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A method is presented for solving boundary-value elastic problems on the basis of the

variational–structural method of R-functions and Reissner’s mixed variational principle. A

mathematical formulation is given to problems on the deformation of elastic bodies under mixed

boundary conditions and bodies interacting with smooth rigid dies. Solutions satisfying all the boundary

conditions are proposed. For undetermined components of these solutions, the resolving equations are

derived and their properties are studied. A posteriori estimation of numerical solutions is made. As

examples, solutions are found to a problem on the stress–strain state of a short cylinder and to a contact

problem on a cylinder interacting with a smooth die. A numerical method of solving such problems is

analyzed for convergence, and the accuracy of the solutions is estimated.

Popular variational methods used to solve elastic problems by minimizing the Lagrange functional possess a significant

shortcoming—the stresses are determined less accurately than the displacements. To improve the accuracy of the solution, it is

expedient to determine the parameters of the stress–strain states independently, which can be done with the help of mixed

variational principles [1]. In the present study, a mathematical formulation is given to elastic problems on the basis of Reissner’s

principle, a solution technique and a technique for estimation of numerical solutions are proposed, and numerical results for

elastic solids of revolution are presented.

1. Mathematical Formulation of the Problem. Let us consider in arbitrary curvilinear coordinates α i i( , )=1 3 an

elastic body occupying a volume V bounded by a surface S S S St u c= ∪ ∪ . Here S t is that fraction of the surface on which

external distributed loads of intensity
�

t act, S u is that fraction of the surface on which conditions limiting the displacements of

points of the body are specified, and S c is that fraction of the surface on which mixed conditions are specified, as, for example, in

the case where the body interacts with a smooth rigid die that occupies a domain determined by the inequalityΨ( , , )α α α1 2 3 0≤ .

The contact interaction of bodies is also discussed in [9, 10]. When the contact region S c is known, the components of the

stress–strain state of the body are determined from the stationarity condition for the Reissner functional
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where un
* is the indentation made by forcing the die into the elastic body normally to its undeformed surface or the distance

between the body and the die.
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Let us show that for the equality σ σij
i

km
k m

jn n n n− =0 to hold, it is necessary and sufficient that the conditions

σ τij
i jn = 0 and σij

i jn b = 0 be satisfied. They express the equality to zero (at points of the contact surface) of the load

components acting along the tangent
� �τ τ= i

ie and binormal
�

�

b b ei
i= to the body surface with the external normal

� �

n n ei
i= . If the

contact region is unknown beforehand, it can be determined by supplementing the variational equation (1.1) with the

nonpositivity condition for the contact stresses,

σ αij
i j

k
cn n S≤ ∈0 for all , (1.2)

and a condition whereby points of the elastic body cannot penetrate into the rigid die,

u n u Si
i

n
k

t< ∈* for all α . (1.3)

For the rigid die, the quantity un
* depends on its shape. To establish this dependence, we assume that upon contact

interaction the displacement components of points of the elastic body’s surface must satisfy the conditionΨ( )α i iu+ ≥ 0. If the

die is of arbitrary shape, this inequality is usually linearized by expanding it into a Maclaurin series with respect to the

displacement components, which are assumed small,

Ψ Ψ( ) ( ) ,α αk ij
i j

kg u+ ∇ ≥ 0 (1.4)

where g ij are the components of the metric (fundamental) tensor.

Let us represent the displacement vector in terms of the projections onto the normal ( )un , tangent ( )uτ , and binormal

( )ub to the undeformed surface of the body:

u u n u u bi n i i b i= + +τ τ .

Then, in view of ni
i

k∇ <Ψ( )α 0, from (1.4) we obtain
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It is obvious that (1.5) holds when the normals to the surfaces of the body and the die are nonorthogonal. From (1.5), it

follows that under the assumptions adopted, the normal displacement of a point of the body under the die is dependent on the die

shape and is determined by the tangent and binormal displacements. The shapes of the contacting surfaces frequently turn out to

be such that the last two terms in (1.5) may be neglected compared with the first one. In this case, from (1.5) we obtain an

expression for the normal indentation the die produces,
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(1.6)

2. Solution Technique. The Reissner functional is minimax. The absence of an extremum at the stationarity point

complicates considerably the solution of the problem, since the convergence of the direct methods has been proved for extreme

functionals. It is possible to formulate a sufficient condition of convergence of the Ritz method for the Reissner functional. To

this end, it is sufficient, as shown in [6], that the Riesz representations of the sought-for solutions satisfy all the main and natural

boundary conditions of the variational equation (1.1). This can be made possible by using the variational–structural method

known in the theory of R-functions [4]. According to this method, the solution of problem (1.1) is represented as structures

identically satisfying the boundary conditions of the problem for an arbitrary choice of the undetermined components included in

these structures. The undetermined components are determined from the stationarity condition for the functional.

The existing applications of the variational–structural method for the solution of equilibrium problems for deformable

bodies are mainly based on the Lagrange variational principle. When Reissner’s mixed principle is used, by approximating

independently the stresses and displacements, we can simplify the structures of the solutions to boundary-value problems in

arbitrary curvilinear coordinates. To construct such structures, it is necessary to write analytically the equations of the boundary
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regions of the body’s surface and the expressions for the components of the orthonormalized vectors of the normal ni , tangent τ i ,

and binormal bi to the surface of the elastic body. This can be done by applying the mathematical apparatus of the theory of

R-functions, as shown, for example, in [4].

The structures of the solutions for the displacement and stress components determined from Eq. (1.1) and satisfying all

the natural conditions are obtained in the form [5]

u w A A b u n w u w Bi c i i n i u i cu i= + + + +( )* *
1 2τ , (2.1)

σ ωij
t

i j j i ij k
kt n t n g t n= + −[ ( )]− + + + + +ω τ τ τ τ ωc

i j i j i j i j j i
ct

ijC n n C C b b C b b D1 2 3 4 ( ) , (2.2)

where A A B i C C C Ci1 2 1 2 3 41 3, , ( , ), , , ,= , and D i j D Dij ij ji( , , , )= =1 3 are the undetermined components of the structures, and
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are the structure components carrying geometrical information.

In the further numerical studies, we represent the undetermined components of structures (2.1) and (2.2) as
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where A j H A j H A j W C k mj j ij i km1 1 2 21 1 1 1 4 1( , ), ( , ), ( , ), , , , ,= = = = = N Dk m
ij, , and m = 1,N ij are the approximation

coefficients of the undetermined components and φ1 j j( =1 1 1 1 4 11 2 2, ), ( , ), ( , ), , , , , ,H j H j W k m Nj ij i km k m
iφ χ χ= ϑ = = = j ,

and m N ij=1, are coordinate functions, which are complete and linearly independent.

The resolving equations are derived by substituting structures (2.1) and (2.2) into Eq. (1.1). From this equality, equating

the coefficients of variations to zero, we obtain a system of linear algebraic equations for the unknown approximation

coefficients in (2.3) and (2.4). This system has the following block-matrix form [5]:

[ ] [ ]

[ ]

R R

R

q

q

p p

pu u

11 12

21

1 2

0

















= −

+







σ σ σ
, (2.5)

where qu and qσ are vectors made up of the coefficients appearing in (2.3) and (2.4), respectively. The coefficients of the matrix

of system (2.5) are usually calculated numerically, for example, by the Gaussian quadrature formulas.

The matrix of system (2.5) possesses the following properties. First, the quadratic form q R qT
σ σ[ ]11 coincides with the

additional work taken with the opposite sign, and, consequently, the matrix [ ]R11 is negative definite and symmetric. Second, the

matrix of system (2.5) is also symmetric. Indeed, using the obvious equality
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which is valid for the parameters of the stress–strain state of the body under homogeneous boundary conditions, it is easy to

prove that [ ] [ ]R RT
12 21= .

Note that when the contact region is unknown beforehand, its boundary can be determined, as, for example, in [2]. To

this end, it is necessary to eliminate successively from the set of contact points those points on the body surface at which

condition (1.2) is not satisfied and to include in this set those points at which condition (1.3) is not satisfied. The process should

be continued until both of these conditions are satisfied.

3. Estimation of Solutions. The solutions that the variational–structural method produces will be approximate if a

finite number of coordinate functions are retained in expansions (2.3) and (2.4). In numerical solutions, the number of coordinate

functions is determined by the required accuracy of the solutions. This is especially important for problems with unknown

contact regions, since an insufficiently accurate solution of a problem at a step of an iterative process may lead to its divergence.

To estimate the accuracy of approximate solutions, we may use various energy norms calculated on these solutions. As

such norms, the values of the Lagrange, Castigliano, and Reissner functionals were used. Following [7], it is possible to show

that if to minimize the Lagrange functional
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we introduce a perturbation in the form

Φ = − + + − −∫∫∫ ∫∫∫ ∫∫
1

2
V

ijkl ij ij kl kl

V

i
i

S

c p p d u f d

u

( )( )ε ε v v u t dsi
i , (3.2)

where ε ij i j j iu u= ∇ + ∇1

2
( ), then maximization of the Castigliano functional is a problem dual to problem (3.1) with respect to

this perturbation, and the Lagrangian of the minimization problem (3.1) coincides with the Reissner functional with respect to

perturbation (3.2). Thus, by comparing the values of the Lagrange, Castigliano, and Reissner functionals, calculated on some

approximate solution (2.1), (2.2), we can estimate the accuracy of this solution.

4. Numerical Examples. Let us solve some axisymmetric elastic problems by the method proposed above.

First, we will consider a finite cylinder with free ends under external and internal pressures uniform along the length.

Figure 1 shows how the radial stresses (solid lines) converge to an analytical solution (points) presented by Lurie in [3]. Table 1

summarizes the values (in J) of the Castigliano ( )ΦC , Reissner ( )ΦR , and Lagrange ( )ΦL functionals depending on the number

of coordinate functions (N) and shows that the integral estimates converge. It is seen that the integral estimates corresponding to
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the analytical solution (last column) are equal. Thus, the proposed solution technique and integral estimate turn out to be very

efficient in numerical studies.

Further, we will consider a cylinder of length 2a = 0.4 m, internal radius R1 = 0.1 m, and external radius R2 = 0.2 m

compressed by a smooth rigid die (Fig. 2). Let the equation of the die in cylindrical coordinates (r, z) have the form

r R z a− + − =2
2 21 2 0δ( / ) , (4.1)

where δ= 0.001 mm is the indentation depth (Fig. 2).

Let us formulate conditions on the contact surfaces. To this end, we will write the vectors
�

n = {1, 0} and
�τ = {0, 1} of the

normal and tangent to the undeformed surface of the elastic body and the gradient to the die surface at points of the contact

surface of the elastic body, gradΨ
r R

z a= = −
2

1 4 2{ , / }δ . From these expressions, it is obvious that the normals to the surfaces of

the cylinder and the die are not orthogonal. Performing simple transformations and applying formula (1.4), we obtain linearized

contact conditions (u un r= and u u zτ = ),

u zu a z a a z ar z− = − − − ≤ ≤4 1 22 2 2δ δ/ ( / ), . (4.2)

Let us rearrange this expression:

u zu a z ar z/ / ( / ).δ δ− = − −4 1 22 2 2 (4.3)

For the adopted conditions ur / δ ≤1and u az / <<1, the second term on the left-hand side of Eq. (4.3) will be very small.

Therefore, it can be neglected. For the normal indentation, we obtain the following equality:

u z ar
* ( / )= − −δ 1 2 2 2 .

On this basis, for the points of the external radius of the cylinder under the die, the impenetrability conditions and the

conditions of negativity of the normal contact stresses (1.2) and (1.3) must be satisfied. For a smooth die ( )σ zr = 0 , these

conditions can be written in the form

σrr c z c≤ − ≤ ≤0, , (4.4)

u u c z cr r< − > >* , , (4.5)

where 2c is the extent of the contact region to be determined by the method of successive iterations.

As the initial approximation of the contact region, we assume c = 2a. Figure 3 illustrates the iterative determination of

the contact boundary. From Fig. 3, it is seen that conditions (4.4) for the normal contact stresses are satisfied exactly at the fourth

iteration. Note that condition (4.5) whereby the points of the ring cannot penetrate into the die is satisfied at each iteration. Since

both conditions (4.4) and (4.5) are satisfied at the fourth iteration, the contact problem with one-sided constraints is considered

solved. From the calculation data, it is found that c = 0.543a.

To assess the reliability of the solutions obtained from Eq. (1.1) at each iteration, we will take advantage of the method

of a posteriori integral estimation of approximate solutions (Section 3) employing the fact that the stationary values of the
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TABLE 1

N 1 9 64 —

ΦC –2.028 –2.357 –2.359 –2.359

ΦR –2.028 –2.357 –2.359 –2.359

ΦL –1.446 –2.347 –2.359 –2.359



Castigliano, Reissner, and Lagrange functionals are equal. From Table 2, it is seen that solutions of linear problems of the form

(1.1) are obtained with a high accuracy at each iteration step i.

The integral estimates of approximate solutions presented in Table 2 provide information on the accuracy of the

solutions at each step of the iterative process. Together with inequalities (4.4) and (4.5), they give a final estimate of the accuracy

of the solution to the initial nonlinear problem. An indirect estimate of the solution accuracy can be made from the accuracy of

determination of the contact area. To this end, we may use the maximality condition for the contact pressure forcing a rigid

smooth die into an elastic body to a prescribed depth. This condition was formulated in [8] as follows: if P S c( ) is the force

required for the die to come into contact with the region S c , then for a fixed indentation depth the inequality imposed on the

components of the stress–strain state will hold if and only if S c is selected so as to maximize P. In the problem in question, the

pressing contact force P is determined by the formula

P R R z dzrr

a

a

= −
−
∫2 2 2π σ ( , ) . (4.6)

To estimate how accurately the contact area is determined, we set c = 0.48a to be smaller than the value that has been

calculated, c = 0.543a. The stress–strain analysis made for all iterations and under the adopted condition (i = 5) shows that the

pressing contact force (P, kN) given in Table 3 has a maximum for the fourth-iteration solution. Thus, the calculated contact

boundary differs from the exact boundary by no greater than 11.6%.

Fig. 3
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TABLE 2

i 0 1 3 4

ΦC 0.0176 0.0141 0.0133 0.0135

ΦR 0.0176 0.0141 0.0132 0.0132

ΦL 0.0176 0.0143 0.0134 0.0133

TABLE 3

i 0 1 2 3 4 5

P 128.7 179.2 190.5 192.3 195.2 190.5
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