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Mathematical problem statement of dynamic creep for isotropic and 
orthotropic bodies is presented in the paper. The cyclic creep-damage 
theory of Breslavsky-Morachkovsky is used. Numerical methods for the 
solution of such creep problems is considered, where the mixed 
variational functional and RFM (Rvachov’s Functions method), or finite 
element method (FEM), are applied. Numerical results of the creep 
problem analysis for plate with centered hole under tension are given. 

 
 

INTRODUCTION  
It is necessary to take into account the creep phenomena in long-term strength analysis of 

structural elements with exploitation at elevated temperatures. This process leads to evaluation of 
creep irreversible strains and damage parameter and finally to predict the fracture. The most of 
structural members in aviation and space-rocket techniques have such exploitation conditions and are 
made from materials with anisotropic creep properties. A lot of such elements are used under action of 
quasi-static loadings and non-stationary physical and mechanical rapidly oscillating fields (aero-
hydrodynamic streams with pulsations, etc.). In the paper a problem statement of dynamic creep for 
isotropic and orthotropic bodies is considered. Solution methods and numerical results are presented. 

 
1.  PROBLEM STATEMENT 

Let us consider the main statement of dynamic creep-damage problem for solids. In Cartesian 
coordinate system, ix , i=1,2,3, one considers a space body with volume V, and surface S: t uS S S=  , 
where tS , uS  are surface parts of the body, under acting external distributed forces and boundary 
conditions. 

In standard form the complete system of the initial-boundary-value problem of creep for bodies 
subjected to action of volume forces, surface forces and oscillating harmonic loading can be written in 
tensor form (1) as  
 

ij , j i if vσ ρ+ =  , 1 2ij j ,i i , j/ ( u u )ε = + , ij ijkl kl ijd cε σ= + , ix V∈  
0

ij j i in p ( t )σ = + Φ  – i tx S∈ ,  0i iu u∗− =  - i ux S∈    (1) 

( ) ( ) ( )0 0 0 0i i iju x, v x, c x,= = =  
 

The system (1) includes equilibrium, physical, and geometric equations.  
It can be taken into account that complete strain tensor consists of a sum of reversible elastic 

strain and irreversible creep strain tensors. Creep strain tensor can be determined by using creep state 
equations. 

Oscillating fields of external forces can be described as the following singly-periodic and 
harmonic function: 
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2

i i( t ) p sin( t )
T
π

Φ = ⋅       (2) 

 
where ip  are amplitude values of corresponding surface loads. 

Functions i ( t )Φ  are singly-periodic and harmonic functions with cycle T, that 1*T / t << , t*

By using the method of asymptotic expansions by the small parameter 

 is 
a rupture time during the creep process. 

*T / tµ = , and the 
averaging procedure along the period, we reduce the original initial-boundary-value problem of creep 
of bodies subjected to the action of harmonic loading, to two correlated initial-boundary-value 
problems in two time scales (stow t and fast ξ ) [1]. 

Equations of the first problem can be written as the following:  
 

0
ij , j i if vσ ρ+ =  , 0 0 0

ij ijkl kl ijd cε σ= + , ix V∈  
0 0
ij j in pσ =  - i tx S∈ ,  0 0i iu u∗− =  - i ux S∈     (3) 

( ) ( )0 00 0 0i iu v= = , ( )0 0ijc =  
 

where all functions are slowly varying ones in the macroscopic time scale t. 
Equations of the second problem is written in the form: 
 

1 1
2

1
ij ,u ξξσ ρ

µ
=  1 1

ij ijkl kldε σ= , ix V∈  

( )ij j inσ ξ= Φ , i tx S ;∈      (4) 

( ) ( )1 10 0 0i iu v= = , 1 0ijc = , 0 1ξ≤ ≤  
 

where all functions are fast varying ones in the microscopic time scale ξ . 
Equations of the systems (3, 4) must be expanded by state equation of dynamic creep. From the 

creep state equation we can determine irreversible creep strains and damage parameter. 
In early works for isotropic materials it has been used the Rabotnov-Kachanov theory with a 

scalar damage or continuity parameters [5]. However such theory can’t be used to describe the 
anisotropic creep. Vector and tensor models for a presentation of the damage parameter for 
anisotropic creep are suggested by many famous scientists (Rabotnov Yu.M., Kachanov L.M., 
Shesterikov S.A., Murakami S., Betten J. and others). Physical interpretation of the damage parameter 
in vector or tensor form is the density in microvolume of different defects in the form of voids, 
microcracks, vacancies, dislocation processes etc. Defects in material accumulate at elevated 
temperature due to the creep process. This fact is proved by experimental data in metallurgical 
science. 

State equations of dynamic creep for isotropic material have been written [1-3] as 
 

( )( )
( )

1 13
2 1

n
i

ij ijlr

B H A
c s

σ

ω

− +
= ⋅ ⋅

−
 , 

( )( )
( )
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B K Aσ
ω
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+
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−
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( ) ( ) ( )( )2 21 2 3
1

4 16
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H A A A
−  − − 

= + 
 

 

( ) ( ) ( )( )2 21 2 3
1
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State equations of dynamic creep for orthotropic materials can be presented  
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( )11 22 122 Tc c ,c , c=   

Where  
, ( )11 22 12

T, ,σ σ σ σ= , ( )11 22 122 T, ,ϖ ϖ ϖ ϖ=     - are respectively vectors of the 
creep strain rate, stresses and damage parameter; 

[ ]2
2

T B ,σ σ σ=  [ ]2
2

T Dσ σ σ∗ =  - are the invariants of stress tenzors; 

2

a
iA =

σ
σ

 

a
iσ

- is the asymmetry parameter of stress; 

 
T= ω σ ϖ

- is the intensity of the amplitude of stress; 
 

Particularly, for transversally-isotropic materials matrixes of material properties are  
- is the specific power dissipation due to damages. 
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A detailed conclusion and assumption of the state equations for anisotropic creep taking into 

account the damage parameter are presented in [1,7,8]. 
 

2.  METHOD OF SOLUTION 
The complete system of initial-boundary-value problem of dynamic creep for bodies (3, 4, 6, 7) 

can be solved by using two methods.  
The first one is based on the variational statement by using variational-structural method of the 

R – functions theory [4]. The second one is FEM [2]. 
The variation principle for the mixed functional is given. It is formulated on independently 

varied functions of strains and stress for known creep strains at arbitrary time moment.  
To solve the boundary-initial value creep problem (3) the mixed variational functional can be 

written as the following: 
 

( ) ( )1
2 ij ij iu i , j j ,i ij ij i i

V

R u u C ( ) f v u dVσ σ σ σ ρ = + − − Λ − − −  ∫∫∫   

0
ij

t u

i i i j j
S S

p u dS n ( u u )dSσ ∗− − −∫∫ ∫∫     (8) 

 
The first variation of the functional (8) can be presented as 
 

( ) ( )1
2ij kl ij , j iu j ,i i , j ijkl ij i i

V

R u u d c u f v dVσδ δσ σ δ σ ρ  = + − − − + −    
∫∫∫   

( ) ( )0
ij ij

u t

i j j i j j
S S

n u u dS n p u dSδσ σ δ∗− − − −∫∫ ∫∫     (9) 

 
Numerical method for a solution of the boundary – initial value creep problems (3) is used, the 

Runge–Kutta–Merson and RFM methods are applied [4]. 
By using the variational-structural theory of R – functions or FEM we have complete resolving 
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system of equations in a standard form: 
 

[ ]{ } { } { }crK u F F= +      (10) 
 

The second problem is considered on the "fast" scale and corresponds to forced oscillations of 
an elastic body under the action of harmonic loading. For determining of amplitude values of stresses 
in such case we must to solve the next system of equations: 

 
[ ] [ ]( ){ } { }2 1 1

* *K M q p−Ω =     (11) 
 

where { }1
*q  is the amplitude values vector of nodal displacement (FEM) or free components in 

structures (variational-structural method) under action of forced harmonic oscillation of a body with 
eigen frequency Ω ; [ ]K , [ ]M  are stiffness and mass matrixes of a body; { }1

*p  is the amplitude 
values vector of loads. Methods for solution of the equations in the form (11) are well known [1-4].  
 
3.  NUMERICAL RESULTS 

Let us consider a thin-walled rectangular plate with centered hole (Fig. 1) under tension along 
the axis ОX. The plate is made from materials with transversally-isotropic properties during creep 
process. 

Creep problem for the rectangular plate under tension of axial force S = 30 MPa, is presented 
(Fig. 1). Geometric parameters of the plate are a side 2b=0.2 m, and the centered hole equal to 0.02 m.  

In a case when the oscillation component of loading is absent (A = 0), the relations (6,7) turn 
into ordinary relations of the anisotropic creep theory ( ) ( ) 0H A G A= = . 

Numerical results are given in ANSYS software and were compared with known results at 
initial time [6]. Type of finite elements PLANE 183 has been taken, number of elements is equal 461 
FE. Plate material is the aluminium alloy D16AT at 2750

65E =
С with the following mechanical properties: 

elasticity module  GPa, Poisson’s ratio 0 42.ν = . The numerical values of material constants 
of state equations and damage (6, 7) are obtained by materials creep curves processing for D16AT at 
2750 

 
 and have been given in the paper [7]. 

 

        
Fig. 1 Axial stresses curves (dash line - t=0 h, solid line and markers - t=15 h) 
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As an example of calculation, we consider the anisotropic creep of rectangular plate 
depending on the angle orientation of main axes of anisotropic material properties (θ  ) to axis ОX 
during the creep process. 

At the beginning the calculation have been done for the case of θ  =0. In the Fig. 1 we can see a 
distribution of axes stresses and its change in time. 

In the table 1 comparisons of maximum values of stress intensity and creep strains from 
anisotropy axes orientations are given. 

 
Table 1 Maximum values of stress intensity and creep strains 

Anisotropy axes 
orientation, θ   

Maximum value of stress 
intensity iσ , MPa 

Maximum value of creep 
strain intensity iε , % 

0 56.283 0.9754 
30 64.53 0.64 
45 66.3 0.51 
90 55.987 1.2 

 
CONCLUSIONS 

The general statement of boundary-initial problems of dynamic anisotropic creep for bodies is 
given in the paper. The state equations in incremental form of dynamic anisotropic creep for isotropic 
and transversally-isotropic materials with damage parameter have been shown. Methods of analysis to 
solve these problems are presented on the basis of RFM – variational-structure and FEM methods. 
FEM solutions of anisotropic creep for plates with centered hole under tension load have been done. It 
is established that if a plate is made from transversally-isotropic materials, then in a case of 
coincidence of anisotropic properties axis with tension axis one has the maximum long-term 
durability, intensity of stresses redistribution near the plate hole and an increasing level of creep 
strains. For the angle of main anisotropic axis orientation θ  =300, 450

 

 we can see in the plate a less 
intensity of stress redistribution and accumulating of creep strains. 
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