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INTRODUCTION.

   Mechanics may be defined as an area of science that describes and 
develops the conditions of equilibrium or of the motion of the material bod-
ies under the action of forces. Mechanics can be divided in three large parts, 
function of the studied object: mechanics of the non-deformable bodies (me-
chanics of the rigid bodies), mechanics of the deformable bodies (strength of 
the materials, elasticity, building analysis) and fluid mechanics. Mechanics 
of the non-deformable bodies, or theoretical mechanics, may be divided in-
to other three parts: kinematics, statics and dynamics.

Kinematics is the part of theoretical mechanics that deals with the 
motions of bodies without consideration of their masses and the forces that 
act on them, so kinematics studies the motion from geometrical point of 
view, namely the pure motion.

Statics is the part of theoretical mechanics that studies a transfor-
mation of systems of forces in other simpler systems and of the conditions 
of equilibrium of the bodies. 

Dynamics is the part of theoretical mechanics that studies the motion 
of bodies considering their masses and forces that acts on them. In all these 
definitions the bodies are considered rigid (non-deformable bodies). It is 
known that real bodies are deformable under the action of the forces. But 
these deformations are generally very small and they produce small effects 
on the equilibrium conditions and the motion.  Mechanics is a science of the 
nature because it deals with the study of the natural phenomena. Many con-
sider mechanics as a science joined to mathematics because it develops its 
theory based on mathematical proofs. On the other hand, mechanics is not 
an abstract science or a pure one, it is an applied science.

   Theoretical mechanics studies the simplest form of the motion of 
material bodies, namely the mechanical motion. The mechanical motion is 
defined as the phenomenon in which a body or a part of a body modifies its 
position with respect to another body considered as reference system.

   Theoretical mechanics uses three fundamental notions: space, time 
and mass. These three notions are considered independent with respect to 
each other. They are named fundamental notions because they may be not 
expressed using other simpler notions and they will form the reference 
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frame used in the study of theoretical mechanics. The notion of space is as-
sociated with the notion of position. For example the position of a point P 
may be defined with three lengths measured on three given directions, with 
respect to a reference point. These three lengths are known under the name 
of the coordinates of the point P. The notion of space is associated also with 
the notion of largest of the bodies and the area of them. The space in theo-
retical mechanics is considered to be the real space where natural phenome-
na are produced and it is considered having the following proprieties: infi-
nitely large, three dimensional, continuous, homogeneous and isotropic. The 
space defined in this way is the Euclidian space with three dimensions that 
allows to build the differential equations of motion and to obtain the differ-
ential computation. 

In defining a mechanical phenomenon, generally speaking, it is not 
enough to use only the notion of space, namely it is not enough to define on-
ly the position and size of the bodies. Mechanical phenomena have durations 
and they are produced in any succession. Combined with these notions (du-
ration and succession), theoretical mechanics considers a fundamental no-
tion of time having the following proprieties: infinitely large, one-
dimensional, continuous, homogeneous and irreversible. The time between 
two events is named interval of time and the limit among two intervals of 
time is named instant.

   The notion of mass is used to characterize and compare the bodies 
in the time of mechanical events. The mass in theoretical mechanics is the 
measure of inertia of bodies in translational motion and will represent the 
quantity of substance of the body, constant in time of the studied phenome-
non.

Besides of these fundamental notions, theoretical mechanics uses oth-
er characteristic notions, generally used in each part of the mechanics. These 
notions will be named as basic notions and they will be defined for each part 
of mechanics. In Kinematics the basic notions are: the velocity and the ac-
celeration. In Statics we use three notions: the force, the moment of the 
force about a point and the moment of the force about an axis. In Dynamics
we use: the linear momentum, the angular momentum, the kinetic energy, 
the work, the potential energy and the mechanical energy.
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Theoretical mechanics does not operate with a real object, but with a 
model of a real object. Through a model or a scheme we understand a repre-
sentation of the body or a real phenomenon with a certain degree of approx-
imation. But the approximation must be made in a way so that the body or 
the phenomenon keeps its principal proprieties.  To simplify the study of the 
theoretical mechanics, the material bodies are considered under the form of 
two models coming from the general model of the material continuum: the 
rigid body and the particle.

   The rigid body, by definition, is the non-deformable material body. 
This body has the propriety that: the distance among two any points of the 
body does not change indifferent to the actions of the forces or other bodies 
about it. This model is accepted in theoretical mechanics because, generally, 
the deformations of the bodies are very small and they may be neglected 
without an introduction of substantial errors in the computations or in the 
final solutions of studied problems.

   In the case when the body is very small or the dimensions are not 
significant in the studied problem, one can use the particle (the material 
point) model. The particle is in fact a geometrical point that has mass of the 
modelled body attached as an attribute.  

   The rigid bodies models may have different schemes depending on
the number of dimensions. Further we are going to implement next three 
schemes: material lines (bars), material surfaces (plates) and material vol-
umes (blocks). Material lines or bars are rigid bodies in which one dimen-
sion (the length) is larger than the other two (width and thickness). These 
kinds of bodies are reduced to a line representing the locus of the centroids 
of cross sections. Material surfaces or plates are bodies in which two di-
mensions are bigger than the third (the thickness). In this case the body is 
reduced to a surface representing the median surface of the plate. Material 
volumes or blocks are bodies in which three dimensions are comparable. Fi-
nally, another classification of the bodies is made function the distribution of 
the mass by the body. We shall have two kinds of bodies: homogeneous 
bodies in which the mass is uniformly distributed by the entire volume of 
the bodies, and non-homogeneous bodies in which the mass is non-
uniformly distributed by the bodies volume.
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Historical Review

The laws of theoretical mechanics are formulated through the fruitful 
labor of many generations of scientists. First presentation of General con-
cepts of mechanics are in the works of Greek philosopher Aristotle (384-322
BC), who considered the solution of practical problems using the lever. The 
first scientific justification of mechanics appears in the work of the geometer 
of Syracuse and the mechanics of Archimedes (287-212 BC). He made an 
attempt to describe axiomatic mechanics (statics), gave a number of scien-
tific generalizations pertaining to the doctrine of equilibrium, center of grav-
ity and hydrostatics (Archimedes ' principle).

The rapid development of mechanics begun with the Renaissance. 
Outstanding scientists of this era have developed methods of static and laid 
the foundations of dynamics. The most significant contribution to mechanics 
was made by Leonardo da Vinci (1452-1519) who studied the trajectory of 
the body that has been thrown at an angle to the horizon, the movement of 
the body of an aircraft and the phenomenon of friction and introduced the 
concept of moment of a force about a point; Steven Simon (1548-1620) gave 
an axiomatic construction of statics on the basis of the postulates of Archi-
medes, introduced the concept of the power triangle and proved the theorem 
of three forces; Nicolaus Copernicus (1473-1543) discovered the heliocen-
tric system of the world; Galileo Galilei (1564-1642) established the basic 
laws of free fall of bodies, he introduced the notion of non-uniform motion 
and acceleration of a particle, first formulated the law of inertia, the princi-
ple of relativity of classical mechanics and investigated the action of forces 
on bodies that are moving; Johannes Kepler (1571-1630) discovered the 
laws of planetary motion; Rene Descartes (1596-1650) closer to his contem-
poraries approached to correct the formulation of the law of inertia, first in-
troduced the concept of momentum of a material point and explored the 
question of the addition of an arbitrary number of movement points; Chris-
tian Huygens (1629-1695) developed a theory of oscillations of a physical 
pendulum, determined the center of its oscillation, proved theorems on cen-
trifugal force, experimentally determined the acceleration of gravity, studied 
the impact of two bodies; Robert Hooke (1635-1703) discovered the law of 
proportionality between force applied to an elastic body, and strain (Hooke's 
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law), which is the main ratio at the present calculation of dynamics and 
strength of structures and buildings, and anticipated the law of gravitation of 
Newton; P. Varignon (1654-1722) - established in its final form the concept 
of moment of force, conditions of equilibrium of a system of convergent and 
parallel forces, proved a theorem about the moment of the resultant.

One of the first places in the development of mechanics belongs to
Gottfried Leibniz (1646-1716), who developed and applied to problems in 
mechanics differential and integral calculus, introduced the concept of kinet-
ic energy and came very close to creating the calculus of variations. The es-
tablishment of the basic laws of dynamics was completed by the great Eng-
lish mathematician Isaac Newton (1643-1727). In his famous essay "Math-
ematical foundations of natural philosophy" (1687) he formulated the basic 
concepts of classical mechanics, axioms and some fundamental theorems of 
celestial mechanics and law of universal gravitation.

The period of development of mechanics after Newton is largely as-
sociated with the name of L. Euler (1707-1783), who most of his life 
worked at the St. Petersburg Academy of Sciences. L. Euler fully completed 
the process of mathematical description of particle mechanics, was the 
founder of solid mechanics and formulated the laws of dynamics for a con-
tinuous environment. 

Further development of mechanics was associated with the study of 
motion of a system of material points. The development of this direction 
was initiated by works of L. D'alembert (1717-1783), who formulated the 
principle by which formal problems of the dynamics was reduced to prob-
lems of statics (D'alembert principle) and L. Lagrange (1736-1813). In his 
outstanding essay "Analytical mechanics", he formulated the most general 
principle of statics - the principle of possible displacements, found a general 
pattern of the general equation of dynamics, and brought differential equa-
tions of motion of a mechanical system to a generalized form (the Lagrange 
equations of first and second kind).

In the future works of prominent mathematicians and engineers P. L. 
Mopar-Tu (1698-1759), P. S. Laplace (1749-1827), K. F. Gauss (1777-
1855), S. Poisson (1781-1840) Hamilton (1805-1865), Jacobi (1804-1851), 
M. V. Ostrogradskii (1801-1861) completed the mathematical description of 
mechanics of material points and rigid bodies, that were developed specific 
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to the concepts of analytical mechanics (generalized coordinates, general-
ized velocity, generalized force) and described mathematical methods of so-
lution of various tasks.

The subsequent development of mechanics is characterized by in-
depth study of a number of its sections and the appearance of new. One
should note the work of S. M. Kovalevskaya (1850-1891) on the theory of 
rotation of a heavy rigid body around a fixed point that became the starting 
point for the applied theory of gyroscopes. A significant contribution to the 
development of mechanics of non-holonomic systems, which has numerous 
applications in cybernetics, automated control theory, wave dynamics, was 
made by D. Gibbs (1839-1903), S. A. Chaplygin (1863-1945) and other sci-
entists. Stability theory of equilibrium and motion, which was closely con-
nected with the problem of accurate instrumentation, created and developed 
by the works of E. Routh (1831-1907), M. Zhukovsky (1847-1921), A. M. 
Lyapunov (1857-1918), H. Poincare (1854-1912). The most significant re-
sults in the theory of gyroscopes, that are basis of navigation devices, were 
obtained by L. Foucault (1819-1868), A. M. Krylov (1863-1945), V. Bulga-
kov (1901-1952) and other mechanics.
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1. KINEMATICS OF A PARTICLE 

1.1. Introduction to Kinematics

Kinematics is that part of the Theoretical Mechanics that deals with 
the study of the mechanical motion without consideration of the forces and 
masses of the bodies in motion, namely studies the geometry of the motion. 
We remind that through mechanical motion we understand the changing of 
the position of bodies (or parts of bodies) with respect to other bodies con-
sidered as reference systems.

   The reference system may be fixed or in motion. If the motion of the 
bodies is performed with respect to a fixed reference system (or that can be 
considered fixed system) we shall say that the motion is absolute motion, 
but if the motion of the bodies is performed with respect to moving refer-
ence system then the motion is called relative motion.

  In the kinematics one generally has to solve two problems: to deter-
mine the position of the particle (or of the body) in each instant of the mo-
tion and to know how the particle (or the body) moves. To define the posi-
tion of the particle we can use the vector way (used in theoretical demonstra-
tions generally) and the scalar way used in problems, which is considered in 
certain reference systems.  To define how the motion is made we shall intro-
duce two vector notions: velocity and acceleration.

We should also note that the elements of the absolute motion may be 
expressed with respect to a moving reference system and the elements of the 
relative motion with respect to a fixed reference system. We will consider 
the next reference systems used in the theoretical mechanics: Cartesian ref-
erence system that will be generally considered fixed one (with three fixed 
points) and the Frenet’s reference system that is in motion together with the 
body (entirely in motion).

In mechanics we deal with three-dimensional Euclidean space in 
which all dimensions are measured by the methods of Euclidean geometry. 
The unit of length, by which distance is measured, is the meter. 

Any motion in space takes place with time. Time in mechanics is con-
sidered as universal, i.e., as passing simultaneously in all our frames of ref-
erence. The unit of time is one second. Time is a continuously varying quan-
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tity. In problems of kinematics, time t is taken as an independent variable 
(the argument). All other variables (distance, velocity, etc.) are regarded as 
changing with time, i.e., as functions of time t. Time is measured from some 
initial instant (t = 0).

The principles of kinematics are based on the axioms of geometry. 
To describe the motion or the law of motion, of a given body (parti-

cle) kinematically means to specify the position of that body (particle) rela-
tive to a given reference system for any moment of time. One of the main 
problems of kinematics is that of describing the motion of particles or bodies 
in terms of mathematical expressions. Hence, we shall commence the inves-
tigation of the motion of any object with determining the ways of describing 
that motion.  

The principal problem of kinematics is that of determining all the kin-
ematic characteristics of the motion of a body as a whole or of any of its par-
ticles (trajectory, velocity, acceleration, etc.) when the law of motion for the 
given body is known. In order to solve this problem, we must know either 
the equations of motion for the given body or for another body kinematically 
associated with it.

We will consider the section of kinematics in the following structure: 
kinematics of the absolute motion of the particle, kinematics of the rigid 
body  and kinematics of the complex motion of the particle.

1.2. Vector and Scalar Method of Defining of Particle’s Position. 
Trajectory (Path) of a Particle.

At the beginning we consider the solution to the first problem of kin-
ematics with respect to a particle, i.e. definition of the position (location) of 
a particle in space. In order to determine the location of a particle we 
assume a reference system (frame of reference), which will be fixed 
relative to the origin body. The reference system consists of three parts:
origin (reference point); coordinate system; a system of time reading.

If the coordinates of all the points of a body remain constant 
within a given frame of reference, the body is said to be at rest relative 
to that reference system. If, on the other hand, the coordinates of any 
points of the body change with time, the body is said to be in motion 
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relative to the given frame of reference. To study the motion of any ob-
ject we have to introduce at least one reference system.

There are three methods of a particle motion describing: the vector
method, the coordinate method, the natural method. The last two methods 
are scalar ones. In the first case the position vector is used, that in absolute 
motion is represented with respect to a fixed point.

Fig.1.1 Vector Method

   Let a particle M is moving relative to any reference point O. The 
position of the particle at any instant can be specified by a vector r


drawn 

from the origin O to the particle M (Fig.1.1). When the particle moves, the 
position vector  r


changes with time both in magnitude and direction. Thus,    

position vector r


  is a variable vector (a vector function) depending on the 
argument t:

                                         ( )r r t
 

                                                   (1.1)

Therefore, to describe the motion of a particle by vector method, one 
needs to set twice differentiable vector function in the form (1.1). In other 
words, the formula (1.1) is the law of motion of a particle in a vector form.

The continuous curve delineated by a particle moving with respect to 
a given reference system is called the trajectory (path) of that particle. If 
the trajectory is a straight line, the motion is said to be rectilinear, if the tra-
jectory is a curve, the motion is curvilinear. In other words, trajectory (path) 
is the geometrical place of sequential positions of a moving particle. We can 
also say that the trajectory of a particle is the locus of the ends of the posi-
tion vector.



13

   If we want to express the position of the particle in scalar way with 
respect to a reference system, for example the Cartesian reference system, 
we can use three coordinates (three scalar position parameters). These coor-
dinates are functions of time also having the same conditions as the position 
vector:

The position of a particle with respect to a given reference system
Oxyz can be specified by its Cartesian coordinates x ,y ,z (Fig. 1.2). 

Fig.1.2. Cartesian Method

When motion takes place, the three coordinates will change with time. 
If we want to know the equation of particle motion, i.e., its location in space 
at any instant, we must know its coordinates in any moment of functions of
time for the three Cartesian coordinates of the particle:

                               

1

2

3

( )

( )

( )

х f t

у f t

z f t


 
 

                                                (1.2)

Thus, describing of the motion of a particle in the Cartesian method 
means to set twice differentiable scalar functions of the form (1.2).

Equations (1.2) are the equations of the particle's trajectory in para-
metric form, where the time t is the parameter. By eliminating time t from 
the equations of motion we can obtain the equation of the trajectory in the 
usual form, i.e., in the form of a relation between the particles coordinates.
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The relation between the coordinate and vector methods of describing 
motion can easily be established by introducing unit vectors i, j, k directed
along the axes x, y, z respectively (see Fig. 1.3). We can present the position 
vector r


as:

                          x y zr r і r j r k  
 

,                                               (1.3)

where i, j,k are the unit vectors of axes x,y,z. As the projections of position 
vector r


on the coordinate axes are equal to the coordinates of the particle 

M, i.e. хr х , уr у , zr z , we obtain  the relationship between the coordi-

nate and vector methods:

                               r хі уj zk  
 

.                                                    (1.4)

Fig.1.3. Relation between Vector and Cartesian Methods

Let consider another scalar method of describing of the motion of a 
particle, called natural method of describe motion. Natural method can be 
realized only if the particle trajectory is given. This method assumes that 
motion is completely described if position of particle on its trajectory is giv-
en as function of the time. Let the curve on the slide be the trajectory of the
moving particle M (Fig. 1.4).
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Fig.1.4. Natural Method

Take any fixed point O on the trajectory as the origin of the reference 
system; now, taking the trajectory as an curvilinear-coordinate axis, assume 
the positive and negative directions, as it is done with rectangular axes. 

The position of the particle M on the trajectory is now specified by a 
single curvilinear coordinate s of the particle. Coordinate s is equal to the 
distance of moving point M from some initial point O on the trajectory
(from O to M) measured along the arc of the trajectory and taken with the 
appropriate sign. The displacement of particle M carries it through positions 
M1, M 2 , ..., i.e., the distance s changes with time. In order to know the posi-
tion of M on the trajectory at any instant, we must know the relation:

                           ( )s f t .                                                     (1.5)

Thus, in order to use natural method of describing of the motion of a particle 
if the twice differentiable scalar functions of the form (1.5) is set. In other 
words, the formulas (1.5) are the law of motion of a particle in a Natural 
form.

Thus, in order to describe the motion of a particle by the natural 
method, a problem must state: 

1) The trajectory of the particle;
2) The reference point O on the trajectory (the position of the particle 

on the trajectory at the moment t = 0); 
3) The positive and negative directions of curvilinear coordinate read-

ing; 
4) The equation of the particle's motion along the trajectory in the 

form (1.5).
Let’s note that s in Eq. (1.5) denotes the position of the moving parti-

cle, but this coordinate does not indicate the path (distance) traversed by it. 
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For example, if the particle travels from O to M 1 and then reverses its mo-

tion to point M, its coordinate at that moment is �S OM , but the distance it 

traveled is � �
1 1OM M М , i.e., not s. 

The natural method of describing motion offers a very clear picture, 
but a particle's trajectory may not be known, that is why the coordinate 
method is employed more frequently. 

Next, we consider the connection that we can establish between the 
natural coordinate s and Cartesian coordinates. Infinitesimal segment of a 

trajectory of length ds is connected with differentials , ,dx dy dz by the for-

mula:

2 2 2 2ds dx dy dz   .

Following we obtain:

2 2 2ds dx dy dz    .

2 2 2
2 2 2 dt dx dy dz

ds dx dy dz dt
dt dt dt dt

                 
     

.

Finally, we obtain:

                          2 2 2

0

t

s x y z dt                                                  (1.6)

1.3. The Velocity of a Particle

One of the basic kinematic characteristics of motion of a particle is a 
vector quantity called velocity. Velocity characterizes a change in time of 
intensity and direction of motion of a particle in space.

First we introduce the concept of average velocity of a particle in a 
given time interval. Let’s assume a moving particle M occupies at the mo-
ment of time t a position M defined by the position vector r


. At the moment 

of time t1 ( 1 ,t t t   where t is the increment of time), the particle occu-
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pies a position Ml defined by the vector - position 1r r r  
  

(Fig.1.5).

Fig.1.5. Concept of the Velocity

The displacement during the time interval 1t t t   is defined by a 

vector 1ММ


which we shall call the displacement vector of the particle.

From triangle OMM1 we have 1 1r ММ r 
 

whence the displacement vector 

of the particle may be defined as:

                          1 1ММ r r r   
   

.                                            (1.7)

The ratio of the displacement vector of a particle to the corresponding 
time interval defines a vector quantity called the average (both magnitude 
and direction) velocity of a particle during the given time interval t :

        
1

av

ММ r
v

t t


 

 

 


.                       (1.8)

Vector of the average velocity avv


has the same direction with dis-

placement vector 1ММ


, i.e., along the chord 1ММ , in the direction of the mo-

tion of the particle in the case of curvilinear motion, and along the trajectory 
itself in the case of rectilinear motion.

To obtain a characteristic of motion independent of the choice of the 
time interval t , the concept of instantaneous velocity of a particle is intro-
duced.

The instantaneous velocity of a particle at any time t is defined as the 

vector quantity v


towards which the average velocity avv


tends when the 

time interval t (increment of time) tends to zero:



18

0 0
lim limavt t

r dr
v v r

t dt   


   



 
  

The limit of the ratio /r t 


as 0t  is the first derivative of the 
vector r with respect to t and is denoted, like the derivative of a scalar func-
tion, by the symbol /dr dt . Finally we obtain the vector of instantaneous ve-
locity as:

                                  

dr
v r

dt
 


  ,                                                 (1.9)

where the dot over the letter is a symbol of differentiation with respect to 
time.                                                                                                 

Thus, the vector of instantaneous velocity of a particle is equal to the 
first derivative of the position vector r


of the particle with respect to time.

As the limiting direction of the secant 1ММ is a tangent, the vector of in-

stantaneous velocity is tangent to the trajectory of the particle in the direc-
tion of motion. Eq. (1.9) also shows that the velocity vector v


is equal to the 

ratio of the infinitesimal displacement dr


of the particle tangent to its trajec-
tory to the corresponding time interval dt.

In rectilinear motion the velocity vector v


  is always directed along 
the straight line in which the particle moves and can change only in magni-
tude; in curvilinear motion the direction of the velocity vector v


changes 

continuously. The dimension of velocity is displacement/time, and the cus-
tomary units are m/s or km/h.

In order to make numerical calculation of particle’s motion parame-
ters we have to use a coordinate representation of the motion.  First we use 
fixed rectangular coordinate system Oxyz, origin of which coincides with the 

point O. Unite vectors of axes are , ,і j k
 

. So, we can present the position 

vector ( )r t


accordingly (1.3) and (1.4). The velocity vector of a particle is 

equal to the first derivative of the position- vector r


  of the particle with re-
spect to time accordingly (1.9). Let us calculate time-derivative of the posi-
tion vector taking into account expression (1.4):

             
( ) ( ) ( )dr dx t dy t dz t

v i j k
dt dt dt dt

   
  

.                              (1.10)
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Here we have to take into account that the reference system Oxyz is fixed 

and because of that, unite vectors , ,і j k
 

are constants vectors. From the 

other side velocity vector v


could be presented using its projection on the 
axes Oxyz:    

                                       x y zv v і v j v k  
 

                                          (1.11)

   
Fig. 1.6. Velocity vector in Cartesian reference system

Comparing of two formulas (1.10) and (1.11) we come to the conclu-
sion that, the projections of the velocity v


on the coordinate axes are equal to 

the first derivatives of the corresponding coordinates of the particle with re-
spect to time:

                                          

;

;

.

x

y

x

dx
v x

dt
dy

v y
dt
dz

z z
dt

  

  

  







                                    (1.12)

If we know the projections of the velocityv


, we can find the magnitude of 
the velocity v


:

                                  
2 2 2 2 2 2 ;x y zv v v v v x y z      


                    (1.13)
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To determine the direction of the velocity we have to calculate cosines 

of angles α, β, γ between the vector of velocity v


and unite vectors , ,і j k
 

(i.e., the angles α, β, γ which vector of velocity v


makes with the coordinate 
axes):

2 2 2

2 2 2

2 2 2

cos ;

cos ;

cos .

x

y

z

v x

v x y z

v y

v x y z

v z

v x y z


  

 
   

 

   
  



  



  



  

                              (1.14)

In the natural method of describing motion, velocity vector v


is de-
termined from its projections on a set of coordinate axes Mτnb (Fig. 1.7). 

Fig.1.7. The natural coordinate system
The natural coordinate system (Frenet’s coordinate system)   Mτnb is 

a rectangular system. Its origin coincides with the moving point M during 
the whole time of motion of the particle. Axis Mτ is directed along the tan-
gent to the trajectory in the direction of the positive displacements. Corre-
spondent unit vector is 


. Axis Mn is directed along the normal in the oscu-

lating plane towards the concavity of the trajectory. Correspondent unit vec-
tor n


is directed from point M to the center of curvature. Axis Mb is di-

rected perpendicular to the Mτ and Mn to form a right-hand set. Correspond-

ent unit vector is b


.The axis Mτ is called tangent axis. The normal Mn, 
which lies in the osculating plane (or in the plane of the curve itself if the 
curve is two-dimensional), is called the principal normal (or simply a nor-
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mal), and the normal Mb perpendicular to it is called the binormal. A plane 
normal to the vector 


  and intersecting tangent in the point M is a normal 

plane. The plane containing tangent axis Mτ and binormal axis Mb is called 

a tangent plane (Fig. 1.7). Note that the unit vector b


of the binormal axis is 
defined as the cross product of the unit tangent vector


and unit normal vec-

tor n


(b n 
  

).

Next, let's consider the process of determining of the velocity of a par-
ticle in the framework of the natural way of describing movement. Let us 
know the trajectory of the motion of the particle, and the law of change of 
curvilinear coordinate along the trajectory is given in the general form (1.5).

Fig.1.8. The determination of the velocity within the natural way to describe 
motion

If in a time interval 1t t t   a particle moves from position M to po-

sition M1, the displacement along the arc of the trajectory being 1s s s  

(Fig. 1.8), the numerical value of the average velocity will be:

                              
av

s
v

t





.                                                 (1.15)

Applying the limit, we obtain the algebraic (or numerical) value of the 
instantaneous velocity for a given time t:

                              0 0
lim limavt t

s ds
v v

t dt   


  


                                         (1.16)

The vector of instantaneous velocity of a particle is equal to the first 
derivative of the position vector r


of the particle with respect to time: 
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dr
v

dt





, where the  infinitesimal  increment of the  position- vector r


can be 

expressed as     dr ds  
 

, where ds – is the infinitesimal displacement of 

the particle (
0

lim 1
t

r dr

s ds 


 


). Then, we obtain next formula:

                                             
ds

v
dt

  
 

.                                            (1.17)

On the other hand, the velocity vector is tangent to the trajectory at every  
point. Therefore, velocity vector v


can be expressed as:

                                               v v 
 

,                                                 (1.18)

where v is the scalar value of velocity – projection of the velocity on the 

tangent axis of the natural coordinate system. Comparison of two formulas 
(1.17) and (1.18) gives us next formula of the algebraic value of velocity of
a particle:

                                  
ds

v v
dt   .                                            (1.19) 

The sign of a algebraic value of velocity v is the same as that of first 

derivative of the curvilinear (arc) coordinate s (v=
ds

s
dt

  ), it can be defined 

in the following way: if 0v s  , the velocity vector v


is in the positive di-
rection of curvilinear coordinate s, if 0v s  , the velocity vector v


is in 

the negative direction of s (Fig. 1.9).

Fig. 1.9. Direction of the velocity



23

1.4. The Acceleration of a Particle.

Acceleration of a particle should be defined as vector measure of ve-
locity alternation. Acceleration characterizes the time rate of change of ve-
locity vector in magnitude and direction.

Let us assume a moving particle that occupies a position M and has a 
velocity v


at a given time t, and let the same particle at time t1 occupy a po-

sition M1 and have a velocity 1v


(Fig. 1.10). The increase of the velocity in 

the time interval 1t t t   is 1v v v  
  

. Let us construct vector v


from 

point M and construct the parallelogram with 1v


as its diagonal and v


as one

of its sides. It is evident that the other side will represent vector v


. Incre-

ment of the velocity is 1 ( ) ( )v v v v t t v t      
    

Fig.1.10. Concept of acceleration

Note that the vector v


is always directed towards the inside of the 
trajectory. The ratio of the velocity increment vector v


to the correspond-

ing time interval t defines the vector of average acceleration of a particle
in the given time interval:

                                 
av

v
a

t








.                                                 (1.20)

Obviously, the vector of average acceleration has the same direction as ve-
locity increment vector v


, i.e., towards the concavity of the trajectory.

The instantaneous acceleration of a particle at a given time t is de-

fined as the vector quantity a


  towards which the average acceleration ava


tends when the time interval t tends to zero: (Acceleration a


at the mo-
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ment t – instantaneous acceleration – is defined as limit of average accelera-

tion ava


when increment of time interval t tends to zero):                                                   

0
lim

t

v dv
a

t dt 


 



 


, or, taking into account Eq. (1.9):

                                      

2

2
.

dv d r
a v r

dt dt
   

 
                                           (1.21)

Thus, the vector of instantaneous acceleration of a particle is equal to 
the first derivative of the velocity vector or the second derivative of the posi-
tion vector r


of the particle with respect to time. The dimension of accelera-

tion is displacement/ (time)2, and the commonly used unit is m/s2.  
In rectilinear motion vector a


is directed along the straight line in 

which the particle is moving. If the trajectory is a plane curve, the accelera-

tion vector a


, just like the vector of average acceleration ava


, lies in the 

plane of the curve and is directed towards the concavity of the curve. If the 

trajectory is a curve in space, the vector ava


is directed towards its concavi-

ty, in a plane through the tangent to the trajectory at point M and a line par-
allel to the tangent through the neighboring point M1 (see Fig. 1.10). In the 
limit, when point M1 tends to M, this plane coincides with the so-called os-
culating plane. Hence, in the general case, the acceleration vector a


lies in 

the osculating plane and is directed towards the inside of the curve. Of all 
the planes passing through point M, the osculating plane has the greatest 
contact with the curve. Every point of a three-dimensional curve (e.g., a he-
lix) has its own osculating plane. The osculating plane of a plane curve is 
coincident with the plane of the curve and is common for all its points.

In order to make numerical calculation of particle’s acceleration we 
have to use a coordinate presentation of the motion.  First we use fixed rec-
tangular coordinate system Oxyz, origin of which coincides with the point O. 

Unite vectors of axes are , ,і j k
 

. So, we can present the position vector ( )r t


according to (1.3) and (1.4). The acceleration vector of a particle is equal to 
the second derivative of the position vector r


  of the particle with respect to 

time according to (1.21). Let us calculate the second time-derivative of the 
position vector using the expression (1.4):
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2 2 2 2

2 2 2 2

( ) ( ) ( )dv d r d x t d y t d z t
a i j k

dt dt dt dt dt
    

   
.            (1.22)

On the other hand the acceleration vector a


could be presented using 
its projection on the axes Oxyz:     

                                        x y za a і a j a k  
 

                                      (1.23)

Comparing two formulas (1.22) and (1.23) we come to the conclusion
that, the projections of the acceleration a


on the coordinate axes are equal to 

the first derivatives of the projections of the velocities, or the second deriva-
tives of the corresponding coordinates, of the particle with respect to time:

                                       

2

2

2

2

2

2

;

;

.

x
x

y
y

z
x

dv d x
a

dt dt
dv d y

a
dt dt

dv d z
a

dt dt


 


  



 


                                             (1.24)

The magnitude of the acceleration is defined by the next equation:

                         2 2 2 2 2 2 ;x y za a a a a x y z      


                            (1.25)

Fig. 1.11. Acceleration vector in Cartesian reference system
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The direction of the acceleration is defined by the cosines of angles α1, β1, γ1  

between the vector of  acceleration  a


and unit vectors , ,і j k
 

:     

                           

1 2 2 2

1 2 2 2

1 2 2 2

cos ;

cos ;

cos .

x

y

z

a x

a x y z

a y

a x y z

a z

a x y z


 

 
  

 

  
  



  



  



  







                            (1.26)                            

where α1, β1 and γ1 are the angles between the acceleration vector and the 
coordinate axes.

Previously it was shown that the acceleration vector of a particle lies 
in the osculating plane, i.e., plane Mτn, hence the projection of vector a


on 

the binormal is zero ( 0ba  ).  Let us calculate the projections of a


on the 

other two axes. The vector of acceleration a


of a particle is equal to the first 
derivative of the velocity vector of the particle with respect to time. Through 
expression (1.17), we obtain the next formulas:

                   
2

2
( ) ,

dv d ds d s ds d
a

dt dt dt dt dt dt


        

 
  

.
d

a s v
dt


    


 


      (1.27)

Where
0 0 0 0

lim lim lim lim
t t t s

d s s d
v v k n

dt t t s t s ds       

                 

    


, where k is 

the curvature of the trajectory at point M. As the curvature is the inverse of 

the radius of curvature ρ at M, we have: 
1

k 


. Finally we obtain:

                                             
2v

a s n    


  
 ,                                          (1.28)

On the other hand, vector of acceleration a


could be presented using 
its projection on the axes Mτnb:  
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                                       n ba a a n a b   
  

.                                         (1.29)

Comparison of two formulas (1.28) and (1.29) gives us:

                         

2

( ), , 0.n b

dv v
a s t a a

dt


    

                             (1.30)

So, we have  proved that the projection of the acceleration of a parti-
cle on the tangent to the trajectory  is equal to the first derivative of the 
magnitude of velocity v, or the second derivative of the curvilinear coordi-
nate s, with respect to time; the projection of the acceleration on the princi-
pal normal is equal to the second power of the velocity divided by the radius 
of curvature of the trajectory at the given point of the trajectory; the projec-

tion of the acceleration on the binormal is zero ( 0ba  ).

Fig. 1.12. The acceleration in natural reference system 

Vectors a


and na


, i.e., the normal and tangential components of the 

acceleration, directed along the tangent Mτ and the principal normal Mn, re-
spectively (Fig.1.12). 

The first component in eq. (1.29) lies on the tangent to the trajectory. 
It is called tangential acceleration. It characterizes the change of the velocity 
magnitude. The second component in eq. (1.29) lies in the osculating plane 
at 90° angle to the trajectory tangent and is directed in the center of curva-
ture. It is called normal acceleration and it characterizes the change of the
velocity direction.

The component na


is always directed along the inward normal, as     

na > 0, while the component a


can be directed either in the positive or in 

the negative direction of the axis Mτ, depending on the sign of the projection 

a
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The acceleration vector a


is the diagonal of a parallelogram con-

structed with the components a


and na


as its sides:

                            na a a 
  

 .                                                (1.31)

As the components a


and na


are mutually perpendicular vectors, the 

magnitude of vector a


and its angle μ to the normal Mn are given by the 
equations:

                    

22 2
2 2

n

dv v
a a a

dt

        
   


 

, tan
n

a

a
  .                (1.32)

Fig. 1.13. Tangent, normal and full acceleration of a particle.

The magnitude and direction of tangent acceleration determine the 
character of motion of a particle. If the tangential acceleration is zero, then 
the motion is called uniform motion, while the velocity of the particle does 

not change in magnitude (determined by the value in the initial time 0v – in-

itial velocity), and arc (natural) coordinate depends on time linearly:

                                          tvss 00  ,                                            (1.33)

where 0s – the initial value of the arc coordinates (initial displacement of 

the particle along the trajectory).
If the magnitude of tangent acceleration is not changed during move-

ment, the motion is called uniformly variable motion. The velocity varies in 
time according to a linear law, and arc coordinate varies with time according 
to the square law:
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2

;
2

000

ta
tvsstavv 

  .                             (1.34)

If the direction of the vector of tangent acceleration and vector of ve-

locity are the same (  av


or 0 ss  ), the motion is accelerated one, oth-

erwise (  av


or 0 ss  ) the motion is decelerated one.

1.5. Problems and Solutions.

Example 1. Particle’s motion in the vertical plane (Fig. 1.14) de-
scribed by the equations: x = 300 t, m; y = 400 t – 5t2 m, where t is the time, 
s

x
1

y

0
H

L

1v


0v


O

Рисунок 1.6

Fig. 1.14. To the first example
It is necessary to define:
– The trajectory of the particle;
– The velocity and the acceleration of a particle in the initial and final 

instant of time;
– The maximum height of the particle lift above the horizon H and the 

maximum flight range L;
– The radius of curvature of the trajectory at its start, end and highest 

point.

Solution

Find the equation of the trajectory, eliminating from the equation of 
motion y = 400 t – 5t2  (m) time t. First, from the equation x = 300 t, we de-
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fine t =
300

x
, and then obtain the trajectory equation in the following form: 

24 1

3 18000
y x x  .

The trajectory of a particle in the coordinate x and y in the vertical 
plane is a parabola.

Calculate the projection of the velocity and acceleration of a particle 
on the coordinate axis:

2300 m/s; 400 10 m/s; 0; 10 m/s .x y x yv x v y t a x a y            

Define their values in the initial instant of the time: t = 0:

2 2 2 2
0 400 300 500 m/sv x y      ;

 22 2 2
0 10 10 m/s .a x y     

The maximum height of the particle lift above the horizon can be de-
termined by examining the extremum of a function y(t) in variable t. This 
means that from the point of view of kinematics, the projection of the parti-
cle’s velocity on the y-axis at a given instant of time must be equal to zero.

Then 1400 10 0,y    where 1 – the time point of the maximum 

height, 1 40  s. Inserting this time value into the expression for y, we ob-

tain the ymax = H = y(40) = 8 km. 

The maximum range of the particle’s flight defined from the condi-
tions that at the time of the particle’s drop the function y(t) takes a value of 

zero 2
2 2 2( ) 400 5 0y      , where 2 – flight time of a particle. The root 

of this quadratic equation corresponding to the drop of a point to the ground, 

2 80  s, where the range хmax = х(80) = 24 km.

Now, knowing the time of particles flight, it is possible to determine 
its velocity and acceleration at the end of the flight. Substituting the time 

2 into the expression for the velocity projection of a particle on the y-axis, 

we get the 1 400yv   m/s. Projections of the velocity and acceleration on 
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the x-axis is not time-dependent and constant throughout the flight. Thus, 
the particle moves with a constant acceleration, which equal to 10 m/s2 and 
directed vertically downward, and its velocity at the end of the flight is equal 

at the velocity magnitude at the beginning 1 0 500v v 
 

m/s and make x ax-

is is equal angles 1 0   .

To determine the radius of curvature of the particle, turn to the kine-
matic characteristics of motion in the natural reference system.

First find the tangential acceleration according to the formula

xx yy zz
a

v
 


  

 ,

and then calculate it for the initial time

2
0

300 0 400 ( 10)
8 sm/s

500
xx yy zz

a
v

     
   
  



and for the final time

2
1

300 0 ( 400) ( 10)
8 m/s .

500
a

     

Now we can calculate the normal acceleration according to the formu-

la 
22

na a a 
 

, and then 2 2 2
0 1 10 8 6 m/sn na a    . Since the radius 

of curvature of the trajectory included in the formula 
2

n

v
a


 , then 

2 2500
41.667 km.

6n

v

a
  

The radii of curvature of the trajectory at the beginning and at the end 
of the flight the same. At the highest point of the trajectory

2300 0 0 ( 10)
0; 10 m/s ; 300 m/s

500 na a v
      


 ;   

2300
9 km.

10
 
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As can be seen from the above example, the equations of motion con-
tain all the necessary to study the characteristics of its motion at any point in 
time.

Example 2. The particle moves in the plane according to the law:

                           

 
 

2

2

6cos 2;

3sin 3.

x t

y t

  

   
                                                     (1.35) 

It is necessary to define:
– The trajectory of the particle;

– The velocity and the acceleration of a particle at time 1 0,5t 

(  x t and  y t is marked in centimeters t – seconds);

– The radius of curvature of the trajectory at the given moment of 
time.

Solution

The equations of motion (1.35) can be regarded as parametric equa-
tions of the particle’s trajectory. In order to obtain the equation of the trajec-

tory in coordinate form it is necessary to exclude time t from equations 

(1.35). Since part of the arguments are trigonometric functions, we can do 
the following: leave trigonometric functions on the right-hand sides of equa-
tions only, then square both equations and add them. After that we obtain:

                 
   2 2

2 3
1

36 9

x y 
  ,                                                 (1.36) 

i.e., the trajectory in this case is the ellipse with semiaxes 6 and 3. The el-
lipse is shown in Fig. 1.15. 

In the given time 1 0,5st  moving particle has the coordinates

6,24cmx  , 0,88cmy  , which are determined by substituting t in the 

original equations of motion (1.35). To check the correctness obtained equa-

tion of the trajectory (1.36) can be substituted in this equation x (or y ) and 

get him y (or x ).

The velocity vectors and the full acceleration of the particle defined in 
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Cartesian coordinates as follows:

,; jaiaajvivv yxyx


                                                       

where ,i j
 

– unit vectors of the axis Ox and Oy ; , , ,x y x yv v a a – projections 

of the velocity and the full acceleration of a particle on a coordinate axis. 
We find them by taking the time derivative of the equations of motion 
(1.35):

 
 

   
   

2

2

2 2 2 2

2 2 2 2

12 sin ;

6 cos ;

24 cos 12 sin ;

12 sin 6 cos .

x

y

x x

y y

v x t t

v y t t

a v x t t t

a v y t t t

    

    

        

       





 

 

                                

After inserting 1 0,5st  , we obtain:

2 2

13,33 cm s; 6,67 cm s;

68,53 cm s ; 7,61cm s .

x y

x y

v v

a v

   

  
                                        

Fig. 1.15. To the second example

After the finding projections we can determine the velocity magni-
tude:
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2 2 14,9 cm s;x yv v v                                                           

Magnitude of the full acceleration: 

2 2 268,95 cm s .x ya a a   

Now we turn to the determination of the kinematic characteristics of 
motion in natural coordinate system. The tangent acceleration can be con-
sidered as the projection of the vector of full acceleration to the velocity 
vector, so its algebraic value is defined as follows:

257,89 cm s .x x y yv a v a
a

v


 

The "+" sign indicates that the motion is accelerated one, i.e., the di-
rection v


and a


will be the same. The magnitude of the particle’s normal 

acceleration:
2

,n

v
a 


where  – the radius of curvature of the trajectory at a 

given instant of time, if radius of curvature is unknown, then na   can be de-

termined by the formula:

2 2 237,45 cm s .na a a                                                         

The radius of curvature of the trajectory is determined from the ex-
pression:

2

5,93 cm.
n

v

a
  

Figure 1.15 shows the position of the particle at a given moment of
time. The velocity vector is built in the scale of the projections, and the line 
of action of this vector must coincide with the tangent to the trajectory. The 
vector of full acceleration is built based from values of its components, and 
then is decomposed into tangent and normal acceleration.
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Example 3. The particle moves in the plane according to the law:

2

;

4.

x t

y t



 
                                                                                      (1.37)

It is necessary to define:
– The trajectory of the particle;

– The velocity and the acceleration of a particle at time 1 1t 

(  x t and  y t is marked in centimeters t – seconds);

– The radius of curvature of the trajectory at the given moment of 
time.

Solution

The equations of motion (1.37) can be regarded as parametric equa-
tions of the particle’s trajectory. In order to obtain the equation of the trajec-

tory in coordinate form it is necessary to exclude time t from equations 

(1.37). In this case it is necessary to express the time t of the first equation 

and substitute into the second equation. After that we obtain:

                      
2 4y x  ,                                                               (1.38)  

i.e., the trajectory in this case is a parabola, the graph of which is shown in 
Fig. 1.17 a. The solid line shows the actual trajectory of a particle which 

starts from the position that corresponds to the initial time: 0 0t  ,  0 0x  , 

 0 4cmy   . In a given time 1 1st  particle that moves, has coordinates

1cmx  , 3cmy   which are determined by substitution 1t in the original 

equations of motion (1.13). To check the correctness of obtaining the equa-

tion of the trajectory of (1.14) can be substituted in this equation x (or y ) 

and obtain y (or x ).

The velocity and acceleration vectors of the particle defined in Carte-
sian coordinates as follows:

,; jaiaajvivv yxyx



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where ,i j
 

– unit vectors of the axis Ox and Oy ; , , ,x y x yv v a a – projections 

of the velocity and the full acceleration of a particle on a coordinate axes. 
We find them by time differentiating the equations of motion (1.37):

1; 2 ;

0; 2.

x y

x x y y

v x v y t

a v x a v y

   

     

 

   

After substituting 1 1st  , we obtain:

2

1cm s; 2 cm s;

0; 2 cm s .

x y

x y

v v

a a

 

 

Next, we determine magnitude of the velocity:

2 2 2,24cm sx yv v v   ;

Magnitude of the acceleration: 

2 2 22cm sx ya a a  

We now turn to the determination of the kinematic characteristics of 
motion in natural coordinate system. The tangent acceleration can be con-
sidered as the projection of the vector of full acceleration to the velocity 
vector, so its algebraic value is defined as follows:

21,79cm sx x y yv a v a
a

v


 

The "+" sign indicates that the motion is accelerated one, i.e., the direction 

v


and a


will be coincide. 

The magnitude of the normal acceleration of the particle is defined by 
the expression:

2 2 20,89cm sna a a   .

The radius of curvature of the trajectory is determined from the for-
mula:
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2

5,61cm
n

v

a
   .

Fig. 1.16. To the third example

Fig. 1.16 shows the position of the particle in the given instant of 
time. The velocity vector is built based from values of its projections, and
the line of action of this vector must coincide with the tangent to the trajec-
tory (Fig. 1.16 b). The vector of full acceleration is based from values of its
components, and then is decomposed into tangent and normal acceleration 
(Fig.1.16 c).
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1.6. Tasks for solving.

Let us consider the motion of a particle in the same plane. The table
1.1 contains the laws of motion in Cartesian form. It is necessary to deter-
mine the trajectory of a particle, construct its graph, and for a given instant 
of time to determine the velocity and acceleration of a particle and draw its
vectors on the trajectory.

Table 1.1. Lows of particle’s motion.

N
variant

Law of motion Time

1,t s1( )x f t , cm 2 ( )y f t , cm

1
24cos 2

3

t   
 

24sin
3

t 
 
  1

2
cos 3

3

t   
 

2р
sin 1

3

t 
 

  1

3
2sin

3

t 
 
 

3cos 4
3

t   
  1

4 23t –4t 0,5

5 23 1t t 
2 5

5 2
3

t
t  

1

6
7sin 3

6

t   
 

2 7cos
6

t   
  1

7
4cos

3

t   
 

2sin 3
3

t   
  1

8 24t –3t 0,5

9
25sin

6

t 
 
 

25cos 3
6

t   
 

1

10
5cos

3

t 
 
 

5sin
3

t   
 

1
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11
4cos

3

t 
 
 

3sin
3

t   
 

1

12 3t 4t2 0,5

13
27sin 5

6

t   
 

27cos
6

t   
 

1

14

2

1 3cos
3

t 
  

 

2

3sin 3
3

t 
 

 
1

15 5t2 – 4 3t 1

16
3t – 6t2 23

3
2

t
t 1

17 6sin 2
6

t   
 

6cos 3
6

t   
 

1

18 7t2 5t 0,25

19 3 – 3t2 + t 2 5
4 5

3

t
t  1

20 4cos 1
3

t   
 

4sin
3

t   
 

1

21 6t 2t2 – 4 1

22 28cos 2
6

t   
 

28sin 7
6

t   
  1

23 3 9sin
6

t    
 

9cos 5
6

t   
 

1

24 4t2 + 1 –3t 1

25 3t – 6t2 23
3

2

t
t 1

26 6sin 2
6

t   
 

6cos 3
6

t   
 

2

27 7t2 5t 0,25



40

28 3 – 3t2 + t 2 5
4 5

3

t
t  0,5

29 4cos 1
3

t   
 

4sin
3

t   
 

2

30 6t 2t2 – 4 2

31 28cos 2
6

t   
 

28sin 7
6

t   
 

2

32 3 9sin
6

t    
 

9cos 5
6

t   
 

2
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Questions

1. What is studying the mechanics?
2. What objects has the job of theoretical mechanics?
3. What part of the theoretical mechanics is divided?
4. What is a particle, a rigid body, a mechanical system?
5. Call some scientists who have developed theoretical mechanics.
6. What are the main problems of kinematics?
7. What are the main kinematic characteristics of the motion of a par-

ticle?
8. Formulate the methods of the defining of the motion of a particle.
9. What is the position vector of a particle?
10. How to define the motion of a particle in the Cartesian reference 

system?
11.  How to set the particle motion when using natural method of de-

scription?
12. What is the Frenet’s reference system?
13. What is the trajectory of a particle?
14. How to define the trajectory of a particle under Cartesian method 

of description of the motion of the particle?
15. What characterizes the velocity of the particle?
16. How to define the velocity under vector method of description of 

the motion of the particle?
17. How to define the velocity under Cartesian method of description 

of the motion of the particle?
18. How to define the velocity under natural method of description of 

the motion of the particle?
19. Where is the velocity vector of the particle relative to the trajecto-

ry?
20. What characterizes the acceleration of the particle?
21. How to define the acceleration under vector method of description 

of the motion of the particle?
22. How to define the acceleration under Cartesian method of descrip-

tion of the motion of the particle?
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2. KINEMATICS OF A RIGID BODY.
THE SIMPLEST MOTIONS OF A RIGID BODY.

2.1. Types of the Motion of a Rigid Body. Determination of the 
Position of a Rigid Body in Space.

In this section, we discuss issues related to the kinematics of rigid 
bodies. The main difference between the consideration of the kinematics of 
rigid bodies and consideration of the kinematics of particles is that under
motion of the rigid body its size and shape are taken into account, and its ro-
tation should be analyzed.

There are two approaches to the analysis of the kinematics of the rigid 
body. In accordance with the first approach it is possible to consider the mo-
tion of a body always as arbitrary motion and use the general formulas to de-
termine the kinematic characteristics. In accordance with the second ap-
proach it is possible to consider certain features of body movement in ad-
vance (e.g., no rotations or displacements) and to consider some particular 
case of motion of a rigid body using specific formulas to determine the kin-
ematic characteristics.

The second approach visibly simplifies the examination of certain 
cases of rigid body motions. It should also be noted that the elements in var-
ious technical devices make very specific types of motion (e.g., rotation 
around a fixed axis or fixed point) and for their analysis, a general approach 
is unnecessary. Also, it should be noted that the arbitrary motion of a rigid 
body can be consistently viewed as a combination of particular motions. It is 
possible to distinguish four particular cases of motion of a rigid body.

Particular cases of motion of a rigid body include: 
– translational motion;
– rotational motion (rotation)around a fixed axis;
– rotational motion(rotation)around a fixed point;
– plane-parallel (planar) motion.
The translational motion of the rigid body is characterized by the lack 

of rotations during the motion (for example: piston pump, the slider in the 
mechanism to convert the movement). Rotational motion about a fixed axis 
is characterized by a fixed straight line that is associated with the body (ex-
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ample: rotor of turbine, wheel gear and belt gear, the crank in the mecha-
nism for conversion of motions). Rotational motion around a fixed point 
(spherical motion) is characterized by the fact that during motion the same 
point of the body remains fixed (example: rotating radar antennas). Plane-
parallel (planar) motion is characterized by the fact that all points of the 
body move in the planes, that are parallel to each other (example: wheel roll-
ing on a straight-line path, motion of the connecting rod in the mechanism 
for conversion of motions). 

The main tasks of the kinematics of the rigid body include:
– determining at any given time the position and orientation of the 

body in space as a whole; 
– determining at any given time the position of an arbitrary point of 

the body; 
– determining of kinematic characteristics of the motion of the body 

as a whole; 
– determining of kinematic characteristics of motion of an arbitrary 

point of the body.
In order to determine the position of an arbitrary point of the body and 

its kinematic characteristics (trajectory, velocity and acceleration) it is pos-
sible to use the approaches discussed in the first section, it is necessary to 
have the law of motion of a point defined in the stationary frame of refer-
ence. On the other hand, there are approaches to determine the velocity and 
acceleration of arbitrary point of the body depending on the specific type of 
movement that a rigid body performs. We will discuss these approaches lat-
er.

Let us now consider the questions that are related to the definition of 
the position and orientation of an arbitrary rigid body in space. It can be ar-
gued that we know how the body is located in space, if we know where each 
point of it is located and vice versa. A rigid body can be represented as a set
of an infinite number of points. To determine the position of the point in 
space we have to use, for example, three Cartesian coordinates that can be 
changed during the movement. So it might seem that to describe the motion 
of an arbitrary rigid body it is necessary to consider an infinite number of 
equations of motion. In fact, it is not true. By definition, a rigid body does 
not change its size and shape in the process of motion, so the distance be-
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tween any two points of the body remains unchanged during the motion. We 
will show that if we know how any two points of the body move (i.e., how 
its Cartesian coordinates change in time), then we will always be able to de-
termine how any other point of the body moves.    

Let us consider three arbitrary points A, B, C of the free rigid body, 
which are not positioned on the same straight line. To describe the motion of 
each of these points, for example, we need to consider three Cartesian coor-

dinates:       3,2,1,,, itztytx iii . Since the distance between the selected 

points do not change during the motion, then the following relations can be 
written:    

    

2 2 2 2
2 1 2 1 2 1 1

2 2 2 2
3 2 3 2 3 2 2

2 2 2 2
3 1 3 1 3 1 3

( ) ( ) ( ) const ,

( ) ( ) ( ) const ,

( ) ( ) ( ) const .

x x y y z z AB

x x y y z z BC

x x y y z z AC

       


      
       

                  (2.1)

The system of equations (2.1) contains three algebraic equations with 
respect to the nine Cartesian coordinates of the selected points.  It means 
that only six coordinates are independent with respect to each other. Thus, 
knowing how two arbitrary points of the free rigid body move, we can al-
ways determine how any other point of the body moves, i.e. we can find 
three Cartesian coordinates of the system (2.1). Knowing how any point of a 
rigid body moves, we can claim that we know how the whole body moves. 
Thus, in order to determine the position of a free solid body in space, we 
need to know how two of its points move, i.e. we must have six functions of 
time for the six Cartesian coordinates of two points of the body. 

In general, it can be argued that to describe the position and motion of 
a free rigid body in space it is required to have six independent parameters, 
called independent generalized coordinates. The number of independent pa-
rameters that determine a body position in space is called the Number of
Degrees of Freedom (DOF) of a rigid body. We can say that a free rigid 
body in space has 6 DOF, under the plane-parallel or spherical motion a 
body has 3 DOF, under rotational motion around a fixed axis a body has 1 
DOF, etc.

Thus, to describe the motion of free rigid body, and for the analysis of 
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its kinematics, we must have laws of change in time for the six independent 
generalized coordinates. Formally, as shown above, it can be Cartesian co-
ordinates for two arbitrary points of the body. Then the kinematic equations 
of motion will have the form:

                             

   
   
   
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                                                     (2.2) 

where A and B – two arbitrary points of the body,   6...1, itfi – twice dif-

ferentiable function of time. Note system equations in the form (2.2) is used 
very rarely to describe the motion of a rigid body, because, functions de-
scribing the rotation of a rigid body are not explicitly presented here. The 
functions defining the rotation of a rigid body are needed to determine its 
orientation in space.

There are different methods to write the kinematic equations of mo-
tion of a free rigid body which explicitly contain functions describing its ro-
tation. Euler's method is considered historically as the first method for de-
scribing of the motion of a rigid body, according to which the system of kin-
ematic equations of motion of a free rigid body has the form:  

                             

   
   
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                                               (2.3) 

where O – the so-called pole (point of the body, which is chosen arbitrarily), 
ψ – the angle of precession, θ – the angle of nutation, φ – the spin angle, 

  6...1, itfi – twice differentiable function of time. 

According to the Euler’s method each new position of the body can be 
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obtained from the previous position through four consecutive steps:
1) Movement of the body in space (without rotation) to the new loca-

tion defined by the new coordinates of the pole;
2) Rotation of the body to the angle of precession;
3) Rotation of the body to the angle of nutation;
4) Rotation of the body to the angle of rotation.
Angular velocity and angular acceleration are the kinematic features 

of the whole body. Angular velocity 


is a vector that characterizes the rate 
of change of the rotation angles of the body. The magnitude of the angular 
velocity is defined as the first derivatives of functions of angles of body’s 
rotation and in the general case may be written as:

                                ,,f .                                                 (2.4)

Specific functions for the expression (2.4) can be obtained by considering a 
particular case of motion of a rigid body, and that will be done next. 

Angular acceleration


is a vector that characterizes the rate and di-
rection of change of the angular velocity, in general, the relationship be-
tween angular acceleration and angular velocity is set as follows:

                                        
.                                                   (2.5)

If we present of the angular velocity vector and angular acceleration in a 

Cartesian coordinate system:    zyxzyx  ,,,,,


, then it is possible 

to consider the following ratios for its projections:

                                         zzyyxx   ,, .                                (2.6)

Magnitudes of angular velocity and angular acceleration in this case will be 
determined as follows:

                                 222222 , zyxzyx  .                       (2.7)

It should be understood that the angular velocity and angular acceleration do 
not depend on what point of the body we are considering for further kine-
matic analysis. These kinematic characteristics are determined for the whole 
body.
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As noted above, the motion of a rigid body can almost always be rep-
resented as a set of simple motions, but there are two types of body motion 
that cannot be decomposed into simpler types. Such motions are called the 
simplest motions of a rigid body. These include translational motion and ro-
tational motion around a fixed axis.

2.2. Translational Motion of a Rigid Body

Translational motion (translation) is such motion, when every 
straight line between any two points of the rigid body moves remaining par-
allel to its original direction during the motion. (Translation of a rigid body 
is such a motion in which any straight line through the body remains contin-
ually parallel to itself). 

Under translation the trajectories of points of rigid body are equidis-
tant curves. Translation should not be confused with rectilinear motion of a 
particle. Under translation the particles of a body may move on any curved 
trajectories. For example: when a motor car moves on a rectilinear horizon-
tal road, the motion of its body is translation one, since every point of the 
body moves on a straight-line trajectory, otherwise, when a motor car moves 
on a curvilinear road, the motion of its body is not of translation, any 
straight line through the body of car does not remain parallel to itself.  

The properties of translational motion are defined by the following 
theorem. Under translational motion, all points of a body move along simi-
lar trajectories (that will coincide if superimposed) and have at any instant 
the same velocity and acceleration.

To prove this theorem, let us consider a rigid body under translational
motion with respect to a reference system Oxyz. We take two arbitrary 
points A and B on the body whose positions at time t are specified by posi-

tion vector Ar


  and position vector Br


  (Fig. 2.1). Next, we draw the vector 

AB


joining the two points.

If is seen that the position vector Br


equals to the sum the vector - po-

sition Ar


  and vector AB


:                           

                                                 B Ar r AB 
 

                                   (2.8)
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Because straight line AB moves remaining parallel to itself and point 
A and B are points of a rigid body and distance between them does not 

change during the motion we can state that vector  AB


is constant  vector: 

constAB 


.                          

Fig.2.1. To translation motion of a body

As it followed from Eq. (2.8) (and from the fig. 2.1) the path of point
B can be obtained by a parallel displacement of all the points of the path of 

particle A through a constant vector AB


. Hence, the trajectories of points A
and B are identical curves (that will coincide if superimposed).

To determine the velocities of points A and B, we differentiate both 
parts of  Eq.2.3 with respect to time. We obtain:

                
constB A A

B A

dr dr d AB dr
v AB v

dt dt dt dt
      

   
.            

But the derivative of the constant vector AB


is zero while the deriva-

tives of vectors Ar


and Br


with respect to time give the velocities of points A

and B.
Thus we find that at any instant the velocities of points A and B are 

equal in magnitude and direction:

                                          B Av v
 

                                                   (2.9)

To determine the velocities of points A and B, we differentiate both 
parts of  Eq.2.9 with respect to time. We obtain:



49

                                 B A
B A

dv dv
a a

dt dt
  

 
 

                                     

Hence, at any instant the accelerations of points A and B are equal in 
magnitude and direction:

                                          B Aa a
 

                                                (2.10)

As points A and B are arbitrary, it follows that the trajectories and the 
velocities and accelerations of all the points of a body at any instant are the 
same, which proves the theorem.

As follows from the theorem the translational motion of a rigid body 
is fully described by the motion of any point belonging to it. Thus, the anal-
ysis of translational motion of a rigid body is reduced to the methods of par-
ticle kinematics examined before.  

The common velocity v


of all the points of a body in translational 
motion is called the velocity of translation, and the common acceleration a



is called the acceleration of translation. Vectors velocity v


  and acce-
leration a


can, obviously, be shown as applied at any point of the body.

Fig.2.2. Velocities and accelerations under translation 

2.3. Rotational Motion of a Rigid Body around a Fixed Axis.

2.2.1. Angle of Rotation of the Body. Angular Velocity. Angular 
Acceleration.  Rotational motion of a rigid body around a fixed axis (rota-
tion) is such motion of a rigid body that one line of the body (or of an exten-
sion of the body) remains fixed during motion. The fixed line is called the 
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axis of rotation. In rotational motion all points of the body which lie on the 
axis of rotation are motionless, while all the other points of the body des-
cribe circular trajectories the planes of which are perpendicular to the axis 
of rotation and the centers of which lie on it. Note that a body may rotate 
about an axis without any point of it belonging to that axis, e.g., the rotation 
of a wheel on an axle, so the rotation axis can be an imaginary line

To determine the position of a rotating body, let us draw two planes 
through the axis of rotation z: plane F, which is fixed, and plane G through 
the rotating body and rotating with it (Fig. 2.3). The position of the body at 
any instant will be fully specified by the angle φ between the two planes, 
taken with the appropriate sign.  Angle φ is called the angle of rotation of 
the body.

Angle φ is regarded as positive if from the positive direction of the 
axis of rotation z we can see rotation of the moving plane as counter clock-
wise. Angle φ is always measured in radians (radian is a dimensionless 
unit).

The position of a body at any instant is completely specified if we 
know the angle φ as a function of time t:          

                                        ( )f t                                              (2.11)

Fig.2.3. The Concept of the Angle of Rotation of the Body

Equation (2.11) can be called a law of rotational motion of a rigid 
body about a fixed axis.

The principal kinematic characteristics of the rotation of a rigid body 
are its angular velocity ω and angular acceleration ε. In accordance with the 
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definition given earlier, the angular velocity in this case can be considered 
as a quantity that characterizes the rate of change of the angle of rotation of 
a body around a fixed axis.

If in an interval of time 1t t t   a body turns through an angle 

1     , the average angular velocity of the body in the given time in-

terval is  equal to the ratio of the increment of angle of rotation to the corre-
sponding increment of time t :      

                                         av t


 


.

The angular velocity of a body at a given time t is the value towards 

which the average angular velocity av tends when the time interval t

tends to zero:

                   
0 0

lim limavt t t   


  


          or        

d

dt


             (2.12)

Thus, the angular velocity of a body at a given time is equal in magni-
tude to the first derivative of the angle of rotation with respect to time. 
Equation (2.12) also shows that the value of ω is equal to the ratio of the in-
finitesimal angle of rotation dφ to the corresponding time interval dt. 

The sign of ω specifies the direction of the rotation. It will is agreed 
that ω > 0 when the rotation is counter clockwise, and ω < 0 when the rota-
tion is clockwise. The dimension of angular velocity, if the time is measured 
in seconds, is   

  radian

sec
  .

Angular acceleration characterizes the time rate of change of the an-

gular velocity of a rotating body. If in a time interval 1t t t   the change 

of angular velocity of a body is 1    , then the average angular ac-

celeration of the body in that interval of time is equal to the ratio of the in-
crement of angular velocity  to the corresponding increment of time t :    
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                                          av t


 


The angular acceleration at a given time t is the value towards which 

average angular acceleration av tends when the time interval t tends to 

zero. Thus,

0 0
lim limavt t

d

t dt   

 
    


,   

or, taking into account Eq. (6) we obtain:

                                     
2

2

d d

dt dt

 
   .                                   (2.13)

Thus, the angular acceleration of a body at a given time is equal in 
magnitude to the first derivative of the angular velocity, or the second deriv-
ative of the angular displacement, of the body with respect to time. The di-
mension of angular acceleration is 

                                            2

radian

sec
  .

If the angular velocity ω increases in magnitude, then the rotation is 
accelerated, if it decreases, then the rotation is decelerated (Fig.2.4). It can 
be understood that the rotation is accelerated when the angular velocity ω
and the angular acceleration ε are of the same sign and decelerated when 
they are of different signs.

                                          a)                                       b)              

Fig.2.4 Accelerated (a) and Decelerated (b) rotation  
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The angular velocity of a rotating body can be denoted by a vector 


.
It is directed along the axis of rotation of the body in the direction from 
which the rotation is seen as counter clockwise (see Fig. 2.5). The angular 
velocity vector in this case is defined as:  

                                    
z

d
k k

dt


  

 
,                                       (2.14)

where z – the projection of the vector of the angular velocity on the axis of 

rotation, k


– the unit vector that lies on the axis of rotation.
By analogy with angular velocity, the angular acceleration of a body 

can be denoted by a vector 


along the axis of rotation: 

                                
2

2z

d d
k k k

dt dt

 
    

  
,                              (2.15)

where z – the projection of the vector of the angular velocity on the axis of 

rotation.
The direction of the vector of the angular acceleration 


coincides 

with that of the vector of the angular velocity 


when the rotation is accele-
rated (Fig. 2.5a), and is of opposite sign when the rotation is decelerated
(Fig. 2.5b).

a)   b)
Fig.2.5. The Vectors of the Angular Velocity and Angular Acceleration
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If the angular velocity of a rotating body does not change (ω = const), 
the rotation is said to be uniform rotation. Let us develop the equation of 

uniform rotation. We have from Eq. (2.12): d dt  . Hence, assuming that 

at the initial moment (t = 0) angle φ equals φ0 and by integrating the left-
hand side of the equation from φ0 to φ and the right-hand side from 0 to t, 
we obtain the equation of uniform rotation:

                                  0 t     ,                                        (2.16)    

where φ0 is the initial angle of rotation.
In engineering, the angular velocity of uniform rotation is often ex-

pressed as the number of revolutions per minute:       

                                    
  revolutions

min
n  .

Let us establish the relation between n (rpm) and ω (rps)

(  radian

sec
  ). A complete revolution turns a body through an angle of 2π

radian and n revolutions take it through an angle 2πn. If the duration of this 
rotation is t = 1 min = 60 s, then we obtain:

                                         
2

0,1
60

n
n


   .                   

If the angular acceleration of a body does not change during the rota-
tion (ε = const), the rotation is said to be uniformly variable rotation. Let us 
develop the equation of uniformly variable rotation assuming that at the ini-
tial instant (t = 0) angle φ equals φ0 and that the angular velocity ω = ω0

(where ω0 is the initial angular velocity).
From Eq. (2.13) we have d dt  . Integrating the left-hand side over 

the interval from ω0 to ω and the right-hand side from 0 to t, we obtain:

                                         0 t     .                                       (2.17)

Let us write previous expression in the form:
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0

d
t

dt


          or   0d dt t dt     .

Integrating again, we obtain the equation of uniformly variable rota-
tion:

                               

2

0 0 2

t
t       .                                    (2.18)

If ω and ε have the same sign, then the rotation is uniformly acceler-
ated, if they have opposite signs, then it is uniformly decelerated rotation.

Velocities of the Points of a Rotating Body. Having established in 
the previous sections the characteristics of the motion of bodies as a whole, 
let us now investigate the motion of the individual points of a body. Now we 

have to determine the linear velocity v


of an arbitrary point of a rotating 

body. 

                         a                                        b

Fig.2.6. The Concept of the Velocity of a Point of the Rotating Body

Let’s consider a point M of a rigid body at a distance h from the axis 
of rotation z (Fig. 2.6). When the body rotates, point M follows circular tra-
jectory of radius h in a plane perpendicular to the axis of rotation with its 
centre C on that axis.

The distribution of velocities of points of a rotating body was first es-

tablished by Euler. According to this law the vector of linear velocity Mv


of
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a point M of a rotating rigid body is equal to the cross product of the vector

of angular velocity 


of that body and the position vector Mr


of this point:

                                       MM rv


 .                                      (2.19)

This expression is called Euler's formula. According to the rules of 
cross products, vector of velocity of the point both the perpendicular and the 
vector of angular velocity of the body and the position vector of the point

( v  


  and v r
 

). Thus, the vector of velocity of the point lies in the plane 

of its trajectory on the tangent to the trajectory and directed in the direction 
of rotation.

The magnitude of the velocity of the point is determined by the fol-
lowing formula:

                                 sinMM rv .

Here α is the angle between the vectors of angular velocity and position vec-

tor of the point. Taking into account that hrM sin (h is the shortest dis-

tance between the point and the axis of rotation), finally we obtain:

                                               hvM  .                                           (2.20)

Thus, the magnitude of the velocity of a point belonging to a rotating 
body is equal to the product of the angular velocity of that body and the 
shortest distance between the point and the axis of rotation.

As the value of angular velocity ω at any given instant is the same for 
all points of the body, it follows from Eq. (2.20) that the linear velocity of 
any point of a rotating body is proportional to its distance from the axis of 
rotation.

The magnitude of the velocity of a point of the rotating body may be 
determined in another way:

         

 ( ) ( ) ( )x y z y z z x x y

i j k

v r z y i x z j y x k

x y z

              

, (2.21)



57

where zyx  ,, – the projection of the vector of the angular velocity on the 

Cartesian axis, zyx ,, – the projection of the position vector of a point on the 

axis of the Cartesian coordinate, kji


,, – unit vectors of the coordinate axes.

On the other hand velocity vector v


could be presented using its projection 
on the axes Oxyz:          

                                 x y zv v i v j v k  
 

Comparing this formula with equation (2.21) we obtain expressions for the 
projections and the magnitude of the velocity of the point:

                                       

;

.;

;

222

zyv

vvvvzxv

yzv

yxz

zyxxzx

zyx







                  (2.22)

Accelerations of the Points of a Rotating Body. Linear acceleration 
of the point of the rotating body can be found with the help of general for-

mula connecting linear acceleration and linear velocity: 
dv

a
dt





.

Fig.2.7. The Concept of the Acceleration of a Point of the Rotating Body

Using the Euler’s formula for the velocity we easily obtain vector of 
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linear accelerationa


:

( )d r d dr
a r

dt dt dt

 
    

  
 

.

Taking into account that the first time derivative of the angular veloci-

ty is the angular acceleration ( 
 


dt

d
) and the first derivative of the position 

vector is the velocity of a point ( v
dt

rd 

 ), we finally obtain: 

                                          vra
  .                                   (2.23)

The first term of equation (2.23) is called rotational acceleration: 

                                                  ra rt   .                                        (2.24)

The second term of formula (2.23) is called centripetal acceleration:

                                           rva cp   .                              (2.25)

The rotational acceleration rta
 is tangent to the trajectory (in the di-

rection of the rotation if it is an accelerated rotation and in the reverse direc-

tion if it is a decelerated rotation). The centripetal acceleration cpa
 is always 

directed along the radius h towards the axis of rotation (Fig. 2.7). The full
acceleration belongs to the plane normal to the axis of rotation (Fig.2.7).
The full acceleration of a point of a rotating body is equal to the sum of the 
rotational and centripetal accelerations which are perpendicular to each oth-
er: 

                                   cprtcprt aaaaa
  , .                             (2.26)

Magnitude of the rotational acceleration can be calculated by the for-
mula:

                                 hrart  sin .                                (2.27)

Magnitude of the centripetal acceleration can be calculated using the expres-
sion:
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                                  hhvacp  290sin .                      (2.28)

Magnitude of the full acceleration can be calculated by the formula:

                          42242222
 hhhaaa cprt .          (2.29)

The inclination of the vector of full acceleration to the radius of the 
circle described by the point is specified by the angle γ, given by the equa-
tion:

                                    
2




cp

rt

a

a
tg .                                     (2.30)

Since at any given instant ε and ω are each the same for all the points 
of the body, it follows from formulas (2.29) and (2.30) that the accelerations 
of all the points of a rotating rigid body are proportional to their distances 
from the axis of rotation and make the same angle γ with the radiuses of the 
circles described by them (Fig.2.7).

Equations (2.19) – (2.29) make it possible to determine the velocity 
and acceleration of any point of a body if the equation of rotation of the 
body and the distance of the given point from the axis of rotation are known. 
With these formulas, knowing the motion of any single point of a body, it is 
possible to determine the motion of any other point and the kinematics char-
acteristics of the motion of the body as a whole.

2.4. The Conversion of the Simplest Motions of a Rigid Body

Various mechanisms often carry out the conversion (transformation)
of the simplest motions of a rigid body: translational to rotational, rotational 
to translational and rotational motion from one element of the mechanism to 
another. 

In Fig.2.8 it is shown the system consisting of two bodies: the load 1 
and the wheel 2. The load performs translational motion; the wheel performs 
rotational motion around a fixed axis. Consider the definition of the angular 
velocity of the wheel 2, by the given velocity of the load 1 suspended on a 
rope reeled up on a wheel (Fig. 2.8). The velocity of all points of the rope on 
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which the load is suspended is the same (assuming the rope is inextensible), 
and equal to the velocity of the load. It is also true for the point that touches 
the point belonging to the wheel, that makes rotational movement, and this 
allows to determine the angular velocity of the wheel.

In this case we assume that the positive direction of movement of the 
load corresponds to positive rotation of the wheel. The algebraic value of the 
angular velocity of the wheel:

                         1
2

2

v

R
  .                                          (2.31)

Fig.2.8. The Conversion Between Rotational and Translational Motion

Similarly, we can define the velocity of the load when angular ve-
locity of the wheel is given:

                                     1 2 2x zv R  .                                      (2.32)

When the rotational motions are transmitted from one body to an-
other explicitly, either the toothed/friction gearing (Fig. 2.9), or the 
chain/belt transmission is used (Fig. 2.10).

In the case of the gear transmission wheels 1 and 2 have a common 
point, so the velocities of points on their outer diameters are the same, 
i.e.:

1 1 2 2R R   .                                           (2.20)
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When defining the algebraic value of the angular velocity of the 
2nd wheel one should take into account that the external gearing (see Fig. 
2.3) changes the direction of rotation to reversed:

1
2 1

2

R

R
   ,                                       (2.21)

while the internal gearing (see Fig. 2.4) does not:

1
2 1

2

.z z

R

R
                                          (2.22)

Fig.2.9. 

21

21

Рисунок 2.5

21

21

Рисунок 2.6

Fig.2.10

Corresponding points on the pulleys of the belt transmission (meaning 
the point where the belt, which is considered to be inextensible, is coming 
off one of the pulley and is reeled on the other) will also have the same 
magnitudes of velocities. The direction of rotation can either be changed to 
the opposite during the conversion of motion (see Fig. 2.10 a) or stay the 
same (see Fig. 2.10 b). The angular velocity thus determined respectively by 
formulas (2.16) and (2.17).
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2.5. Problems and Solutions.

Example 1. Wheel 1 (Fig. 2.11) rotates around a fixed axis according 

to the law  = 2t2+4, and actuates a lifting mechanism of the load 4. The 

mechanism consists of two multi-level wheels 2 and 3 connected by a belt 
and rotating around a fixed axis.

It is necessary to determine the velocity and acceleration of the load 4 
at time t =  3 s, if R1 = 40 cm, R2 = 15 cm, R3 = 25 cm, r2 = 10 cm, r3 = 20 
cm.

Fig.2.11. For the First Example

Solution

Determine the angular velocity of gear wheel 1
1 4 ,st     . The 

point of contact of the wheels 1 and 2 is at A and it is their common point.  

Its velocity 1 1 2 2Av R R    , where 1
2 1

2

R

R
   . Further, equating the speed 

of points B and B belonging to the wheels 2, 3, we get the ratio between 

angular velocities of these wheels 2 2 3 3r R   , where 2 1 2
3 2 1

3 2 3

r R r

R R R
      . 

Inputting 1 and the radii of the wheels in the expression for the angular ve-

locity, one can determine:
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3

40 10
4 4.267

15 25
t t    .

So if 4 3 3v r  , then let us calculate the velocity of the point M and 

the load 4, with t = 3 s:

4 4.267 3 20 256Mv v     cm/s.

The acceleration of the load 4 is equal to the rotational acceleration of 
the point M, i.e.:

rt 2
4 3 3 3 3 4.267 20 85.34 cm/sMa a r r        .

Example 2. Let us consider the example of mechanism, kinematic di-
agram of which is shown in Fig. 2.12, where the driving element is the load. 

Given: the law of change of vertical coordinate of the load x(t) = 30 + 
10t2, cm; the radii of the wheels R1 = R3 = 10 cm, R2 = 30 cm, r2 = 20 cm. It 
is necessary to determine the velocity and acceleration of point M for time t1 

= 1 s.

Fig.2.12. For the Second Example

Solution

Denote and show in Fig. 4.3 the points of mechanism A, B, D1, D2, 
through which the motion is converted from one link (driving) to another 
(driven).

We start the solution of the problem with determining the velocity of 
the load. Since the load performs translational motion, it can be considered 
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as a particle, the motion of which is specified by the coordinate method, and 
that moves only along the one axis x. In order to determine the projection of 
the velocity of the load on this axis, we take the time derivative from the law 
of motion of the load and this derivative completely determines its velocity: 

20 cm/sxv v x t   , under t1 = 1 s,   v= 20 cm/s.

Since the sign of the projection of the velocity of the load on the axis
x is positive, then the velocity vector is directed downwards, i.e. in the direc-
tion of the positive axis.

The velocity of all points of the rope on which the load hangs are un-
derstood to be similar (the rope is considered to be inextensible), the veloci-
ty of the point from the wheel 1 that contacts the rope is equal to the velocity
of the load. Since this point belongs to the body that is making the rotational
motion around a fixed axis, it allows us to determine its angular velocity. 
The direction of the angular velocity of the wheel 1 corresponds to the direc-
tion of the velocity of point A. Let us write the algebraic value of the angular 
velocity of wheel 1:

1
1

1

20
2 s

10

v t
t

R
    , under t1= 1s,   1= 2 s–1.

Wheels 1 and 2 are connected via geared connection and have a 
common point B (see Fig.2.12). Therefore, the velocity of points of the 
wheels on their rims, are the same. When writing algebraic value of the an-
gular velocity of the wheel 2 we will consider that the external gearing 
changes the direction of rotation reversed:

-1
2 1 1 2/ sR r    , under t1 = 1 s, 2 = 1 s–1.

The velocities of points D1 and D2, located on the pulleys of the belt 
transmission are the same. Here, however, the direction of rotation does not 
change, so

-1
3 2 2 3/ 3 sR R t    , under t1 = 1 s,   -1

3 3 s . 

Let us now define the velocity of a point M of the wheel 3 at time t1 = 
1 s. The value of the velocity is the product of the magnitude of the angular 
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velocity and the distance from the point M to the axis of rotation, which is 

equal to the radius 3R : 3 3 30 cm/s.Mv R   Direction of the velocity vector

is shown to be perpendicular to the radius connecting the point with the axis 
of rotation, in accordance with the direction of rotation (Fig. 2.13).

Fig.2.13. Velocity and Accelerations of Point A

To find the acceleration of the point M it is necessary to know the an-
gular acceleration of the wheel 3. Algebraic value of the angular accelera-
tion can be defined as the time derivative from the algebraic values of the 

angular velocity -2
3 3 3 s .    Algebraic values of angular velocity and 

angular acceleration have the same sign, hence, the rotational motion is ac-
celerated motion.

The acceleration of point M can be defined as the geometric sum of 
the vectors of rotational and centripetal accelerations modules that are calcu-

lated by the formulae: rt 2 cp 2 2
3 3 3 330 cm/s ; 90 cm/sM Ma R a R      , and the 

full acceleration of the point M:

cp 2 rt 2 2( ) ( ) 94,87cm/sM M Ma a a  

The vectors of the accelerations are shown in Fig. 4.4. The motion of 
the wheel 3 is accelerated; therefore, the rotational acceleration of the point 
M is directed in the same direction as its velocity. Centripetal acceleration is 
always directed to the axis of rotation.
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2.6. Tasks for solving.

Diagrams of mechanical systems, elements of which make 
translational and rotational movement are shown in the table 2.1. The 
wheels rotate about a fixed axis that pass through their centers. The time 
dependence of the rotation angle of one of the wheels or the law of 
movement of the load is set in the variants of 2.2. The geometrical sizes are
specified in the variants of 2.3.

It is necessary to determine the angular velocity and angular 
acceleration of the wheels, and the velocity and acceleration of points 
indicated on the figures.
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Table 2.1. Diagrams of mechanical systems.
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Continuation of the table 2.1.
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Continuation of the table 2.1.
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Continuation of the table 2.1.
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Table 2.1. Conditions of motion.

Variant  N Low of motion Time, s
1   832 2  ttt 0,5
2   222  tttx 1
3   822  ttt 1,5
4   425,1 2  tttx 1
5   222 2  tttx 1
6   124 2  ttt 0,5
7   13 2  tttx 0,5
8   225 2  ttt 0,5
9   35,12  ttt 1
10   12  tttx 1,5
11   15,0 2  ttt 1
12   35,02  tttx 1,5
13   735,0 2  ttt 1
14   625,1 2  ttt 0,5
15   14 2  tttx 0,5
16   52 2  ttt 0,5
17   442  ttt 1
18   333 2  tttx 0,5
19   345 2  ttt 0,5
20   333 2  tttx 0,5
21   235,2 2  ttt 0,5
22   145,1 2  ttt 0,5
23   225,2 2  ttt 1
24   345,0 2  ttt 1,5
25   452  ttt 1
26   565,1 2  tttx 1,5
27   662 2  ttt 0,5
28   222  tttx 1
29   225,1 2  tttx 1,5
30   25,25,0 2  tttx 1
31   35,24 2  tttx 0,5
32   95,12  ttt 1
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Table 2.2. Geometrical sizes.

Variant  N R1, cm 1r , cm R2, cm R3, cm

1 20 – 35 –
2 30 15 20 –
3 10 – 15 20
4 50 – – –
5 60 – – –
6 5 – 10 15
7 5 15 10 –
8 10 – 20 –
9 25 – 30 –
10 30 15 20 –
11 10 – 20 30
12 25 10 20 –
13 40 25 30 –
14 5 – 15 25
15 45 20 35 –
16 50 30 40 –
17 15 – 60 –
18 20 5 10 –
19 60 55 40 20
20 40 20 30 –
21 60 40 45 –
22 70 60 50 40
23 65 55 45 35
24 15 – 55 –
25 10 – 35 –
26 50 20 40 –
27 90 85 70 60
28 15 5 10 –
29 20 5 10 –
30 25 10 15 –
31 60 50 40 30
32 5 – 35 –
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Questions

1. What is studying the mechanics?
2. What objects has the job of theoretical mechanics?
3. What part of the theoretical mechanics is divided?
4. What is a particle, a rigid body, a mechanical system?
5. Call some scientists who have developed theoretical mechanics.
6. What are the main problems of kinematics?
7. What are the main kinematic characteristics of the motion of a par-

ticle?
8. Formulate the methods of the defining of the motion of a particle.
9. What is the position vector of a particle?
10. How to define the motion of a particle in the Cartesian reference 

system?
11.  How to set the particle motion when using natural method of de-

scription?
12. What is the Frenet’s reference system?
13. What is the trajectory of a particle?
14. How to define the trajectory of a particle under Cartesian method 

of description of the motion of the particle?
15. What characterizes the velocity of the particle?
16.  How to define the velocity under vector method of description of 

the motion of the particle?
17. How to define the velocity under Cartesian method of description 

of the motion of the particle?
18. How to define the velocity under natural method of description of 

the motion of the particle?
19. Where is the velocity vector of the particle relative to the trajecto-

ry?
20. What characterizes the acceleration of the particle?
21. How to define the acceleration under vector method of description 

of the motion of the particle?
22. How to define the acceleration under Cartesian method of descrip-

tion of the motion of the particle?
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3. PLANE-PARALLEL MOTION A RIGID BODY.

3.1. Theoretical material.

Plane-parallel motion of bodies is one of the most common in ma-
chinery and technology. Such motion is carried out by rolling bodies 
(wheels, rollers, cylinders); separate details of mechanisms intended for the 
conversion of the rotating motion of one body to the translational one; 
planetary gears, etc.

Figure 3.1 – Examples of the plane-parallel motion

Plane-parallel or plane motion is a motion of a body, when all the 
points of the body move in planes parallel to a certain fixed plane, as shown 
in Fig. 3.2 This fixed plane is called the principle plane.

To describe the plane motion of a body it is enough to describe the 
motion of the projection of a body on the principle plane. This projection is 
called a plane figure (see Figure 3.2). 

Figure 3.2 – Model of plane-parallel motion

The motion of a flat figure can be considered as the result of the for-
mation of translational motion and rotation around one of the points, which 
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are called a pole. As a pole, it is customary to choose a point of the body, the 
kinematic characteristics of which are known. In fig. 3.4 pole is the point A. 

Equations of plane-parallel (flat) motion have the following form: 

     ttYYtXX AAAA  ;, ,                     (3.1)

where AA YX , – coordinates of the pole in a fixed coordinate system;  –

angle of rotation around the pole. The position of any other point of the 
body that does not coincide with the pole can be determined in two ways:

Figure 3.3 – Determination of the coordinates of an arbitrary point of 
the body in a plane-parallel motion

– On the one hand, if a segment AB is given then the law of the point 
B motion becomes the following:

    
    ,sin

;cos




tABtYY

tABtXX

AB

AB                           (3.2) 

where BB YX , - coordinates of a point B in a fixed coordinate system;  -

the angle forming the segment ABfrom the axis x of the moving coordinate 
system. Since the moving coordinate system is related to the points of the 
solid body, the angle under the motion of the body remains constant (see 
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Fig. 3.4) 
– on the other hand, one can use the communication formulas when 

rotation of one coordinate system relative to another:

     
     ,cossin

;sincos

tytxtYY

tytxtXX

BAB

BAB




                    (3.3) 

where BB yx , – the coordinates of the point B in the moving coordinate sys-

tem, which remain unchanged in the process of motion. According to the 
equations of motion of point (3.2) or (3.3), the velocity and acceleration of a 
point, can be determined by formulas (1.11) – (1.14) and (1.23) – (1.26). 

Also, the kinematic characteristics of the point of the body in a plane-
parallel motion can be determined by the vector method. According to this 
method, the velocity of any point B of a body is the vector geometrical sum 
of the velocity of any other point A taken as the pole and the velocity of ro-
tation of point B about the pole (See Fig. 3.4).  In this case, the velocity vec-
tor is defined as follows:

      ,

,

jXXviYYvv

ABvvvv

ABAyABAxB

ABAAB






 or
          (3.4)

where AyAx vv , – projections of the velocity vector of the pole on the axis of 

the fixed coordinate system; ,


– vector and magnitude of angular velocity 

of a body. 

Figure 3.4 – Vector method of determination of the velocity of an arbitrary 
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point of the body in a plane-parallel motion

The velocity magnitudes of two arbitrary points of a body under the 
plane-parallel motion conditions of are governed by the next theorem: the 
projections of the velocities of two points of a rigid body on the straight line 
joining those points are equal (See Fig. 3.5):

 coscos BB vv .                                                (3.5)

Figure 3.5 – Correlation between velocities of two arbitrary points of the 
body in a plane-parallel motion

The acceleration of any point B of a body is composed of the accelera-
tion of any other point A taken for the pole and the acceleration of the point 
B in its rotation together with the body about that pole:

    
     ,

,

2

2

jYYXXa

iYYYYaa

ABABaaaaaaa

ABABAy

ABABAxB

A
n
BABAABAAB











 

or
(3.6)

where n
BABA aa , – rotational and centripetal components of BAa


; AyAx aa , –

projections of the vector of acceleration of the pole on the axis of the fixed 
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coordinate system; ,


- vector and magnitude of angular acceleration of a 

body. 

Figure 3.6 – Vectors of angular velocity and angular acceleration respective-
ly to the principle plane 

It should be noted that the vectors of the angular velocity k




 of 

the body and its angular acceleration kk







 in a plane-parallel motion 

are always perpendicular to the principle plane (See Fig. 3.6). From here 
you can get comfortable formulas for determining the angular velocity and 
angular acceleration of the body at its plane-parallel motion at known speeds 
and accelerations of its two points:

   
.

;

22

AB

ABByAy

AB

ABBxAx

AB

ByAy

AB

BxAx

XX

YYaa

YY

XXaa

XX

vv

YY

vv





















(3.6)

If we analyze the theory of a plane-parallel motion of a solid, then we 
can formulate next conclusion: at any moment of the motion of a flat figure 
along the main plane there is a point whose velocity is zero. This point is 
called the instantaneous center of zero velocity (accepted reduction - ICZV). 

The ICZV is at the intersection of perpendiculars to the velocity vec-
tors of the points (Fig. 3.7). If we now the vector of the velocity of one point 
(for example A), then we can determine the direction of instantaneous rota-
tion and the magnitude of the angular velocity:
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PA

vA .                                                        (3.7)

After that we may define magnitude and direction of the velocity of any oth-
er point, for example:  

CBvPBv CB  ; .

Note, that the velocity vector of each point is perpendicular to the segment 
between point and ICZV.

Figure 3.7 – The general case of determining the position of the ICZV

Typical cases of the definition of ICZV include the following:
1) When the wheel is rolling without sliding on a fixed surface (Fig. 

3.8). At every moment of motion the ICZV is a point of contact of the body 
with a stationary surface. The angular velocity of the wheel is determined 
from the ratio of the wheel center velocity to its radius (R): 

R

v

PO

v AA  ;

Figure 3.8 - Determination of the position of the ICZV, instantaneous angu-
lar velocity of the rolling wheel 

2) When we know directions and magnitudes of velocity of two points 



80

of a body, and velocity vectors are parallel with each other and perpendicu-
lar to the line connecting the points, than the ICZV is located at the intersec-
tion of the line connecting the points, and the line connecting the ends of the 
velocity vectors (Fig. 3.9 a). With the opposite direction of the velocity vec-
tors (Fig. 3.9 b), the ICZV is located between the points whose velocities are 
known.

          а)                                                b)
Figure 3.9 – Determination of the position of the ICZV, if the vectors of ve-

locities of two points of a body are perpendicular to the line connecting 
them: a) the vectors are directed to one and the same side; b) the vectors are 

directed to the opposite sides

3) When the velocity vectors of the points are parallel to each other 
and not perpendicular to the segment connecting them (Fig. 3.10), than this 
is so called instantaneous translation and the angular velocity of the body is 
zero, and the velocities of all its points are equal to each other. It should also 
be added that the equality of velocities is observed only at the instant of mo-
tion of the body, but at the same time, the acceleration of the points of the 
body are different.
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Figure 3.10 – The case of the instantaneous translation

3.2. Problems and Solutions

Example 1. The wheel with the radius см40r is rolling on a fixed 

horizontal plane. The velocity of wheel center is 60cm secAv  , its accelera-

tion is – 235cm seсAa  . The motion is decelerated. It is necessary to deter-

mine the velocities and accelerations of points B and C (Fig. 3.11 а), if 
15cmAC  .

        a)                                         b)                                       c)
Figure 3.10 – To the first example

To determine the velocities, we use the notion of instant center of ve-
locities (ICV). In this case, the ICV is located at the point of contact of the 
moving wheel and the fixed plane - at the point P (Fig.1.3б). The vectors of 
the velocities of the points A, B and C are perpendicular to the segments 
connecting these points with the ICV. According to the equations for a pla-
nar motion, the angular velocity of the wheel is determined as follows:

                    
11,5 secA Av v

AP r
    .                                            

The magnitudes of velocities of the points B and C are determined by 
the following formulas:

                      ,, CPvBPv CB                                              
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where we find the corresponding distances in the following way:

           

2 2

2 2

25 см,

BP AB 2 cos

2 cos150 77,3 cm.

СP AP AC r AC

AP AB AP BAP

r r r r

    

       

      

    

                     
Finally we obtain: 

115,91cm seс, 37,5 cm seсB Сv v  .

Due to the fact that the trajectory of point A (center of the wheel) is a 
horizontal line, then the vector of full acceleration of point A lies on this 
line, and because of the fact that the motion is decelerated, it is directed to-
wards the opposite direction to the vector of the velocity of point A (see Fig. 
1.3a). The angular acceleration of the wheel can be defined as follows:

      

20,875 sec .AA A Aav v ad d

dt dt r r r r
        

 


                 

To find the accelerations of the points B and C we use theorem on the 
acceleration of the points in a planar motion, and choosing point A as a pole. 
Thus, for point B we get: 

                     ,n
BABAAB aaaa


 
                (3.8)                                  

here 
BAa
 and n

BAa
 – vectors of rotational and centripetal acceleration of point 

B in its rotational motion around the pole (point А). Vector n
BAa
 always di-

rected from point B to point A. Vector 
BAa
 is aligned perpendicular to n

BAa
 in 

the direction, that is determined by the angular acceleration. (see. Fig.1.3c). 
The magnitudes of these vectors are defined by:

2 2 290cm seс , 35cm seсn n
BA BAa AB a AB       .               
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The magnitude of the vector Ba
 can be determined by projecting the 

vector equation (3.8) on the Cartesian coordinate axes:

   
   

2

2

2 2 2

sin 30 cos 30 20,31 cm seс ;

cos 30 sin 60 95, 44 cm seс ;

97,58cm seс .

n
Bx A BA BA

n
By BA BA

B Bx By

a a a a

a a a

a a a





       

      

  

 

 

Then, in a similar way, we determine the acceleration of the point C:

   
   

   

2

2 2

2

2

22 2

;

13,125cm sec ;

33,75cm sec ;

cos 30 cos 60 136,21cm sec ;

sin 30 sin 60 99,14cm sec ;

168,47cm sec .

n
C A CA CA

CA

n
СA

n n
Cx A A CA

n
Cy A A CA

C Cx Cy

a a a a

a AC

a AC

a a a a

a a a a

a a a







 





  

  

  

      

       

  

 

 

   

Example 2. The diagram of the crank mechanism is shown on Fig. 
3.11 at an arbitrary position. The mechanism consists of a crank OA, which 
rotates about a fixed axis located on point O, the connecting rod AB and the 
slide B, which can move only horizontally. The rotation of the crank occurs 
according to the law of the angle measured between the crank and the hori-
zontal axis:

2t  ,                                (3.9)

It is necessary to determine the velocity and acceleration of points A, 
B, C and the angular velocity and angular acceleration of rod AB for the in-

stant of time when the rotation angle of the crank is 
* 6


  . The elements of 

the mechanism have the following dimensions:
30см, 60см, 30см.OA AB AC  

The parts of the mechanism carry out the following types of motion: 
crank OA – rotational motion, the connecting rod AB – planar motion, the 
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slider B – translational motion.

Figure 3.11 – The diagram of the crank mechanism and the distribution of 
the velocities

First, we define a time instant corresponding to the specified angle of 

rotation of the crank. It is necessary to solve the algebraic equation *   , 

2

6
t


 , * 0,72 ct  . To determine the kinematic characteristics of the points 

it is necessary to know the angular velocity and angular acceleration of the 
crank OA:

*

1

2

2 1,44 c ;

2 c .

t t

OA

t 




    

   





Next, determine the velocity of point A:

см
43,2 .

сA OAv OA   

Vector Av


is directed perpendicular to the crank OA in accordance 

with the direction of the angular velocity OA (see Fig. 3.11). Since the slid-

er can only move along the horizontal rails, then its velocity is directed hori-
zontally to the side, to satisfy the theorem on the equality of the projection 
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of the velocity on the segment AB. The connecting rod AB has plane-parallel 
motion, therefore, to determine the velocity of its points we use the formulas 
(3.4), if point A is selected as a pole: 

;

.
B A BA

BA AB

v v v

v AB

 
  

  

                                              (3.10)

The value of the angular velocity of the rod AB is unknown, but we 

know that the vector of the velocity BAv


is perpendicular to the segment AB, 

as the result that we can design the vector equality of (3.10) on the axis of a 
Cartesian coordinate system and obtain the system of two algebraic equa-

tions, where the unknowns will be Bv and BAv : 

*

*

sin sin ;

0 cos cos .
B A BA

A BA

v v v

v v

      
                               (3.11)

To solve this system it is necessary to determine the trigonometric 

functions of the angle , which should consider of the ratio in right triangles 

'OA A and 'BA A:

*

2

'
' sin ; sin 0,25;

cos 1 sin 0,968.

AA
AA OA

AB
     

    

Finally, after solving the system (3.11), we obtain:

1см см
31,26 , 38,65 , 0.64 c

с с
BA

B BA AB

v
v v

AB
    

Then in the same way we define the velocity of a particle on rod AB:
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   

*

*

22

; ; 19,2cm seс;

sin sin 26,4cm seс;

cos cos 18,82cm seс;

32,42cm seс.

C A CA CA CA AB

Cx A CA

Cy A CA

C Cx Cy

v v v v AB v AC

v v v

v v v

v v v

      

        

      

  

   

It should be noted that the velocities of points of the body, that carried 
out planar movement can also be defined using the concept of instantaneous 
center of zero velocities. 

Now we proceed to the definition of accelerations. Vector of accelera-
tion of the point A can be defined as: 

об до
A A Aa a a 
  

,

where об
Aa
 об

Aa


and до
Aa


– vectors of rotational and centripetal acceleration of 

the point A, that are directed as shown in Fig. 3.12. Their magnitudes and 
the magnitude of full acceleration of point A is equal to:

   

rt 2 cp 2 2

2 2rt cp 2

60 cm seс ; 62,21 cm seс ;

86,43 cm seс .

A A

A A A

a OA a OA

a a a

       

  

Figure 3.12 – Distribution of accelerations
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To determine the accelerations of points B and C we use the theorem 
on accelerations of points in a planar motion, with point A chosen as the 
pole. Thus, we get for point B:

rt cp rt cp rt cp
B A BA BA A A BA BAa a a a a a a a      
       

,               (3.12)

where об
BAa


and до
BAa


– vectors of rotational and centripetal acceleration of the 

point B in its rotational motion around the pole (point A). Vector of centripe-
tal acceleration of point B is directed from point B to point A, and its magni-
tude is equal to:

cp 2 224,58 cm seсBA АBa AB   

For vector Ba


it is known that its acting line locates on the 

horizontal axis along the rails of the slider. For vector об
BAa


  it is known 

that its acting line is perpendicular to the vector до
BAa


. We define the direc-

tion of these vectors randomly along these lines (see Fig. 3.12). Magnitudes 
of unknown accelerations we can determine using the projection of vector 
equality (3.12) on the axis of a Cartesian coordinate system:

rt cp rt cp
* *

rt cp rt cp
* *

2 rt 2

sin cos sin cos ;

0 cos sin cos sin ;

114,64 cm seс ; 27,89 cm seс .

B A A BA BA

A A BA BA

B BA

a a a a a

a a a a

a a

             

           

 

The sign of the algebraic values of these accelerations is positive, i.e., 
their directions have been chosen correctly.

The angular acceleration of the rod AB can be determined using ex-
pression for magnitude of the rotational acceleration of the point in its mo-
tion relative to point A:

rt
20,47 secBA

АВ

a

АВ
  
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Then in the same way we define the acceleration of a point C of the 
rod AB:

rt cp rt cp rt cp

rt 2

cp 2 2

rt cp rt
* *

cp 2

rt cp rt
* *

;

14,1 cm seс ;

12,29 cm seс ;

sin cos sin

cos 99,31 cm seс ;

cos sin cos

C A CA CA A A CA CA

CA AB

CA AB

Cx A A CA

CA

Cy A A CA

a a a a a a a a

a AC

a AC

a a a a

a

a a a a

a

      

   

   

          

    

         



       

   

cp 2

22 2

sin 10,28 cm seс ;

99,84 cm seс .

CA

C Cx Cya a a

  

  

3.3. Tasks for solving.

Diagrams of mechanical systems, elements of which make plane 
movement are shown in the table 3.1. The time dependence of the rotation 
angle of the cranc is set in the variants of 3.2. The geometrical sizes are 
specified in the variants of 3.2.  

It is necessary to determine the kinematic characteristics of points and 
bodies in the system. The initial data are the geometric dimensions of the 
system elements and the law of change in the time of the angle of rotation of 
the body of the OA (the arrow indicates the positive direction of rotation 
angle change).



89

Table 3.1. Diagrams of mechanical systems.
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Continuation of the table 3.1.
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Continuation of the table 3.1.
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Continuation of the table 3.1.
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Table 3.2. Conditions of motion. 

Variant  N
Low of motion

ОА , rаd

* ,

rаd

1 23 tt  /6

2  t2cos2 /4

3 223 tt  /3

4 25,03 tt  /6

5  20,5 sin 3t /2

6 )5,1cos(2 t 2/3
7 2tt  
8  t3sin 2 – /6

9  t3sin 2 /4

10 23 tt  2
11 210 2t t – /6

12 23,0 tt  /2

13 243 tt  2
14 232 tt  /6

15  20,5 sin 2t  – /6

16 22 tt  – 2
17 23 tt  
18  22 3sin 2t  – /6

19  t2cos4 /4

20  20,5 sin t /4

21 21013 tt  
22 254 tt  /4

23 25,23 tt  /3

24 25,13 tt  2
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Table 3.3. Geometrical sizes.

Variant  N
ОА,

сm

АВ,

сm

АС,

сm

ВС,

сm

ОD,

сm

r,

сm

1 10 30 20 – – –

2 12 – 3 – – 6

3 14 32 – – – 10

4 16 34 25 – – –

5 18 36 10 – – –

6 20 – 5 – – 8

7 22 38 – – – 8

8 24 – – – – 8

9 26 – 5 – – 10

10 24 40 30 – – –

11 22 42 35 – – –

12 20 40 30 – 20 –

13 18 38 25 – 18 –

14 16 36 – 4 – 8

15 14 – 4 – – 6

16 12 34 28 – – –

17 10 32 26 – – –

18 12 – – – – 4

19 14 4 – – – 6

20 16 30 15 – – –

21 18 32 12 – – –

22 20 34 28 – 34 –

23 22 36 30 – – –

24 24 38 14 – – –
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Questions

1) What is the plane-parallel motion?
2) Give the examples of technical devices that perform plane-parallel 

motion?
3) Give the examples of nature objects that perform plane-parallel 

motion?
4) How many Cartesian coordinates we need to describe the plane-

parallel motion?
5) What are the kinematic equations of a plane-parallel motion?
6) How many non-zero angles of body rotation are there in the case of 

plane-parallel motion?
7)  How many parts are there in the crank mechanism?
8) What is the crank?
9) What is the connecting rod?
10) What is the slider?
11) What type of motion has the crank?
12) What type of motion has the connecting rod?
13) What type of motion has the slider?
14) How we can define the velocity of a point under the condition of 

the plane-parallel motion?
15) How we can define the acceleration of a point under the condition 

of the plane-parallel motion?
16) Where is the vector of point velocity under the condition of the 

plane-parallel motion?
17) Where is the vector of point under the condition of the plane-

parallel motion?
18) What direction has the vector of the angular velocity under the 

condition of the plane-parallel motion?
19) What direction has the vector of the angular acceleration under the 

condition of the plane-parallel motion?
20) What is the instantaneous center of zero velocity in a plane-

parallel motion?
21) Under what conditions a solid body carries a plane-parallel mo-

tion?
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22) Which formula does the vector of velocity of a point of a body, 
which moves plane-parallel, is calculated?

23) By what formula the vector of acceleration of a point of a body, 
which moves flat-parallel, is calculated?

24) Which formula can determine the value of the angular velocity of 
the body in a plane-parallel motion?

25) Which formula can determine the values of angular acceleration 
of the body in a plane-parallel motion?
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4. COMPLEX MOTION OF A PARTICLE.

4.1. Theoretical material.
In the part 1 we have considered the motion of a particle with respect 

to one fixed frame of reference. But in solving problems of mechanics it is 
often more expedient (and sometimes necessary) to consider the motion of a 
particle (or body) simultaneously with respect to two frames of reference, 
one of which is assumed to be fixed and the other moving in some specified 
way with reference to the first. The performed motion by the particle in this 
case is called complex (сcompound or resultant) motion.

The method of resolving of a motion into simpler motions by intro-
ducing a supplementary moving frame of reference is widely employed in 
kinematic calculations. 

Figure 4.1 – Conception of the complex motion

Let’s consider the complex motion of a particle M moving with re-
spect to a frame of reference Oxyz which is in turn moving with relation to 
another frame of reference O1x1y1z1, which we assume to be fixed. 

The motion performed by the particle M with respect to the mobile 
coordinate system is called relative motion (this is the motion which is seen 
by an observer moving together with the mobile axes Oxyz). 

The trajectory AB described by the particle in relative motion is called 
the relative trajectory. The velocity of the motion of particle M relative to
the axes Oxyz (i.e., along the relative trajectory) is called the relative veloci-

ty (denoted by the symbol rv


), and the particle acceleration in that motion 
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is the relative acceleration (denoted  ra


). It follows from the definition 

that in computing rv


and ra


axes Oxyz can be assumed as fixed axes.

The motion of the particle M performed by the moving frame of ref-
erence Oxyz, together with all the points of space fixed with respect to it, 
relative to the fixed system O1x1y1z1 is, for the particle M, the transport mo-
tion.

The velocity of the point fixed in the moving axes Oxyz with which 
the particle M coincides at a given instant is called the transport velocity of 

the particle M at that instant (denoted by ev


), and the acceleration of that 

point is called the transport acceleration of the particle M (denoted by ea


). 

The motion of the particle M with respect to the fixed frame of refer-
ence O1x1y1z1 is called the absolute or resultant motion. The trajectory CD
described in this motion is called the absolute trajectory, the velocity is the 

absolute velocity (denoted av


), and the acceleration, the absolute accelera-

tion (denoted aa


).

There are two ways of defining of the kinematics characteristics of a 
particle under condition of complex motion: coordinate way and vector way. 
According to the coordinate way we have to define the low of particle mo-
tion in the fixed reference frame and after that we have to use formulas 
(1.11) – (1.14) and (1.23) – (1.26). The second way (vector way) is based on 
two theorems. The first theorem defines the absolute velocity of a particle, 
the second theorem defines the absolute acceleration of a particle.

To define the absolute velocity of a particle under the condition of 
complex motion we have to use the following theorem of the composition of 
velocities:  The absolute velocity of a particle in complex motion is equal to 
the vector sum of the transport (transfer or bulk) and the relative velocities:

era vvv


 .                                                 (4.1) 

The conception of geometrical interpretation of this theorem is shown 
in Fig. 4.2.
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Figure 4.2 – The composition of the velocities

To define the absolute acceleration of a particle under the condition of 
complex motion we have to use the following theorem of the composition of 
velocities (so called the Coriolis theorem): the absolute acceleration of a 
particle is equal to the geometrical sum of three accelerations: the relative 
acceleration, which characterizes the time rate of change of the relative ve-
locity in the relative motion, the transport acceleration, which characterizes 
the time rate of change of the transport velocity in the transport motion, and 
the Coriolis acceleration, which characterizes the time rate of change of the 
relative velocity in the transport motion and of the transport velocity in the 
relative motion:

Corera aaaa


 ,                                    (4.2)

where Cora


– the Coriolis acceleration. The Coriolis acceleration is calculat-
ed as:

 2Cor e ra v  
 

,                                          (4.3)

where e


– the angular velocity of the motion of transport.
Thus, the Coriolis acceleration of a particle is equal to the double 

cross-product of the angular velocity of the motion of transport and the rela-
tive velocity of the particle. 
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If the angle between the vectors e


and rv


is α, then the magnitude of 
the Coriolis acceleration is defined by the next formula:

2 sinCor e ra v   .                                               (4.4)

The vector Coriolis acceleration  Cora


has the same sense with the 

vector e rv 
 

, i.e., normal to the plane through vectors e


and rv


in the di-
rection from which a counter-clockwise rotation would be seen to carry  

vector e


into vector rv


through the smaller angle (Fig. 4.3).

It can also be seen from that the direction of vector Cora


can be ob-

tained by projecting vector rv


on plane P, which is normal to e


, and turn-

ing the projection r
Pv


on 90°  in the direction of the rotation of transport. If 

the relative trajectory is a plane curve moving in its plane, then angle α = 
90° and the magnitude of Coriolis acceleration is:

2cor e ra v   .                                               (4.5)   

It can be seen that in this case the direction of  the Coriolis accelera-
tion can be obtained by turning the vector of the relative velocity on 90° in 
the direction of the rotation of transport (i.e., clockwise or counterclockwise 
depending on the sense of the rotation).

Figure 4.3 – The location of the Coriolis acceleration

From formula (4.4) we can see that the Coriolis acceleration is zero 
when:

1) 0e  , i.e., if the motion of transport is translational or if the angu-
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lar velocity of the rotation of transport becomes zero at a given instant;

2) 0rv  , i.e., if there is no relative motion or if the relative velocity 
becomes zero at a given instant;

3) Angle α = 0 or α = 180°, i.e., if the relative motion is parallel to the 

axis of the rotation of transport or if vector rv


is parallel to that axis at a 
given instant.

Finally, in general case, when the transport motion is non-
translational and the relative motion is curvilinear, then the vector of abso-
lute acceleration is defined (geometrical interpretation is given on Fig. 4.4):

a r r e e Cor
n na a a a a a     

     
.                               (4.6)

Figure 4.4 – Geometrical characteristics under the general case of 
complex motion 
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4.2. Problems and Solutions

Example 1. Let us consider a square plate which rotates around the 
axis passing through the fixed point O1 perpendicularly to the plane of the 
plate (Fig. 3.16 a).

Figure 4.4 – The diagram of complex motion

The movement of plates occurs under the law:

32 tte  (rad),                                             (4.7)

here the positive direction of the reference angle e indicated by the arc ar-

row (see Fig. 4.4). The particle M moves along a circle with a radius of 
30R cm, which is inscribed in a square. The movement of the particle 

takes place according to the law:

t
20 sin

6rOM s


   (сm),                            (4.8)

the positive direction of the reference coordinate rS is taken from point O to 

particle M.
It is necessary to determine the absolute velocity and absolute accel-

eration of particle M at time 11 t sec.
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The movement of the particle M consider as complex, considering the 
movement along the circumference relative rotation of the plate – portable. 
We first define the position of a point M at a given point in time:

 10)()( 11 tOMtsr (сm),                                     

then the angle ОО2М is equal to the value:

0
2 60

3

OM
OO M

R


    .                                       

Figure 4.5 – The distribution of the velocities

Draw a particle M in this position (Fig. 4.5). Distance О1М is the ra-
dius of a circle described around the axis of rotation is the point of the plate 
(or plates), which coincides at a given instant of time the mass particle M, 
Then we find some auxiliary geometrical quantities:
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   

1 1

2 2

1 1

1

1 1

cos60 15см,  

sin60 55,98см;

57,96см;

cos 0,966; sin 0,259.

MK R R O K O O OK

R R

O M O K MK

O K MK

O M O M

     

  

  

     





To determine the absolute velocity of the point M we will use the the-
orem on addition of speeds in complex motion: 

er vvv


 ,                                        

where v


– the vector of the absolute velocity of the point M, rv


– the vector 

of the relative velocity of point m, rv


– the vector quantity of the transport 

velocity of the point M. the Algebraic value of the relative speed is equal to

2

1

10
cos ,

3 6

1с 28,49см с, .

r
r

r r r

ds t
v

dt

t v v v

     
 

   



 

Here rv is the magnitude of the relative velocity. The algebraic value 

of the relative speed is positive, that is, its vector pointing in the direction of 

increasing coordinates rS (see Fig. 3.16 b). Next, find the magnitude load 

speed and find out the direction of the vector:

1

2

-1
1

, ,

2 3 ,

1c 1c , 57,96 cм .

e e e e

e
e

e e

v O M

d
t

dt

t v c

     


   

    







Here e
~ і e is the algebraic value of the magnitude of the angular ve-

locity of the plate. Algebraic value of the angular velocity is negative, that 
is, the plate rotates in the direction which is opposite to the direction of the 

reference angle e , which is indicated with the corresponding arc of the ar-

row e (see Fig. 3.16 b). Vector portable speed point M and is perpendicular 
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to the segment О1М and aimed in the direction of rotation of the plate. The 
vector of the absolute velocity is shown in accordance with the rules of vec-
tor addition (see Fig. 4.5), we define its magnitude by decomposing the vec-
tors along the axes of a Cartesian coordinate system:

     

2 2

, , , , , ,

cos30 cos 31,31см с,

sin30 sin 29,25см с,

42,84 см с.

x y r r x ry e ex ey

x rx ex r e

y ry ey r e

x y

v v v v v v v v v

v v v v v

v v v v v

v v v

  

        

        

  





Figure 4.6 – The distribution of the accelerations

To determine the absolute acceleration of the point M we will use 
theorem on composition of accelerations in complex motion (Coriolis theo-
rem):

cer aaaa


 ,

where a


– the vector of the absolute acceleration, ra


– the vector of the rela-

tive acceleration, ea


– the vector of the portable acceleration,  ca


– the vec-

tor of  the Coriolis acceleration of a particle M. Due to the fact that relative 
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and figurative movements of the point M are not straightforward, the formu-
la for acceleration must be written in expanded form:

ceer
n
r aaaaaa


  rtcp ,

where n
ra
 – the vector of the relative normal acceleration, 

ra
 – the vector of 

the relative tangent acceleration, до
ea
 – the vector of the portable centripetal 

acceleration,  об
ea
 – the vector of the portable rotational acceleration of the 

point M. The vector of the relative normal acceleration is always directed 
from the point M to the center of curvature of the relative trajectory – to the 
point O2 (see Fig. 3.16), and its magnitude is equal to the value:

2
227,06 см сn r

r

v
a

R
  .                                  

Then we find the algebraic value of the relative tangential accelera-

tion ra~ and its magnitude ra : 

.~,ссм61,8~с1

,
6

sin
9

5~
~

2
1

3

rrr

r
r

aaat

t

dt

vd
a






                  

The algebraic value of the relative tangential acceleration is negative, 
so the vector of the relative tangential acceleration is directed, unlike the 
vector of the relative velocity in the direction of decreasing relative coordi-

nate rS (see Fig. 4.5).

Vector of the centripetal acceleration is always directed towards the 
center of curvature of the portable trajectory of point O1 (see Fig. 3.19 in), 
and its magnitude is equal to the value:

2cp sсm ecMOa ee 96,571
2  .                           

Magnitude of the transport rotational acceleration rt
ea defined as fol-

lows:
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об
1

-2 об 2
1

, ,

6 ,

1c 6c , 347,73 cм c .

e e e e

e
e

e e

a O M

d
t

dt

t a

     


   

     






     

Here e
~ and e

e

is the algebraic value of the portable magnitude of the angu-

lar acceleration of the plate. Algebraic value of the angular acceleration is 

negative, thus, the vectors e


and e


are directed in the same direction, and 

the portable motion of the point M is accelerated. Portable vector rotational 
acceleration is directed in the same way as the vector load speed (see Fig. 
3.16). The vector of Coriolis acceleration and the magnitude is determined 
as follows:

   2 , ; 2 sin , .c e r c e r e ra v a v v       
  

               

Due to the fact that the relative movement of the point occurs in the 
plane perpendicular to the axis of rotation of the portable, than 

  0sin , sin90 1e rv  
 

. According to previous formula we get that 
2sсm ecac 98,56 . The magnitude of the absolute acceleration of the parti-

cle M, we define by projecting vector equations on the axis of a Cartesian 
coordinate system:

до об

до об

2

до об

до об

2

2 2

cos60

cos30 sin cos

cos60 358,39 см с ;

sin60

sin30 cos sin

sin60 64,24 см с ;

364

n n
x rx rx ex ex cx r

r e e

c

n n
y ry ry ey ey cy r

r e e

c

x y

a a a a a a a

a a a

a

a a a a a a a

a a a

a

a a a









        

      

  

        

      

  

  













2,1см с .

                   

Thus, using the vector relations of the theory of complex motion of a 
particle, we have defined absolute velocity and absolute acceleration of a 
particle moving along the plate, which is in turn rotates around a fixed axis.
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4.3. Tasks for solving.

It is necessary to determine the kinematic characteristics of the 
particle M using the vector relations of the kinematics of the complex 
motion for a given instant.

In tabl. 4.1 – 4.3, there are variants of diagrams and initial data are 
proposed, according to which it is necessary to determine the kinematic 
characteristics of the particle M in the complex motion along with the body 
D. At the initial moment of time, the body D (plate) from the resting state 
starts the rotational motion around the axis passing through point O1 is 
perpendicular to the plane of the picture, while the particle M begins to 
move relative to the body in a previously known trajectory. The initial data 
are the geometric dimensions of the plate, the law of change in the time of 
its angle of rotation, and the law of time variation of the natural coordinate 
particle M along the relative trajectory.

Note. In variants 1, 8 and 31 - body D is shown in the initial position, 
in all other variants - in the arbitrary. Point O is the beginning of the 
countdown along the relative trajectory, particle M in all variants is shown 
shifted in a positive direction along the relative trajectory.



109

Table 4.1. Diagrams of mechanical systems.
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Continuation of the table 4.1.
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Continuation of the table 4.1.
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Continuation of the table 4.1.
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Table 4.2. Conditions of motion and geometrical sizes.

Variant  N
Low of motion

e , rad
Low of motion

rS , сm
Time
t*, sec

1 25,03,0 tt   t2sin10 3,25
2 21,0 tt   t3sin15 2,46

3 22,0 tt   t2sin28 2 3,64

4 23,0 tt   t2sin16 3,2

5 24,0 tt   t2sin72 2,91

6 23,02,0 tt   t2sin40 4,25

7 20,2 0,9t t  11cos t 2,53

8 20,1 0,5t t  t8,0sin26 2 3,45

9 20,2t t  240sin 0,3t 3,63

10 20,3 0,2t t  22sin t 4,91
11 3 20,6t t  210sin t 2,51

12 23 0,1t t  t3,2sin70 2 1,97

13 2tt   t8,1sin16 2 3,6

14 20,3 0,4t t  222sin 0, 2t 3,61

15 20,4 0,2t t  70cos 2,5t 1,1

16 22t t  228sin 0,3t 1,3

17 22,03,0 tt   100cos t 1,6

18 254 tt   t4,0sin40 2 1,8

19 22,03 tt   t5,2sin45 2

20 27,03,0 tt   t5,1sin50 0,8

21 23 24 tt   t6,3sin90 2 1

22 29,01,0 tt   t7,0sin95 1,1

23 25,0 tt   t8,1sin34 2 1,5

24 24,0 tt   t4,1sin38 2 1,8
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Table 4.3. Geometrical sizes.

Variant  N
а,
сm

R,
сm

,
rad

1 10 – /4
2 – 15 –
3 14 – –
4 16 – –
5 – 36 –
6 20 – –
7 22 – /3
8 26 – –
9 – 40 /3
10 22 – –
11 18 – /3
12 – 36 –
13 14 – /4
14 10 – –
15 – 30 –
16 – 14 /6
17 – 32 –
18 – 34 –
19 – 36 –
20 – 38 –
21 – 45 –
22 – 35 –
23 – 17 /6
24 38 – /6
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Questions.

1) What is the complex motion of a particle?
2) How many reference frames we use for describing of the complex 

motion of a particle?
3) What is the relative motion of a particle?
4) What is the transport motion of a particle?
5) What is the absolute motion of a particle?
6) What is the relative velocity under the complex motion of a parti-

cle?
7) What is the transport velocity under the complex motion of a parti-

cle?
8) What is the absolute velocity under the complex motion of a parti-

cle?
9) What is the relative acceleration under the complex motion of a 

particle?
10) What is the transport acceleration under the complex motion of a 

particle?
11) What is the absolute acceleration under the complex motion of a 

particle?
12) What is the sense of the Coriolis acceleration of a particle under 

the complex motion?
13) Give the examples of technical devices that include the complex 

motion of a particle?
14) Give the examples of the complex motion of a particle in a na-

ture?
15) Where is the vector of Coriolis acceleration if the particle has 

plane complex motion?  
16) Which formula determines the vector of absolute velocity in the 

case of a complex particle movement?
17) What is the formula for determining the absolute acceleration vec-

tor in the case of a complex particle movement?
18) Which formula determines the vector of the acceleration of the 

Coriolis in the case of a complex particle movement?
19) What is the geometrical interpretation of the absolute acceleration 
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under the complex motion?
20) What is the geometrical interpretation of the absolute velocity un-

der the complex motion?
21) How we can determine the magnitude of the absolute velocity?
22) How we can determine the magnitude of the absolute accelera-

tion?
23) How we can determine the magnitude of the Coriolis accelera-

tion?
24) If the transport angular velocity is equaled zero, then Coriolis ac-

celeration is equaled?
25) If the vectors of the transport angular velocity and relative veloci-

ty is parallel, then Coriolis acceleration is equaled?
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