.

3 We used ACL2 Version 7.2 compiled with SBCL 1.2.16.

5 Related Work and Conclusions

We have presented in this paper an approach to formally verify matrix normal
form algorithms, while still having efficient data structures for execution. For
that, we use the ACL2 system and in particular abstract single-threaded objects,
which allow both a convenient logical representation of data and a more efficient
concrete representation for execution. We have illustrated this approach showing
an ACL2 formal verification of an algorithm to compute echelon forms of integer
matrices.

Several formalizations in which matrix algebra plays an important role have
been presented in most of theorem provers. For example, using the Coq system
[4,8,9] or in Isabelle [2,3]. In all these works, the emphasis is mainly put in the
formalization, and in particular they formalize more general results with respect
to the algebraic structures involved. In [2] it is also described how to speed-up
execution times of the formalized algorithm, first by data type refinements and
then by generating code to be executed in a functional programming language.
In our case, the approach is different: since ACL2 is built on top of Common
Lisp and the logic formalizes an applicative subset of it, we reason directly on
the final implementation and execution and reasoning is carried out on the same
system.

In addition to stobjs, ACL2 provides 2-dimensional arrays, which under rea-
sonable assumptions provide access in constant time to the entries of the array.
This data structures is used in [5] to formalize some common operations and
properties of matrices in ACL2. However, the stobj approach is generally more
efficient when there are updates [1].

We think abstract stobjs provide a suitable framework for dealing with matri-
ces in ACL2. They provide a clean separation between the data structures used
for execution, and the properties of the algorithms that operate on them. In par-
ticular, we think the approach shown here for a concrete matrix normalization
algorithm can be applied in general to other algorithms that compute normal
forms of matrices.

It is worth noting that previous to the introduction of abstract stobjs in
ACL2, it was also possible to have a similar formalization strategy: we could
have defined two different versions of the algorithm (abstract and concrete, stobj
based), prove the main properties of the abstract algorithm and then prove that
both versions compute the same results. Now, abstract stobjs provide sound and
enhanced support from the system, to carry out this proof strategy: first, we can
specify in advance the elementary operations (exports) that will be allowed to
operate on the data structures; and second, once introduced, we can concentrate
on the abstract definitions, to reason about the properties of the algorithms that
use it. A significant downside of the older approach was that one had to prove the
correspondence between every newly introduced concrete and abstract function,
whereas all such work is done once and for all when using abstract stobjs, thereby
easing the maintenance of a formally verified ACL2 implementation.

References

1. ACL2 version 7.4. http://www.cs.utexas.edu/users/moore/acl2/
2. Aransay, J., Divasón, J.: Formalisation in higher-order logic and code generation

to functional languages of the Gauss-Jordan algorithm. J. Funct. Program. 25(9),
1–21 (2015)

3. Aransay, J., Divasón, J.: Formalization of the computation of the echelon form of
a matrix in Isabelle/HOL. Form. Asp. Comput. 28, 1005–1026 (2016)

4. Cano, G., Cohen, C., Dénès, M., Mörtberg, A., Siles, V.: Formalized linear algebra
over elementary divisor rings in Coq logical methods in computer. Science 12(2),
1–29 (2016)

5. Cowles, J., Gamboa, R., Van Baalen, J.: Using ACL2 arrays to formalize matrix
algebra. In: Proceedings of ACL2 2003 (2003)

6. Domich, P.D., Kannan, R., Trotter Jr., L.E.: Hermite normal form computation
using modulo determinant arithmetic. Math. Oper. Res. 12, 50–69 (1987)

7. Goel, S., Hunt Jr., W.A., Kaufmann, M.: Abstract stobjs and their application to
ISA modeling. In: Proceedings of ACL2 2013, pp. 54–69 (2013)

8. Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M.,
Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–
118. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6 10

9. Heras, J., Coquand, T., Mörtberg, A., Siles, V.: Computing persistent homology
within Coq/SSReflect. ACM Trans. Comput. Log. 14(4), 1–26 (2013)

10. Lambán, L., Mart́ın-Mateos, F.-J., Rubio, J., Ruiz-Reina, J.-L.: Towards a verifi-
able topology of data. In: Proceedings of EACA-2016, pp. 113–116 (2016)

11. Newman, M.: The Smith normal form. Linear Algebra Appl. 254, 367–381 (1997)
12. Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, Swiss Federal

Institute of Technology, Zurich (2013)

http://www.cs.utexas.edu/users/moore/acl2/
http://dx.doi.org/10.1007/978-3-642-22863-6_10

	Using Abstract Stobjs in ACL2 to Compute Matrix Normal Forms
	1 Introduction
	2 A Data Structure for Reasoning in the Logic
	2.1 Matrices as Lists of Lists
	2.2 An Abstract Representation for Matrix Normal Form Computation

	3 Using Abstract Stobjs to Represent Matrices
	3.1 A Stobj for Computing Matrix Normal Forms
	3.2 The Abstract Stobj

	4 An Algorithm to Compute a Column Echelon Form
	4.1 Definition of the Algorithm
	4.2 Main Theorems Proved
	4.3 Experimental Results

	5 Related Work and Conclusions
	References

