
Cloud-Based Acoustic Beamforming Emulator for
FPGA-Based Sound Source Localization

Laurent Segers*, Bruno da Silva, An Braeken, Abdellah Touhafi
Department of Industrial Sciences and Technology (INDI), Vrije Universiteit Brussel,Brussels, Belgium

{laurent.segers, bruno.da.silva, an.braeken, abdellah.touhafi}@vub.be

Abstract—Acoustic beamforming techniques are often used
in applications involving microphone arrays such as sonar,
binaural hearing aid devices and acoustic indoor localisation. The
beamforming methods utilized describe results for a particular
array within a given acoustic frequency domain. Software and
toolboxes running locally facilitating the theoretical design of
such implementations are largely available. However, a multi-
user cloud-based beamforming approach to generate results
could not be found. Also, generating packages facilitating the
implementation on FPGAs has not been carried out to our
knowledge. In order to alleviate these shortcomings, we propose a
scalable cloud-based accessible multi-user beamforming emulator
where users launch emulations based on acoustic beamforming
for microphone arrays. Users create, upload, modify and run
beamforming emulations. Our platform is also able to generate
VHDL packages containing delaying tables which facilitates the
implementation of HDL based Delay-and-Sum beamformers.
Analysis based on algorithm truncation errors are also possible
due to the integration of fixed-point signal processing algorithms.
Microphones in a given array can be disabled in order to estimate
the response of the remaining microphones during power saving.
Results and packages can be downloaded from the user web
interface as an archive file. Our Emulator can be configured
to take several user defined configurations into account such
as microphone arrays, sound source placement and emulation
parameters. Graphs such as waterfall diagrams and directivity
showing the quality of the beamforming can also be generated.

Index Terms—Cloud-Based Acoustic Beamforming, Micro-
phone Array Beamforming, FPGA Microphone Array Beam-
forming Emulator, Delay-and-Sum Cloud-Based Emulator

I. INTRODUCTION

In recent years, advances in Micro Electro-Mechanical
Systems (MEMS) microphone technology and acoustic beam-
forming techniques allow for enhanced sound source local-
ization in both acoustic and ultrasound frequencies [2], [3],
[8]. Sound source localization based on microphone arrays
have emerged and are used in various applications; ranging
from ultrasound source localization [1], speech localization
[7], binaural hearing aid for disabled people [4] and sonar
[5]. Advances in embedded platform technologies allow the
possibility to implement beamforming algorithms for micro-
phone arrays on reconfigurable architectures such as Field
Programmable Gate Arrays (FPGAs) [8]–[11]. The placement
of the microphones, the utilized algorithms and the amount of
microphones determine the level of the beamforming accuracy
in terms of acoustic frequency resolution and spatial resolu-
tion. Estimating the response of a microphone array based
prior to a hardware implementation has been achieved by da

Silva et al. [9]. There we emulated the FPGA algorithms on a
local computer in order to obtain optimized algorithms before
the implementation on the hardware. Aside of calculating the
directivity of the array in one direction, the 95 % confidence
interval of the directivity when steering in 360◦ has been cal-
culated. Matlab offers the possibility to calculate the response
of a microphone array through the additional “Phased Array
System Toolbox” [13]. J. Steckel et al. used ultrasound beam-
forming to develop and improve a 3D enabled sonar which
allows to extract information of the environment using sparse
arrays of microphones in conjunction with a single Polaroid
emitter [1]. Sun et al. [6] propose an improved direction
of arrival (DoA) technique based on the generalized cross
correlation algorithm in conjuction with a probabilistic neural
network approach for enhanced sound source localization in
noisy and reverberant rooms. Most beamforming tools allow
to perform an analysis of a given microphone array along with
the selected beamforming algorithm. In WaveCloud [14], [15]
an open source simulation tool for acoustic sound propagation
in buildings is proposed. Users are free to download and install
the tool. WaveCloud imports a 3D-stl file of the building and
users can place sound sources in the simulation environment.
All the previously discussed tools are executed locally and
most are computational intensive and prohibits the use of the
local machine for other tasks. Moreover, these tools are bound
to a group of users having access to that particular machine.

In a recent movement, several companies offer cloud-based
simulation alternatives to the well-established engineering
tools. Simscale [17] offers an online simulation platform
for Computational Fluid Dynamics (CFD), Finite Element
Analysis (FEA) used in structural eningeering and thermal
propagation in materials. This cloud-simulation tool is pro-
posed in a free limited version as well as in paid versions
for professionals. Waveller Cloud from KUAVA [16] is a
simulation tool which allows to simulate acoustic propagation
in prototypes such as the engines of cars, gearboxes, etc.
They provide their tool as a “Software as a Service” (SaaS)
and users pay on a monthly basis or per CPU-hour cost.
Aside of other cloud-based simulation tools, none of the tools
provide the ability to simulate the beamforming of a user
defined microphone array and to facilitate the implementation
of FPGA implementations by means of on the fly generated
VHDL packages. In order to allow other researchers to grant
access to our emulation without exposing the code and the
associated learning curve, we propose a cloud-based platform

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/200974605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Principle of the Delay-and-Sum beamforming algorithm. Samples are
first delayed by a given amount of time before added [8].

where users can generate, modify and download emulations.
The calculation of the beamforming and the generation of
the VHDL packages are offered as a SaaS to facilitate local
implementation onto FPGA boards. The remaining of this
paper is structured as follows: in Section II we describe the
background in acoustic beamforming for microphone arrays.
In Section III we demonstrate the architectural overview
of our implementation, followed by the description of the
beamforming Emulator. Then we describe the multi-user web
interface along with the corresponding database structure.
We also describe the back-end link between the online web
interface and the Emulator. In Section IV we present the online
environment and the obtained output results which can be
downloaded from the platform. In Section V we conclude our
and propose future work implementations.

II. ACOUSTIC BEAMFORMING

Acoustic beamforming methods utilize the acoustic signals
of each of the microphones in an array such that the bearing
of a sound source can be found. The main objective of a
beamforming algorithm is to amplify the acoustic signals
coming from a specific direction while suppressing the signals
coming from all other directions. This is achieved by delaying
the samples of the microphones in the array by a given
amount of time such that the combination of these signals
results in a signal amplification. The steered response power
(SRP) is than obtained by calculating the signal power at that
direction. When applying this principle to all desired steering
directions, one can obtain a polar steered response power (P-
SRP) describing the intensity of the incoming sound waves
at particular directions of arrival. The normalized P-SRP can
be represented by means of a polar plot (see Figure 2). A
well known beamforming algorithm is the Delay-and-Sum
method, where the samples are added after proper delaying.
The principle of Delay-and-Sum is given in Figure 1. Variants
on the regular Delay-and-Sum have been carried out by da
Silva et al. [9], [10].

A complete frequency response of the microphone array
can be calculated by applying monochromatic sine waves
of increasing frequencies against the microphone array. All
the obtained P-SRPs can be plotted in a waterfall diagram.
An example of a waterfall diagram is given in Figure 2.
The algorithms described here calculates the response for a

Fig. 2. Polarplot depicting the direction of arrival of a 30 kHz wave at 180◦
(a). Here 64 steering orientations have been used to calculate the P-SRP. Aside
of the main lobe pointing in the direction of the sound source, several grating
lobes are also visible due to the spatial aliasing caused by the microphones’
placement. A waterfall diagram (b) depicting the frequency response of an
array between 1 kHz and 80 kHz.

Emulator

VHDL Package
Generator

Emulator
Task Manager

User Web
Interface

Back-end Front-end

Fig. 3. Architectural overview of the Emulator chain. On the left side the
back-end applications can be retrieved while the front-end application can
be found on the right side. The back-end application can be ran on several
computers for concurrent calculations.

planar 2-dimensional environment [8]. However, the principles
remain similar in a 3-dimensional setup [12].

III. ARCHITECTURAL OVERVIEW

Our cloud-based emulator consists of 4 major parts: the User
Web Interface, the Emulator and the VHDL Package Generator
and finally the Task Manager. A general overview is shown in
Figure 3.

The Emulator calculates the acoustic beamforming response
for a given array and sound source pattern. The VHDL Pack-
age Generator is responsible for generating a VHDL package
containing the necessary information with the delaying tables
which facilitates the implementation for beamformer based
algorithms on FPGAs. The User Web Interface allows several
users to upload, create or modify emulations which can be
processed by the Emulator. The web interface also contains
a database where all emulations can be stored and queued
for later emulations. The Task Manager allows to launch the
Emulator with the requested operations queued by the web
interface in an asynchronous way and stores the results to the
appropriate user. The Task Manager also issues commands to
the VHDL Package Generator for VHDL package generation.
The complete system runs on a Ubuntu Linux 16.04 LTS
server.

A. Emulator

The Emulator computes the frequency responses for a user
defined microphone array along with a given set of processing



parameters. The processing flow of the Emulator is defined in
3 phases.

Our Emulator is written in Matlab and runs as a standalone
application on any Matlab enabled machine.

1) Phase 1: Processing input parameters: The Emulator
computes the required frequency responses for a given set
of parameters and for a given shape of microphone array.
The necessary configurations are stored into configuration files
which are processed by the Emulator. This approach offers the
advantage that any shape of microphone arrays can be defined
by users. For each emulation to be computed, 3 configuration
files are required:

• emulation file: file for the emulation parameters,
• array file: a file containing the microphone array proper-

ties and,
• sound source file: a file containing the sound sources

around the microphone array.

Each category of configuration files is stored into a separate
input folder. The file containing the emulation parameters
refers to the appropriate sound source and array configuration
files. Aside of this, the emulation parameters also contain the
targeted acoustic frequency range, the type of microphone to
be utilized, the required beamforming algorithm, the sampling
and decimation frequencies and the required digital filtering
chain. Since the Emulator emulates the behaviour of the
beamforming algorithm on the FPGA, it also includes the
necessary bit-width parameters which should be used during
the calculations. At last, the parameters do also include the
possibility to generate several output graphs for the metrics
such as a waterfall diagram, polar plots at several frequencies
and the directivity of the input array. The file containing
sound sources holds the Cartesian position of each of the
sound sources used in the emulation.Each source is also given
a certain emitting amplitude and frequency, which can be
fixed or variable. Variable frequencies are then given by the
emulation file. Fixed frequencies can be used to emulate noise
sources around the array. The array configuration file contains
the parameters to define the Cartesian position of each of the
microphones in the array. Each array configuration file also
defines how many groups (i.e. sub-arrays) of microphones can
be defined. Each sub-array can be deactivated allowing a user
to compare the response of the array when all microphones
are active, or when only a fraction of the array is turned on
for power and resource savings. The activation or deactivation
of the sub-arrays is defined in the emulation file.

2) Phase 2: Beamforming Frequency Response Computa-
tion: During this step, the frequency response of the micro-
phone array is computed. The computation of the frequency
response can be summarized by the following steps:

1) Placement of the sound sources according to the config-
uration file.

2) Sound sources generate acoustic waves radiating towards
the microphone array.

3) Sampling of the acoustic waves at each of the micro-
phone’s positions. Depending on the microphone type,

the sampled data is either in pulse code modulation
(PCM) or in pulse density format (PDM).

4) Computation of the chosen beamforming method.
5) Computation of the output response and directivity.
During the first steps, the distances between the sound

sources and the microphone is computed and leads to an acous-
tic propagation delay measured by each of the microphones.

The delayed acoustic waves are sampled by each of the
microphones. Frequency characterization against the frequency
response of the selected type of microphone is first applied
in order to mimic the real behaviour. Once the incoming
wave has been reshaped, the proper sampling occurs. This can
be done in PCM or in PDM format. Sampling the acoustic
waves in both PDM and PCM format offers the advantage
to mimic most types of microphones at hardware level. The
PDM signals are obtained through sigma-delta modulation
(SDM) techniques such as found in digital PDM microphones.
The calculation of the necessary parameters for the PDM
modulators can be obtained by using the Delta Sigma (delsig)
toolbox [18]. Once the sampling is accomplished, the Emulator
feeds the samples at the requested beamforming algorithm.
Several implementations are proposed such as delay-filter-
sum and filter-delay-sum. In the former case, the samples are
first delayed before being filtered and summed. In the latter
beamformer algorithm, the samples are first filtered before
being delayed and summed. At last, the directivity of the
beamforming is computed, demonstrating the possibilities of
a given microphone array. During the beamforming stage, one
can either opt for theoretical results by requiring computa-
tions in double precision format or in fixed-point precision
mimicking FPGAs where fixed-point computations require less
resources.

3) Phase 3: Post processing: Once the beamforming has
been computed, results are stored into an output project folder,
containing the calculated results in a comma separated file
(CSV-file), the 3 configuration files and the output graphs
generated during post processing. Generating graphs can be
enabled by setting the appropriate flags in the emulation con-
figuration file. These flags include the possibility of generating
waterfall diagrams, polar plots for each computed frequency
and plots for the directivity metric.

The complete folder structure containing the input and
output files is shown in Figure 4.

B. VHDL Package Generator

Aside of our Emulator, a VHDL Package Generator has
been developed which facilitates the creation and actualiza-
tion of delay-and-sum beamformers described in Hardware
Description Languages (HDL). The selection of the VHDL
language allows the portability of the HDL beamformer’s
description since it is independent of the FPGA’s vendor. The
package contains the calculated delays required to perform
the delay-and-sum beamforming operation. The characteristics
of the microphone array under evaluation are used to adjust
the required on-chip memory blocks to properly delay the
input signals. An advantage of the automated generation



Array
Config

Sound
Sources

Emulation
Config

OutputEmulator

U
se

r
d
efi

n
ed

in
p
u
ts

Fig. 4. Folder structure of the Emulator. On the left the 3 input folders
containing the required configuration files of the user, on the right the
output folder where the results of the Emulator are computed. An additonal
configuration folder for the Emulator enables to port the Emulator onto other
machines.

of the VHDL package is the flexibility when defining the
microphone array configuration. As one of the features of our
Emulator, the microphones of the array can be grouped in
sub-arrays. This is interesting when exploiting microphones’
features such as sleep mode (i.e. such as the SPH0641LU4H-
1 microphone [19]), which allow to disable microphones
at runtime. The microphones drastically reduce their power
consumption during sleep mode. The proper selection of the
microphones composing a sub-array is not trivial, since the
position of the microphones directly affect to the array’s
response. The flexibility to explore sub-arrays supported by
our Emulator is exploited when defining in HDL language the
required on-chip memory to perform the signal delays. The
defined sub-arrays are treated independently when generating
the on-chip memory block HDL description. The benefit is a
significant memory reduction since that the maximum delay
required by each sub-array relates to the consumed memory.
The decomposition in sub-arrays, however, demands a certain
adjustment when combining the signals coming from different
sub-arrays. The automated VHDL package uses the maximum
delay of each sub-array to determine when the output data
from the beamformer is synchronized. Constant values related
to the beamforming operation and the bit-width of the memory
addresses and internal buses are also automatically determined
when generating this VHDL package.

C. User Web Interface

Aside of the back-end Emulator, the User Web Interface
plays an important role by managing the emulations provided
by the users. The most important task for the interface is
to provide an accessible user interface which is able to
manage the requested operations. This includes safe editing
of emulations, creating emulations and removing emulations
but also enabling users to download and extract computed
information in an accessible and private way. Therefore, the
User Web Interface is subdivided into 3 major parts. The
complete interface is written in php and utilizes a MySQL
database for keeping track of users and user data. A general
overview of the user web interface is shown in Figure 5.

1) User Management: Users access the system and utilize
editing tools for running emulations or generating requested
VHDL packages. Users are able to log in, log out. Each user
has following characteristics stored in the database: a user

Database

Emulator
Task Manager
Computer 1

Emulator
Task Manager
Computer n

Task Queue
Config File
Manager

User Access

Back-end Front-end

Fig. 5. User web interface. On the left the applications communicates with the
Emulator Task Manager while user access and the configuration file manager
are on he right side. Several computers (n computers) are allowed to work
concurrently on different tasks.

ID, a username, name, given name, a password and an e-
mail address. Users may also set a flag enabling (or disabling)
sending reports to the user via e-mail. This is especially useful
since emulations can take several hours to be computed.

Each enabled user starts with a private root folder space
where all configurations files are stored. Each user root folder
is further subdivided in the sub folders containing the emu-
lation, sound source and array configuration files. The folder
structure is equivalent to the folder structure of the Emulator.
A folder for results is also added. The utilization of a separate
root folder for each user ensures data integrity by removing
the risk of a user editing the input files while the Emulator
calculates the requested output on the same input files.

2) Configuration File Management: Each user is able to
upload, to edit or to remove configuration files from his/her
own defined root folder. Each configuration file is linked in the
database. This approach also holds for the generated results.
Each link in the database contains following information: A
file ID: a unique ID for each file (primary key), the file name,
the complete path to the file relative to the root folder of the
user, the file type: sound source, array, emulation configuration
or results file (zip) and the ID of the owning user.

The User Web Interface also performs the necessary vali-
dations of the input configurations in order to ensure a correct
work flow of the back-end Emulator. Therefore, all available
configuration parameters which are taken into account by the
Emulator are stored in the database along with the required
usability constraints. E.g. a waterfall diagram can only be
computed if the frequency range spans at least over 2 different
frequencies. A short list of parameters with the constrains is
given below in table I. Configurations containing errors can
not be launched and appropriate errors are shown to the user.

3) Task Queuing: Once a requested operation is ready to
be processed by the Emulator, the user web interface queues
the requested operation for later processing in a queuing table.
A flag set to “to be processed” ensures that this operation will
be processed by the back-end Emulator. The emulation task
manager communicates with the database by means of php
managing scripts to dequeue required tasks.

D. Emulation Task Manager

The last part of the architecture is the Emulation Task Man-
ager. The Emulation Task Manager ensures the communication



TABLE I
EMULATION PARAMETERS ON WHICH A VALIDITY CHECK IS PERFORMED

BEFORE BEING QUEUED FOR EMULATION.

Parameter Constraints
Beamforming method A method available in the Emulator
# steering angles > 0
Decimation filter stage A method available in the Emulator
Sampling frequency (fs) 0 < fs < fsmaxmicrophone

Delay table frequency 6 fs
Require VHDL package True or False
Bitwidth of signal processing 0 (double precision), > 0 (fixed-point)
Array config file Available array config file
Sound sources config file Available sound source file
Emulation name A user defined name
Start frequency (fstart) user defined, but fstart > 0
Stop frequency (fstop) > fstart
Frequency increment (finc) > 0
Microphone type Microphone type available the Emulator
Sound sampling method PCM or PDM
Generate graphs True or False
Generate waterfall diagram if “Generate graphs”=True and > 2 fre-

quency responses requested
Generate polar plot if “Generate graphs”=True
Generate directivity if “Generate graphs”=True and > 2 fre-

quency responses requested
Generate MSL if “Generate graphs”=True and > 2 fre-

quency responses requested

between the web interface and the Emulator. This application
is written in C++ and communicates with the web interface by
means of the CURL REST-API. Launching the Emulator with
the Matlab engine is done by issuing terminal commands.

First, the manager issues a POST request to the web
interface for available queued tasks. Only tasks which are
flagged as “to be processed” are issued by the manager. If a
task is available, the web interface replies with the given task
by means of a user identification packet together with the nec-
essary input files to be processed by the Emulator. The files to
be processed are also downloaded from the web environment
to the Emulator. Depending on the specified operation in the
input files the manager launches the Emulator or the VHDL
package generator. Once the operation command on a given
set of input files has been issued, the manager issues a POST
request in order to flag the task as “being calculated”. The
Matlab engine returns after the requested computations and the
manager collects the output by compressing the results to a zip
archive which is uploaded to the account of the corresponding
user. Once all steps are finished the manager issues a POST
command to the web interface to flag the current task as
being “completed”. Along with this POST action the resulting
output zip file is stored into the database for the later retrieval
by the user. Once the loop of operations is completed, the
managers issues a POST request in order to obtain a new
task. If no task has been found available, the manager process
idles and awakens every minute to re-check for available
tasks to be issued. This web-based communication between
web interface and the Emulation Task Manager allows to
run the background emulations on several computers while
users only see one web environment. Computers available for
computations can issue new commands while other computers

Subarray 1

Subarray 2

40.64mm

81.28mm

Fig. 6. The soundcompass array (Left) consisting of 52 microphones placed in
4 rings. Each ring corresponds to a sub-array which can be enabled or disabled
and the smaller microphone array (Right) consisting of 12 microphones placed
in 2 rings. Each ring corresponds to a sub-array which can be enabled or
disabled.

are concurrently computing other requested operations. This
scalability also enables to dynamically increase or decrease
the available processing power on demand.

IV. DEMONSTRATION AND RESULTS

In this section we present the final application which is
shown to the users. Users can log in the platform and create,
modify and queue desired emulations or VHDL package gen-
erating tasks. In order to show the configurable possibilities of
our Cloud-based Emulator platform, we emulate the behaviour
of 2 different microphone arrays using 2 different types
of microphones. The complete system runs on a computer
sporting a Q6600 CPU with 8 GB of RAM.

The first array we will evaluate is the soundcompass micro-
phone array from Tiete et al. [8] consisting of 52 ADMP521
microphones [20]. The distribution is shown in Figure 6.

The complete array is subdivided into 4 sub-arrays which
correspond to each of the microphone rings. The second
array to be evaluated is a smaller array consisting of 12
SPH0641LU4H-1 ultrasound microphones [19] (Figure 6).

Two sub-arrays corresponding to each ring of microphone
can be defined. Due to the frequency limitation of the mi-
crophones of the first array, the response will be evaluated
from 20 Hz up to 16 kHz in steps of 20 Hz. Since the second
array consists of ultrasound enabled microphones, it will be
evaluated from 100 Hz up to 80 kHz in steps of 100 Hz.
In both cases the microphones utilize a PDM modulator to
generate acoustic signals. We also request to generate complete
waterfall diagrams for a sound source located at 180◦. The
directivity plots are also shown.

The requested response of the complete Soundcompass
array is computed and the results are downloaded after com-
putation in an archive file (Figure 8). The archive contains
the waterfall diagram and directivity plot (Figure 7). The
calculations took approximately 5 hours to complete on the
4 available cores. Similar calculations are preformed on the
complete smaller array and results are also retrieved. The
figures containing the waterfall diagram and the directivity
are shown in Figure 7. The calculations took approximately
1 hour and 15 minutes to complete. Computing a single P-
SRP as shown in Figure 2 where only 1 frequency is required



Fig. 7. Waterfall diagram (a) of the soundcompass and the waterfall diagram
(b) of the smaller array when all microphones are enabled. The corresponding
directivities Dp are shown in graphs c (soundcompass) and d (smaller array).

Fig. 8. The progress of the emulations while being computed shown in the
“Emulation status and download” web page. Only the 4 first emulations can
be downloaded, the last two are in progress (orange) or red (to be computed).

takes around 90 s. Here, the computations of a single frequency
response is done on a single core due to Matlab limitations
regarding memory allocation and thus comparatively requires
more time than running a full frequency analysis.

The proposed environment has been designed to be able
to operate on a multi-computer environment. Evaluation on a
multi-computer towards scalability is still ongoing research.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present our Cloud-based Emulator for
acoustic beamforming applications and for FPGA ready imple-
mentations. The current platform is able to compute requested
operations and to generate HDL-ready implementations for
a given microphone array and emulation parameters. Our
platform is also able to generate diagrams for the directivity
and waterfall diagrams. Several types of microphones can
be requested, sampling in PCM and PDM format. Users are
able to define microphone sub-arrays in order to compare
results when enabling or disabling groups of microphones.
Our emulator can also take advantage of a multi-computer
environment in order to distribute the computing tasks.

VHDL packages containing delays can be requested from
our platform. However, we envisage to add the possibility to

generate a VHDL package containing the complete beamform-
ing logic for the FPGA. By doing so, the user would only
be required to have the FPGA with the corresponding tools
installed on a local computer. This would eliminate the VHDL
development cost and significantly reduces the time required
when targeting a new microphone array.

REFERENCES

[1] J. Steckel, ”Sonar System Combining an Emitter Array With a
Sparse Receiver Array for Air-Coupled Applications”, in IEEE Sen-
sors Journal, vol. 15, no. 6, pp. 3446-3452, June 2015. doi:
10.1109/JSEN.2015.2391290

[2] Segers, L.; Van Bavegem, D.; De Winne, S.; Braeken, A.; Touhafi, A.;
Steenhaut, K. “An Ultrasonic Multiple-Access Ranging Core Based on
Frequency Shift Keying Towards Indoor Localization”. Sensors 2015,
15, 18641-18665

[3] Segers, L.; Tiete, J.; Braeken, A.; Touhafi, A. “Ultrasonic Multiple-
Access Ranging System Using Spread Spectrum and MEMS Technology
for Indoor Localization”. Sensors 2014, 14, 3172-3187

[4] E. Hadad et al., ”Comparison of two binaural beamforming approaches
for hearing aids,” 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp.
236-240. doi: 10.1109/ICASSP.2017.7952153

[5] J. Steckel, A. Boen and H. Peremans, ”Broadband 3-D Sonar Sys-
tem Using a Sparse Array for Indoor Navigation,” in IEEE Trans-
actions on Robotics, vol. 29, no. 1, pp. 161-171, Feb. 2013. doi:
10.1109/TRO.2012.2221313

[6] Y. Sun, J. Chen, C. Yuen, S. Rahardja, ”Indoor Sound Source Localiza-
tion with Probabilistic Neural Network”, IEEE TIE, vol. 65, Aug 2017,
pp. 6403-6413.

[7] Brandstein, Michael S. and Harvey F. Silverman. ”A practical method-
ology for speech source localization with microphone arrays.” Computer
Speech and Language 11, 1997, 91-126.

[8] Tiete, J.; Dominguez, F.; Silva, B.D.; Segers, L.; Steenhaut, K.; Touhafi,
A. SoundCompass: A Distributed MEMS Microphone Array-Based
Sensor for Sound Source Localization. Sensors 2014, 14, 1918-1949.

[9] da Silva, Bruno, et al. “A Low-Power FPGA-Based Architecture for
Microphone Arrays in Wireless Sensor Networks.” International Sym-
posium on Applied Reconfigurable Computing. ARC 2018. Springer
International Publishing, 2018.

[10] da Silva, Bruno, et al, “Design Considerations When Accelerating an
FPGA-Based Digital Microphone Array for Sound-Source Localization,”
Journal of Sensors, vol. 2017, Article ID 6782176, 20 pages, 2017.
https://doi.org/10.1155/2017/6782176

[11] da Silva, Bruno, et al. ”A Multimode SoC FPGA-Based Acoustic
Camera for Wireless Sensor Networks.” 2018 13th International Sympo-
sium on Reconfigurable Communication-centric Systems-on-Chip (Re-
CoSoC). IEEE, 2018.

[12] Taghizadeh, M.; Garner, P.; Bourlard, H. Microphone Array Beampattern
Characterization for Hands-Free Speech Applications. Proceedings of
the IEEE 7th Sensor Array and Multichannel Signal Processing Work-
shop, Hoboken, NJ, USA, 1720 June 2012; pp. 465468.

[13] MathWorks, ”Phased Array System Toolbox”, Online:
https://nl.mathworks.com/products/phased-array.html

[14] Sheaffer, J and Fazenda, BM, ”WaveCloud : an open source room
acoustics simulator using the finite difference time domain method”,
2014, Forum Acusticum

[15] Jonathan Sheaffer, ”WaveCloud-M: Acoustics FDTD simulator for Mat-
lab”, Online: http://www.ee.bgu.ac.il/ sheaffer/wavecloud.html

[16] KUAVA, ”Waveler Cloud”, Online: http://www.kuava.fi/software-
solutions/waveller-audio-and-noise-simulation-system/wavecloud.html

[17] SimScale, Online: https://www.simscale.com/
[18] Richard Schreier, ”Delta Sigma Toolbox”, Online:

https://nl.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-
toolbox

[19] SPH0641LU4H-1 microphone datasheet, Online:
https://www.mouser.be/datasheet/2/218/-746191.pdf

[20] ADMP521 microphone datasheet, Online:
http://www.analog.com/media/en/technical-documentation/obsolete-
data-sheets/ADMP521.pdf


