-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Parameterization of Tensor Network Contraction

Bryan O’Gorman

Berkeley Quantum Information & Computation Center, University of California, Berkeley, CA, USA
Quantum Artificial Intelligence Laboratory, NASA Ames, Moffett Field, CA, USA
bogorman@berkeley.edu

—— Abstract

We present a conceptually clear and algorithmically useful framework for parameterizing the costs of
tensor network contraction. Our framework is completely general, applying to tensor networks with
arbitrary bond dimensions, open legs, and hyperedges. The fundamental objects of our framework
are rooted and unrooted contraction trees, which represent classes of contraction orders. Properties
of a contraction tree correspond directly and precisely to the time and space costs of tensor network
contraction. The properties of rooted contraction trees give the costs of parallelized contraction
algorithms. We show how contraction trees relate to existing tree-like objects in the graph theory
literature, bringing to bear a wide range of graph algorithms and tools to tensor network contraction.
Independent of tensor networks, we show that the edge congestion of a graph is almost equal to the
branchwidth of its line graph.

2012 ACM Subject Classification Theory of computation — Fixed parameter tractability; Theory of
computation — Quantum information theory; Theory of computation — Graph algorithms analysis

Keywords and phrases tensor networks, parameterized complexity, tree embedding, congestion
Digital Object Identifier 10.4230/LIPIcs. TQC.2019.10
Funding The author was supported by a NASA Space Technology Research Fellowship.

Acknowledgements The author thanks Benjamin Villalonga for motivating this work, useful discus-

sions, and feedback on the manuscript.

1 Introduction

Tensor networks are widely used in chemistry and physics. Their graphical structure provides
an effective way for expressing and reasoning about quantum states and circuits. As a model
for quantum states, they have been very successful in expressing ansatzes in variational
algorithms (e.g., PEPS, MPS, and MERA). As a model for quantum circuits, they have
been used in state-of-the-art simulations [27, 19, 18, 20, 24]. In the other direction, quantum
circuits can also simulate tensor networks, in the sense that (additively approximate) tensor
network contraction is complete for quantum computation [3].

The essential computation in the application of tensor networks is tensor network con-
traction, i.e., computing the single tensor represented by a tensor network. Tensor network
contraction is #P-hard in general [6] but fixed-parameter tractable. Markov and Shi [22]
defined the contraction complexity of a tensor network and showed that contraction can be
done in time that scales exponentially only in the treewidth of the line graph of the tensor
network. Given a tree decomposition of the line graph of a tensor network, a contraction
order can be found such that the contraction takes time exponential in the width of the
decomposition, and vice versa. However, the translation between contraction orders and
tree decompositions does not account for polynomial prefactors. This is acceptable in the-
ory, where running times of O(n2") and of O(2") are both “exponential”; in practice, the
difference between ©(n2"™) and ©(2") can be the difference between feasible and infeasible.

© Bryan O’Gorman;
37 licensed under Creative Commons License CC-BY

14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019).
Editors: Wim van Dam and Laura Mancéinska; Article No. 10; pp. 10:1-10:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/200973014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-5164-8083
mailto:bogorman@berkeley.edu
https://doi.org/10.4230/LIPIcs.TQC.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Parameterization of Tensor Network Contraction

We give an alternative characterization of known results in terms of tree embeddings
of the tensor network rather than tree decompositions of the line graph thereof. In this
context, we call such tree embeddings contraction trees. While one can efficiently interconvert
between a contraction tree of a tensor network and a tree decomposition of the line graph,
contraction trees exactly model the matrix multiplications done by a contraction algorithm in
an abstract way. That is, the time complexity of contraction is exactly and directly expressed
as a property of contraction trees, in contrast to tree decompositions of line graphs, which
only capture the exponent. Our approach is thus more intuitive and precise, and easily
applies to tensor networks with arbitrary bond dimensions and open legs.

We show that contraction trees also capture the space needed by a matrix-multiplication-
based contraction algorithm. In practice, space often competes with time as the limiting
constraint. Even further, we can express the time used by parallel algorithms as a property of
rooted contraction trees, which are to contraction orders as partial orders are to total orders.

In a contraction tree, tensors are assigned to the leaves and each wire is “routed” through
the tree from one leaf to another. The congestion of a vertex of the contraction tree is the
number of such routings that pass through it, and similarly for the congestion of an edge.
The vertex congestion of a graph G, denoted ve(G), is the minimum over contraction trees
of the maximum congestion of a vertex, and similarly for the edge congestion, denoted ec(G).
Formally, our main results are the following two theorems.

» Theorem 1. A tensor network (G, M) can be contracted in time n2"S)*1 and space
n2v(@+L or in time 215G+ and space 2299t More precisely, the tensor network can
be contracted in time minr) ZteT 2ve(®) where the minimization is over contraction trees
(T,b). The contraction can be done using space equal to the minimum weighted, directed
modified cutwidth of a rooted contraction tree using edge weights w(f) = 221, If the
contraction is done as a series of matriz multiplications, these precise space and time bounds
are tight (though not necessarily simultaneously achievable).

» Theorem 2. A parallel algorithm can contract a tensor network (G, M) in time
min p) max;), 2vet) where the minimization is over rooted contraction trees (T,b), the
mazximization is over leaves | of T, and the summation is over vertices of t on the unique path
from the leaf l to the root r. In other words, the time is the minimum vertex-weighted height
of a rooted contraction tree, where the weight of a vertex is w(t) = 2ve®) | If the contraction
is done as matrixz multiplications in parallel, this is tight.

Given a tree decomposition of a line graph with width k£ — 1, we can efficiently construct
a contraction tree of the original graph with vertex congestion k. Thus one immediate
application of our framework is as a way of precisely assessing the costs of contraction
implied by different tree decompositions (even of the same width) computed using existing
methods. This is especially useful in distinguishing between contraction orders that have
the same time requirements but different space requirements; prior to this work, there
was no comprehensive way of quantifying the space requirements, which in practice can
be the limiting factor. Alternatively, one can start with existing algorithms for computing
good branch decompositions, which can be converted into contraction trees of small edge
congestion. More broadly, identifying the right abstraction (i.e., contraction trees) and
precise quantification of the space and time costs is a foundation for minimizing those costs
as much as possible.

In Section 2, we go over the graph-theoretic concepts that are the foundation of this work.
In Section 3, we present seemingly unrelated graph properties in a unified framework that
may be of independent interest. Section 3, while strictly unnecessary for understanding the

B. O’Gorman

Figure 1 Two unrooted contraction trees for a tensor network with 6 tensors. Each color
corresponds to a wire of the tensor network. The inclusion of a color in the representation of a
vertex or edge of the contraction tree indicates the contribution of the corresponding wire’s weight
to the congestion of the vertex or edge, respectively.

main results, helps explain the relationship between our work and prior work. In Section 4,
we introduce the cost model on which our results are based. In Section 5, we give our main
results. In Section 6, we discuss extensions and generalizations of the main ideas. In Section 7,
we conclude with some possible directions for future work. In Appendix A, we prove that
the edge congestion of a graph is almost equal to the branchwidth of its line graph.

2 Background

Let [i,n] = {j€Zli<j<n}, [n] = [1,n], and [n] = [n1] X [ng] X --+ x [n,] for n =
(n1,...,n.) € (ZT)". Let G[S] = (V, En (g)) be the subgraph of G induced by a subset of
the vertices S C V(G). For two disjoint sets of vertices of an edge-weighted graph, w(S,S") =
> {uvyeEluesves W({u,v}) is the sum of the weights of the edges between S C V and
S’ C V. More generally, for r disjoint sets of vertices, w(S1,...,S,) = Z{M}E([g]) w(S;,S;)
is the sum of the weights of the edges with endpoints in distinct sets. In this context, we will
denote singleton sets by their sole arguments, e.g., w(u,v) = w({u}, {v}) = w({u,v}).

2.1 Tensor networks and contraction

A tensor can be defined in several equivalent ways. Most concretely, it is a multidimensional
array. Specifically, a rank-r tensor is an r-dimensional array of size d = (dy, ..., d,.). More
abstractly, a tensor is a collection of numbers indexed by the Cartesian product of some
set of indices, e.g., [Til7i2"'7iT](i1,i2,...,ir)€[d1]X[dQ]X'--X[dT] indexed by i € [n]. Alternatively,
a tensor can be thought of as a multilinear map T : [d] — C. (Our focus will be on
complex-valued tensors.)

» Definition 3 (Tensor network). A tensor network (G, M) is an undirected graph G with
edge weights w and a set of tensors M = {M,|v € V(G)} such that M, is a |N(v)|-rank
tensor with 29°8(") entries, where deg(v) = Yuen(w) W{u, v}) is the weighted degree of v.
FEach edge e corresponds to an index i € [2“’(6)] along which the adjacent tensors are to
be contracted.

10:3

TQC 2019

10:4

Parameterization of Tensor Network Contraction

ffffffffffffffffffff

Figure 2 Three ways of viewing the contraction of two tensors. Left: multiplication of a dr, X dwm-

rank tensor with a dy X dr-rank tensor, resulting in a di, X dgr-rank tensor. Middle: contraction
of a degree wi, + wnm vertex with a degree wy + wr vertex, resulting in a degree wi, + wr vertex.
Right: removing a close pair of leaves (with congestions wr, + wn and wam + wr) of a contraction
tree, leaving a new leaf with congestion wr, + wr.

The contraction of two tensors is the summation over the values of their shared indices.
Graphically, this is like an edge contraction of the edge adjacent to the two tensors. The
result is a new tensor that takes the place of the two original ones. ! See Figure 2. Let v; and
v2 be the vertices contracted into the new vertex vy 23. The weight of an edge between the
new vertex and any other vertex v’ is w (v(y,2y,v’) = w ({v1,v2},v") = w (v1,V') + w (v2, V).

Except in Section 6, we assume that all tensor networks have no “open legs”, i.e., every
edge connects two vertices (tensors). In this case, the value of a tensor network is the single
number that results from contracting all of its edges. Each contraction reduces the number
of vertices (tensors) by one, so the network is fully contracted by n — 1 contractions. We
call a sequence of such contractions a contraction order. The value of the tensor network is
independent of the contraction order, but the cost of doing the contraction can vary widely
depending on the contraction order. Each contraction is identified by an edge, but that edge
may not be in the original graph, i.e., its adjacent vertices may have been formed by earlier
contractions. One way of specifying a contraction order is by a sequence of edges of the
original graph that constitute a spanning tree thereof. In Section 5, we introduce the notion
of contraction trees, which allow for a conceptually clear way of expressing contraction orders
that makes manifest the associated temporal and spatial costs.

Exactly computing the value of a tensor network is #P-hard [5], as a tensor network can
be constructed that counts the number of satisfying assignments to a satisfiability instance or
the number of proper colorings of a graph. Even multiplicative and additive approximation is
NP-hard [3]. Interestingly, approximating the value of a tensor network with bounded degree
and bounded bond dimension is BQP-complete [3]. That is, not only can tensor networks
simulate quantum circuits, but quantum circuits can simulate tensor networks as well. In
this sense, tensor networks and quantum circuits are computationally equivalent.

1 Note that this is a “paralle]” model of contraction, whereas Markov and Shi use “one-edge-at-a-time”
contraction of multigraphs. They are equivalent in the sense that an edge with integer weight can be
considered as that number of (unweighted) parallel edges. The parallel model more closely matches how
contraction is done in practice. It also allows for arbitrary bond dimension, whereas the multigraph
model requires that all bond dimensions be powers of the same base.

B. O’Gorman

2.2 Treewidth and branchwidth

This section is intended primarily to establish notation and recapitulate the standard
definitions of the graph properties used in the present work. For a more thorough and
pedagogical treatment, see Diestel’s excellent textbook [17]. Many instances of graph
problems that are hard in general are actually easy when instance graphs are restricted to
trees. In many such cases, this generalizes in the sense that it is possible to characterize the

hardness of an instance by how “tree-like” it is, as captured by the treewidth of the graph.

The treewidth of a graph is defined in terms of an optimal tree decomposition. Treewidth has
several alternative characterizations; one of these, elimination width, is the basis of Markov
and Shi’s result equating treewidth and contraction complexity.

» Definition 4 (Tree decomposition). A tree decomposition of a graph G = (V, E) is a tuple
(T, X) of a tree T and a tuple X = (Xt)teV(T) of subsets (called bags) of the vertices of G
with the following properties.

1. For every edge {u,v} € E(QG), there is some bag X € X that contains both endpoints:

u,v € X.
2. For every vertexr v € V(G) of G, the subtree T[S,] of T induced by the bags S, =
{X € X|v € X} containing v is non-empty and connected.

» Definition 5 (Width and treewidth). The width of a tree decomposition (T, X) of a graph

G is one less than the size of the largest bag: width(G, T, X) = width(X) = maxxcx | X|— 1.

The treewidth of a graph is the minimum width of a tree decomposition of the graph.

A related concept is that of path decompositions and pathwidth, defined analogously to tree
decompositions and treewidth, except restricted to paths rather than trees.

» Definition 6 (Path decomposition and pathwidth). A path decomposition of a graph G is a
tree decomposition (T, X) of G such that T is a path. The pathwidth pathwidth(G) of G is
the minimum width of a path decomposition of G.

» Definition 7 (Branch decomposition). A branch decomposition of a graph G = (V, E) is a
tuple (T,b) of a binary tree T and a bijective function b : E(G) — V(T) between the edges E
of G and the leaves of T.

For each vertex v € V(G) of G, let S, C V(T') be the minimal spanning tree of T' that
contains all the leaves corresponding to edges adjacent to v.

» Definition 8 (Branchwidth). The width, denoted widthg(T,b,{s,t}), of an edge {s,t} €
E(T) of a branch decomposition (T,b) of a graph G is |[{v € V(G)|{s,t} C Sy,}|, i.e., the
number of vertices of G such that the subtree T[S,] contains {e,t}. The width of the branch

decomposition is the largest width of an edge, widthg(T,b) = max e gy widthg(T,b, f).

The branchwidth branchwidth(G) = min p) widthe (T, b) of a graph is the minimum width
of a branch decomposition thereof.
2.3 Congestion

There is an alternative but less explored way of quantifying how “tree-like” a graph is: the
minimum congestion of a tree embedding, introduced by Bienstock [7].2

2 Note that this is entirely distinct from a different type of congestion problem in which the goal is find
routings for some specified set of pairs of terminals.

10:5

TQC 2019

10:6

Parameterization of Tensor Network Contraction

» Definition 9 (Tree embedding). A tree embedding of a graph G is a tuple (T,b) of a binary
tree T and a bijection b: V(G) — V(T) between the vertices of G and the leaves of T.

Let S, ,, be the unique path between the leaves b(v) and b(w) of T.

» Definition 10 (Congestion). The congestion of a vertex v € V(T) (resp., edge f € E(T))
is the total weight of the edges e € E(G) whose subtrees S. include v (resp., f).

2.4 Cutwidth

» Definition 11 (Cutwidth). Let f : V — [n] be a linear ordering of the vertices of a graph
G = (V,E). The cutwidth of f is the mazimum number of edges that cross a gap:

max, [{{u, v} € Blf(u) <i < f(u)}].

i€n—1

The modified cutwidth of f is the maximum number of edges that cross a vertex:

max [{{u,v} € E|f(u) <i < f(v)}.

i€[n]

The cutwidth (resp., modified cutwidth) of a graph is the minimum cutwidth (resp., modified
cutwidth) of a linear ordering. For edge weighted graphs, the weighted cutwidth and modified
cutwidth count the total weights of the relevant edge sets rather than their cardinalities. For
a directed acyclic graph, the directed cutwidth (resp., modified cutwidth) is the minimum
cutwidth (resp., modified cutwidth) of a linear ordering that is topologically sorted according
to the graph.

2.5 Parameterized complexity

Approximating both treewidth and pathwidth to within a constant factor is NP-hard,
though there exist efficient algorithms for logarithmic and polylogarithmic approximations,
respectively [10, 11]. However, deciding whether or not the treewidth is at most some
constant can be done in linear time (albeit it with an enormous prefactor) [8]. For many
graph problems, e.g., Maximum Independent Set, there exist algorithms whose run time is
exponential only in the treewidth or pathwidth, i.e., given the instance graph and a tree
decomposition thereof of width k, the algorithm runs in time 2Fn°®) [4]. The Exponential
Time Hypothesis (ETH) implies that several such parameterized complexity results are
optimal, in the sense that there exists no 2°(®)n°M) algorithm [16].

The situation is similar for branchwidth. Computing the branchwidth of a graph is in
general NP-hard, but can be done efficiently for planar graphs [26]. (Whether computing the
treewidth of a planar graph is NP-hard is an open question.) As is the case for treewidth,
there is a constructive linear time algorithm for deciding whether or not the branchwidth
is at most some constant (and in this case with better constant factors) [12]. Good branch
decompositions can be used to implement dynamic programming algorithms for problems
such as the traveling salesman problem [15].

Computing the vertex congestion of a graph is claimed to be NP-hard [7], but no proof
appears in the literature.

Computing the (edge) cutwidth is NP-hard, but for any constant k, a linear ordering of
cutwidth & (for all variants) can be found in linear time if one exists [9].

B. O’Gorman

Target family
Leaves | Subtrees | Minimization over Trees Caterpillars
Edges Vertices Vertices Treewidth Pathwidth
Edges Vertices Edges Branchwidth
Vertices Edges Vertices Vertex congestion | Modified cutwidth
Vertices Edges Edges Edge congestion

Figure 3 Table of graph properties. Each row corresponds to an instantiation of Equation 1.

3 Unified framework of graph properties

In this section, we present a unified framework of various graph properties, as captured in
the following combined definition:

tree embedding

tree decomposit‘io'n vertex
A branch decomposition of a {vee(ritg%x}_weighted graph Gis a tuple (T7 b) of a binary tree T’

tree embedding edge
edges
and a bijection b between the leaves of T" and the {sztgli;} of G. The bijection b implies a
vertices

ver%jces btreev};ridfihh
subtree for every {Vgégg?} of the graph. The {Vertgi“gogge;ﬁon} of the graph is the minimum
edges edge congestion
tree decompositions

branch decompositions : : . sos
over all { tree embeddings } of the maximum total weight of all subtrees containing any

tree embeddings

vertex vertex congestion
edge —

T is restricted to be a caterpillar.

Veecrltgeex pathwidth . . treewidth
. The 4 odified cutwidath (15 defined in the same way as except that

(1)

Let’s unpack this. For branchwidth and congestions, (1) is the standard definition. For
the others, (1) is non-standard but equivalent to the standard definitions. Writing them
all in this way helps elucidate the relationships between them, which are obscured by the
standard definitions.

Note that both the vertex and edge congestions of a graph G are defined as optimal
properties of the same type of object, namely a tree embedding (7T,b). For every edge
e € E(G), the mapping b : V(G) — V(T) of the vertices to leaves of the tree implies a
minimal subtree S, connecting the leaves of T' corresponding to its endpoints in G. (For an
edge of size 2, this subtree S, is a path, but the definition allows for hyperedges as well.)
The vertex and edge congestions are then the maximum total weight of subtrees that contain
any vertex or edge, respectively, of the tree T

There is a similar relationship between treewidth and branchwidth. Usually, we think of
a tree decomposition of a graph G = (V, E) as a tree T' and a subtree .S, for every vertex in
V(G) such that the subtrees for every pair of adjacent (in G) vertices overlap. In (1), S, is
specified implicitly as the (unique) minimal spanning subtree of T' that connects the leaves
of T corresponding to the edges of G that are incident to v. By design, this tree T" and set
of subtrees is the same as that for a branch decomposition. The treewidth and branchwidth
are the maximum total weight of subtrees (now corresponding to vertices of G) that contain
any vertex or edge, respectively, of the tree T

So we see that the congestions are defined by the overlap of subtrees of T' corresponding
to edges of G and that the tree- and branchwidths are defined by the overlap of subtrees of T'
corresponding to vertices of G, the former implied by a mapping from vertices of G to leaves

10:7

TQC 2019

10:8

Parameterization of Tensor Network Contraction

of T and the latter by a mapping from edges of G to leaves of T. The vertex congestion
and treewidth are concerned with the overlap at vertices of T, and the edge congestion
and branchwidth with the overlap on edges of 7. Thus we have made the analogy that
treewidth : branchwidth :: (vertex congestion) : (edge congestion). For example, that [25]
bw(G) < tw(G) < 2bw(G) and [7] ec(G) < ve(G) < 3ec(G) is no coincidence.

Now consider the line graph L(G) = (E,{{e,e'} C Elene’ # 0}) of a graph G = (V, E).
Suppose we have a tree embedding (7, b) of the original graph G, with an implied subtree
T. for every edge e € E(G). Because the vertices of the line graph L(G) correspond to
the edges of G, this can be considered as a branch decomposition of the line graph L(G).
For every pair of edges e, e’ € E(G) = V(L(G)) that are adjacent in the line graph, the
corresponding subtrees S., S.: intersect at the leaf b(v) € V(T'), where v € e, e’ is the
vertex of G adjacent to e and e¢’. The vertex congestion of the tree embedding (T,b) is
the width of (T,b) interpreted as a tree decomposition, and the edge congestion of the
tree embedding is the width of (T,b) interpreted as a branch decomposition. This implies
that tw(L(G)) < ve(G) and bw(L(G)) < ec(G). Actually, these inequalities are tight or
almost so: tw(L(G)) = ve(G) and bw(L(G)) < ec(G) < bw(L(G)) + LdegT(G)J The other
direction, going from a tree decomposition to a tree embedding, requires seeing that a tree
decomposition of a line graph can be made to have a particular structure, specifically that
the edges of L(G) corresponding to each vertex of G can be mapped to disjoint subtrees of T
The equality was shown by Harvey and Wood [21] and captures how our characterization of
the temporal costs of tensor network contraction relates to earlier characterizations. However,
our characterization in terms of tree embeddings, while mathematically equivalent to that
in terms of tree decompositions of line graphs, allows for a conceptually cleaner and more
fine-grained perspective. We prove the inequalities in Appendix A.

» Theorem 12. The edge congestion of graph G is at least the branchwidth of its line graph
and at most the same plus a third of its mazximum degree. Furthermore, a tree embedding
with edge congestion k+ |deg(G)/3] can be efficiently computed from a branch decomposition
of width k and a branch decomposition of width k can be efficiently computed from a tree
embedding with edge congestion k.

For vertex congestion and treewidth (which concern the overlap of subtrees at vertices),
the requirement that the mapping be a bijection with the leaves of the tree can be dropped,
as can the requirement that the tree be binary. Yet these requirements are without loss of
generality, as any tree embedding or tree decomposition can be modified to satisfy these
without increasing its vertex congestion or treewidth, respectively. For edge congestion
and branchwidth, which concern overlap over edges, the bijection and degree requirements
are essential.

The usual definitions for pathwidth and modified cutwidth are in terms of paths (or,
equivalently, linear orderings), whereas in (1) we allowed them to be caterpillars. This is
equivalent, and allows us to relate the properties just discussed with their linear variants.
In particular, the relationship between the bubblewidth of a tensor network (G, M) and its
“contraction complexity” is almost the same as that between the modified cutwidth of the
graph and its vertex congestion, in the sense that the bubblewidth is exactly equal to the
cutwidth and cw(G) < mew(G) < ew(G) + deg(G).

We can make another analogy, that treewidth : (vertex congestion) :: pathwidth :
(modified cutwidth) . For example, [9, 21] 3 (tw(G) + 1) < vc(G) 4+ 1 < deg(G) (tw(G) + 1)
and pw(G) < mew(G) + 1 < deg(G) (pw(G) + 1).

The (unmodified) cutwidth is a linear analog to what Ostrovskii called the “tree congestion”
of a graph [23]; the tree congestion is the same as the edge congestion except that there is a
bijection between all the vertices of the binary tree, rather than just the leaves.

B. O’Gorman

4 Contraction costs

Our primary motivation is minimizing the time and space costs of tensor network contraction.
Ideally, for instances of interest we would like to provably minimize the cost, which entails
tight lower bounds and the corresponding constructions that meet them. Given the formal
hardness of tensor network contraction and the informal hardness of proving lower bounds,
we restrict our attention to minimizing the cost of tensor network contraction as it is most
commonly done: as a series of matrix multiplications.

First, how much space is required to store a tensor network (G, M)? Each tensor M,
consists of 29°8» numbers; this is the main component of the space requirements. Technically,
we must also keep track of the graph G and the weights of its edges F(G) as well as a dope
vector for each tensor indicating how the tensor is laid out in memory; these will be negligible.
Our memory accounting will be in units of whatever is used to store a single entry of a
tensor. While in general, the bit depth of an entry may scale non-trivially with instance size,
practical implementations will use a fixed-width data type.

Then, what do we need to do a contraction of two tensors? Suppose we want to contract
a (dr,, dm) tensor with a (dy, dr) tensor along their shared dimension dy. The input tensors
require a total of dy(dr, + dr) space and the output tensor di,dgr. In theory, it should be
possible to do the contraction using no more space than that required by the larger of the
input tensors and output tensor. In practice, new memory is allocated for the new tensor, it
is populated with the appropriate data from the input tensors, and then the memory for
the latter is freed. We assume the second cost model, in which memory is simultaneously
allocated both for the tensors to be contracted and for the tensor that results from their
contraction, but our ideas are straightforwardly modifiable for plausible variants.

The contraction itself is essentially matrix multiplication, and a straightforward im-
plementation will take time dy, - dy; - dg. There exist Strassen-like algorithms for matrix
multiplication with better asymptotic runtime, but the constant pre-factors are so large and
the straightforward algorithm so heavily optimized that they are of little practical value
given the size of currently available machines.

Lastly, in order to implement a tensor contraction as a matrix multiplication, the tensors
must be laid out commensurately in memory. If they are not, then the data of one tensor or
both must be permuted to make them so. This permutation can effectively be done in place
and in linear time. In practice, the permutation time is negligible compared to the matrix
multiplication time.

5 Contraction orders and trees

In this section, we present our main contribution: a graph-theoretic characterization of the
temporal and spatial costs of families of contraction orders.

5.1 Linear contraction orders

We start with a special case of contraction orders. Let a linear contraction order be one
specified by an ordering of the vertices (v1,vs,...,v,). That is, the first contraction is of
vertices v; and v to form a new vertex vy 2. The second contraction is of v; 2 and vs to form
v1,2,3, and so on. We represent such a contraction order by what we call a rooted contraction
tree. The contraction tree of a linear contraction order is a binary caterpillar tree with n + 1
leaves, one for each vertex of the original graph and a special leaf called the root, as shown in
Figure 4. The root leaf is at one of the “ends” of the tree. Each vertex v; for ¢ € [2,n] is at

10:9

TQC 2019

10:10

Parameterization of Tensor Network Contraction

" °°°°° " °°°°
* °°° * °°

vi2) °°°. °°° *
T2
° °° ° VA

" ° ° ‘ e
T3
" ° -
V4] ” V2l 7\ VISl
Ta

V5

O,

Ts

Figure 4 Two series of contraction trees (unrooted and rooted on left and right, respectively)
for a tensor network with 5 tensors. From top to bottom, the contraction trees for the initial,
intermediate, and final tensor networks. The pair of leaves corresponding to the next pair of tensors
to be contracted are highlighted in green.

distance n + 2 — ¢ from the root, and vertex v; is at distance n therefrom. We denote such a
contraction tree by (T,b), where T is the tree and b : V(G) — V(T) U {r} is the bijection
between the vertices of G and the leaves of T' together with the root r.

Recall that for a tensor network (G, M), we are using the convention that the weight
w(u,v) of an edge {u,v} is the logarithm of the bond dimension of wire connecting tensors
M, and M,,. For each edge {u,v} of G there is a unique path in T" between b(u) and b(v),
which we call a routing. Assign the weight w(u,v) to every vertex and edge on this path,
including the endpoints b(u) and b(v). We say that the congestion of a vertex or edge of T,
denoted con(v) or con(e), is the sum of the weights of all the routings that include it. Label
the non-root leaves of T by [; = b(v;) and the internal vertices by ¢; for i € [n — 1], where
t,_1 is closest to the root and t; is farthest. For concision, identify to with ¢;.

Figure 5 The intermediate states of a contraction procedure. The tree pictured is a rooted
contraction tree, with the root at the left. The dashed line crosses edges of the contraction tree
adjacent to tensors held in memory.

B. O’Gorman

We now show that these congestions capture the costs of the contraction order. First,
note that for each vertex v € G, the congestion con(e) of the edge e € E(T') adjacent to
b(v) gives the size of the tensor My, in the sense that con(e) = 3_ cv(q) w(v, u) = deg,, so
that 2¢°7(¢) is the product of the bond dimensions of the tensor M,. Now, consider the first
contraction, of vertices vy and vs, i.e., tensors M,, and M,,. The bond dimension of the
wire between them is 2¢(“1:¥2). The product of the bond dimensions of M,, with tensors
besides vy is 29801 (%) and similarly for M,,. As discussed in Section 4, the contraction
can be done in time 298w ~w(Wv) L gu(uw) | gdeg,, —w(via) — guw(viv,V(G\{v1,02}) where
w(vy,ve, V(G)\ {v1,v2}) is the total weight of edges across the tripartite cut. This is exactly
the congestion of the vertex t € V(T') adjacent to both b(v;) and b(ve). Suppose that we
have done the contraction, yielding a new tensor network containing the contracted vertex
v1,2. The size of this new tensor M,, , is gw({vr,v2},VA{o1,02}) — gcon({t1:t2}) | f we continue
with the contractions, we notice an exciting pattern. We can identify each contraction with
an internal vertex of T'. The congestion of that vertex gives the time to do the contraction,
and the congestion of the adjacent edge nearest the root gives the space of the resulting
contracted tensor. The congestion of the leaves, which is equal to the congestions of the
adjacent edges and gives the size of the corresponding tensors, can be interpreted as giving

the time required to simply read in the tensors of the initial network to be contracted.

Overall, the total time of all the contractions is ZteV(T) gcon(t) < 9p . 2"6”‘30““’(@, where
vertconr () = max,cy(r)con(t). Furthermore, each edge e € E(T') corresponds to a
tensor M, that appears at some point in the series of contractions; those adjacent to leaves

correspond to the initial tensors and internal edges to tensors resulting from contractions.

The congestion of each edge gives the size of the corresponding tensor, in the sense that the
size of My is 2¢on(f) - At any point point in the contraction order, there are at most n tensors,

so the required memory is at most n2¢48°°°n7.+(%) where edgecony ,(G) = max seg(r) con(f).

As shown in Section 3, the minimum vertex congestion over all linear contraction orders is
exactly equal the vertex cutwidth of G. It is closely related to the bubblewidth of earlier
work [3], which is exactly equal to the edge cutwidth. The minimum edge congestion over all
linear contraction orders is exactly equal to the edge cutwidth of G.

5.2 General contraction orders

We now turn our attention to general (i.e., not necessarily linear) contraction orders. The
first generalization we make is to remove the root. In other words, for each linear contraction
order we form an unrooted contraction tree exactly as before except that leaves of T are in
unqualified bijection with the vertices of G. This unrooted contraction tree can be interpreted
as corresponding to 2"~2 different contraction orders in the following way. Define a pair of
leaves in a binary tree to be close if they are at distance 2. In the caterpillar binary trees

we have considered thus far, there are two pairs of close leaves, at each “end” of the tree.

Before, we used a rooted caterpillar contraction tree to represent the unique contraction
order given by contracting the two non-root close leaves until we got to the root. Now, the
unrooted caterpillar contraction tree represents the family of contraction orders that can
be specified by contracting either pair of a close leaves of the contraction tree until a single
vertex remains. Importantly, it remains true that every one of these contraction orders takes
time exactly 3=, ¢y (p 2¢on(t) = O (2verteonrn(D) and space O (ZGdgeconT=b(G)).

The second generalization we make is to remove the restriction to caterpillar trees.

» Definition 13. A rooted contraction tree (T,b0) of a tensor network (G, M) is a rooted
binary tree T and a bijection b: V(G) — V(T') between the vertices (tensors) of G and the
(non-root) leaves of T. An unrooted contraction tree (T,b) is an unrooted binary tree T and
a bijection b : V(G) — V(T) between the vertices of G and the leaves of T'.

10:11

TQC 2019

10:12

Parameterization of Tensor Network Contraction

An unrooted contraction tree represents a set of contraction orders in the following way.
Suppose we have a contraction order ey, ..., e,_1; Each edge can be written as e; = {vg, vs }
for some disjoint S, 8" C V(G), where vg is the vertex formed by contracting the vertices in S.
We start with an empty forest T; = (V(G), ?). For each contraction e; = {vg,vg: }, we add a
new vertex vgyus: to the forest, as well as edges from the new vertex to vg and vg:. That
is, T; = (V(T;—1) U{vsus' }, E(Ti—1) U {{vs,vsus }, {vs’, vsus' }}). For the last contraction,
instead of adding a new vertex, we only add an edge between vg and vg:. Doing this yields
an unrooted contraction tree for the given contraction order. We say that an unrooted
contraction tree represents the set of contraction orders from which it can be constructed in
this way. If for the last contraction, we added not only a new vertex vy connected to vg and
vg: but a second vertex r connected vy, we would have a rooted contraction tree.

We can easily go the other way as well. Suppose we have a rooted contraction tree. Then
we can iteratively build a contraction order. We select an arbitrary close pair of non-root
leaves, and add to the contraction order the contraction corresponding to the adjacent
internal vertex (of the tree). We then remove the two leaves and their adjacent edges. The
internal vertex now becomes a leaf, and corresponds to the vertex resulting from contracting
the two vertices (of the tensor network) in the new contraction tree. We repeat until only a
single edge of the tree remains, corresponding to the completely contracted tensor network
and the root. This is the same procedure visualized in Figure 4, except that, when the
contraction tree is not restricted to be a caterpillar, there may be many more than two pairs
of close leaves to choose from at each step.

Given an unrooted contraction tree, we can turn it into a rooted contraction tree by
splitting any edge (i.e., removing an edge, adding a new vertex and adding edges between
the new vertex and the vertices adjacent to the removed one), and then adding a root vertex
and connecting it to the first newly inserted vertex.

Proof of Theorem 1. In a contraction tree, either rooted or unrooted, each internal vertex
corresponds to a contraction. In rooted contraction trees, there is a clear directionality; two
of the neighbors are “inputs” and the third is “output”. However, the congestion of the vertex,
the exponential of which gives the time to do the matrix multiplication, is independent of
this directionality. Similarly, each edge of a contraction tree corresponds to a tensor that
exists at some point in the contraction (specifically, when the edge is adjacent to a leaf).
Again the congestion of this edge is independent of its direction, and the size of the tensor is
the exponential of the congestion. Without loss of generality, we prove the theorem using
rooted contraction trees.

Suppose we have a rooted contraction tree (T,b) of a tensor network (G, M). Each
internal vertex ¢ € V(T') corresponds to a matrix multiplication, which takes time ove(d),
Each leaf I € V(T') corresponds to an initial tensor of size 2°(), where vc(l) = degg (b71(1)).
Overall, the total time then is ZteV(T) ove(t) < opove(T)

The rooted contraction tree gives a partial ordering of its vertices, which represent
contractions (or initial tensors). Any topologically sorted linear ordering (t1,ts,. .. ,t2,—2)
of the vertices of the contraction tree can be considered uniquely as a contraction order
consistent with the contraction tree, and vice versa. For a given contraction order, consider
the intermediate state at some point in the overall contraction procedure. Let ¢; be the last
tensor contracted and t;11 the next one to contract. Each edge f € E(T) from {t1,...,t;}
to {tit1,-..,tan—2} corresponds to a tensor that needs to be stored at this point. The size
of the tensor is exactly 2°°(/). The size of the next tensor (resulting from the contraction
corresponding to t;11) is 2°¢") where f’ is the edge from t;; towards the root of T. Using
the convention that the weight of an edge f € E(T) of T is w(f) = 2°°Y), then the directed,

B. O’Gorman

weighted modified cutwidth of a vertex t;11 in a linear ordering (¢1,. .., t2,—2) of the vertices
of T is exactly equal to the space needed to store the remaining tensors to be contracted
and make room for the tensor resulting from the next contraction. Once the contraction is
done, the memory allocated for the two tensors that were contracted can be freed. For the
coarser space bound, we can just pre-allocate memory for every tensor that will arise during
the procedure, in total space ZfeE(T) 2¢c(f) < opgee(T),

Overall, if we choose a contraction tree 7 with minimum vertex congestion, i.e., vc(G) =
ve(T) > ec(T), we get time at most 72V°(%) and space at most n2V°(%). If instead we choose
a contraction tree T' with minimum edge congestion, i.e., ec(G) = ec(T) > (2/3)ve(T), we

21:5e¢(G)+1 and space at most n2°¢(4). Tightness follows from the fact

get time at most n
that for any contraction order, we can construct a rooted contraction tree whose properties

give the stated bounds. |

Proof of Theorem 2. Suppose we have a rooted contraction tree (T,b) and that I* € V(T
is a leaf on a longest path from a leaf to the root using the vertex weight w(t) = 2v¢®). Call
this path from [* to the root the critical path Px. The vertices on Px, ordered from the leaf
to the root, represent a series of contractions. This series of contractions can be done in
time Ztev(P 2ve(®) | the vertex-weighted length of the P*, which by definition is the longest
such path. We prove the claim for general contraction trees by induction. The base case is a
tensor network of just two tensors, so that there is just a single contraction and the critical
path has 3 vertices. The inductive step is that if the claim is true for a contraction tree whose
critical path has k vertices, it is true for a contraction tree whose critical path has k£ + 1
vertices. Consider the last vertex ¢t on P* nearest the root. It corresponds to a contraction
of a tensor from an earlier contraction Px and a tensor from the remaining subtree of T,
i.e., the part of tree not containing P*. By definition, the length of the critical path of this
subtree is no more than the length of the subpath from [* to ¢; otherwise P* would not be
the longest path. Therefore, this subtree can be contracted in less time than the earlier parts
of P*. These can be done in parallel, so the overall time is simply that for P*. |

As shown in Appendix A, a branch decomposition of L(G) with width &k can be efficiently
converted into a contraction tree of G with edge congestion k + |deg(G)/3]. Similarly, a
tree decomposition of L(G) with width & — 1 can be efficiently converted into a contraction
tree of G with vertex congestion k [21]. Thus one way of utilizing these results is to use an
existing algorithm for finding tree decompositions or branch decompositions as a starting
point. Theorems 1 and 2 can then be used to construct minimum-cost contraction orders in a
more precise way than previous results allow. Developing empirically good implementations
of algorithms for finding tree decompositions is a particularly active area research [2]. These
are already exploited in much recent work on tensor network contraction [13, 14, 27]. The
framework presented here can significantly augment the effectiveness of such techniques. For
instances with a lot of structure, as typical ones do, the intuitiveness of contraction trees
also empowers manual construction of contraction trees.

There are also techniques for certifying the optimality of tree decompositions and branch
decompositions (namely, brambles and tangles) that can be ported to certify the optimality of
contraction trees with respect to vertex and edge congestion, respectively. For planar graphs,
the exact edge congestion can be computed (non-constructively) in polynomial time [26]. In
addition to serving as a lower bound for calculations, the structure of such obstructions may
help with understanding the complexity of quantum states as represented by tensor networks.

10:13

TQC 2019

10:14

Parameterization of Tensor Network Contraction

by B i
T ’
Gi Gs

G1 G2

Figure 6 Contraction tree representation of the Schrodinger algorithm for computing

(#|G1G2 -+ Gmly).

6 Extensions and generalizations

Heretofore, we have assumed that all tensor networks under consideration had no open legs,
i.e., that they contract to a single number (O-rank tensor). More generally, we can consider
tensor networks with open legs that contract to non-trivial tensors. For such tensors, we
treat any open legs as wires to a single “environment” tensor, which we then identify with the
root of a rooted contraction tree. For the purposes of minimizing the congestion, the graph
will simply have one more vertex. All previous results regarding the costs of contraction then
follow exactly as before without modification.

We can also allow tensor networks (G, M) in which G is a hypergraph. Recall how we
defined the congestions of a contraction tree (T,b). Each vertex v € V(G) was identified
with a leaf of T' through the bijection b. Then each edge {u,v} € E(G) contributed its
weight to the congestions of the vertices and edges on the routing (unique path) between
b(u) and b(v) in T. For a hyperedge {v1,..., v}, there is a unique subtree of T' connecting
the adjacent vertices (which is equal to the union of the paths connecting each pair of edges).
Then the hyperedge contributes its weight to the congestions of the vertices and edges on
this subtree. The hyperedge corresponds to a so-called “copy” tensor with k legs of the same
bond dimension b [5]. The copy tensor is one when all indices have the same value and is
zero otherwise. Such a tensor arises, e.g., in a decomposition of a controlled quantum gate.

Decompositions of tensors highlight the main limitation of the present work. While our
upper bounds are unconditional, our lower bounds hold only within what we call the matrix
multiplication model, in which the only operations allowed are matrix multiplications. This
takes advantage only of the topological properties of G and, importantly, not of the properties
of the tensor M. However, in many cases of practical interest, the tensors have structure
that can be exploited. For example, a tensor corresponding to a quantum gate can be split
into two tensors connected by a wire with bond dimension equal to the Schmidt rank across
some bipartition of the qubits on which it acts. For gates with less-than-full Schmidt rank,
this can help with contraction significantly. Once such a decomposition is made, the sparser
graph structure can be exploited by the methods presented here.

Tree-based methods for tensor network contraction are used in state-of-the-art simulations
of quantum circuits, where “simulation” here means calculation a single matrix element
(x|Cly) for a pair of basis states (|x),|y)) and the circuit C. In addition to providing a
precise analysis of such methods, we can also analyze algorithms not usually expressed in
such terms. For example, consider the “Schréodinger” algorithm: a state vector of size 2™ is
kept in memory and for each of m gates in sequence. Suppose each gate acts on at most [
qubits. Let the circuit be represented as a tensor network with m + 2 tensors: one for each
gate, one for the output |x), and one for the input |y). In the corresponding graph G, the
vertex |x) is adjacent to each of the gate vertices that first act on a qubit, with weight equal
to the number of qubits that are first acted on by the gate. Similarly for |y). The Schrodinger
algorithm is then a linear contraction order using the vertex ordering (|x),G1,...,Gm,|y)).
Each internal vertex of the contraction tree adjacent to the vertex corresponding to the
l;-local gate G; has congestion n + [;: n — [; from the qubits not acted on by the gate,

B. O’Gorman

then I; each from the input and output wires. The total time for the contraction is thus
S 2ntl < m2ntt = O(m2m), where [= O(1) is the maximum locality of a gate. Each
internal edge has congestion n, so the contraction can be done using space O(2™).

An alternative approach is the “Feynman”, or path integral, algorithm, which inserts
resolutions of the identity after every gate and sums. Now we consider the tensor network
corresponding to (x|Cly) slightly differently. For simplicity, assume all gates are 2-local.
Instead of having a single vertex |x) for the input, we have n vertices |z;), one for each qubit.
Similarly, we have n output vertices {|y;)}. First, we contract the input vertices |z;) into
the adjacent gate vertices. This leaves 2m wires, 2 from each gate to the next or an output.
Suppose that instead of contracting the entire tensor network, we remove a single wire and
replace it with |b) (b| for b € {0,1}. The value of the original network is the sum of the values
of the reduced networks over b € {0,1}. The Feynman algorithm is then to do this for all
wires. For each value b € {0, l}zm, we have a tensor network of m tensors and no wires,
which we can “contract” in O(m) time and O(1) space. But we need to do this for every b
and sum them up, meaning overall it takes O (m4™) time. We need O(n + m) space to keep
track of x, y, and b. We can generalize this approach to arbitrary tensor networks. First, we
remove some set S C E(G) of edges, with total weight W = > _cw(e). There are 2"V values
of the corresponding wires, and for each one we contract the reduced tensor network. Let

G = (V,E\ S) be the reduced network. Overall, for a sequential algorithm, this takes time
0) <2W+VC(G)> and space O (W + m2c"(é)>. Moreover, we consider the cuts S as allowing

trivial parallelization, by doing the 2V contractions of the reduced network in parallel on
the same number of processors. This idea was used, for example, by Villalonga et al. to

balance time and memory usage in their simulation of grid-based random quantum circuits.

Aaronson and Chen [1] show that for carefully chosen cuts that form nested partitions, the
contributions W to the time and space from the cuts can be significantly reduced.

7 Conclusion

We introduced a graph-theoretic framework for precisely quantifying the temporal and spatial
costs of tensor network contraction, with the ultimate goal of minimizing these costs. We
conclude with several possible directions for future work:

Proving the hardness of exactly or approximately computing the vertex or edge congestion
of a graph, including of special cases like planar graphs.

Inventing algorithms (that aren’t simply disguised treewidth or branchwidth algorithms)
for finding small-congestion contraction trees.

Exploring the space-time trade-off of vertex and edge congestions. They are always
within a small multiplicative constant of each other, but can they be exactly minimized
simultaneously? If not, what does the trade-off look like, particularly for graphs of
practical interest like 2D and 3D grids.

Parallelizing at larger scale. In our discussion of parallelized algorithms, we neglected
communication costs. While this is probably reasonable at a relatively small number
of parallel processes (i.e., that can be on a single multi-processor node of a cluster), at
larger scales it may become material and worth trying to minimize.

Adapting our methods to approximate tensor network contraction.

Finding analogous methods for optimizing tensor-network ansatzes. For example, it is
known that optimizing (bounded-bond dimension) tree tensor networks is easy. Can this
be generalized in a parameterizable way as we did for tensor network contraction?

10:15

TQC 2019

10:16

Parameterization of Tensor Network Contraction

—— References

1

10

11

12

13

14

15

16

17
18

19

Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy
experiments. arXiv preprint, 2016. arXiv:1612.05903.

The Parameterized Algorithms and Computational Experiments Challenge. Track A:
Treewidth, December 2016. URL: https://pacechallenge.wordpress.com/pace-2017/
track-a-treewidth/.

Itai Arad and Zeph Landau. Quantum computation and the evaluation of tensor networks.
SIAM Journal on Computing, 39(7):3089-3121, 2010.

Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete applied mathematics, 23(1):11-24, 1989.

Jacob Biamonte and Ville Bergholm. Tensor Networks in a Nutshell. arXiv e-prints, page
arXiv:1708.00006, July 2017. arXiv:1708.00006.

Jacob D. Biamonte, Jason Morton, and Jacob Turner. Tensor Network Contractions for
#SAT. Journal of Statistical Physics, 160(5):1389-1404, September 2015. doi:10.1007/
$10955-015-1276-z.

Dan Bienstock. On embedding graphs in trees. Journal of Combinatorial Theory, Series B,
49(1):103-136, 1990.

Hans L. Bodlaender. A Linear Time Algorithm for Finding Tree-decompositions of Small
Treewidth. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing,
STOC '93, pages 226234, New York, NY, USA, 1993. ACM. doi:10.1145/167088.167161.
Hans L Bodlaender, Michael R Fellows, and Dimitrios M Thilikos. Derivation of algorithms
for cutwidth and related graph layout parameters. Journal of Computer and System Sciences,
75(4):231-244, 2009.

Hans L. Bodlaender, John R. Gilbert, Hjalmtyr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, and minimum elimination tree height. In Gunther Schmidt and Rudolf
Berghammer, editors, Graph-Theoretic Concepts in Computer Science, pages 1-12, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

Hans L Bodlaender, John R Gilbert, Hjadlmtyr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238-255,
1995.

Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for
branchwidth. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela,
editors, Automata, Languages and Programming, pages 627—637, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg.

Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and Hartmut Neven. Simulation of
low-depth quantum circuits as complex undirected graphical models. arXiv preprint, 2017.
arXiv:1712.05384.

Jianxin Chen, Fang Zhang, Mingcheng Chen, Cupjin Huang, Michael Newman, and Yaoyun
Shi. Classical simulation of intermediate-size quantum circuits. arXiv preprint, 2018. arXiv:
1805.01450.

William Cook and Paul Seymour. Tour Merging via Branch-Decomposition. INFORMS
Journal on. Computing, 15(3):233-248, 2003. doi:10.1287/ijoc.15.3.233.16078.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Lower Bounds Based on the Exponential-
Time Hypothesis, pages 467-521. Springer International Publishing, Cham, 2015. doi:
10.1007/978-3-319-21275-3_14.

Reinhard Diestel. Graph theory. Springer Publishing Company, Incorporated, 2018.

Eugene Dumitrescu. Tree tensor network approach to simulating Shor’s algorithm. Phys. Rev.
A, 96:062322, December 2017. doi:10.1103/PhysRevA.96.062322.

Eugene F. Dumitrescu, Allison L. Fisher, Timothy D. Goodrich, Travis S. Humble, Blair D.
Sullivan, and Andrew L. Wright. Benchmarking treewidth as a practical component of tensor

http://arxiv.org/abs/1612.05903
https://pacechallenge.wordpress.com/pace-2017/track-a-treewidth/
https://pacechallenge.wordpress.com/pace-2017/track-a-treewidth/
http://arxiv.org/abs/1708.00006
http://dx.doi.org/10.1007/s10955-015-1276-z
http://dx.doi.org/10.1007/s10955-015-1276-z
http://dx.doi.org/10.1145/167088.167161
http://arxiv.org/abs/1712.05384
http://arxiv.org/abs/1805.01450
http://arxiv.org/abs/1805.01450
http://dx.doi.org/10.1287/ijoc.15.3.233.16078
http://dx.doi.org/10.1007/978-3-319-21275-3_14
http://dx.doi.org/10.1007/978-3-319-21275-3_14
http://dx.doi.org/10.1103/PhysRevA.96.062322

B. O’Gorman

network simulations. PLOS ONE, 13(12):1-19, December 2018. doi:10.1371/journal.pone.
0207827.

20 E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero,
and Alan Aspuru-Guzik. qTorch: The quantum tensor contraction handler. PLOS ONE,
13(12):1-20, December 2018. doi:10.1371/journal.pone.0208510.

21 Daniel J. Harvey and David R. Wood. The treewidth of line graphs. Journal of Combinatorial
Theory, Series B, 132:157-179, 2018. doi:10.1016/j.jctb.2018.03.007.

22 1. Markov and Y. Shi. Simulating Quantum Computation by Contracting Tensor Networks.
SIAM Journal on Computing, 38(3):963-981, 2008. doi:10.1137/050644756.

23 M.I Ostrovskii. Minimal congestion trees. Discrete Mathematics, 285(1):219-226, 2004.
doi:10.1016/j.disc.2004.02.009.

24 Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Magerlein, Edgar
Solomonik, Erik W. Draeger, Eric T. Holland, and Robert Wisnieff. Breaking the 49-Qubit
Barrier in the Simulation of Quantum Circuits. arXiv e-prints, page arXiv:1710.05867, October
2017. arXiv:1710.05867.

25 Neil Robertson and P.D Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153-190, 1991. doi:10.1016/0095-8956(91)
90061-N.

26 P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241,
June 1994. doi:10.1007/BF01215352.

27 Benjamin Villalonga, Sergio Boixo, Bron Nelson, Christopher Henze, Eleanor Rieffel, Rupak
Biswas, and Salvatore Mandra. A flexible high-performance simulator for the verification
and benchmarking of quantum circuits implemented on real hardware. arXiv e-prints, page
arXiv:1811.09599, November 2018. arXiv:1811.09599.

A Branchwidth and edge congestion

Proof of Theorem 12. First, we show how to compute a branch decomposition of L(G)
with width & given a tree embedding of G with congestion k, implying bw(L(G)) < ec(G).
Suppose we have a tree embedding (T,b) of G with edge congestion k. Let T” be a copy
of T and ¥ : E(L(G)) — V(T) be a mapping from edges of the line graph to vertices of
T. In particular, for an edge e = {{u,v}, {v,w}} of L(G) set V' : {{u,v}, {v,w}} > b(v),
i.e., b’ maps adjacent pairs of edges of G to the same leaf mapped to from their common
vertex by b. Interpreted as a branch decomposition of L(G), (T7,b') has width k, except
that &’ is not injective. We will now introduce a series of modifications to (77,b') that
will turn it into a proper branch decomposition with width k. Note that b'(e) = ¥'(f) if
and only if e and f correspond to the same vertex of G. For each vertex v of G, we will
replace the corresponding leaf of T with a subtree whose leaves are one-to-one with the edges
of E(L(G)) corresponding to the vertex v. Consider a particular vertex v. Let Iy be the

corresponding leaf of T and tg its neighbor. Let (e1,ea, ..., edegc(v)) be an arbitrary ordering
of the edges adjacent to v in G. First, we replace the leaf [y with a subcubic caterpillar graph
with internal vertices (f1,t2,...,tdeg,(v)—2) and leaves (I1,lz, ..., lqeg, (v)—1) Such that ; is

adjacent to t; 1 and I; for i € [degg(v) — 2] and tgeg . (v)—2 is adjacent to lgeg,, (v)—1- Then
we set b : {ej, ej} = Lyingij)-

At this point ‘b’_l(li)| = |{{ei,e;}|7 > i}| = degg(v) —i. For each I; we do the following.
Relabel its neighbor t; as t; . Replace [; with another subcubic caterpillar graph with
internal vertices (£i,1, %2, b degg (v)—i—2) and leaves (L 1,12, 1; deg, (v)—i—1) such that t; ; is
adjacent to l; j and t; j_; for j € [degg(v) — 2] and #; geg . (v)—2 18 adjacent to l; deg, (v)—1-

10:17

TQC 2019

http://dx.doi.org/10.1371/journal.pone.0207827
http://dx.doi.org/10.1371/journal.pone.0207827
http://dx.doi.org/10.1371/journal.pone.0208510
http://dx.doi.org/10.1016/j.jctb.2018.03.007
http://dx.doi.org/10.1137/050644756
http://dx.doi.org/10.1016/j.disc.2004.02.009
http://arxiv.org/abs/1710.05867
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1007/BF01215352
http://arxiv.org/abs/1811.09599

10:18 Parameterization of Tensor Network Contraction

Figure 7 From a tree embedding of G to a branch decomposition of L(G). Left: a leaf Iy and
neighboring vertex to of a tree embedding. Middle: Replacement of the leaf [y with a caterpillar
subtree. Right: Replacement of each leaf with a caterpillar subtree.

Figure 8 From a branch decomposition of L(G) to a tree embedding of G. Left: Part of a branch
decomposition. Right: Modified part to form a tree embedding.

Then set

Lij—iy <7,

b {el—,ej} — { (2)

lj,i—j, 7> j

At this point, (77,b') is a proper branch decomposition of the line graph L(G). What is
its width? Let S! be the subtree connecting v’({e, f}) for all neighbors f of e in L(G). In
the part of T” that we didn’t change, this coincides with S, of the tree embedding (7}, b).
The number of subtrees including the edge {¢o,%1,0} of 7" is the same as that including the
edge {to,lo} of T, which is at most the edge congestion of (T,b). In particular, it is exactly
degs(v). These are the only subtrees that contain any part of the new parts of the tree T’
that we created. The contstruction is shown for a degree 5 vertex in Figure 7.

B. O’Gorman

Now, we show how to compute a tree embedding with congestion k from a width-k
branch decomposition the line graph, implying ec(G) < bw(G). Suppose we have a width-k

branch decomposition (T,b) of L(G). Let T be a tree and b’ a function from V(G) to V(T”).

Initially we set (T7,b’) = (T,b) and iteratively modify it into a tree embedding. For each

vertex v € V(G), the neighboring edges E, C E(G) = V(L(G)) form a clique of size deg(v).

Therefore, there must be some vertex tg of T' such that S, contains tq for all e € E,. Let
t1,ta,t3 be the three neighbors of ty and partition E, into four (potentially empty) parts:
Ey contains those edges e such that S, contains all of tg,%1,t2,t3 and F; contains those
edges e such that S, does not contain ¢;, for ¢ = 1,2,3. Without loss of generality, assume
w(E1) < w(By) < w(Es). Note that deg(v) = i w(E;) > S, w(E;) > 3w(Ey). Now,
subdivide the edge between to and t;, introducing a new vertex t', and add a new leaf I’
adjacent thereto. For all e € E,,, set b'(e) = I’; this leaf will correspond to vertex v in the
tree embedding. Note that the congestion of the edge between I’ and ¢’ is deg(v), and that
the congestion of the edge between t' and ¢ is w(E;) < deg(v)/3 more than the congestion
of the edge {to,t1} that it replaced. If we do this for every vertex, we get a tree embedding
whose congestion is at most deg(G)/3 more than the width of the branch decomposition we
started with. This is illustrated in Figure 8. |

It cannot be the case that for every graph G, bw(L(G)) = ec(G). Consider, for example,
the star graph Sj. Its edge congestion is at least its maximum degree k, but its line graph is
the complete graph, whose branchwidth is [2£].

Consider an alternative, what we’ll call the line hypergraph, denoted L*(G), with a vertex
for each edge of E(G) and a hyperedge for each vertex of V(G) (rather than a clique as in
the usual line graph). Then it is trivially true that bw(L*(G)) = ec(G).

10:19

TQC 2019

	Introduction
	Background
	Tensor networks and contraction
	Treewidth and branchwidth
	Congestion
	Cutwidth
	Parameterized complexity

	Unified framework of graph properties
	Contraction costs
	Contraction orders and trees
	Linear contraction orders
	General contraction orders

	Extensions and generalizations
	Conclusion
	Branchwidth and edge congestion

