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Abstract 

Tissue engineering is a multi-disciplinary field that involves three-dimensional cell and tissue models, 

live cell microscopy and related imaging modalities, along with fluorescence and phosphorescence-

based biosensors. These technologies can work together in developing biologically relevant 3D tissue 

models for the modelling of complex physiological and diseased states. One of the main challenges 

facing such models is the lack of non-invasive strategies for quantitative real time monitoring of cellular 

and tissue physiology, metabolism and viability, that are compatible with live cell microscopy. This 

thesis presents the design and development of new biosensor, scaffold and nanoparticle materials, with 

the aim of facilitating quantitative metabolic imaging in cell and tissue culture, via fluorescence lifetime 

microscopy and phosphorescence lifetime microscopy.  

Thus, we have developed protein-based biosensor probes, sensitive to pH and calcium in intensity and 

fluorescence lifetime modalities for the labelling of cellulose scaffold materials, producing a hybrid 

scaffold material for tissue engineering applications. This was done by genetically engineering of 

recombinant proteins expressing the cellulose-binding domain (CBD) CenA protein, derived from the 

fungus C. fimi, fused to pH-sensitive enhanced cyan fluorescent protein (ECFP) and enhanced yellow 

fluorescent protein (EYFP), forming CBD-ECFP and CBD-EYFP biosensors, respectively. A third 

biosensor was also developed with CBD and the genetically encoded calcium indicator known as 

circularly permutated EGFP (cpEGFP)/M13/Calmodulin (CaM) fusion protein (GCaMP2) forming 

CBD-GCaMP2. For all three CBD constructs we observed responses in fluorescence intensity to 

changes in calcium for GCaMP2 and pH for both CBD-ECFP and CBD-EYFP, achieving efficient and 

stable labelling of various cellulose scaffolds including nanofibrillar, GrowDex, bacterial cellulose and 

decellularised plant materials. CBD-ECFP labelled GrowDex produced a biosensor scaffold material 

capable of supporting the growth of 3D cultured human colon cancer cells HCT116, with the ability to 

measure real-time changes in extracellular pH. The developed labelling strategy allows for the design 

of biosensor scaffold materials with potential multi-parametric fluorescence lifetime microscopy 

modalities, which can be used to achieve the controlled production of 3D tissue models with measurable 

pH and metabolic gradients. 

Intracellular metabolic imaging is currently dominated by synthetic nanoparticle constructs that suffer 

from suboptimal intracellular staining, along with high toxicity and immunogenicity. Here we 

developed several self-assembling protein nanoparticle constructs based on viral like particle, elastin 

like polypeptide-cowpea chlorotic mottle virus capsid protein (ELP-CP) and protein nanocage ferritin. 

Such constructs hold promise due to their biological nature making them more biocompatible and 

biodegradable, thereby reducing toxic and immunogenic effects. Such self-assembling protein 

nanoparticles are also amenable to multiple strategies of functionalisation such as metallochelate 

coupling, genetic engineering, chemical modification, and encapsulation.  
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We evaluated metallochelate coupling to design intracellular O2-sensitive biosensors, where 

oligohistidine-tagged recombinant proteins are bound to nitrilotriacetate (NTA) or iminodiacetic acid 

(IDA) groups on dyes and small molecules. The NTA or IDA groups form a complex with transition 

metal ions such as: Zn2+, Ni2+, Co2+, or Cu2+. This complex then co-ordinates to histidine amino acids 

on the recombinant protein. We successfully produced ratiometric phosphorescent probes from 

enhanced green fluorescent protein (EGFP), enhanced monomeric blue fluorescent protein 2 

(mTagBFP2) and Discosoma red fluorescent protein (DsRed express) coupled to tetracarboxylic 

platinum (II)-coproporphyrin I (PtCP) PtCP-NTA. Such complexes can be used for ratiometric-based 

measurements of O2, where fluorescent proteins (FPs) can be used as O2-insensitive references. Most 

notably we demonstrated the first example of a phosphorescent O2-senstive viral like particle (VLP) 

structure, ELPCP-H6-PtCP and in comparing to commercial O2-sensitive probe MitoXpress, we 

observed higher phosphorescence brightness, similar lifetime responses and increased sensitivity in 

response to O2. The potential to couple a range of FPs or self-assembling protein nanoparticles to O2 

sensitive phosphorescent dyes demonstrates that metallochelate coupling is a highly attractive strategy 

in the design of new intracellular O2 sensors.  

Using genetic engineering and encapsulation strategies we successful produced both pH and O2-

sensitive ferritin nanoparticles. Genetic engineering enabled the expression of multiple cell targeting 

and penetrating peptides, such as bactenecin 7 and α-enolase, along with fluorescent proteins EGFP or 

ECFP, without affecting spectral properties of the fluorescent proteins or ferritin self-assembly. Genetic 

engineered ECFP-FTN construct demonstrated pH sensitivity in fluorescence intensity and lifetime 

across a physiological range of pH, potentially allowing for applications in fluorescence lifetime 

microscopy-based measurements of intracellular pH. Through the strategy of pH dependent 

disassembly and reassembly encapsulation of phosphorescent O2 sensitive probe Pt-Glc, we 

successfully produced O2-sensitive horse ferritin-based (hoFTN) nanoparticles. The resulting hoFTN-

Pt-Glc displayed a higher phosphorescence intensity signal than free Pt-Glc, possibly due to the 

concentrated number of Pt-Glc molecules in close proximity within the ferritin structure, and 

demonstrated responses to oxygenation, increasing phosphorescence intensity when deoxygenated. 

However, in characterisation of hoFTN-Pt-Glc with MEF cells we observed poor intracellular staining 

confined to endosomes, similar to free Pt-Glc. These results showed that encapsulation here does not 

improve intracellular staining or phosphorescence lifetime responses. Despite poor characterisation of 

ferritin constructs in HCT116 and MEF cell lines, the strategies evaluated here show promise and 

demonstrate an interchangeable approach to functionalising self-assembling protein nanoparticles and 

fluorescent proteins for applications in fluorescence lifetime microscopy and phosphorescence lifetime 

microscopy-based quantitative and ratiometric live cell imaging 
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Chapter 1: Literature review- 3D tissue models and biosensor materials for tissue engineering  

 1.1 Introduction 

Tissue engineering is the development of biologically relevant tissues outside of the human body for 

clinical use, combined with the understanding of the complex physiological characteristics and 

processes of living tissues. It is a multi-disciplinary field that encompasses 3D cell and tissue-based 

scaffold and non-scaffold-based models, live cell microscopy and imaging modalities, along with 

fluorescence and phosphorescence-based biosensors. All these disciplines work together to drive the 

development of biologically relevant 3D tissue models, which can be monitored in real time for 

modelling complex physiological and non- physiological diseased states. Tissue engineered 3D models 

are currently used in studying stem cell growth and transplantation, personalised medicine, and the 

modelling of various disease states (i.e. cancer) along with the development of therapies for their 

treatment. For such engineered tissues to be physiologically relevant, real time monitoring and 

optimisation of their extracellular and intracellular gradients (e.g. O2, Ca2+, pH, and temperature) must 

be applied. Therefore, the development of imaging modalities and biosensors compatible with live cell 

imaging of 3D tissue models is key for the advancement of the field of tissue engineering. Here, I will 

discuss the state of various 3D tissue models, imaging modalities, and biosensor materials applied for 

tissue engineering, and the future directions and possibilities that are being explored.  

1.2 Three-dimensional tissue models 

Several cell-cell and cell-extracellular matrix (ECM) interactions establish a communication network 

that maintains physiological characteristics of a living tissue. These include structural tensile strength, 

cellular polarity, adhesion, differentiation, migration and proliferation [1]. In vitro cell cultures that 

establish these physiological interactions can mimic real in vivo tissues much more closely than two-

dimensional (2D) cultures. Cell flattening occurring in conventional 2D culture results in abnormal 

alterations in cytoskeleton, gene expression, nuclear shape, cellular proliferation and differentiation, 

and susceptibility to drug therapies [2], all of which are significantly different from those seen in 3D.  

Currently, 3D tissue models are used in stem cell therapies as a support matrix for the growth and 

transplantation of in vitro systems that closely mimic in vivo morphology. Such models are applied in 

both cell physiology and drug therapy studies. Such models are also useful for studying cancer biology, 

in which we can model cancer growth and develop cancer therapies [3, 4]. 3D tissue models can be 

categorised into two main groups, scaffold-based and scaffold-free systems, examples of such types can 

be seen in Figure 1.1, below.  
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Figure 1.1. Examples of 3D tissue models. (A) Cells can aggregate together forming spheroids (i), then polarize 

(ii), and differentiate (iii). (B) In organoid system, stem cells differentiate (i) and self-organize by processes of 

cell sorting (ii) and lineage commitment (iii) into fully developed structures possessing many features of real 

tissue (iv). (C) Hydrogel and related scaffold structures provide structured and rigid 3D environment for cells and 

aggregates growing within. (D) Microfluidic chamber allows culturing the 3D tissue model under the controlled 

flow. 

 

1.2.1. Scaffold-free 3D tissue models 

Scaffold-free models utilise the ability of cells to synthesise their own ECM, or naturally produce it 

within live tissue. They include spheroids [5], organoids [6], tissue explants [7, 8], artificial tissue [9] 

and xenografts [10].  

The most common type of scaffold-free model are spheroids (Fig 1.1 A), which are produced via 

assembly of mono- or multi-cell type-consisting spherical shape aggregates, typically of 50-500 µm 
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size [5]. Spheroids can be produced in several ways, such as liquid overlay technique [11], hanging 

drop technique [12], microwell arrays via micropatterned wells [13] or by bio-printing [14]. Cells within 

the spheroid can re-establish mutual contacts and re-create specific microenvironments (e.g. O2, pH and 

metabolite diffusion gradients), therefore, reproducing cellular morphology in vivo. For cancer cell 

spheroids, often referred as multi-cellular tumor spheroids (MCTS), four phenotype classifications have 

been proposed: round, mass, grape-like, and stellate phenotype [15], [16], [17]. The round-type spheroid 

is characterised by strong cell–cell adhesion, with regularly organised nuclei. The mass-type spheroids 

are also spherical in shape but are much larger and possess disorganised nuclei. The grape-like type 

spheroids have grape-like morphology forming loose clusters, with weak cell-cell interactions. The 

stellate-type spheroids are invasive, possessing stellate projections that migrate chains of cells into the 

ECM. The phenotype of tumor spheroids is dependent on gene and protein expression profiles of the 

cell lines [15] and signals from tumor microenvironment [16]. Due to heterogeneity of conditions and 

gradients of metabolites, nutrients, metabolic waste and soluble factors (e.g. growth factors, 

chemokines, cytokines) spheroids are often comprised of cells in various stages of the cell cycle [18]. 

Radial structure of MCTS results in radial differences in gene and protein expression, cell regulation 

and drug metabolism. These gradients and cellular heterogeneity within the spheroid culture closely 

resemble in vivo tumors [19]. Applications of MCTS to study cell metabolism, have shown similar 

increased glycolysis and lactate production, and Warburg effect of metabolic switching seen as in 

tumors in vivo [20, 21]. Culturing MCTS with stromal and immune cells allows for the study of host-

tumor and microenvironment interactions that play key roles in cellular regulation, angiogenesis, and 

invasiveness of tumors [22-24]. Therefore, MCTS are useful tools in studying tumor biology and drug 

treatments. Spheroids can also be cultured from mesenchymal stem cells (MSCs), which display anti-

inflammatory responses, angiogenesis, and tissue regeneration with improved cell survival after 

transplantation [25-27], all of which are not seen in 2D cell cultures of MSCs. MSC spheroids possess 

an elongated exterior morphology and a spherical interior morphology, with small rounded MSCs are 

prone to differentiation into the adipogenic lineage, whereas large, elongated spheroids differentiate 

into the osteogenic lineage [28]. MSCs spheroids are applied in a range of preclinical animal studies 

such as: bone and cartilage regeneration with bone marrow MSCs and synovial MSCs [29, 30], 

regeneration in liver and kidney tissues with umblival cord MSCs and adipose tissue MSCs [31, 32], 

and wound healing in dermal wounds with adipose MSCs [33]. Overall MSC spheroids show high 

potential in tissue engineering for regenerative medicine, however a greater understanding of molecular 

signaling within the MSCs needs to be explored, along with better methodologies for clinical 

applications. Spheroid cultures have been successfully imaged via number of modalities including light 

sheet microscopy [34], confocal fluorescence  and phosphorescence microscopy [35, 36] and two-

photon microscopy [37].  
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Organoids are cultured organ-specific 3D cellular clusters produced from primary tissue, embryonic 

stem cells or induced pluripotent stem cells (Fig 1.1 B). In contrast to spheroids, they contain different 

cell types, are capable of self-renewal, organization via self-sorting, and, to some extent, possess 

functionality seen the tissues they are derived from in vivo [38]. Organoids produced to date include: 

intestinal [39], kidney [40], brain [41], retinal [42], stomach [43], lung [44], inner ear [45], skin [46], 

and liver-like tissues known as liver buds, all produced using progenitor stem cell types or induced 

pluripotent stem cells [47]. Despite being a more physiological 3D tissue model than spheroids, 

amenable to established experimental techniques, and disease modeling, organoids still lack proper 

vascularization and blood supply. However, these issues can be overcome by co-culturing with 

additional cell types (e.g. stroma and immune cells), by perfusion and microfluidic approaches to 

generate concentration gradients of growth and signaling factors [48] and to mimic blood flow through 

the tissue [49]. In recent years efforts to produce more physiological relevant organoids by 

bioengineering have been made. A human intestinal tissue model with functioning enteric nervous 

system was developed from human PSC derived neural crest cells and human intestinal organoids. 

Enteric nervous system is responsible for gastrointestinal (GI) motility, secretion, blow flow, 

permeability, and fluid exchange, with its function frequently lost in many GI diseases. The 

development of this intestinal organoid model with enteric nervous system function allowed for the 

study of motility disorders of the GI tract such as  Hirschsprung’s disease which is caused by defective 

enteric neuron development  [50].  

The development of patient-derived organoids has the potential for a more stable and physiological 

model closely mirroring disease states and cancer histology’s they are derived from, along with drug 

screening and discovery; due to the minimizing of culture induced genetic drift. Research using 

organoids generated from biopsied primary human pancreatic adenocarcinoma maintained the tumour 

differentiation status, histology, and patient-specific physiologic changes including: hypoxia, oxygen 

consumption, epigenetic marks, and differential sensitivity to Enhancer of zeste homolog 2 inhibition 

[51]. Organoids are also compatible with standard confocal and two-photon excited fluorescence 

microscopies, which have been applied to study chromosome segregation by genetically encoded 

fluorescent proteins (FPs) [52], analyse proliferating cells by fluorescence lifetime imaging microscopy 

(FLIM) [53] and responses to drug treatments [54].  

 

1.2.2 Scaffold-based tissue models  

Scaffolds are designed to encourage adhesion, proliferation, differentiation, and migration of cells 

seeded and grown within. They provide mechanical strength, porosity, efficient exchange of gases, 

nutrients, and metabolites. Frequently used hydrogels represent water-rich 3D networks of hydrophilic 

cross-linked polymers, that closely mimic the ECM with mechanics of soft tissues, supporting transport 

of metabolites and waste, and cell adhesion [55]. Hydrogels are represented by natural (e.g. cellulose, 
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collagen, chitosan) and synthetic materials (e.g. polyethylene glycol) [56]. Scaffolds can also be 

produced from synthetic polymers such as polycaprolactone [57], polylactic acid [58], polystyrene [59] 

or others [60].  

 

Collagen is a fibrous protein, comprised of a right-handed bundle of three parallel, left-handed 

polyproline II-type helices, providing structural support to body tissues [61]. Collagen hydrogels are 

primarily comprised of type I collagen, derived from pepsin- or acid-solubilized form, frequently 

sourced from rat tail tendon. The hydrogel is formed by increasing temperature and pH, which induces 

collagen fibril assembly in presence of culture media or cells [62]. Collagen hydrogel scaffolds have 

been used to mimic the 3D tumour microenvironment, demonstrating co-existence of multiple cell types 

in cancer development [63], particularly in breast cancer, in which collagen is the main component of 

the breast stroma. Here in breast tissues, collagen affects morphology and the phenotype of the breast 

epithelium, and its variation in density has been linked to onset of breast cancer [64]. Dense collagen 

type 1 3D scaffolds were used to mimic high collagen densities seen in breast epithelium, the dense 

collagen scaffold was observed to have a strong interaction with prolactin resulting in tumorigenic 

conversion of T47D cells into an invasive malignant phenotype [65]. Further studies showed that dense 

collagen type 1 scaffolds have regulatory effects on 17β-estradiol (E2)  and prolactin interactions, 

increasing growth, invasion and modification of the collagen matrix in estrogen receptor alpha breast 

cancers [66]. Collagen concentration and elasticity also affects the 3D culture of ovarian follicles, with 

differences observed in cell survival, follicle growth and development, sex hormone production, and 

oocyte maturation; with changes in collagen type 1 elasticity and concentration [67]. This study 

Highlights the importance of collagen as a 3D scaffold matrix and its overall compositional effects on 

3D cell culture. Therefore, special care should be taken when using collagen in 3D cell culture as it is 

susceptible to reorganization via interactions with cells, thus the scaffold can lose its orientation and 

have detrimental effects on cellular behavior. 

 

Matrigel is a cocktail of ECM proteins extracted from Englebreth-Holm-Swarm epithelial tumors in 

mice, where they form a basement membrane (BME). The BME is an important ECM in epithelial and 

endothelial tissues where it supports tissue integrity, acting as a barrier to cells and molecules, 

separating different tissue types thereby maintaining tissue specificity, and acts as a transducer for 

various growth factors and enzymes [68]. Matrigel primarily consists of BME-derived components 

laminin, collagen IV, entactin, and heparin sulfate proteoglycan. These provide structural and signaling 

functions seen in the BME. Matrigel forms a hydrogel at 24-37 °C and is frequently used 3D scaffold 

[69], for example, in 3D tumor cell culture where it helps to create microenvironment for cancer ‘stem-

like’ cells, influencing miRNA expression involved in cell regulation, adhesion and migration [70, 71]. 

Matrigel is also widely applied in morphological and developmental studies of non-malignant cell lines, 

such as breast and prostate epithelia, with and without microfluidics [72], as well as intestinal epithelia 
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in combination with organoid culture [73].  There are several limitations of Matrigel based on its 

composition, (decreased collagen-I and hyaluronan), batch-to-batch variability, and strict storage 

conditions. Matrigel is non-human in origin and therefore its composition does not accurately mimic 

the human tumour microenvironment, this affects its translational potential and its use in tissue 

engineering. Thus, further research is needed towards the development of hybrid matrices that can 

improve or replace Matrigel [74], and one such alternative is Myogel, which is derived from human 

uterus benign leiomyoma tumors. Experiments comparing Matrigel with Myogel on its own or 

combined with low melting agarose (LMA), showed that both Mygogel and Myogel-LMA out 

preformed Matrigel in in-vitro transwell invasion and capillary formation assays [75]. Overall myogel 

more closely mimics the human tumour microenvironment of solid cancers in terms of gene and protein 

expression, invasion and migration. The price of Myogel is also much lower than that of Matrigel and 

avoids the need to sacrifice thousands of mice for production, therefore, the translational potential of 

Myogel for tissue engineering is high with the possibility of culturing tumour tissue from patients.  

 

Cellulose is an ideal scaffold material as it mimics the mechanical properties of the ECM, as well as 

being both biocompatible and biodegradable. Its backbone consists of glucose units connected by β-

glycosidic linkages, arranged into a highly organized fibrillar structure. The inter and intra-chain 

hydrogen bonding restricts flexibility, and therefore provides rigidity to the polymer. The cellulose 

structures used as 3D scaffold materials are known as nanocellulose, which refers to extracts or 

processed cellulose materials with nano-size dimensions. Nanocellulose can be divided into three 

groups according to their morphology and method of production: cellulose nanocrystals (CNC), 

nanofibril cellulose (NFC) and bacterial cellulose (BC) [76].  Nanocellulose has found applications in 

tissue engineering, photonics, biosensing and biomaterials research [77], being utilised as scaffold 

materials [76, 78, 79] for cartilage tissue regeneration [80], bone tissue[81], differentiating endothelial 

cells [82] and others. 

NFCs are comprised of cellulose nanofibers derived from raw cellulose material via enzymatic 

hydrolysis and mechanical shearing processes, which result in delamination of the fiber wall and 

fibrillation into nanoscale network of cellulose fibers [83].  NFC hydrogels have been utilized as 3D 

tissue culture scaffolds due to their rigid, porous and tunable structure, finding uses in research of human 

pluripotent stem cells (hPSC) [84] and liver progenitor cells [85].  BC is produced by microorganisms 

extracellularly, predominantly by Gluconacetobacter xylinus. BC is synthesised by protruding glucose 

chains from the bacterial pores, which combine forming fibrils which aggregate, forming cellulose 

nanofibers [86]. These nanofibers are well spaced, forming a large surface area in which a large volume 

of water can be stored, and extensive hydrogen bonding between the nanofibers gives BC a high 

mechanical strength. These properties make BC very attractive for applications as scaffolds in tissue 

replacement, with uses in tissue engineering of cartilage, where it has been shown to support the 
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proliferation and ingrowth of chondrocytes [87, 88]. BC has recently found applications in tissue 

engineered blood vessels, with one such study using tubular implants of BC for the replacement of 

carotid arteries in sheep where it provided a scaffold for the attachment of vascular smooth muscle cells. 

However, a low patency rate of only 67% was achieved, well below the 97% patency rate accepted for 

clinical studies [89]. Decellularised plant materials are a recently developed type of cellulose scaffold 

that provide a pre-vascularized scaffold for tissue engineering applications, taking advantage of 

similarities in the vasculature of plant and animal tissues.  decellularised is carried out by treatment 

with hexane to remove the waxy hydrophobic layer from the outside of the plant, and bleach to remove 

the plant cellular component. It has been shown that decellularised spinach leaves when re-cellularized 

with human endothelial cells, displayed contractile function and calcium flux [90].  

Cellulose-derived scaffolds can be modified by a wide range of processes for cell adhesion and 

biocompatibility such as: (i) Chemically, with polyethyleneglycole, thiols and other oligo- and polymers 

[91]. (ii) With the use of proteins with cellulose-binding domains [76, 92]. Or (iii) biosynthetically [93]. 

The same can be applied for biosensing applications via modifications with: nanocrystals, [94], FRET-

based enzyme-based biosensing, for analysis of proteolytic activity in wound fluids and gold 

nanoparticles immobilised via antibodies [95]. To date, some of the practical biosensing applications 

for cellulose represent biomass conversion and immobilisation [96], multi-colour labelling [97, 98] and 

biomarker sensing in the alimentary tract of daphnia [99].  

Major synthetic polymers used for scaffold-based tissue models come from the polyester family of 

hydrophobic homopolymers; Polylactic acid (PLA), Polyglycolic acid (PGA) and, Polycaprolactone 

(PCL). 

Polylactic acid (PLA) is a semi-crystalline hydrophobic polymer composed of lactide monomer 

subunits. PLA is synthesized by ring-opening polymerisation (ROP) of a lactide monomer [100], and 

is degraded by hydrolysis of its ester groups, in which its substituent monomers are naturally 

metabolized yielding CO2 and water [101]. Lactide is a chiral molecule and therefore exists in two 

optically active isomers: L and D-lactide. Depending on what lactide isomer is used in the ROP reaction 

three times of PLA can be synthesized: Poly- D- lactide (PDLA) is formed from D-Lactide monomers, 

Poly- L – lactide (PLLA) is formed from L-Lactide monomers and Poly- D,L- Lactide (PDLLA) is a 

racemic mixture of both D and L isomers. PDLA contains amorphous regions and as a result PDLA and 

PDLLA degrade at a faster rate than PLLA. PLA polymers have applications in drug delivery [102-

104], implantable medical devices [105]  and 3D cell culture scaffolds [58].  

Polyglycolic acid (PGA) is a semi crystalline hydrophobic polymer composed of glycolide monomer 

subunits. PGA is synthesized by ROP of glycolic acid, catalyzed by tin(II) 2-ethylhexanoate (Sn(Oct)2) 

[106], and like PLA, is degraded by hydrolysis of its ester groups. PGA degrades faster than PLA due 

to it being less hydrophobic than PLA, which possesses a methyl instead of a hydroxyl group. PGA 

polymers have found applications in 3D cell culture and tissue engineering scaffolds [107-109] 
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Applications of PGA on its own are limited to the short term due to its fast degradation rate, and clinical 

applications of PGA are as a co-polymer with PLA, known as poly(lactic-co-glycolic acid) (PLGA) 

[110] or with other biological components, such as collagen [111] and hyaluronic acid [112].  

Polycaprolactone (PCL) is a semi crystalline hydrophobic polyester, and is synthesized largely by the 

ROP of an ɛ-caprolactone [113]. Because its hydrophobicity it degrades slower than other polymer 

scaffolds, such as PLA and PGA. Therefore, PCL has advantages in long term applications, such as 

drug delivery [114] due to controlled release of its cargo, implantable medical devices such as bone 

grafts, and has found applications in 3D cell culture scaffolds [57].  

Both PLA and PGA are biodegradable and bioresorbable as the polymers are broken down into naturally 

occurring lactic and glycolic acid respectively. However, the acidic by-products can acidify the local 

environment altering cellular behavior and survival [115, 116] as well as causing inflammatory 

complications [117, 118]. There is conflicting research and studies in the literature as to the 

biocompatibility of PLA and PGA, in terms of their immunogenicity and toxicity, with several studies 

supporting an acceptable biocompatibility, whilst others have shown systemic or local reactions due to 

acidic by-products. Synthetic materials unlike natural ones, lack intrinsic cellular adhesion sites and 

possess low cellular differentiation potential. Therefore, they must be modified for improved cellular 

adhesion and differentiation. Problems also arise in in vivo applications with a loss of homogeneity in 

cellular populations, due to the scaffold interior being difficult for cells to access.  

 

1.2.3 ‘Hybrid’ scaffold materials  

In hybrid scaffold materials sensing dyes, peptides and cell adhesion molecules are attached to a 3D 

scaffold material, in which the cells or tissue are cultured [59, 119, 120]. The scaffolds attached to 

sensor dyes are of particular intertest as they can be used for multi-parametric imaging of 3D tissue 

models, for example, hybrid phosphorescent O2-sensing scaffolds were proposed for range of cell-based 

models, including tumor spheroids and brain slices [59]. Here, the commercial polystyrene-based 

scaffold AlvetexTM was impregnated with a phosphorescent O2-sensitive dye Pt(II)-

tetrakis(pentafluorophenyl)porphine (PtTFPP), and optimised for live cell fluorescence microscopy and 

imaging of O2 distribution in cultured cells. Results showed the scaffold allowed for the measurement 

of cellular: oxygenation, respiration, viability, and responses to drug treatment, all at various depths 

within the scaffold, allowing for control of cellular environment and their conditions. In such scaffolds, 

cells and tissues do not need to be stained, as their functional status is analyzed indirectly, via 

extracellular gradients. Similarly, scaffolds based on other materials and for analysis of other 

physiologically important biomolecules (e.g. Ca2+) can be developed. Hybrid scaffolds allow for the 

real time monitoring of cell or tissues environment along with its extracellular influence on its 

environment in response to drug treatments and hypoxic conditions. Such scaffolds would potentially 
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allow the development of more translational relevant engineered tissue models as well as a more 

accurate and comprehensive study of cellular processes and drug treatments.  

1.2.4. Microfluidics in 3D tissue models 

The use of microfluidics allows for the precise control of fluid flow and mass exchange in micrometer-

size structures, such as channels and chambers. In 3D tissue models it can provide spatial and temporal 

control for co-cultures of multiple cell types, fluid flow and sheer stress (e.g. perfusion of circulating 

vasculature and immune cells) and biomolecule gradients [121]. A 3D vascularised organotypic 

microfluidic assay was developed to study breast cancer metastases, mimicking human breast cancer 

cell extravasation into a bone mimicking (BMi) microenvironment, generated with osteo-differentiated 

primary human bone marrow-derived mesenchymal stem cells, through perfusable human 

microvascular networks composed of endothelial and mural-like cells. Results showed that 

extravasation rates were significantly different with BMi microenvironment to the unconditioned or 

myoblast containing microenvironment [122]. This research demonstrates the power of microfluidics 

in the development of a physiological model for breast cancer metastases and drug screening.  

Microfluidic systems are prepared mainly by process known as ‘soft lithography’ [123], [124], using 

optically clear and O2-permeable polydimethylsiloxane (PDMS), which is compatible with live cell 

fluorescence imaging [125], however PDMS is autofluorescent [126] which can affect imaging.  

‘Organ-on-a-chip’ technology combines microfluidics with 3D tissue cultures of spheroids or organoids 

to mimic tissue and organ physiology in vivo [123]. Organ-on-chips have been reported for a range of 

organs including: liver [14, 127], intestine [128, 129], lung [130, 131], heart [132, 133], kidney [134, 

135], vasculature [136-138], and blood brain barrier [139]. Such models have been applied in disease 

modeling [140], drug screening and toxicity testing [141]. However, it is unclear to what degree organ-

on-chips can model real in vivo tissue. Cell seeding and growth in microfluidic channels limits the size 

of produced tissue models and exposes cells to various types of stresses, such as temporary hypoxia or 

anoxia [142, 143].  

 

1.2.5. Future of 3D tissue models 

Ensuring the reproducibility and physiological relevance of the different 3D models is of paramount 

importance. The goal of 3D tissue models is the development of a tissue model that can mimic tissue 

architecture and cellular microenvironments, down to the microscopic detail.  Different approaches 

separately or in combination, can help to tackle these issues faced such as: microfluidics, bioprinting, 

high-resolution live cell imaging, and hybrid scaffold materials. The use of microfluidics can help 

model blood flow and shear stress experienced by cells, and bioprinting allows patterning (3D printing) 

of biological materials including cells, biomolecules and biomaterials, to produce tissue-mimicking 
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constructs. The technology has been already used in transplantation [144], printing of 3D heterogeneous 

hydrogel structures [145] for research in regenerative medicine [146, 147], and drug screening [148], 

[149].  3D bioprinting of biological materials is based on three strategies: Laser [150], Droplet [151], 

and extrusion [152] printing. Droplet bioprinting is the earliest bioprinting technique, in which droplets 

are used to encapsulate cells and nonliving materials for printing layer by layer on a substrate. The use 

of droplet printers has seen a rise in popularity in recent years due to relatively low costs, high precision, 

and the ability to print multiple cell types with a high viability post printing, along with other nonliving 

materials such as hydrogels. However, this technique is not without its drawbacks as it is not compatible 

with printing high viscosity materials or high cell densities. This in turn affects the mechanical strength 

of the resulting structures and more so, the production of a fully functional and physiological 3D 

construct [153, 154]. In laser bioprinting, cells and nonliving materials are excited by laser beam 

focused on a laser absorbing ribbon, which collects the 3D construct on a substrate facing the ribbon. 

Laser bioprinting is nozzle-less system and therefore avoids the problems associated with high viscosity 

bio inks and cell densities faced by the inkjet bioprinting technique. However, the laser printer itself is 

costly and it cannot print large constructs due to the limited width of the laser beam [155], this has 

affected the potential clinical translation of the technique. Extrusion bioprinting uses an ejector system 

in co-ordination with an automated three axis stage, to deposit cells or nonliving materials on a 

substrate. The technique allows for printing high viscosity materials, along with cells possessing high 

density and viability [156]. The continuous dispensing of the bio-ink instead of a droplet allows for 

higher spatial control in comparison to the inkjet technique, however this can result in sheer stress 

induced damage of cells [157]. Moreover, the constructs produced are of a clinically relevant size with 

correct anatomical shape [158]. Therefore, with an affordable price and more clinically relevant 

constructs than laser bioprinting, as well as a higher viscosity of bio-ink with higher cell densities 

compared to inkjet printing; Extrusion bioprinting appears to be the most advantageous technique at 

present.  

However, despite advances in bioprinting techniques, the methodology of bioprinting requires figuring 

out what to print to re-create a physiologically relevant tissue. For example, the gradients of O2, pH, 

metabolites and waste products experienced by cells must be known or predictable. Such components 

can be analysed via multi-parametric live cell imaging (i.e. two-photon excited, confocal, light-sheet 

and FLIM-PLIM microscopies) and other minimally invasive techniques. Imaging approaches can be 

ultimately integrated in the design of scaffolds and tissue models, in order to achieve the desired and 

controllable functional properties of engineered tissue, such as variability or morphology [59, 159, 160].  

 

1.3 Live cell microscopy and different imaging modalities 

Tissue and cell samples are traditionally assessed by destructive methods such as histology or 

immunofluorescence of fixed and sectioned samples, tissue disintegration, flow cytometry, cell lysis, 
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along with the extraction of RNA, DNA, proteins, and metabolites with subsequent assays via: western 

blotting, PCR, genetic sequencing, microarrays, ELISA, immunohistochemistry, and mass 

spectrometry. Destructive methods assess the cellular processes as end points, without real time 

dynamic monitoring, and often the sample is used up and lost during the analysis process.  However, 

methods like optical imaging, Raman spectroscopy, electron spin resonance, and micro-optical 

coherence tomography [161], provide real time analysis of tissue and cell samples on a cellular scale. 

Optical live cell imaging is a noninvasive study of cells in their natural environment, using fluorescence 

or phosphorescence-based probes to provide analysis of the sample at a cell or organelle level.  

Fluorescence or phosphorescence-based probes can be attached to small molecules, nanoparticles or 

genetically encoded protein constructs, for the targeting of specific cell types and organelles. The 

intensity or lifetime of the fluorescent or phosphorescent light emitted is used to provide information 

on biomarkers of disease, cellular function or local environment [162]. Figure. 1.2 shows Jablonski 

diagram of energy transitions in luminescent molecules and the processes of fluorescence and 

phosphorescence. 

 

 

 

 

Figure 1.2. Jablonski diagram. After absorption of a photon of light, luminescent molecule gets excited into high 

energy staye S1, S2. Fluorescent molecules return to the ground state G0, emitting light within ps-ns time interval. 

Some compounds transition to triplet state(s) via the process of intersystem crossing. Emission from T1 is a spin 

forbidden process, which occurs at µs-ms scale. Transfer of energy to donors or quenchers (e.g. paramagnetic O2 

molecule) shorten the emission (phosphorescence lifetime, PLT). 

 

The fluorescent reporter is illuminated with a photon of light exciting a chromophore to a higher energy 

state. The chromophore can emit fluorescence (10-12 - 10-9 s) and return to the ground (G0) state.  Due 

to dissipation of energy, emission occurs at a longer wavelength, in a process known as a Stokes’ shift. 

Some luminescent structures undergo energy transitions much slower and emit light after 10-8 - 10-3 s, 
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this is known as phosphorescence. The average time, which the chromophore spends in the excited state 

before emitting light, is called fluorescence or phosphorescence lifetime. Specific brightness of a 

chromophore is determined by its molar absorptivity, quantum yield and photostability. Chemical 

modifications, encapsulation in nanoparticles, shielding by chemical or polypeptide structures, can be 

used to improve brightness. Some dyes show sensitivity in fluorescence or phosphorescence due to 

protonation, interaction with other molecules (e.g. ions), quenchers (e.g. O2), viscosity and temperature 

[163], altering luminescent emission intensity and lifetime, therefore, these sensitivities  can be used to 

design various probes and biosensors. The fluorescence Stokes’ shift allows efficient separation of the 

emitted light from high-energy excitation and therefore, only allows for the detection of the fluorescent 

reporter of interest via intensity-based imaging. Fluorescence and phosphorescence imaging can be 

carried out using different instruments, including widefield and laser scanning confocal microscopes 

(LSCM), two-photon excited microscope, macroscopic animal imager, super-resolution and other 

imaging devices. 

 

1.3.1 Platforms for intensity-based measurements 

In widefield fluorescence microscopy, a parallel beam of light is produced by single-wavelength light-

emitting diodes (LEDs) or mercury lamps. This wavelength of light illuminates and excites the selected 

fluorophore within the sample, and through the use of optical filters, only the selected emitted 

wavelength of fluorescence light is collected. Widefield fluorescence microscopy can achieve quality 

resolution, contrast, sensitivity, and fast acquisition speeds, however, this mode is only suitable for 

relatively thin samples, up to 50 µm thick and has limited applicability for 3D imaging.  

In LSCM a laser beam of excitation light is passed through a pinhole aperture in the optical plane, 

focusing the light on a specific region of the sample, thereby minimising the problems of photo-

bleaching and phototoxicity. The emitted light is channeled to light sensing detectors via the pinhole 

aperture, rejecting the out of focus light and increasing spatial resolution. The excitation light from the 

laser beam and its corresponding detection point are scanned across the sample via dichroic mirrors and 

the image is constructed. The main limitation of LCSM is the limited light penetration depth across the 

sample, due to light scattering and diffraction, achieving depths of 100-200 µm, however, long 

wavelength emitting dyes and probes can help improve light penetration depth. Other approaches that 

complement the LCSM, are light-sheet microscopy [164] and two-photon excited laser-scanning 

microscopy (2PLSM) [165]. 

2PLSM is a non-linear optical microscopy process, developed for improved light penetration across 

thick biological samples [165]. The setup of 2PLSM is similar to the confocal microscope except it uses 

a laser with ultra-short pulse duration (10-15 s), and epi-detection pathway, in which all the light 

collected by the objective is guided to the detector in order to capture as much of the scattered photons 

as possible [165]. 2PLSM utilises fluorescence excitation by the process of ‘two photon’ absorption, in 
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which two photons of near-infrared light simultaneously excite a fluorophore to achieve higher energy 

state, sufficient for fluorescence or phosphorescence imaging in the visible range [166]. 2PLSM 

provides improved resolution with thicker samples up to ~500 µm or more, and minimises 

photobleaching and photodamage, as the fluorescence excitation is limited to a narrow area of the 

sample [167]. However, 2PLSM does not improve spatial resolution compared to confocal microscopy 

[168] and can cause more substantial photodamage in thin samples [169]. 

A powerful solution to improve light penetration depth and minimise the photodamage is to selectively 

illuminate a single focal plane, optically sectioning the sample. One such modality that utilises optical 

sectioning is light sheet fluorescence microscopy (LSFM). The principle of LSFM is that an 

illuminating sheet of light in X-Y plane is passed through the side of the sample, overlapping the focal 

plane, perpendicular to the excitation light. LSFM is carried out by selective plane illumination 

microscope (SPIM) [170]. Due to a thin plane of the sample being exposed to light at a single time, 

there is a decrease in scattered out of focus light, thereby improving resolution, while photodamage is 

confined to the thin illuminated section, along with increased acquisition speeds compared to single 

point scanning measurements [164]. A 3D image of the sample can be generated by passing the light 

sheet through the sample, forming image stacks [171]. LSFM has been used to image 3D cell culture 

samples, such as human mammary spheroids MCF10A (50-150 μm thick) expressing histone 2B (H2B) 

coupled to  photoactivatable monomeric cherry (PAmCherry) FP, known as H2B-PAmCherry [172], 

microfluidic co-culture of human umbilical vein endothelial cells (HUVECs) with hepatocellular 

carcinoma cells (HepG2) [173] and others. LSFM reduces phototoxic damage and allows for long-term 

observations of thick 3D cell culture models, with high spatial resolution. SPIM can be bought 

commercially (e.g. ZEISS Lightsheet Z.1) or can be built by the users themselves (OpenSPIM [174]) 

allowing them to tailor the setup to their requirements, such as combinations with FLIM and PLIM.  

Super resolution microscopy is a collection of imaging methodologies, aimed at achieving imaging 

resolutions below the diffraction limit. These methods include SIM, STORM, PALM and others [175]. 

Structured illumination microscopy (SIM) is based on fluorescence microcopy, with conventional 

fluorophores, however, it uses non-uniform illumination of light in the form of a sinusoidal grid, with 

images taken at three phase shifts for three different grid orientations. The final image is made up of 9 

images, with resolution increased two fold compared to widefield fluorescence microscopy [176]. SIM 

can be applied in three dimensions (3D-SIM) to improve resolution by using three beams of interfering 

light, generating a pattern along the axial (Z) direction and the lateral (X and Y) directions [177]. 

Stochastic optical reconstruction microscopy (STORM), is another super-resolution technique that 

produces a fluorescence image from the localisation of specially designed organic fluorophores and FPs 

that are switched on and off using light of different wavelengths in a series of imaging cycles. In each 

cycle, only certain fluorophores are switched on, allowing for their positions to be determined with high 

accuracy, through repeating the cycle and constructing an overall image [178]. STORM was first 
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demonstrated with Cy3-Cy5 pair of cyanine dyes [178]  but since then have been optimized for other 

switchable fluorophores in direct STORM (dSTORM) [179].  Fluorescence Photoactivation 

Localization Microscopy (FPALM) uses light-inducible fluorophores to control the number of visible 

fluorophores by separating the optically active from the inactive. The sample is illuminated with two 

different wavelengths, one for readout and other for photoactivation. The photoactivated fluorophores 

become active when illuminated, subsequently localized and inactivated after period via 

photobleaching, the cycle is repeated for other photoactivated fluorophores present in sample, thereby 

constructing the image of the sample [180].  Stimulated emission depletion (STED) microscopy uses 

selective deactivation of fluorophores to create a fluorescence-based image, thereby minimising the 

area of illumination at the focal point, enhancing the resolution. STED utilizes a laser beam to excite 

the fluorophores and once excited, the fluorescence emission can be suppressed via stimulated emission 

using a depletion beam (STED beam), which suppresses the fluorophores back into the ground state. 

Ultimately the excitation and STED beam are scanned across the sample forming a sub-diffraction 

image [181]. 

Originally designed for fixed tissues prepared in unique way, super resolution microscopy methods are 

becoming optimised for analysis of live and thick 3D samples, such as 3D tissue models. 2PLSM has 

been combined with STED to improve image resolution, achieving live imaging of neuronal 

morphology up to 300-μm deep in living brain tissue [182].  

Measuring fluorescence or phosphorescence intensity using above-mentioned instruments allows for 

labeling, localization, tracking and semi-quantitative measurements in live cells and 3D tissue models. 

Ratiometric detection is based on the use of dyes or biosensors able to be excited or emitting in response 

to environmental parameter (e.g. O2, pH or Ca2+ ) [183]. Using calibration, the ratiometric response 

allows for quantitative measurements, however, reliance on different wavelengths has its drawbacks. 

Normally ratiometric biosensors display spectrally well separated ‘reference’ and ‘sensing’ 

wavelengths, however, with thick and heterogeneous samples these will be absorbed and scattered by 

tissue differently, depending on the measurement depth. This means that ratiometric calibration will not 

be valid across the whole sample in 3D due to differences in thickness and heterogeneity of the full 

sample, thereby questioning the overall applicability of the approach. A number of other methods have 

been proposed for intensity-based measurements, with measurements of fluorescence or 

phosphorescence lifetimes among the most advanced. 

 

1.3.2 Measurement of fluorescence and phosphorescence lifetimes 

In recent years methods utilising fluorescence lifetime imaging microscopy (FLIM) and 

phosphorescence lifetime imaging microscopy (PLIM) have become popular. FLIM and PLIM scanners 
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can be implemented with most microscopy platforms, including LSCM, widefield microscopy, 2PLSM, 

super resolution and light-sheet microscopy. FLIM and PLIM expand the use of available reporters, 

which can be distinguished not only by their spectral properties, but also by the luminescence lifetime 

[184], providing quantitative readouts for pH, ions, O2 and other parameters.  

The key advantage of fluorescence lifetime imaging over fluorescence intensity imaging is that 

fluorescence lifetime is an intrinsic property of the fluorophore, independent upon the method of 

measurement, therefore, results are largely independent from fluorophore concentration, and imaging 

is not affected by light scattering, photobleaching, and variations in excitation light [163]. The 

fluorescence lifetime of the fluorophore depends on its energetically unstable state, making it 

susceptible to quenching via differences in polarity [185], pH, temperature [36], ion concentration, 

protein interactions and other factors. The shortening of lifetime via quenching-induced conformational 

changes provides information on the molecular environment of the fluorophore, and allows for the 

quantitative differentiation between populations of quenched and unquenched fluorophores, in the form 

of simplified calibration relationships [163]. PLIM shows a number of similar applications, largely 

including measurement of O2 and temperature [186, 187]. The limitation of PLIM is that is a slower 

process than FLIM, however, it provides the possibility of time-gated detection, allowing to effectively 

filter out the sample background autofluorescence, which is indispensable in analysis of some tissue 

types, e.g. GI tract. 

A number of experimental approaches have been developed for FLIM and PLIM, including frequency 

and time domain-based readout, with variations such as time-correlated single photon counting 

(TCSPC) using fast-gated image intensifiers [188, 189]. In TCSPC, the luminescent molecules are 

excited by a pulsed laser source with a high repetition rate. Photons emitted by the sample are detected 

and the times associated with them are measured, thereby constructing a decay curve. This method 

provides high detection sensitivity, accurate lifetime measurements and, when combined with LSCM 

and 2PLSM, it allows optical sectioning of the sample. TCSPC is also compatible with PLIM, allowing 

fast acquisition times, shorter than 1 minute. FLIM and PLIM constantly illuminating the sample 

constantly. Instead they illuminate via combination of very short pulses, in the 10-12 s range. This 

minimizes the degree of photodamage than in conventional widefield or laser-scanning microscopies. 

Systems such as TCSPC also rely on highly efficient photon counting detectors, allowing using lower 

laser power intensities. These are the main advantages of the methodology, making it highly suitable 

for analysis of 3D tissue models.  

 

1.4 Probes for live cell multi-parametric imaging of 3D tissue models 

Imaging of 3D cell and tissue models requires high depth penetration of light, fast imaging speed, and 

the use of non-destructive intensity of excitation light. High depth penetration of light is needed to 
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image the thick 3D samples, avoiding light scattering reducing the resolution of the image. The depth 

penetration of light depends on: the ability to image the fluorophore or phosphor via microscopy 

techniques and its physical properties such as its spectra, along with the homogeneous distribution of 

the probe within the sample. Fast image acquisition speeds and low intensity of excitation light are 

needed to prevent and limit photobleaching and phototoxicity, which can lead to loss of luminophore 

function and toxic effects on the live samples. Photobleaching and phototoxicity occur due to energy 

emitted by excited luminophores, which is not limited to the form of fluorescence or phosphorescence 

emission of light, for example, this dissipated energy can cause reactions with O2, producing reactive 

oxygen species (ROS) [190, 191]. The quenching of phosphorescence also produces singlet oxygen, 

however, this process causes minimal sample damage with modern O2 probes [187]. 

The probes and fluorescent dyes needed for multi-parametric imaging of 3D tissue models can be 

adapted from traditional intensity-based measurements and advanced FLIM and PLIM applications. In 

theory everything is compatible with 3D tissue models, but the practical challenge is the ability to 

efficiently stain the 3D tissue model in a reasonably short period of time.  Small molecules and 

nanoparticles used can display very poor distribution across the sample or stain only particular cell 

types, with most nanoparticles also displaying poor staining in formed 3D tissue models. The use of 

genetically encoded biosensors is mainly limited to use of transgenic models and is challenging for 

transient transfection. Multi-parametric analysis can be also complemented by classical 

immunofluorescence, however, antibodies are bulky molecules that require either prolonged staining 

protocols or laborious sectioning of the samples.  

The development of luminescence lifetime probes can potentially solve the challenges involved in live 

cell imaging of 3D tissue models. Lifetime imaging is independent of fluorophore concentration and is 

therefore unaffected by light scattering, in relation to sample thickness and phototoxicity [163].  A wide 

array of FPs [192, 193] and nanoparticles [194] have been utilized in FLIM [163, 195]  and PLIM [196] 

for live cell imaging. In Table. 1.1, the usability of a wide range of probes for multi-parametric imaging 

of 3D tissue is highlighted. 

Table 1.1. Probes and biosensors with useful properties for multi-parametric quantitative imaging of 3D tissue 

models (Table modified from [197]) 

 
Measured 

parameter 

Description of 

probe(s) 

Spectral properties, 

FLIM/ PLIM-

compatible (?) 

3D tissue models tested. 

Comments. References 

Autofluorescence 

‘metabolic’ 

imaging 

Endogenous 

NAD(P)H, 

FAD 

340 nm exc. (700-740 nm  

two-photon)/ 460 nm em. 

FLIM (1-6 ns) 

FAD: 450 nm exc./ 520 nm 

em. 

Tumor spheroids and 

‘organoids’ [198-200]. 

Cytosolic NADH-

NAD+ ratio 

Genetically 

encoded 

biosensor 

488 nm exc. (800 nm two-

photon)/ 525 nm em. 

FLIM (1.87-2.6 ns) 

Needs transfection. More 

selective and brighter than 

autofluorescence imaging. 
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Peredox Tested on live brain slices (ex 

vivo) 

[201]. 

Redox/ ROS Genetically 

encoded 

reduction-

oxidation-

sensitive green 

fluorescent 

protein 1 

(roGFP1) 

488 nm exc. (740-950 nm 

two-photon)/ 525 nm em. 

Ratiometric, FLIM (2.46 

ns) 

Needs transfection. Moderate 

responses in fluorescence 

lifetime (but better in 

ratiometric intensity mode) to 

changes in redox ratio. Tested 

on live brain slices (ex 

vivo)[202]. 

Molecular oxygen 

(O2) 

Nanoparticles: 

PA2, NanO2/ 

MM2, SI/SII 

405 nm exc. (740-780 nm 

two-photon)/ 650-660 nm 

em. PLIM (20-70 s) 

SII-series: 470 and 632 nm 

exc./ 770 nm em. PLIM 

(10-40 s). 

Neurospheres, brain slices, 

tumor spheroids.  

Most bright, photostable and 

reliable calibration but 

typically need ‘continuous 

staining’ procedure [35, 203].  

Molecular oxygen 

(O2) 

Small molecule 

probes Pt-Glc, 

Pt-Gal 

One-photon excited, 405 

nm exc./ 650 nm em. 

PLIM (20-57 s) 

Tested in neurospheres, brain 

slices, tumor spheroids, ex 

vivo colon, bladder and 

intestinal tissues. Pt-Glc 

displays some tissue-

specificity in calibration. More 

efficient tissue staining than 

with nanoparticles [196, 204-

209]. 

Molecular oxygen 

(O2) 

Porous 

polymer-based 

O2-sensitive 

scaffolds for 3D 

culture 

405, 540 nm exc./ 650 nm 

em. PLIM (20-55 s). 

Tested with tumor spheroids 

(HCT116, PC12) and live 

brain slices. Allow monitoring 

of pericellular O2 in 3D culture 

grown within polymer 

scaffold [59, 210]. 

 

Intracellular 

temperature 

Nanoparticles 546 nm exc./ 585 nm em. 

FLIM (2.4-2.7 ns) 

Tumor spheroids [211]. 

pH Genetically 

encoded 

fluorescent 

proteins 

pHRed: 440 nm exc. (860 

nm two-photon)/ 610 nm 

em. FLIM (1.7-2.1 ns) 

ECFP: 440 nm exc./ 512 

nm em.) FLIM (1.8-2.8 ns) 

Need transfection. Not tested 

with 3D tissue models. Some 

are visible only under two-

photon excitation [212, 213]. 

pH Nanoparticles 546 nm exc./ 600 nm em. 

FLIM (3.7-4.7 ns).  

Tested with rat primary 

neurospheres. Localize in 

lysosomes [214]. 

pH BCECF and 

other small 

molecule dyes 

Green-red fluorescence. 

FLIM. 

Concentration and cell-type 

dependent responses, low 

photostability [214]. Tested 

with cockroach salivary duct 

tissue [215]. 

Ca2+ Small molecule 

probes Oregon 

Green BAPTA-

1 (OGB-1) and 

others  

OGB-1: 488 nm exc./ 510 

nm em. FLIM (0.6-3.9 ns) 

Live brain slices [216-218].  
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Ca2+ Genetically 

encoded 

biosensor 

Cerulean 

432 nm exc./ 530 nm em. 

FLIM (0.8-2.4 ns). 

Needs transfection or 

transgenic animals. Live brain 

slices. Preferred use in two-

photon excited mode [219, 

220]. 

Lactate/ glycolysis Genetically 

encoded 

ratiometric 

sensors 

430 nm exc./ 485 and 535 

nm em. (ratiometric) Not 

tested in FLIM. 

Needs transfection. Live brain 

slices [221, 222]. 

 

Labeling of 

proliferating cells 

Cell-permeable 

dye (Hoechst 

33342) 

quenched by 

BrdU 

405 nm exc./ 440 nm em. 

FLIM (1.3-2.2 ns) 

Tumor spheroids and 

intestinal organoids. Needs 

comparison between BrdU 

(+/-) cells in the experimental 

model. Can be adapted to other 

dyes staining nuclei [53]. 

Viscosity Small molecule 

probes 

(BODIPY-

based rotors) 

488 nm exc. (800 nm two-

photon)/ 515 nm em. 

FLIM (1-3 ns). 

Tumor spheroids. 

Concentration-dependent 

calibration complicates data 

interpretation for 3D tissue 

models [223]. 

K+ 

 

Nanoparticles 

 (BODIPY‐

based K+ -

sensitive 

fluoroionophore 

FI3 

encapsulated in 

cationic 

polymer RL100 

nanoparticles) 

640 nm exc./660 nm em. 

FLIM (3.5-4.5 ns). 

Tumour spheroids, 

neurospheres, intestinal 

organoids, and ex vivo 

organotypic rat brain slices 

[224] 

 

1.4.1 Fluorophores 

Endogenous fluorophores are fluorescent biomolecules present naturally within a sample and 

contributes to cell and tissue autofluorescence. This autofluorescence is normally caused by 

fluorophores such as: aromatic amino acids, reduced nicotinamide adenine dinucleotide (NADH) and 

flavin adenine dinucleotide (FAD). FLIM of endogenous fluorophores and their expression profiles 

provides information on the metabolic and functional state of the sample, which can be used to 

differentiate healthy tissue from diseased. The main advantage of endogenous fluorophores is that no 

specific labeling is required. However, the fluorescence signals are often weak and non-specific due to 

limitations in light penetration and low expression of the fluorophores. Furthermore their interactions 

with cellular components and proteins is also very complex, which results in multi-exponential decays, 

which in turn affects the interpretation of measured fluorescence lifetimes. Due to short excitation 

wavelengths of endogenous fluorophores, for example near-UV in the case of NADH, two-photon 

excited imaging must be employed. In comparison to state-of-the-art approaches to analyze the balance 

of cell energy production pathways [225, 226], metabolic imaging with NAD(P)H does not provide 
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direct information on oxidative phosphorylation, glycolysis and Krebs cycle fluxes and therefore, can 

be viewed as supplementary parameter in analysis of cell metabolism.  

Exogenous fluorophores and phosphors address the above limitations associated with endogenous 

fluorophores, such as signal weakness and low specificity. Exogenous fluorophores and phosphors have 

a large diversity in wavelength and lifetime range, and in their production. For example, they can be: 

proteins, bioconjugates, or nanoparticles etc. The luminescence lifetime of fluorophores is frequently 

sensitive to changes in their microenvironment, including self-aggregation, interaction with lipids, 

proteins, their molecular rotation etc. Therefore, responsive FLIM probes can be designed in a way that 

changes in their luminescent lifetimes will be a function of their environment, allowing for the 

measurement of quantitative responses to a wide range of potential analytes.  

The main directions in the design of FLIM and PLIM probes are; (i) the optimization of their sensing 

properties such as spectral, brightness, photostability, specificity and the maximal response to the 

measured parameter, to achieve reliable calibration; (ii) the design of optimal delivery features such as 

cell permeability, and intracellular or tissue localization. The probe ideally should not interfere with 

cell physiology or the process it is tasked to analyze, for example, a probe directed for analysis of O2 

should have no effects on oxygen consumption rate, cell mitochondrial function, and energy production 

pathways. Probes are frequently present in form of simple dyes, small molecule conjugates, FPs, 

supramolecular conjugates or nanoparticles. From this list, nanoparticles often display the best overall 

sensing features, including reliable calibration, however, their bio-delivery often represents a 

complicated task due the complex nature of interactions between nanoparticles and biological 

components such as extracellular microenvironment, cellular membrane and subcellular environment 

[227]. In contrast, small molecule dyes can stain 3D tissue models very easily, but their calibration is 

strongly concentration-dependent. This is somewhat due to the unpredictable behavior inside the cells 

and the presence of multiple heterogeneous cell layers in 3D tissue model.  

pH gradients play important roles in cellular processes such as proliferation, senescence, and apoptosis, 

endo- and exocytosis (i.e. secretory pathway), intracellular transport, contraction of muscle cells, and 

regulation of ion influxes. pH is tightly regulated within mammalian cells, with their organelles each 

requiring a different range of pH for their respective functions. For example, in the cytosol pH values 

around 7 are needed for the proper function of organelles, acidic pH of 4-5 in lysosomes for degradation 

of proteins, and alkaline pH of 7.5-8.0 in mitochondria for oxidative phosphorylation. Pathologic 

conditions can alter significantly intracellular and extracellular pH via perturbing effects on ion 

homeostasis, therefore pH is an important biomarker for disease states, such as cancer and neurological 

disorders. Changes in intracellular pH can be measured via number of dyes 2',7'-Bis-(2-Carboxyethyl)-

5-(and-6)-Carboxyfluorescein, Acetoxymethyl Ester (BCECF), FPs and nanoparticles. While FLIM is 

preferred readout, there are only few suitable probes (i.e. nanoparticles and FPs) with lifetime ranges 

over physiological pH (Table 1.1). Cellular and tissue temperatures are tightly regulated via adaptive 

thermogenesis pathways within a narrow temperature range [228-230].  
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Temperature affects important processes, such as biomolecule diffusion, energy production in 

mitochondria, and enzyme function. Elevated temperatures activate the heat shock pathway, in which 

heat shock proteins (HSP) are expressed to stabilize and refold damaged proteins or to insure the correct 

folding of newly produced proteins. Temperature regulation is also important in the imaging and 

treatments of diseases [231], such as cancer [232], and can be an important biomarker. Similarly, the 

viscosity of cytoplasm and other intracellular organelles can be a key factor in drug diffusion, especially 

in 3D engineered cells and tissues. Viscosity can be measured by fluorescent probes called molecular 

rotors, also sensitive in fluorescence lifetime domain. Several fluorescent T-sensitive and viscosity 

probes for intracellular measurements were designed but only few of them have been tested with 3D 

tissue models.  

The detection of molecular oxygen (O2) is a well-developed and important area of research, due to the 

physiological importance of oxygen and its influences on growth, differentiation and functions of cells 

within 3D cell and tissue models [187]. Intracellular phosphorescence based O2 sensors have been the 

basis of small molecule, nanoparticle and solid-state sensors and probes, that contribute efficient tissue 

staining, calibration and brightness with a broad compatibility with various imaging platforms. The 

phosphorescent O2 probes often display mono-exponential decay, large Stokes’ shift and µs-range of 

phosphorescence lifetimes. These parameters make them compatible for multiplexing with virtually any 

other biosensors, and therefore, are often superior to FLIM-based probes to other analytes. O2 probes 

help in studies of hypoxia-dependent cell responses, direct analysis of mitochondrial function, cell and 

tissue viability, intracellular and extracellular gradients and have become popular tools in analysis of 

various 3D tissue models such as spheroids, cellular aggregates, ex vivo tissues, and organoids. A 

number of tested probes and sensor materials have been applied in the literature, with  some of them 

demonstrating multi-parametric imaging of O2 [36, 53, 59, 203, 207, 233, 234]. 

Cellular metabolism and bioenergetics are key to proper cell function, and its dysregulation is a 

biomarker of disease. Metabolism can be imaged and measured via genetically constructed FPs such as 

Peredox, which measures NADH/NAD+ ratio. The shift in redox potential and production of reactive 

oxygen species (ROS) are indicators of oxidative stress which can adversely affect mitochondrial 

biogenetics and overall cell function, which have been successfully imaged by HyPer3, TriPer, and 

roGFP1 [202, 235, 236].  A drawback of these proteins is that they suffer from low response to FLIM 

and from cross sensitivity with pH, therefore requiring transfection or use in transgenic animals, 

however, they still perform better than endogenous fluorophores. 

The new development of FLIM and PLIM in multi-parametric imaging has generated new applications 

and probes. Our group has discovered that the process of BrdU-dependent fluorescence quenching of 

nuclear-labeling dye, Hoechst 33342, reveals strong response in fluorescence lifetime and can be 

employed for labeling of proliferating cells in live culture [53]. The degree of quenching depends on 

the cell type and staining conditions such as the concentration of BrdU and Hoechst, as well as the 

incubation time.  This methodology can potentially be applied for drug-induced effects on the duration 
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of cell cycle, identification and discrimination of proliferating cells in complex tissue models. Hoechst 

dye is two-photon excitable and similar type of quenching effects can be observed for other nuclear 

stains, e.g. SiR-Hoechst [237].  

 

1.4.2 Fluorescent proteins 

Fluorescent proteins (FPs) are applied as non-invasive probes for the study of biological models, with 

applications in the study of protein tracking, expression, and protein-protein interactions. Most FPs are 

based on the original green FP (avGFP) discovered in 1960, from the Aequorea Victoria jellyfish. This 

original avGFP has been genetically engineered to produce a wide array of FPs such as: blue (BFP), 

cyan (CFP), and yellow (YFP) FPs. Later on saw the development of red (RFPs), which were discovered 

from the coral Discosoma (DSRed), yielding orange (OFP), far-red FPs, and infrared FPs. Prototypical 

FPs based on avGFP and DsRed are ~25 kDa in size and contain three conserved amino acid residues 

responsible for chromophore formation. The FP structure consists of a rigid β-barrel comprised of 11 

β-sheets around a central α-helix. The α-helix contains the three conserved amino acids, Ser65, Tyr66, 

and Gly67, which are responsible for chromophore formation. Formation of the chromophore is a three-

step reaction and starts with cyclisation via the nucleophilic attack of the amine group on Gly67, to the 

carbonyl carbon of the Ser65. The carbonyl carbon of the Ser65 is dehydrated, forming an imidazolin-5-

one heterocyclic ring intermediate. Tyr66 is then oxidized by molecular oxygen, forming a Cα−Cβ 

double bond of the Try66 aromatic ring to the imidazoline. The bond formation results in the production 

of a 4-(p-hydroxybenzylidene)-imidazolidin-5-one conjugated ring system, conferring visible 

fluorescence to the FPs. 

 

1.4.2.1 Expansion of fluorescent protein colour palette  

The initial expansion of the FP colour palette from avGFP was pioneered by the Tisen group and its 

many collaborators. Mutation of Trp66 to His66 to increase wtGFP brightness resulted in the production 

of a blue fluorescing protein (BFP) [238]. When exploring the use of BFP as FRET pair with avGFP, 

both a UV and a blue emission band were discovered in the spectra of avGFP. The removal of the UV 

band via mutation of the Ser65 to Thr65 resulted in a 5-fold increase of the blue band, increasing the 

brightness of avGFP [239].  A second mutation of Phe64 to Leu64 resulted in the increase of optimal 

folding and the maturation temperature of the chromophore, from 28°C to 37°C. This double mutation 

of avGFP was seen as a breakthrough, as it allowed the use of GFP at mammalian cell temperatures of 

~37°C and increased its fluorescent brightness [240]. The double mutant avGFP is currently marketed 

as enhanced green fluorescent protein (EGFP) . A further two FPs were engineered with mutation at 

Thr203 to Tyr203, which yielded yellow fluorescent protein (YFP) [241], and a mutation at Tyr66 to Trp66 
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produced cyan fluorescent protein (CFP) [242].  The first red fluorescent protein (RFP) was isolated 

from the Anthozoa species of coral Discosoma nummiforme, known as DsRed. It formed a stable 

tetramer, sharing structural similarities to monomer avGFP. The chromophore of DsRed is similar to 

that of avGFP, except for the presence of a second Cα−Cβ double bond, which results in a shift to red 

fluorescence emission. However, DsRed's tetramer conformation results in aggregation when used as a 

protein tag, perturbing protein functions and localisations. Therefore, a monomeric variant of DsRed 

was needed in order to solve the issues of dimerisation. A monomeric red FP (mRFP) [243] was 

designed by altering the newly designed, rapidly maturing variant of DsRed [244]. mRFP was then used 

as the basis of FPs in the ‘Fruit series’ mFruits. Here, groups have mutated mRFP to exhibit maximum 

wavelengths from 560 nm to 610 nm, with FPs named after fruits that resemble their emission colours.  

Non-prototypical FPs not based on avGFP or DSRed are derived from vertebrates or prokaryotes. Non-

prototypical FPs derived from bacterial phytochromes (BphPs) extend FPs colour palette into the far-

red spectrum of light (710-850 nm) and into the infrared spectrum of light (800-1000 nm). Their 

development is crucial to the development of infrared FPs, as prototypical infrared FPs have yet to be 

discovered in nature or in laboratory. BphPs based FPs use biliverdin (BV) produced by heme 

oxygenase 1 (HO-1) to produce their fluorescence light. The best example of a BpHp based FP is the 

small Ultra Red Fluorescent Protein (smURFP), derived from cyanobacterial phycobiliprotein. 

smURFP is very photostable and is the one of the brightest far red, non-prototypical FP to date, with 

intrinsic fluorescence comparable to EGFP [245]. An example of a non-prototypical FP derived from 

vertebrates is the FP UnaG, derived from the eel species Anguilla japonica. It produces O2 independent 

green fluorescence, induced by a noncovalent ligand known as bilirubin (a reduction product of BV) 

[246]. UnaG possesses several advantages over prototypical avGFPs due to their smaller size in the case 

of genetic fusions for protein studies, and secondly because of its ability to fluoresce in hypoxic 

conditions. The development of non-prototypical FPs will provide new avenues for the expansion and 

improvement of FPs. Other types of non-prototypical FPs are those based on the binding of flavin 

mononucleotide (FMN) to produce fluorescent light. One such FP is Mini Singlet Oxygen Generator 

(MiniSOG), which is engineered from Arabidopsis phototropin 2. MiniSOG generates singlet oxygen 

when illuminated by blue light for electron microscopy imaging applications [247]. Prototypical FP 

developments have also been aided by the genetic engineering of proteins from prokaryotes. HyPer is 

a hydrogen peroxide (H2O2) detector based on circularly permuted YFP (cpYFP) inserted into a  

prokaryotic regulatory domain sensitive to H2O2, known as OxyR [248]. Mutation of Cys199 to Ser199 

renders HyPer insensitive to H2O2, but perseveres its sensitivity to pH, forming the ratiometric pH probe 

SypHer [249].  

Recent efforts of FP expansion include the development of red and far-red (710-850nm) FPs. This push 

in development is due to the longer wavelength of red an far-red light, which results in higher light 

penetration depth and reduced phototoxicity. Therefore, red and far-red FPs are highly beneficial for 
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applications in tissue and whole animal imaging.  A comparative study of prototypical far red FPs, 

including E2-Crimson, eqFP650, eqFP670, Katusha, Katusha2S, mNeptune, mKate, mKate2, and 

mCardinal, determined Katusha2S to be the best overall far-red FP for whole body imaging applications 

[250], with Katusha2S possessing the highest fluorescence brightness and signal-to-noise ratio in tissue 

and whole-body staining. However, due to its tandem dimer conformation, its application in protein 

studies was hindered, thereby making monomeric proteins like mKate2 more advantageous for 

applications in protein studies [251]. Recently a new monomeric RFP mScarlet has been developed, 

displaying record brightness and quantum yield (Q.Y), out-preforming mKate2 in fusion tag 

applications [252].   

The development of infrared FPs has come from the engineering of BphPs derived from the bacterium 

Deinococcus radiodurans known as IFP1.4 [253], and subsequently iRFPs from bacterium 

Rhodopseudomonas palustris [254]. These two infrared FPs have served as the basis of the development 

of a range of infrared FPs: IFP2.0, iRFP670, iRFP682, iRFP702 and iRFP720 [255, 256]. However, the 

series of iRFPs are dimeric, and, as a result, cannot be used for genetic fusion tags. Recently, monomeric 

miRFP670, along with miRFP703, have been developed, which display increased brightness and 

efficient binding of BV in mammalian cells. The monomeric conformation and increased brightness 

allows for applications in cellular and in vivo imaging, with the visualisation of protein dynamics, RNA 

interactions and signalling cascades [257, 258]. 

Table 1.2 Fluorescent proteins with useful properties for live cell imaging.  

Spectra 

class 

Name Exc./Em. Extinction 

coefficient 

(M-1cm-1) 

Q.Y Comments and 

References 

Infrared IFP2.0 690nm/711nm 86,000 0.08 [255] 

Infrared miRFP670v1 642nm/670nm 71,300 0.12 [257, 258] 

Infrared miRFP703 674nm/703nm 90,900 0.08 [257, 258] 

Far-red smURFP 642nm/670nm 180,000 0.18 [245] 

Far-red mKate2 587nm/631nm 63,000 0.39 [251] 

Far-red Katusha2S 588nm/633nm 67,000 0.44 [250] 

Red DsRed express 554nm/586nm 30,100 0.42 [244] 

Red mCardinal 604nm/659nm 87,000 0.19 [259] 

Red mNeptune2.5 599nm/643nm 95,000 0.24 [259] 

Red FusionRed 580nm/608 94,500 0.19 [260] 

Red rsFusionRed2 580nm/607nm 35,500 0.12 Reversable 

photoswtichable 
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fluorescent protein 

(RPFP) 

λoff to on 400-510nm 

λon to off 592nm 

[261] 

Red rsCherry 572nm/610nm 80,000 0.02 RPFP 

λoff to on 550nm 

λon to off 450nm 

 

[262] 

Red rsTagRFP 567nm/585nm   RPFP 

λoff to on 440nm 

λon to off 567nm 

[263] 

FRET with EYFP 

[264] 

Red mCherry 587nm/610nm 72,000 0.22 [265] 

Red mScarlet 569nm/594nm 100,000 0.7 [252] 

Red mRuby3 558nm/592nm 128,000 0.45 [266] 

FRET with mClover3 

Orange mOrange2 549nm/565nm 58,000 0.6 [267] 

Yellow EYFP 514nm/527nm 83,000 0.61 [268] 

Yellow mVenus 515nm/528nm 92,000 0.57 [269] 

Yellow mCitrine 516nm/528nm 69,000 0.72 [270] 

Green EGFP 488nm/507nm 56,000 0.6 [240] 

Green mNeonGreen 506nm/517nm 116,000 0.8 [271] 

Green mClover3 506nm/518nm 109,000 0.78 [266] 

Green Dronpa 503nm/518nm 95,000 0.85 RPFP 

λoff to on 488nm 

λon to off 405nm 

[272] 

Cyan ECFP 434nm/477nm 26,000 0.4 [212, 273] 

Cyan mTurquoise2 434nm/474nm 30,000 0.93 [274] 

FRET with 

mNeonGreen [275] 

and mVenus 
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Blue EBFP2 383nm/448nm 32,000 0.56 [276] 

Blue mTagBFP2 399nm/454nm 50,600 0.64 [277] 

 

1.4.2.2 Factors affecting the selection of fluorescent proteins for imaging applications  

Each FP spectral class has its own set of advantages and disadvantages depending on the imaging 

application and conditions used [278, 279]. For example, RFPs are more suitable to imaging thicker 

samples due to their longer emission and excitation wavelengths, compared to BFPs which possess 

shorter wavelengths, resulting in high levels of phototoxic damage to the sample. However, a drawback 

of RFPs is that they are not as bright as other FPs due to their longer emission and excitation 

wavelengths. To determine what FPs are suitable for an experiment or imaging application, its intrinsic 

properties must be considered, along with the experimental parameters, such as: brightness, 

photostability, environmental sensitivities, chromophore maturation, and oligomerization. 

Theoretical luminescence brightness is calculated by multiplying the extinction coefficient by its Q.Y. 

The extinction coefficient is defined as the capacity of the FP to absorb the excitation light of the 

specific wavelength required, and therefore, a higher extinction coefficient results in a greater amount 

of light absorbance. In the case of Q.Y, it is the ratio of the number of photons emitted as fluorescence 

to the number of excitation photons absorbed. Therefore, a high Q.Y results in a higher number of 

excited photons for emission as fluorescent light. Together, a high extinction coefficient and Q.Y 

confers high brightness to the FP, which is desirable to achieve a high fluorescence signal and to 

differentiate between any background fluorescence. However, in many commercially marketed FPs, 

brightness comparisons between FPs are made qualitatively, without giving details on the extinction 

coefficient or the Q.Y. It is therefore very important to ascertain these two parameters to truly determine 

a FP’s brightness.  

For longer experiments, a key property to consider is a FP’s photostability, as multiple cycles of 

excitation and emission light can irreversibly deactivate and photobleach the FP, thereby diminishing 

its fluorescence over time. However, the selection of an FP simply based on its theoretical photostability 

is problematic, due to the absence of a clearly defined methodology to characterise this parameter [280]. 

Another factor to consider is the different intrinsic properties of each FP, (i.e. wavelength and the 

intensity of light needed for excitation), causing variations in photostability, even within the same 

spectral class.  

A FP’s fluorescence intensity and lifetime can be sensitive to its environment. The most common 

environmental factors that affect the properties of FPs are solvent polarity, pH and the presence of 

extrinsic quenchers (i.e. ions). Solvent polarity and viscosity can cause changes in the difference 

between excitation and emission spectra peaks (known as Stokes shifts, named after George G. Stokes). 
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Most FPs are sensitive to pH, with each FP possessing a specific pKa value of pH at which its 

fluorescence brightness is quenched by one half. Effects of pH should be considered if the FP is being 

targeted to the acidic organelles of the cell, like the lumen or lysosomes. Within such acid organelles, 

low acidic pH responsive FPs (i.e. with a low pKa value) should be avoided, if the goal is not to quantify 

changes in pH. GFP and its derivatives CFP and YFP are responsive to changes in pH, which can be 

quantified from responses in their fluorescence intensities and lifetimes. pH affects fluorescence by 

protonating the electron-rich chromophore, reducing the absorption of excitation [281]. Several cationic 

and anionic ions can quench the fluorescence of FPs, with YFP being particularly sensitive to Cl- ions 

[282]. Therefore, a FP’s sensitivities to pH, ion and polarity changes that affect FP’s fluorescence 

intensities and lifetimes can be used to quantitatively measure these factors [283].  

The maturation time of a FP is the time it takes for the FP to efficiently fold and mature its chromophore 

structure for optimal fluorescence brightness. In the case of time-sensitive experiments that require 

quick responses, a short maturation time is needed. Temperature and O2 levels are known to affect 

maturation times, with many FPs requiring different conditions for optimal maturation. In the literature, 

contrasting maturation times are given. This is due to the absence of a single standardised procedure for 

the determination of maturation times. For example, EGFP maturation time is 14 minutes at 37°C, and 

this is widely reported to be its optimal conditions. However, one study found that EGFP matured in 8 

minutes at 29°C, in direct conflict with studies reporting that 37°C was optimal [284]. O2 is key in the 

formation of the FP chromophore, where it oxidises the Tyr66 residue. Therefore, under hypoxic 

conditions, the chromophore does not mature, resulting in a correctly folded FP that is not fluorescent 

[285]. However, there are some types of FP that can mature independent of O2. For example, the O2-

independent FP UnaG is derived from the Unagi eel [246], with applications in hypoxic imaging [286]. 

Many FPs exist in different oligomer states, with the majority forming monomers, and a few forming 

dimers and tetramers. Oligomerisation is problematic for applications in FP fusions (FPFs), where 

oligomerisation can affect the protein of interest’s function. It also can affect Forster resonance energy 

transfer (FRET), as oligomerisation can give false positive FRET responses [273]. Therefore, it is 

important to make sure FPs are monomeric in such applications. However, this isn’t always straight 

forward, as many FPs commercially marketed as monomeric have been known to form dimers [287]. 

Some FPs are prone to form affinity oligomers in high concentrations, in close proximity, and when 

fused to oligomeric proteins.  

 

1.4.2.3 Fluorescent proteins as imaging tools 

Protein interactions, along with intracellular and extracellular metabolite gradients, serve as the basis 

of cell signalling and cellular processes. To visualise such signalling pathways and processes, 
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fluorophores such as FPs have been applied in the imaging tool known as FRET.  

FRET was described by Theodor Forster [288], and is a fluorescence tool in which an excited donor 

fluorophore transfers its energy non-radiatively to a neighbouring acceptor fluorophore, resulting in the 

acceptor emitting increased fluorescence [289]. FRET is a distance dependent process with a range of 

1–10 nm between the two FPs and is used in visualising proximity changes in the donor and acceptor 

FPs. As a result, FRET can be applied to the study of protein-protein interactions, as well as changes in 

protein conformation, ion concentrations, and enzyme activity [290, 291]. FPs are the most commonly 

used fluorophores in FRET applications, as they can be genetically attached to proteins and domains of 

interest easily for live cell imaging in both intra and intermolecular measurements. In the case of 

intramolecular measurements, the FRET pair are on the same molecule, and in intermolecular, the 

FRET pair are on different molecules. For two FPs to be successful FRET pairs, their spectra must 

overlap so that the donor FP’s emission can excite the acceptor FP. The first successful and most popular 

FRET pair is CFP – YFP [292], which have been used in the detection of Ca2+ concentrations [293] and 

the direct detection of integrin interactions [294].  However, the FRET pair of CFP – YFP suffers from 

photobleaching of the YFP acceptor and spectral cross talk, due to the closeness of the two FP’s spectra. 

GFP – RFP FRET pairs possess greater spectra separation and have been developed to overcome issues 

with cross talk. However, due to the use of RFPs, they suffer from low brightness with weak FRET 

emission. Despite this, they have found applications in FLIM-FRET imaging. FLIM is the most accurate 

method of measuring FRET and the least prone to cross talk, as it only considers the donor fluorescence 

emission. The presence of FRET can quench the donor FP’s fluorescence lifetime and, in turn, the 

amount of quenching by FRET can be quantified by measuring the shortening of the fluorescence 

lifetime of the donor FP. This is known as FLIM-FRET imaging. This technique has been applied to 

the quantitative analysis of 3D tissue models, for example, in studying the signalling pathways of 

CaMKII and RhoA in live brain slices [295] and in the activation of apoptosis in tumour spheroids 

[296]. However, when applying FLIM-FRET, special attention must be given to selecting FRET pairs 

that are not sensitive to environmental factors that may affect their fluorescence lifetimes, such as pH 

[212], viscosity [223], and temperature [36].   

FPs have also been developed for applications in super resolution imaging, known as reversibly 

photoswtichable fluorescent proteins (RSFPs), which switch between on and off states in response to 

certain wavelengths of light [297]. For example, in the RSFPs of GFP, this process involves a change 

in the isomerisation and protonation states. along with conformational changes in the chromophore 

[298]. The cis-conformation is fluorescent, whereas the trans- is dark [299, 300]. RSFPs have found 

applications in protein tracking [301] and interactions [264] as well as in super-resolution imaging 

[261]. The advantages of using RSFPs is that they allow for the reduced quantity and duration of 

excitation light. This, therefore, limits the phototoxicity of the sample and reduces photobleaching of 

the fluorophore. The on-off switching also allows for extended imaging times, with applications in 
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super resolution imaging.  However, the bulk of current and established RSFPs are based on GFP and 

use a UV- blue wavelength excitation light, which is highly phototoxic. Therefore, there is a need for 

the development of red RSFPs. Current red RSFPs, like rsCherry [298] and TagRFP [264], still use blue 

light to switch on the FP. The development of the orange-green wavelength excitation light, red RSFPs, 

has recently come from a study in which monomeric FusionRed was mutated to produce 3 new variants: 

rsFusionRed 1-3. All three possessed higher brightness, with rsFusionRed 2 and 3 exhibiting the fastest 

on-off switching of red RSFP to date. Most importantly, all three could be switched on using green 

excitation light [261]. The faster switching time and green light on-switching allowed for shorter, more 

frequent acquisition times in super resolution imaging with Molecular Nanoscale Live Imaging with 

Sectioning Ability (MoNaLISA) [302].  

The continued expansion and improvement of FPs, particularly into the far red and infra-red spectrum, 

drives FP development for applications in FLIM-FRET and super resolution imaging, allowing for the 

live cell imaging of protein interactions and activities, as well as metabolic gradients.  However, despite 

the advances discussed, the original EGFP, EYFP and ECFP are still the most popular FPs used to date, 

due to an unwillingness to utilise the newer, reportedly more suitable FPs stemming from doubts 

regarding the legitimacy of the improved FPs. Commercially marketed FPs are also relatively 

expensive, with many researchers depending on the generosity of other research groups developing FPs.  

 

1.5 Self-assembling protein nanoparticles 

Self-assembling protein nanoparticles is the term used to describe nanoparticles derived from protein 

nanocages, which are formed through the self-assembly of their capsid or subunit proteins. They act as 

robust cages, 20-100 nm in size, with well-defined topology, providing interior, exterior, and subunit 

locations for genetic and chemical modification with small molecules and sensor dyes. They possess 

many advantages that make them suitable for use as vaccines [303], drug delivery and imaging probes 

[304], such as: (i) low toxicity to cell and tissue models due to their biological nature, (ii) intrinsic self-

assembly, (iii) high potential for modifications on exterior or interior of the structure, (iv) chemically 

and environmentally stable, natural cell penetrating activity, and (v) they are compatible with bacterial 

production. Their self-assembly process is driven by non-covalent interactions between the individual 

subunits, which can include: hydrophobic, electrostatic, and hydrogen bonds, as well as van der walls 

interactions [305, 306]. The types of self-assembling protein nanoparticles discussed here are viral like 

particles (VLPs) and ferritin derived protein nanocages. 
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1.5.1 Viral nanotechnology 

Viral nanotechnology combines the disciplines of virology, chemistry, physics, physiology, 

pharmacology, and materials science, with the aim of developing viral nanoparticles (VNPs) and VLPs 

as a platform for the generation of functional materials [307]. VLPs are derived from viral proteins that 

lack viral genetic material, rendering them non-infectious; whereas VNPs contain viral genetic material. 

Here I will be discussing VLPs, as the lack of infectious genetic material makes them more 

advantageous for nanoparticle applications in drug delivery and imaging probes. 

The most commonly used viral types for VLPs are icosahedron shaped, which possess a polyhedron 

structure with 20 triangular faces, organized in a 5:3:2 symmetry. According to Caspar and Klug’s 

theory [308], the icosahedral virus is described as a spherically truncated icosahedron, made up of 

capsid subunits, resembling pentagons and hexagons. A triangulation number (T number) is used to 

describe the relations between the number of pentagons and hexagons, and thus explain their quasi 

symmetry in the capsid shell. The T-number is calculated by assuming that the viral organisation is a 

flat sheet of hexamers. Here, the relative position of the hexamers can be indexed along the axis, denoted 

by h and k, and related by a 60° rotation. The mathematical relation is given in the following formula; 

Equation. 1.1   𝑇 = ℎ2 + ℎ𝑘 + 𝑘2 

with h and k being any positive integer or zero. T numbers can thus only adopt positive integer values. 

The size of the capsid is proportional to the T number, so a larger T number results in a larger capsid 

[309]. Icosahedral viruses, most commonly utilised as VLPs, are the plant viruses: Cowpea chlorotic 

mottle virus (CCMV), and Cowpea mosaic virus (CPMV); along with the bacteriophages: MS2, and 

Qβ  [310-313]. 

VLPs can be genetically engineered to alter the structural properties of the viral capsid allowing for 

functionalisation, expressing various targeting peptides, FPs, antibodies, drugs, amino acids, and 

purification tags etc. Oligo-histidine tags can be inserted via genetic engineering to viral protein 

subunits for metallochelate coupling via nitrilotriacetate (NTA), resulting in the attachment of O2-

sensitive Pt-porphyrin phosphorescent dyes to VLP structure [314]. Amino acids with reactive side 

chains, such as lysine, cysteine, aspartate, and glutamate for bioconjugation chemistry, can be 

genetically introduced via molecular cloning, if not already present on the capsid surface. Lysine can 

be modified through a reaction at their nucleophilic primary amine groups (-NH2), with the N-

hydroxysuccinimide-esters (NHS-esters) [315]. Cysteine can be modified by conjugate addition to 

Michael acceptors, the most common of which are maleimide groups. The thiol group of the cysteine 

amino acid side chain reacts specifically with an electrophilic maleimide group at a pH between 6.5 to 

7.5, thereby conjugating maleimide reagent and its attached peptide to the VLP [316]. Carboxylic amino 

acids, aspartate and glutamate, can be functionalised by activating carboxylic acid groups with 1‐ethyl‐
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3‐(3‐dimethylaminopropyl)carbodiimide (EDC), which can then react with NHS to form an NHS-ester 

group [317, 318]. The NHS-ester group can now be conjugated to a specific ligand, expressing a primary 

amine for conjugation. The interior of the viral capsid can be utilised for the encapsulation of cargo 

molecules within the viral structure. There are three main methodologies for encapsualtion: (i) 

encapsulation via self-assembly, (ii) infusion, or (iii) mineralisation. VLPs can be disassembled into 

their protein capsid subunits which are then mixed with the cargo molecules of interest and reassembled. 

Retention within the cavity can be achieved via covalent attachment to amino acids or through genetic 

engineering to the VLP C- or N- terminus for interior expression [319, 320], or via non-covalent 

interactions with nucleic acids of VNPs with positively charged small molecules [313, 321]. 

Encapsulation can be carried out by gating mechanisms in which changes in pH or metal ion 

concentration trigger structural transitions. The small molecules are infused into the swollen open form 

of the VLP, and are then trapped within the interior when the VLP is in closed form [322]. This is 

achieved by altering buffer conditions, i.e. pH or ion, inducing conformational changes. VLPs can act 

as templates for constrained material synthesis, a process that mimics biomineralisation [323]. Here, 

the VLPs are exposed to metallic or other inorganic precursors which diffuse into the capsid pores and 

become nucleated by the amino acids in the interior, leading to the synthesis of inorganic nanocrystals. 

VLPs represent a smart platform allowing for multiplexation with a wide array of targeting moieties, in 

conjunction with imaging and therapeutic agents for precise targeted delivery. This targeting delivery, 

combined with a wide biodistribution and low toxicity, make VLPs ideal for biomedical applications in 

drug delivery and imaging. The ideal imaging probe should possess optimised pharmacokinetics (in 

terms of the balance in penetration or accumulation and clearance timing), low toxicity, biodistribution 

(in terms of cells and tissues targeted), and high brightness. VLPs can potentially address these issues, 

as they tend to be cleared from the body much quicker than synthetic nanomaterials [324, 325]. Along 

with the addition of targeting moieties, VLPs can be altered to be cell and tissue specific, improving 

pharmacokinetics and biodistribution [326]. VLPs derived from bacteriophages and plant viruses 

possess low toxicity to human cells and tissues, due to the lack of infectious viral DNA. VLP positioning 

and localisation can be traced when attached to FPs and fluorophore dyes, allowing for the real-time 

visualisation of their pharmacokinetics and biodistribution [327]. It is important to find a balance 

between cell and tissue penetration and clearance of the VLPs, with longer circulation times allowing 

for higher specificity and accumulation. This, however, can induce toxic effects or cause background 

interference in imaging. On the other hand, shorter circulation times can result in lower specificity and 

accumulation, which can cause problems in imaging brightness and cell specific delivery of drugs and 

other agents. 

VLPs have been used in a wide array of imaging modalities such as: optical live cell imaging, magnetic 

resonance imaging (MRI), and positron emission imaging (PET). Optical live cell imaging is a non-
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invasive study of cells in their natural environment, using fluorescence-based probes. Below I have 

given examples of the different types of VLP structures that have been used to date in such applications. 

 

Figure 1.3. CryoEM reconstruction images of the three types of viruses most commonly applied as VLPs. Rod 

shaped viruses (images for Rod shaped viruses orientated face on too see hollow tubular structure): Tobacco 

mosaic virus (TMV), dimensions of 18nm by 300 nm composed of 2130 protein subunits, and Potato virus X 

(PVX) 13nm by 515nm, composed of 1270 protein subunits. Bacteriophages: MS2 outer diameter of 27 nm and 

an inner diameter of 15 nm comprised of 180 capsid subunits, and Qβ outer diameter of 28 nm and an inner 

diameter of 21 nm comprised of 180 capsid subunits. Icosahedral plant viruses: Cowpea chlorotic mottle virus 
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(CCMV) outer diameter of 28nm and an inner diameter of 18nm comprised of 180 capsid subunits, and Cowpea 

mosaic virus (CPMV) comprised of 180 capsid subunits, with an out diameter of 30nm and an inner of 22nm. The 

figures/data were obtained from VIPERdb (http://viperdb.scripps.edu) VIPERdb2: an enhanced and web API 

enabled relational database for structural virology [328]. 

 

1.5.1.1 Rod-shaped plant viruses 

Tobacco mosaic virus (TMV) is a rod-shaped plant virus, comprised of a straight tubular shaped capsid 

with dimensions of 18nm by 300 nm and is made up of 2130 protein subunits. TMV has been utilised 

in a number optical imaging applications. In one such study TMV’s capsids were conjugated via 

isothiocyanate coupling to BF3-NCS, a two photon-excitable blue fluorescence dye for imaging of the 

brain vasculature in mice models. Though the VLP showed strong fluorescence brightness it was seen 

to block blood perfusion in small brain vessels, possibly due to the VLP’s large size and high degree of 

aggregation [329]. Overall the TMV-BF3 VLP shows promise for two-photon deep tissue imaging, but 

optimisation of size and further studies in biodistribution and pharmacokinetics are needed. A second 

type of a rod-shaped plant virus is the Potato virus X (PVX), which possess a filamentous rod-shaped 

strucutre with dimensions of 13nm by 515nm, composed of 1270 protein subunits. PVX has been 

utilised in the development of fluorescently labeled VLPs for optical imaging. PVX has been 

bioconjugated to Alexa Fluor 647 succinimidyl ester via lysine amino acids, and peptide ligand GE11 

for epidermal growth factor receptor (EGFR) targeting, via maleimide addition to cysteine amino acids. 

The filamentous VLP produced showed successful targeting and imaging of EGFR+ cell lines 

possessing the GE11 peptide [330]. However, some nonspecific targeting was observed due to the 

VLP’s posttive surface charge. This nonspecific targeting cab be resolved by shielding the positive 

charge of the PVX via PEGylation. This shielding optimisation which has been seen to increase PVX 

circulation times and reduce uptake into immune cells (such as macrophages) [331]. PVX has also been 

genetically engineered to express mCherry or GFP, with mCherry-PVX showing uptake and staining 

of human HT-29 colon cancer cells and solid tumour xenografts in mice [332].  

 

1.5.1.2 Bacteriophages 

MS2 is an icosahedral bacteriophage virus comprised of 180 capsid subunits with an outer diameter of 

27 nm and an inner of 15 nm. VLPs of MS2 can be produced in E. coli and has been utilised as a scaffold 

for delivery of cargos such as: RNA and DNA, drugs, antibodies, and enzymes. MS2 VLPs delivery 

abilities have been examined through the use of dual modification with: 180 polyethylene glycol (PEG) 

chains via bioconjugation of lysine residue bioconjugation with NHS-esters; and interior attachment of 

50 -70 fluorescent p-nitroaniline dye molecules via bioconjugation with Tyr85 residues through 

http://viperdb.scripps.edu/
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diazonium coupling, mimicking a drug cargo. The exterior PEGylation achieved yielded a 90% 

reduction in antibody binding of the capsid surface, and the interior modification demonstrated high 

potential for the containment of drug molecules [333].  MS2 has been shown to deliver a variety of 

cargos into cells, due to encapsulation in its interior cavity and relative ease of modifications to its 

exterior surface. MS2 expressing targeting peptide SP94 for human hepatocellular carcinoma (HCC) 

cells, and fluorescent dyes for co-localisation (Alexa Fluor 532, 488 and 555), successfully transported 

quantum dot nanoparticles, chemotherapeutic drugs (doxorubicin, cisplatin with 5-flurouracil), and 

siRNA cocktail for anti-cyclin. MS2 carrying doxorubicin, cisplatin, and 5-fluorouracil selectively 

killed the HCC cell line, Hep3B, at drug concentrations below 1 nM, and those containing the siRNA 

cocktail for anti-cyclin induced growth arrest and apoptosis of Hep3B at siRNA concentrations below 

150 pM [334]. This study demonstrated both the multivalent potential of MS2, and its capacity for 

storage and transportation of a variety of cargos for applications in cancer chemotherapeutics. The 

biodistribution and pharmacokinetics of MS2 VLPs has been examined using internal 64Cu isotope 

labelling of mice xenograft models. MS2 and MS2-PEG both displayed similar biodistribution, with 

MS2-PEG displaying less uptake in the spleen due to shielding via PEG chains. Significant amounts of 

both constructs were found in circulation in the blood 24 hours after administration [335]. The ability 

to avoid immune system clearance is highly advantageous, as it allows for a higher dosage to reach the 

VLPs targeted tissues. Further studies attached anti-EGFR antibodies to exterior of 64Cu isotope labelled 

MS2 VLPs to examine biodistribution in breast cancer models. Results showed binding of the EGFR 

receptor for over 2 days, along with long circulation times and moderate tumour uptake. However, the 

attachment of tumour targeting antibodies did not result in an increase in tumour uptake, this is possibly 

as a result of leakage from the solid tumour [312]. Therefore, MS2 VLPs have been shown to possess 

suboptimal targeting and uptake in solid tumours. A second type of bacteriophage is Qβ, an icosahedral 

shaped virus comprised of 180 capsid subunits with an outer diameter of 28 nm and an inner of 21 nm. 

Qβ is closely related to MS2 but it is structurally more stable due presence of internal disulfide bonds 

linking the subunits. Qβ has been utilised in applications for cargo delivery, in one study they were 

attached to carbohydrate binding ligand CD22, for specific targeting of cells expressing CD22, via Cu-

catalyzed azide-alkyne cycloaddition (CuAAC) chemistry. The VLPs were then loaded internally with 

super folder GFP (sfGFP) genetically attached to Rev tagged cargo enzyme which in turn tethers to the 

α-Rev aptamer for attachment to the Qβ capsid [313], The Qβ VLPs displayed specific uptake into 

CD22 expressing Chinese hamster ovary (CHO) cells, visualized by sfGFP fluorescence. Qβ has also 

been genetically engineered to display epidermal growth factor (EGF) on the exterior of the capsid 

proteins, for cell specific targeting of EGF receptors on human epidermoid carcinoma A431 cells, and 

were also attached to Alexa Fluor 488 via CuAAC chemistry for localisation. These functionalised 

VLPs induced autophosphorylation of the EGF receptor and apoptosis of A431 cells [336]. The above 

studies highlight the potential of Qβ VLPs to transport cargo cell specifically and also demonstrate the 

application of multiple functionalisation strategies applicable to Qβ. The biodistribution and 



40 

 

pharmacokinetics of Qβ VLPs has been examined using internal Gd3+ ion labelling via CuAAC 

chemistry in mice models. Gd3+  labelled Qβ VLPs were found to accumulate heavily in the liver, with 

most VLPs cleared 5 hours after intravenous injection. The surface charge of Gd3+  labelled Qβ VLPs 

was altered in order to determine if surface charge affects the pharmacokinetics of Qβ. As a result the 

VLPs surface charge was neutralised with acylation of surface-exposed amine groups, resulting in 

shorter circulation times. When the amine groups were then subsequently restored the circulation times 

increased, therefore, the ability to alter surface charge can help in altering the pharmacokinetics of Qβ 

[337]. This effect of surface charge is seen in a number of other VLPs, in which VLPs are altered to 

possess negative surface charges, resulting in shorter circulation times: CCMV [338], CPMV [339]  and 

TMV [327], Qβ  [336] and MS2 [312].  

 

1.5.1.3 Icosahedral plant viruses 

Cowpea chlorotic mottle virus (CCMV) is an icosahedral plant virus comprised of 180 capsid subunits, 

with an outter diameter of 28nm and an inner diameter of 18nm. The CCMV viral capsid is dynamic, 

existing in fluctuation and possess pores on its surface, which allow for the diffusion of small molecules 

across the capsid, into and out of the interior of the VLPs [340]. Various cargos have been introduced 

into the CCMV structure. For example, Doxorubicin (Dox) which has been successfully encapsulated 

within CCMV VLPs expressing either, carboxyfluorescein succinimidyl ester or Alexa Fluor 610 NHS 

ester (AF610) for localisation, along with folic acid (FA) as targeting peptide. The VLPs showed 

specific targeting and uptake into the folate receptor (FR) positive cell line MCF7, in comparison to FR 

negative cell lines HepG2 and HEK. The VLP’s cargo of Dox was released slowly over time from the 

cellular lysosomes [311]. An aggregate of the ligand 1,4,7,10-tetraaza-1-(1-carboxymethylundecane)-

4,7,10-triacetic acid cyclododecane (DOTAC10) was used to complex Gd3+ or Photodynamic therapy 

(PDT) photosensitiser Zn+2 phthalocyanine (ZnPc) dye, which formed paramagnetic aggregates for 

encapsulation into the CCMV VLPs via pH induced self-assembly. The use of the DOTAC10 ligand 

resulted in reduced undesired aggregation of ZnPc, and lead to a higher loading of Gd3+ into the VLPs 

[341]. The interior of viral capsids are positively charged, and therefore favor the encapsulation of 

negatively charged molecules. One such strategy to facilitate the encapsulation of positively charged 

molecules has been the incorporation of noncovalent anchors, such as coiled-coil linkers. Here, capsid 

proteins and target molecules have been genetically engineered to express coiled-coil motifs, which 

dimerise forming a heterodimeric coiled-coil, allowing for the controlled attachment and encapsulation 

of the target molecule within the assembled capsid. CCMV capsid proteins have been genetically 

engineered to express a heterodimeric coiled coil, attached to the enzyme Pseudozyma antartica lipase 

B (PalB) to facilitate enzymatic activity studies. The coiled coil allowed for the control of PalB enzyme 

encapsulation within the CCMV VLPs. The encapsulated PalB had a higher activity compared to that 
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of the free form PalB, due to encapsulation within the CCMV VLPs localising PalB enzyme into a 

concentrated area, rather than diffused within the sample. It was subsequently observed that due to only 

one substrate molecule being encapsulated at one time, there was no change in the reaction velocity 

when increasing the number of PalB enzymes encapsulated. Therefore, it was not necessary to 

encapsulate more than one PalB enzyme at a time [342]. This coiled coil linker strategy was also applied 

for the encapsulation of EGFP [343], thereby demonstrating an advantageous method of controlled 

encapsulation of cargos into VLPs, as well as the potential of co-encapsulation of different enzyme 

types within the VLPs. The subunits of the cowpea chlorotic mottle virus (CCMV) have also been 

genetically altered via fusion to the thermally responsive elastin like polypeptide (ELP) allowing for 

self-assembly via two different mechanisms. The first mechanism is a pH induced assembly via the 

CCMV part of the VLP subunits, yielding 28 nm sized VLPs, whilst the second mechanism is a 

temperature induced assembly via the ELP part of the VLP subunits, yielding 18nm sized VLPs [344]. 

Here the ELP contains repeating pentapeptides of Val-Pro-Gly-X-Gly, with X any natural amino acid 

except proline, that are switchable from an extended water-soluble state to a collapsed hydrophobic 

state in response to increases in temperature [345] Further research with the ELP-CP VLPs 

demonstrated a third pathway via metal ion induced assembly yielding VLPs of 20nm in size, 

encapsulating His6-tagged GFP within the CCMV-ELP interior [346]. Cowpea mosaic virus (CPMV) 

is an icosahedral plant virus comprised of 180 capsid subunits, with an outer diameter of 30nm and an 

inner diameter of 22nm. CPMV VLPs have been extensively used in cell and tissue specific delivery of 

cargo molecules for imaging and cancer therapeutics, where CPMV VLPs were used as a scaffold for 

a multiplexing strategy in the design of vascular endothelial growth factor receptor 1 (VEGFR-1) 

targeting VLPs. Two peptides were attached to the CPMV via hydrazone ligation chemistry: F56f 

targeting peptide for VEGFR-1 targeting, as well as a fluorescent PEG chain for localisation and 

shielding, PEG-500f. The application of hydrazone ligation chemistry allowed for the controlled 

sequential attachment of peptides to the VLPs, generating multifunctional VLPs, that displayed cell 

specific targeting of VEGFR-1 expressing EA.hy926 endothelial cells, as well as specific targeting to 

human colorectal adenocarcinoma (ATCC HTB-38) tumour in a xenograft mouse model [310]. The 

cytoskeletal protein, vimentin has been shown to interact with CPMV, with studies demonstrating 

CPMV-vimentin mediated uptake in vascular endothelial [347], tumour [348], and inflammatory 

responsive immune cells [349]. CPMV-vimentin has been successfully infused with a range of cargo 

molecules; Dox, 4′,6-diamidino-2-phenylindole (DAPI), propidium iodide (PI), acridine orange (AO), 

and proflavine (PF), all of which were retained via interaction with the encapsulated RNA molecule in 

the interior of the CPMV capsid. The resulting VLPs were subsequently bioconjugated to Alexa Fluor 

555 via NHS to lysine residues for VLP localisation. Cargo delivery was demonstrated via panel of 

cancer cells, cervical (HeLa), prostate (PC-3), and colon (HT-29), and was observed that the CPMV 

VLPs enter via vimentin mediated uptake and once inside they are degraded by the endolysosomes, 

releasing their cargo allowing for imaging or chemotherapeutic induced cell death [350]. The above 
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CPMV VLP construct demonstrated the power of infusion and RNA retention as a functionalisation 

strategy in the development of VLPs in cell targeted drug and imaging delivery applications. CPMV 

has also been utilised in vascular imaging, where the VLPs were bioconjugated to Alexa Fluor 555 

(AF55) via NHS coupling to lysine’s on the exterior of its surface. The VLP construct here displayed 

higher brightness per particle than other vasculature probes and dyes tested and were able to image 

vasculature and blood flow in live mouse and chick embryos to a depth of 500 µm, where they remained 

in the endothelial cells for at least 72 hours. In subsequent research the VLPs allowed for the 

visualisation of human fibrosarcoma-mediated tumor angiogenesis, potentially providing a real time 

imaging map of angiogenesis [351]. CPMV VLPs have been observed to be potential drug carriers to 

central nervous systems damaged by neurodegenerative disorders or infectious diseases. CPMV VLPs 

bioconjugated to Alexa Fluor 555 via NHS coupling to surface lysine residues, demonstrated uptake 

into mice with neurotropic mouse hepatitis virus (MHV). In healthy mice, the VLPs localised to the 

brain blood barrier (BBB) endothelial cells; whereas in MHV infected mice the VLPs moved from the 

BBB, and localised to the brain tissues and lesions on the brain [352]. This study demonstrates the 

potential of CPMV VLPs for the delivery of neurological drugs across the BBB to the CNS for the 

treatment of neurological and infectious diseases. The biodistribution and pharmacokinetics of CPMV 

VLPs has been examined by labelling with Gd3+ or Tb3+ ions. Research in mice models found that the 

labelled VLPs were cleared from the plasma within 20 minutes of injection, with the majority of the 

labelled VLPs localising to the liver which remained present for 48 hours after injection [339].  

However, when the labelled VLPs were orally introduced to mice, a different biodistribution is observed 

in spleen, kidney, liver, lung, stomach, small intestine, lymph nodes, brain, and bone marrow [353]. 

The difference in biodistribution could be down to the fact that uptake is via the intestinal epithelia, 

rather than into the vasculature circulation. Previous studies noted immune response to CPMV VLPs, 

but this was overcome through the addition of PEG chains [354]. 

 

1.5.1.4 Factors affecting VLP design and applications  

When selecting and designing VLPs certain factors must be considered such as: shape, size, charge, and 

surface peptide expression (i.e. shielding agents and targeting peptides). The optimal VLP construct is 

one that can avoid immune cell clearance by phagocytosis thereby elongating its long circulation time, 

and along with cell and tissue specific delivery, avoid non-specific interactions with other cells and 

tissues. VLP’s shape affects clearance by phagocytosis and targeted uptake, where it has been shown 

that elongated VLPs are able to avoid clearance by immune cell phagocytosis as they achieve a large 

contact angle with the macrophage cells reducing internalisation, in contrast to spherical NPs. It has 

been also shown that elongated NPs have increased efficiency of transport across the cell plasma 

membrane due to a greater contact area. This is evident for PVX which, due to its filamentous rod shape 
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avoids macrophage internalisation, thereby increasing the dosage of VLPs for tumour uptake [330]. 

Size also plays a role in attachment and uptake to targeted cells and tissues, with ideal VLP size radius 

~ 30 to 50nm for cell endocytosis. Although larger VLPs possess a larger surface area for peptide 

attachment and cargo loading into their interior, they also encounter problems in hydrodynamic stress 

and shear forces, thereby compromising attachment to the target cells or tissues. As a result, a 

compromise in size is needed between surface area affecting loading potential, and avoiding problems 

in attachment. Charge of the VLPs is a key factor to be considered in relation to cell interactions and 

pharmacokinetics, with positively charged VLPs being observed to bind mammalian cells more 

efficiently than negatively charged VLPs due to the negative charge of plasma cell membrane. 

Positively charged VLPS are also able to avoid aggregation issues and penetrate tumour tissue more 

effectively [355], as seen in the attachment of positively charged polyarginine groups to CPMV VLPs, 

resulting in a superior uptake into HCC cells compared to plain CPMV VLPs.  Positive surface charge 

also correlates to a longer circulation time in relation to pharmacokinetics as evident from observing 

the plasma circulation times of negatively charged CCMV VLPs with a half-life of ~15 minutes [338], 

compared to that of positively charged Qβ VLPs with a half-life of ~3 hours [337]. The choice of 

peptides expressed on VLPs can augment pharmacokinetics and targeting, with PEG chains which 

shield VLPs to reduce non-target cell uptake and aid in evading the immune system for increased 

circulation time. PEG chains alter the composition of the protein corona that is formed around the VLPs, 

therefore proteins used for immune system recognition are no longer present. This along with a 

hydrophobic barrier confer a stealth like quality to the VLPs [356, 357]. The increase circulation times 

is thought to result in increased accumulation in targets, such as tumours due to the increased amount 

of VLPs and incidence of contact with its target. However, drawbacks to the usage of PEG have been 

observed, and its usage should be considered. PEG is thought to be inert biologically and has FDA 

approval, However evidence has emerged of PEG causing hypersensitivity reaction after a second 

dosage, mediated by the production of anti-PEG antibodies by the innate immune system, resulting in 

accelerated blood clearance. However, since the response is by the innate immune system and not the 

complement, no immune memory is established. Therefore, it has been observed that spacing out 

dosages by over 7 days resulted in the decrease of anti-PEG antibodies [358]. Another down side of 

shielding to avoid immune system clearance, is the inhibition of uptake to the target cells or tissues due 

to the hydrophobic PEG groups [359]. Strategies to remove the PEG chains before uptake, thereby 

shielding the VLPs till they come into contact with their intended target, have included the utilisation 

of linkers that can be removed via cleavage with enzymes. For example, enzymes secreted by tumours 

such as Cathepsin and Matrix metalloproteinases (MMPs) [360], or by low pH [361] present in vesicles 

associated with uptake  (i.e endolysosomes). Cell and tissue specific targeting peptides for receptors 

over expressed in the cases of disease can be used to minimise nonspecific uptake, and target the VLP 

to specific cell types and tissues. The targeting potential of VLPs is supported by a high volume of 
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evidence in the literature, discussing various strategies for attachment of targeting peptides and their 

applications [362, 363].   

 

1.5.2 Ferritin 

Ferritin is a major iron storage protein found in most living organisms including, mammals [364],  

bacteria [365], and plants [366]. Mammalian ferritin is composed of 24 subunits of either 21 kDa ferritin 

heavy (FTNH) or 19 kDa ferritin light (FTNL) chains [367], with the ratio of the different chains 

varying between different tissues. The primary role of FTNH is the binding and oxidisation of Fe2+ to 

Fe3+, whereas FTNL carries out iron nucleation and storage of the Fe3+ inside the protein shell. The fully 

assembled ferritin folds into a spherical cage like structure, 450k Da in size with an internal cavity of 8 

nm and an external size of 12 nm [368]. The internal cavity allows for the oxidation of toxic Fe2+ to 

Fe3+ via FTNH oxidisation, and subsequent storage of up to 4500 atoms of Fe3+ [367]. The primary role 

of ferritin is iron storage and its transport to and from cells via receptor mediated endocytosis. Ferritins 

bind to a variety of mammalian cell types [369-375], However, in human cells the only type of receptor 

identified for ferritin is the human transferrin receptor-1 (TfR-1) and TfR-2, which binds to FTNH and 

transferrin  [376-378]. Therefore, Ferritin’s intrinsic ability to cross plasma cell membrane into cytosol 

of cells via receptor mediated endocytosis with ferritin receptors such as TfR-1 and TfR-2 in human 

cells, and T cell immunoglobulin and mucin domain containing 2 (TIM-2) [369, 370] and scavenger 

receptor class A, member 5 (Scara5) [379] in murine cells makes it advantageous for biomedical 

applications. Due to ferritin’s interactions with such receptors, there is a debate about whether it is the 

attached peptides directing delivery, or the intrinsic targeting property of the ferritin nanoparticle. This 

issue complicates studies investigating targeting peptide expressing ferritin nanoparticles, in that 

experiments should ideally be carried out to compare peptide expressing and ‘plain’ ferritin 

nanoparticles loading in cell models. For example, this could be investigated by labelling the two ferritin 

nanoparticles with different coloured fluorescent molecules to observe cellular uptake via imaging or 

fluorescence-activated cell sorting (FACS) analysis.  

Ferritin can be functionalised via genetic engineering or chemically at its exterior to express a wide 

array of proteins such as: targeting peptides [380], fluorescent and dye molecules [381], and antibodies 

[382, 383]; and ferritin’s interior cavity also allows for the encapsulation of drugs and imaging agents 

[384, 385]. Chemical modifications involve attaching targeting peptides, dye or fluorescent molecules 

to the outside of the ferritin structure via amino acid side chains such a lysine, cysteine, aspartate, and 

glutamate; present on the exterior of the structure (see section 1.5.1). These amino acids can be modified 

with fluorescent molecules such as: Fluorescein isocyanate (FITC) [386-388] via isocyanate coupling 

and Alexa Fluor 488 [389] attached via NHS-ester chemistry, with the attachment of fluorescent 
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molecules enabling for the visualisation of the nanoparticle’s pharmacokinetics and biodistribution. 

FRET pair fluorescent molecules have also been attached to ferritin, in the case of Alexa Fluor 350 and 

430 [390]. This enables applications in the monitoring of protein-protein interactions and 

conformational changes within the ferritin nanoparticles.  Other functional groups have been attached 

by chemical modification are monosaccharides derivatives for cell surface lectin targeting, where 

mannose and galactose derivatives were attached via maleimide chemistry to cystine residues of the 

ferritin structure [391]. Ferritin nanoparticles have also been PEGylated via maleimide [392] or EDC 

[393] chemistry, as previously stated PEG chains can shield protein nanoparticles to reduce non-target 

cell uptake and aid in evading the immune system for increased circulation time. Genetic engineering 

involves the design of recombinant ferritin protein nanoparticles with DNA encoding for protein and 

peptide sequences, such engineering has resulted in the expression of targeting peptides  [380] and 

antigens [382, 383].  Both the C and N- terminal of the FTNH subunit sequence can be engineered to 

express recombinant proteins sequences of interest. When engineering at the N terminal, the protein is 

expressed externally; for the C-terminal, expression is internal, however, there are conflicting reports 

in the literature that demonstrate genetic linkage of recombinant proteins to the C-terminus results in 

the ferritin nanoparticles expressing the engineered C- terminus externally when ferritin is fully 

assembled [383, 394].  

One of the more promising and advantageous structural characteristic of ferritin nanoparticles is the 

internal cavity’s ability to encapsulate metal-based compounds such as drugs and imaging agents. These 

compounds can be encapsulated within the ferritin cavity via pH dependent assembly process, in which 

at low pH the ferritin is disassembled into its 24 subunit parts, then subsequently reassembled as pH is 

increased back to neutral. Compounds containing metal groups are chelated by same amino acid groups 

of the ferritin structure that bind Fe2+ for oxidation to Fe3+. However, nonmetal containing drug 

compounds suffer from diffusion of the ferritin interior via its hydrophilic channels due to weak 

electrostatic interactions with the internal ferritin binding sites. This issue can be overcome by 

complexing the drug molecule of choice with various transition metal ions such as Cu2+ [395] or by the 

addition of charged molecules such as poly- L- aspartic acid [396]. X ray crystallography studies have 

determined the binding sites of platinum (Pt) within the ferritin cavity at  His136 and Lys68, His105, Cys90, 

and Cys102 on FTNH [397]. This shows that Pt based compounds are bound within the ferritin cavity, 

and not simply trapped by encapsulation.  

 

1.5.2.1 Ferritin nanoparticle applications 

Ferritin nanoparticles have been successfully applied in optical imaging applications due to its ability 

to act as a scaffold for conjugations of various dye molecules and targeting peptides to its exterior 
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surface, and encapsulation within its interior cavity. Taking advantage of ferritin’s pH dependent 

structure, hybrid ferritin photoactivatable nanoparticles, expressing both near infrared dye molecule 

Cy5.5 and its quencher BHQ-3 (black hole quencher 3) have been developed. When the nanoparticles 

encounter tumour MMPs the cleavable peptide sequence attaching Cy5.5 to the ferritin nanoparticle is 

cleaved, thereby releasing Cy5.5 molecules from the ferritin nanoparticles and away from the BHQ-3 

quencher, activating Cy5.5 fluorescence activity [398]. The same concept was applied in the 

development of ferritin nanoparticles expressing Cy5.5 and targeting peptide Arginine-Glycine-

Aspartic (RGD) [380]. RGD is a cell adhesion motif, with a high and specific affinity for αvβ3 integrins, 

which are over-expressed in tumour neovasculature. When injected into U87MG tumour mice, the 

nanoparticles successfully accumulated at tumour sites, directed by the RGD peptide [398]. A similar 

ferritin nanoparticle structure was developed genetically expressing RGD peptide and a bioconjugated 

Cy5.5 mono NHS ester, this nanoparticle was used for evaluating imaging of inflammation and 

angiogenesis in experimental carotid and abdominal aortic aneurysm (AAA) disease. When comparing 

signal strength of Cyc5.5 in RGD-FTN to that of control ferritin with no RGD, it was found that RGD-

FTN possessed a higher signal strength in diseased carotids and AAAs. Histology results also showed 

RGD-FTN co-localised with macrophages in carotids and both macrophages and neoangiogenesis in 

AAA lesions. Therefore, showing that RGD-Ftn enhances vascular molecular imaging for both vascular 

inflammation and angiogenesis [399].  

Ferritin has also found applications in medical imaging with magnetic resonance imaging (MRI) agents, 

due to its ability to sequester heavy atoms and heavy atom complexes, in particular iron oxides already 

present within the ferritin core possess superparamagnetic characteristics ideal for MRI. Research using 

breast cancer cell line MCF-7 which overexpresses the ferritin receptor Scara5, and apoferritin loaded 

with MRI contrast agent Gd-HPDO3A, along with anti-cancer drug curcumin, were effective in 

selectively treating MCF-7 cancer cells, visualised with the MRI agent Gd-HPDO3A [400]. 

Due to ferritin’s ability to encapsulate and bind compounds containing metal groups, or those 

complexed to transition metals and charged accessory molecules [396], in addition to modification with 

targeting peptides for specific cell targeting, ferritin is an ideal nanoparticle for applications in drug 

delivery. Ferritin expressing RGD peptide was encapsulated with anti-cancer drug doxorubicin 

(precomplexed to transition metal Cu2+ to enable efficient loading of into ferritin), displayed improved 

pharmacokinetics when compared to free doxorubicin. This improvement in pharmacokinetics is due 

to the RGD- FTN nanoparticles facilitating increased uptake into targeted tumour cells [380].  

Anticancer drug, cis-platin has been successfully encapsulated within ferritin’s cavity via pH dependent 

assembly. Here ferritin nanoparticles containing cis-platin and conjugated to monoclonal antibodies 

(mAb) Ep1 for targeting human melanoma specific antigen CSPG4, by a heterobifunctional crosslinker 

showed specificity for melanoma cells expressing CSPG4 antigen, with similar results seen in xenograft 

mice models with pre-established palpable melanoma  [401]. 
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The ability to genetically engineer ferritin to express multiple antigens on the surface make it a useful 

nanoparticle in application of vaccine development. Vaccine for influenza virus was developed by 

genetically engineering ferritin derived from Helicobacter pylori, to express influenza viral 

haemagglutinin (HA) antigens (HA-FTN) [382], and was subsequently evaluated in mice and ferret 

models. In mice models the HA-FTN nanoparticle vaccine caused the production of neutralising 

antibodies for the HA variants. The ferritin vaccine showed increased effect compared to that of the 

commercial influenza vaccine and elicited no immune responses to the bacterial derived ferritin. 

Subsequent research showed that HA-FTN treated mice and ferrets exposed to lethal dose of highly 

pathogenic H5 2004 VN virus, survived  [402]. However, despite positive results to date no ferritin 

nanoparticle vaccines have been approved for clinical use, unlike VLPs in case of HPV and hepatitis 

vaccinations.  

The ability to alter ferritin at the external surface via chemical and genetic modifications, and cargo 

loading of the internal cavity generates nanoparticles with high potential in applications such as drug 

delivery, optical and medical imaging, as well as vaccine development. Genetic and chemical 

modifications of ferritin subunits allow spatial control and determination of the ratio of functional 

groups on fully assembled 24 subunit ferritin nanoparticles. The mixing of two sets of ferritin subunits 

with different mofications attached (i.e. one set of subunits with a fluorescent dye and another set 

expressing a targeting peptide), then subsequently inducing assembly allows for the design of 

multiplexed protein nanoparticles with controlled expression of functional groups. The capacity to 

encapsulate and coordinate drug and imaging agents within the ferritin structure is ferritin’s most 

advantageous feature. This is due to the high number of drug or imaging agents that can be encapsulated 

within ferritin nanoparticles for targeted delivery, which is in stark contrast to administering a larger 

quantity of free drug or imaging compounds without targeted delivery.  

Despite advantages these advantages the application of ferritin nanoparticles in vivo is currently 

limited. This is due to issues regarding pharmacokinetics and immunogenicity. With the use of human 

ferritin, it would be obvious to think that as it exists naturally in the body already, immune responses 

would be negligible. However, in practice, denaturation of the ferritin nanoparticle could expose 

immunogenic epitopes on its surface, as well as interactions with various biological interfaces in the 

body covering ferritin in epitopes for immune system response. Genetic and chemical modifications 

can also be immunogenic, for example in the immune response PEGylation, in which antibodies are 

produced in response to the presence of PEG chains [403]. Efforts to design recombinant ferritin 

nanoparticles with efficient cell specific targeting and loading can offset many of these issues raised.  
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1.6 Conclusion  

Tissue engineering is a multi-disciplinary field that encompasses 3D cell and tissue-based scaffold and 

non-scaffold-based models, live cell microscopy and imaging modalities, along with fluorescence and 

phosphorescence-based biosensors. All of these disciplines work together to drive the development of 

biologically relevant 3D tissue models, which can be monitored in real time for the modelling of 

complex physiological and non- physiological diseased states. For such engineered tissues to be 

physiologically relevant, real time monitoring and optimisation of their extracellular and intracellular 

gradients (e.g. O2, Ca2+, pH, and temperature) must be applied. Therefore, the development of imaging 

modalities and biosensors compatible with live cell imaging of 3D tissue models is key. To date a large 

volume of imaging modalities and biosensors have been applied to monitor cell-cell interactions, 

disease biomarkers and metabolite gradients. Moving forward, the development of scaffold materials, 

imaging probes and modalities that are compatible and complement each other in a fully 

interdisciplinary approach are key in obtaining physiologically relevant tissue engineered models.  
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Chapter 2: Materials and Methods 

2.1 Materials  

All oligonucleotides were synthesised by Sigma-Aldrich (Dublin, Ireland), and all synthesised genetic 

constructs were from Genscript (Piscataway, NJ, USA) unless stated otherwise. Plasmid DNA encoding 

for EGFP with N-terminal His6-tag in pQE-30 (Qiagen, UK)  was donated by Dr. I. Okkelman 

(University College Cork, Ireland). Plasmid DNA encoding TagBFP2 with N-terminal His6-tag in pQE-

30 was purchased from Evrogen (Moscow, Russia). pET-15b vector encoding for N terminal His6-tag, 

H6-ELPCP was donated by Prof. Jan C. M. Van Hest (Radboud University, Netherlands). Plasmid DNA 

encoding for GCaMP2-pRSET B  was donated by Prof. Holger Sondermann (Cornell University, 

USA).Plasmid DNA encoding ECFP in pProEx HTA was provided by Prof. M. Erard (Universite Paris 

Sud, France). Antarctic Phosphatase, restriction enzymes XmaI BamHI, HindIII-HF, Kpn I, SmaI and, 

T4 DNA polymerase were from New England Biolabs (Brennan & Co, Dublin, Ireland), T4 DNA 

Ligase, 2X PCR buffer, Wizard MiniPreps Plasmid DNA purification and SV Gel Clean-up kits were 

from Promega (MyBio, Ireland). Lysozyme, LB broth, protease inhibitor cocktail, CellLytic B and all 

the other reagents were from Sigma-Aldrich (Dublin, Ireland). Tetramethylrhodamine metyl ester 

(TMRM), Bis-Benzimide Hoechst 33342, Calcein Green AM, Carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP), and oligomycin were from Sigma-Aldrich (Dublin, 

Ireland). O2-sensitive phosphorescent probe Pt-Glc was synthesised as described before [196] and O2-

sensitive phosphorescent probe PtCP-NTA was synthesised as described in [314], pH-Xtra and 

MitoXpress -Xtra phosphorescent probes were from Luxcel Biosciences (Little Island, Cork). 

Bicinchoninic acid (BCA) protein assay kit was from Thermofisher (Dublin, Ireland). 0.1-1.4 mg/ml 

protein standards and Bradford Reagent were from Sigma-Aldrich (Dublin, Ireland). GrowDex 

scaffolds were from UPM Biochemicals (Helsinki, Finland). Bacterial cellulose spheres were produced 

and donated by Dr. Peter Timashev (Institute for Regenerative Medicine, I.M. Sechenov First Moscow 

State University, Moscow, Russian Federation). Fresh plant materials (celery ‘stems’ petioles Apium 

graveolens, potato tubers Solanum tuberosum, and carrot tubers Daucus carota subsp. sativus) were 

purchased from local vendors (Tesco and Lidl, Cork, Ireland). Horse spleen derived ferritin was from 

Sigma-Aldrich (Dublin, Ireland). 15 µ-slide III 3D perfusion chamber slides were from Ibidi GmbH 

(Martinsried, Germany), 96 and 8 well plates, 35 mm2 dishes and all sterile cell culture plasticware were 

from  Sarstedt (Wexford, Ireland). 35 mm2 Dishes with 14 mm uncoated glass coverslip were from 

MatTek (Ashland, MA, USA). All chemicals (HPLC or spectrophotometric grade) unless otherwise 

stated were from Sigma-Aldrich (Dublin, Ireland). 
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2.2 Methods 

 

2.2.1 Cell Culture  

Human colon cancer HCT116 cells and mouse embryonic fibroblasts (MEFs) were obtained from 

American Tissue Culture Collections (ATCC, Manassas, VA, USA). A mutant cell line, HCT116 SCO2
-

/-, which is deficient in synthesis of cytochrome c oxidase SCO2, the assembly unit for complex IV of 

the ETC, were donated by P. M. Hwang (NIH, Bethesda, USA).  MEF cells were cultured in Dulbecco's 

Modified Eagle's medium (DMEM) with 10 % fetal bovine serum (FBS), 10 mM 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES) (pH 7.2), 2 mM L-glutamine (L-Gln), 100 U/ml penicillin 

/100 μg/ml streptomycin (P/S). HCT116 and HCT116 SCO2-/- cells were cultured in McCoys 5A 

medium supplemented with 10% FBS, 10 mM HEPES, pH 7.2, 2 mM Glutamine, 2 mM penicillin-

streptomycin. All cells were grown in a humidified atmosphere of 5 % CO2 and 95 % air at 37°C unless 

otherwise stated. For experiments in 96 well plates and 8 well microscope dishes, all wells were coated 

with 0.01% collagen IV or collagen IV: poly-D-lysine (0.07mg/mL: 0.03mg/mL) for glass bottom-

based dishes to help collagen IV attachment, 24 hours before cell seeding. The 0.01% collagen IV or 

collagen IV: poly-D-lysine were removed from the wells and washed 3-4 times in PBS, then allowed 

to dry, ready for cell seeding. All cell types and cell seeding numbers are displayed in Table 2.1.  

Table 2.1. Cell seeding densities 

Cells 96 well (cells per well) 8 well (cells per well) 35 mm2 dish (cells per dish) 

MEF cells 30,000 30,000 90,000 

HCT116 30,000 100,000 200,000  

HCT116 SCO2
-/- 30,000 100,000 200,000 

 

2.2.2 Cell based assays 

2.2.2.1 Oxygen consumption rate (OCR) 

OCR was measured using a phosphorescent O2-sensitive probe, MitoXpress (Aligent). Cells were 

grown and treated as above (Section 2.2.1Cell culture). The cell culture media was then replaced with 

100 μl of air-equilibrated medium, containing 200 nM MitoXpress probe. The wells were covered in 

150 μl pre-warmed mineral oil, providing an O2-impermeable seal. The plate was analysed on a TR-F 

reader Victor 2 (PerkinElmer Life Sciences) pre-set at 37°C and measured at atmospheric O2. Each 

sample was measured every 3-5 min for over 1 hour. Two intensity values were taken at delay times of 
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30 and 70 μs with a gate time of 100 μs. Intensity signals were converted into phosphorescence lifetime 

(τ) values using the following calculation: 

Equation 2.1. τ =
(𝑡2−𝑡1)

𝐿𝑛(
𝐹1
𝐹2

)
 

where F1, F2 are TR-F intensity signals at delay times t1 and t2. Initial rates of cell deoxygenation were 

calculated as nmole/min per 106 cells. Average O2 levels were calculated and OCR was calculated using 

O2 consumed by cells in 1 min per 1 mg of total soluble protein. 

 

2.2.2.2 Extracellular acidification (ECA) assay 

Cells were seeded on 96 well plates coated with 0.01 % collagen IV and grown for 24 hours (unless 

stated otherwise).  The cells were then washed with 150 μl un-buffered DMEM supplemented with 1 

mM sodium pyruvate, 10 mM glucose and 2 mM L-glutamine. The cells were then incubated under 

CO2 free conditions at 37°C for 2-2.5 hours. The medium was then replaced with buffered DMEM 

containing 10 mM HEPES, 1 mM sodium pyruvate, 10 mM glucose and 2 mM L-glutamine. The plate 

was then placed back into the CO2 free incubator for 30 min – 1 hour. After incubation of 3 hours under 

CO2-free conditions, the medium was changed to 100 μl buffered DMEM, containing 1 μM pH-Xtra 

probe (Aligent). For measurements of lactate-ECA (L-ECA) the plate was read on a TR-F reader Victor 

2 (PerkinElmer Life Sciences) pre-set at 37oC and measured at 20.9 %, 4 % , 3 % or 1 % atmospheric 

O2. To measure Total-ECA (T-ECA) a layer of 150 μl of pre-warmed to 37°C heavy mineral oil was 

added to seal the plate after the addition of the pH-Xtra probe, before starting the analysis. The plate 

was read for at least 1 hour using 340 ± 35 nm excitation and 615 ± 8.5 nm emission, two intensity 

signals were measured at delay times of 100 and 300 μs with a measurement window of 30 μs. Intensity 

values were converted into probe fluorescence life-time using Equation 2.1. ECA is then expressed as 

a function of pH/[H+] versus time, using a calibration curve of fluorescence lifetime values from a range 

of pH-buffered standards. 

 

2.2.2.3 Cellular ATP assay 

Total cellular ATP levels were measured using CellTiter-Glo assay (Promega). Cells were grown on 96 

well plates, and ratio of 1:1 of CellTiter-Glo reagent to media was added to each well to lyse the cells. 

The plate was shaken for 2 min and each sample was transferred into a white 96 well plate and read on 

Victor 2 plate reader under standard luminescence settings. Protein concentrations were assessed using 
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BCA protein assay kit. Data was then corrected to protein content for each sample (BCA assay is 

described below in 2.2.2.4). 

 

2.2.2.4 Bicinchoninic acid (BCA) protein assay  

Protein concentrations were measured using BCA assay kit (Thermo Fisher Scientific) as per the 

manufacturer’s instructions, on a 96 well plate and analysed on Victor 2 plate reader. Sample proteins 

for measurement and BCA standards (2000, 1500, 1000, 750, 500, 250, 125, 25, 0 µ/mL) were added 

to the plate. The working reagent was then added to all samples and standards. The plate was incubated 

at 37°C for 30 minutes and absorbance measured at 562nm. Protein concentrations were calculated 

using Beer Lambert law.  

 

2.2.2.5 Bradford Protein assay  

Protein concentrations were measured using Bradford assay (Sigma) as per manufactures instructions, 

on a 96 well plate and analysed on Victor 2 plate reader. 5µL of the sample proteins for measurement 

and BSA standards (Sigma) (1.5, 1, 0.5, 0.25 and 0 mg/mL) were added to the plate. 250µL of Bradford 

reagent was then added to each of the samples and standards. Protein concentrations were calculated 

using Beer Lambert law. 

 

2.2.3 Molecular cloning  

All oligonucleotide primer sequences used, and construct sequences constructed are displayed in 

Table 2.3 and 2.4 respectively. 

Table 2.3 Oligonucleotide sequences 5’ – 3’  

Name Sequence Forward (F) and Reverse (R) 

QES-B 

(pGe30) 

R- 5’GTTCTGAGGTCATTACTGG 

S2F 

(pGe30) 

F- 5’CGGATAACAATTTCACACAG 

         

DsRed F- 5′AGTCGGTACCATGGCCTCCTCCGAGGACGTC 

R- 5’AGTCGGTACCCAGGAACAGGTGGTGGCGGCC 
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EGFP F- 5’TCTAGATCCGGTAGATCCC 

R- 5’GTGAGCAAGGGCGAGGAGCTG 

GCaMP2 F- 5’AGTCGGTACCGGTACAGGTGGTTCTGGTGGTATGGCTAGCATGACTGGT 

R- 5’GATCGGTACCCTTCGCTGTCATCATTTGTA 

 

ECFP F- 5’GATCGGTACCGGTACAGGTGGTTCTGGTGGTGTGAGCAAGGGCGAGGA 

R- 5’GATCGGTACCTCTAGATCCGGTAGATCCT 

EYFP R- 5’GATCGGTACCCTTGTACAGCTCGTCCATGCCGA 

CBDcenA F- 5’CGTGGGGCTGGTCGTCGGCAC 

R- 5’GCTCCCGGCTGCCGCGTCGAC 

h-FTNH F- 5’GCTTTCATTATCACTGTCTCC 

R- 5’ATGACGACCGCGTCCACCTCG 

ENL-

BAC 

F- 5’TGACGGATCCTCTTCTATGGACATCGTTCTGCGTGCTCCGCTGATGGGTCCAAGG 

R- 5’GATCGGTACCCCCAGGCCGTGGGAATGGCAATGGCCTTGGACCCATCAGCGGAGCA 

 

 

 

Table 2.3. Construct sequences 5’ to 3’.  

Name Sequence Vector 

EGFP GGATCCCCAAGGCCATTGCCATTCCCACGGCCTGGGGGTACCCATCACCATCACCATCAC

CATGGTACCGGTCCCGGGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCAT

CCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCG

AGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTG

CCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGC

TACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGT

CCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGA

AGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAG

GACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATAT

CATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCG

AGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGC

CCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCC

CAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTC

TCGGCATGGACGAGCTGTACAAGTCCGGACTCAGATCTCGAGCTCAAGCCTCGAATTCT

GCAGTCGACGGTACTGCGGGTCCGGGATCTACCGGATCTAGACCCGGGGGTGGCGGTTC

TGGTGGCGGCACCGGTGGCGGTTCTGGTGGCAAAAAGGAATTCGAGTGCGTGTACGGTG

ATACCATGGTCGAAACGGAGGACGGTAAGATTAAAATCGAAGATCTGTACAAACGCCTT

GCCTAAGCTT 

pQE-30 

TagBFP2 CACGTTAAGGGATTTTGGTCATGACTAGTGCTTGGATTCTCACCAATAAAAAACGCCCGG

CGGCAACCGAGCGTTCTGAACAAATCCAGATGGAGTTCTGAGGTCATTACTGGATCTATC

AACAGGAGTCCAAGCGAGCTCGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTG

AGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGT

GTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGC

GAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCC
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GAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGG

GAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACA

GGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGA

TCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCT

CCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTG

CATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAA

CCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATAC

GGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCT

TCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACT

CGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAA

ACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATAC

TCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGG

ATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCG

AAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATA

GGCGTATCACGAGGCCCTTTCGTCTTCACCTCGAGAATTGTGAGCGGATAACAATTGACA

TTGTGAGCGGATAACAAGATACTGAGCACATCAGCAGGACGCACTGACCGAATTCAGAG

AAAGAGGAGAAATACTAGATGAGCGAACTGATCAAAGAGAACATGCACATGAAGCTGT

ACATGGAAGGCACCGTTGACAACCACCACTTTAAGTGCACGTCTGAGGGTGAGGGTAAG

CCGTACGAAGGCACCCAAACCATGCGTATCAAAGTTGTGGAGGGCGGTCCACTGCCGTT

CGCTTTTGACATTCTGGCGACCAGCTTCCTGTACGGTTCCAAAACGTTCATTAACCATAC

TCAGGGCATTCCGGATTTCTTCAAACAGAGCTTTCCGGAAGGTTTCACCTGGGAGCGTGT

CACCACGTATGAAGATGGTGGTGTGTTGACCGCCACCCAAGATACCTCCCTGCAAGATG

GCTGTCTGATCTATAACGTGAAAATTCGTGGCGTCAACTTTACGAGCAATGGTCCGGTGA

TGCAGAAGAAAACCCTGGGTTGGGAGGCGTTTACGGAAACCCTGTATCCGGCCGATGGT

GGCCTGGAGGGCCGTAACGACATGGCACTGAAGCTGGTTGGTGGCAGCCATTTGATCGC

AAATGCCAAGACGACGTACCGCAGCAAGAAACCGGCGAAAAATCTGAAGATGCCGGGT

GTTTACTATGTCGACTACCGTCTGGAACGCATTAAAGAAGCGAATAATGAGACTTACGT

GGAGCAGCACGAGGTTGCAGTCGCGCGCTATTGCGACTTGCCTAGCAAGCTGGGTCATA

AACTGAATTAATAAGCTTAGTTAGTTAGCTCTAGAGGCATCAAATAAAACGAAAGGCTC

AGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTA

GGACAAATCCGCCGCCCTAGACCTAGGCGTTCGGCTGCGGCGAGCGGTATCAGCTCACT

CAAAGGCG 

DsRed GGCCTGCTGCGCGGCCGCCATCAGGGCGTGCATGCGCTGCAGGGCGCGCATGGCGGCCT

GCGCGAACGCCCGCGCGTGCGCGATCGCGGCCGCGGCCGCGGCCCGCCGCTGCGCGGCC

ATCCGGATCGCCAGGCGGAAGGCGATCAGGGCCGCCCGCCGGCGCTGCGCCTGGGCCAT

CCGGTGCCGCCGGTGCCGGTGCGCCTGCAGGGCGTGCGCGAAGCGCCGGCGGATATTCC

GGATTATAAAAAACTGAGCTTTCCGGAAGGCTTTAAATGGGAACGCGTGATGAACTTTG

AAGATGGCGGCGTGGTGACCGTGACCCAGGATAGCAGCCTGCAGGATGGCAGCTTTATT

TATAAAGTGAAATTTATTGGCGTGAACTTTCCGAGCGATGGCCCGGTGATGCAGAAAAA

AACCATGGGCTGGGAAGCGAGCACCGAACGCCTGTATCCGCGCGATGGCGTGCTGAAAG

GCGAAATTCATAAAGCGCTGAAACTGAAAGATGGCGGCCATTATCTGGTGGAATTTAAA

AGCATTTATATGGCGAAAAAACCGGTGCAGCTGCCGGGCTATTATTATGTGGATAGCAA

ACTGGATATTACCAGCCATAACGAAGATTATACCATTGTGGAACAGTATGAACGCGCGG

AAGGCCGCCATCATCTGTTTCTG 

pQE-30 

H6-ELPCP GTTCCGGGCGTCGGTGTTCCTGGATTAGGTGTTCCAGGTGTAGGTGTTCCAGGACTCGGT

GTTCCTGGTGTAGGTGTTCCTGGTTTAGGTGTTCCAGGTGGCGGTGTTCCTGGTGTGGGA

GTTCCTGGTTTAGGTCTCGAGGTGGTCCAACCTGTTATTGTAGAACCCATCGCTTCAGGC

CAAGGCAAGGCTATTAAAGCATGGACCGGTTACAGCGTATCGAAGTGGACCGCCTCTTG

TGCGGCTGCCGAAGCTAAAGTAACCTCGGCTATAACTATCTCTCTCCCTAATGAGCTATC

GTCCGAAAGGAACAAGCAGCTCAAGGTAGGTAGAGTTTTATTATGGCTTGGGTTGCTTCC

pQE-16 
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CAGTGTTAGTGGCACAGTGAAATCCTGTGTTACAGAGACGCAGACTACTGCTGCTGCCTC

CTTTCAGGTGGCATTAGCTGTGGCCGACAACTCGAAAGATGTTGTCGCTGCTATGTACCC

CGAGGCGTTTAAGGGTATAACCCTTGAACAACTCACCGCGGATTTAACGATCTACTTGTA

CAGCAGTGCGGCTCTCACTGAGGGCGACGTCATCGTGCATTTGGAGGTTGAGCATGTCA

GACCTACGTTTGACGACTCTTTCACTCCGGTGTAT 

ELPCP-H6 ATGAGAGGATCCGTTCCGGGCGTCGGTGTTCCTGGATTAGGTGTTCCAGGTGTAGGTGTT

CCAGGACTCGGTGTTCCTGGTGTAGGTGTTCCTGGTTTAGGTGTTCCAGGTGGCGGTGTT

CCTGGTGTGGGAGTTCCTGGTTTAGGTCTCGAGGTGGTCCAACCTGTTATTGTAGAACCC

ATCGCTTCAGGCCAAGGCAAGGCTATTAAAGCATGGACCGGTTACAGCGTATCGAAGTG

GACCGCCTCTTGTGCGGCTGCCGAAGCTAAAGTAACCTCGGCTATAACTATCTCTCTCCC

TAATGAGCTATCGTCCGAAAGGAACAAGCAGCTCAAGGTAGGTAGAGTTTTATTATGGC

TTGGGTTGCTTCCCAGTGTTAGTGGCACAGTGAAATCCTGTGTTACAGAGACGCAGACTA

CTGCTGCTGCCTCCTTTCAGGTGGCATTAGCTGTGGCCGACAACTCGAAAGATGTTGTCG

CTGCTATGTACCCCGAGGCGTTTAAGGGTATAACCCTTGAACAACTCACCGCGGATTTAA

CGATCTACTTGTACAGCAGTGCGGCTCTCACTGAGGGCGACGTCATCGTGCATTTGGAGG

TTGAGCATGTCAGACCTACGTTTGACGACTCTTTCACTCCGGTGTATGGTGGCGGTAGAT

CTCATCACCATCACCATCACTAA 

pQE-16 

BN7-His7-

EGFP-linker-

FTNH 

GGTACCGTAGTCGCCGCGCGCGTCGTGTTATAGGTACGACGAGGTACCCATCACCATCA

CCATCACCATGGTACCGGTGGCAGATCTAGGCCATCTAGGACCCGGGCGCCACGGCAGC

TGACGTCTTAAGCTTCGGACTCGAGCTCTAGACTCAGGCCTGAACATGTCGAGCAGGTAC

GGCTCTCACTAGGGCCGCCGCCAGTGCTTGAGGTCGTCCTGGTACACTAGCGCGAAGAG

CAACCCCAGAAACGAGTCCCGCCTGACCCACGAGTCCATCACCAACAGCCCGTCGTCGT

GCCCCGGCAGCGGCTACCCCCACAAGACGACCATCACCAGCCGCTCGACGTGCGACGGC

AGGAGCTACAACACCGCCTAGAACTTCAACCGGAACTACGGCAAGAAGACGAACAGCC

GCCACTATATCTGCAACACCGACTACATCAACATGAGGTCGAACACGGGGTCCTACAAC

GGCAGGAGGAACTTCAGCTACGGGAAGTCGAGCTACGCCAAGTGGTCCCACAGCGGGA

GCTTGAAGTGGAGCCGCGCCCAGAACATCAACGGCAGCAGGAACTTCTTCTACCACGCG

AGGACCTGCATCGGAAGCCCGTACCGCCTGAACTTCTTCAGCACGACGAAGTACACCAG

CCCCATCGCCGACTTCGTGACGTGCGGGGTCCAGTCCCACCAGTGCTCCCACCCGGTCCC

GTGCCCGTCGAACGGCCACCACGTCTACTTGAAGTCCCAGTCGAACGGCATCCACCGTA

GCGGGAGCGGGAGCGGCCTGTGCGACTTGAACACCGGCAAATGCAGCGGCAGGTCGAG

CTGGTCCTACCCGTGGTGGGGCCACTTGTCGAGGAGCGGGAACGAGTGCCCGGGGGTGG

CGGTTCTGGTGGCGGCACCGGTGGCGGTTCTGGTGGCATGACGACCGCGTCCACCTCGC

AGGTGCGCCAGAACTACCACCAGGACTCAGAGGCCGCCATCAACCGCCAGATCAACCTG

GAGCTCTACGCCTCCTACGTTTACCTGTCCATGTCTTACTACTTTGACCGCGATGATGTGG

CTTTGAAGAACTTTGCCAAATACTTTCTTCACCAATCTCATGAGGAGAGGGAACATGCTG

AGAAACTGATGAAGCTGCAGAACCAACGAGGTGGCCGAATCTTCCTTCAGGATATCAAG

AAACCAGACTGTGATGACTGGGAGAGCGGGCTGAATGCAATGGAGTGTGCATTACATTT

GGAAAAAAATGTGAATCAGTCACTACTGGAACTGCACAAACTGGCCACTGACAAAAATG

ACCCCCATTTGTGTGACTTCATTGAGACACATTACCTGAATGAGCAGGTGAAAGCCATCA

AAGAATTGGGTGACCACGTGACCAACTTGCGCAAGATGGGAGCGCCCGAATCTGGCTTG

GCGGAATATCTCTTTGACAAG 

CACACCCTGGGAGACAGTGATAATGAAAGCTAAGCTT 

pQE-30 

BN7-EGFP-

linker-FTNH 

GGTACCGTAGTCGCCGCGCGCGTCGTGTTATAGGTACGACGAGGTACCGGTACCGGTGG

CAGATCTAGGCCATCTAGGACCCGGGCGCCACGGCAGCTGACGTCTTAAGCTTCGGACT

CGAGCTCTAGACTCAGGCCTGAACATGTCGAGCAGGTACGGCTCTCACTAGGGCCGCCG

CCAGTGCTTGAGGTCGTCCTGGTACACTAGCGCGAAGAGCAACCCCAGAAACGAGTCCC

GCCTGACCCACGAGTCCATCACCAACAGCCCGTCGTCGTGCCCCGGCAGCGGCTACCCC

CACAAGACGACCATCACCAGCCGCTCGACGTGCGACGGCAGGAGCTACAACACCGCCTA

GAACTTCAACCGGAACTACGGCAAGAAGACGAACAGCCGCCACTATATCTGCAACACCG

pQE-30 
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ACTACATCAACATGAGGTCGAACACGGGGTCCTACAACGGCAGGAGGAACTTCAGCTAC

GGGAAGTCGAGCTACGCCAAGTGGTCCCACAGCGGGAGCTTGAAGTGGAGCCGCGCCCA

GAACATCAACGGCAGCAGGAACTTCTTCTACCACGCGAGGACCTGCATCGGAAGCCCGT

ACCGCCTGAACTTCTTCAGCACGACGAAGTACACCAGCCCCATCGCCGACTTCGTGACGT

GCGGGGTCCAGTCCCACCAGTGCTCCCACCCGGTCCCGTGCCCGTCGAACGGCCACCAC

GTCTACTTGAA 

GTCCCAGTCGAACGGCATCCACCGTAGCGGGAGCGGGAGCGGCCTGTGCGACTTGAACA

CCGGCAAATGCAGCGGCAGGTCGAGCTGGTCCTACCCGTGGTGGGGCCACTTGTCGAGG

AGCGGGAACGAGTGCCCGGGGGTGGCGGTTCTGGTGGCGGCACCGGTGGCGGTTCTGGT

GGCATGACGACCGCGTCCACCTCGCAGGTGCGCCAGAACTACCACCAGGACTCAGAGGC

CGCCATCAACCGCCAGATCAACCTGGAGCTCTACGCCTCCTACGTTTACCTGTCCATGTC

TTACTACTTTGACCGCGATGATGTGGCTTTGAAGAACTTTGCCAAATACTTTCTTCACCA

ATCTCATGAGGAGAGGGAACATGCTGAGAAACTGATGAAGCTGCAGAACCAACGAGGT

GGCCGAATCTTCCTTCAGGATATCAAGAAACCAGACTGTGATGACTGGGAGAGCGGGCT

GAATGCAATGGAGTGTGCATTACATTTGGAAAAAAATGTGAATCAGTCACTACTGGAAC

TGCACAAACTGGCCACTGACAAAAATGACCCCCATTTGTGTGACTTCATTGAGACACATT

ACCTGAATGAGCAGGTGAAAGCCATCAAAGAATTGGGTGACCACGTGACCAACTTGCGC

AAGATGGGAGCGCCCGAATCTGGCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGG

AGACAGTGATAATGAAAGCTAAGCTT 

ENL-BN7-

EGFP-linker-

FTNH  

GGTACCGTAGTCGCCGCGCGCGTCGTGTTATAGGTACGACGAGGTACCGGTACCGGTGG

CAGATCTAGGCCATCTAGGACCCGGGCGCCACGGCAGCTGACGTCTTAAGCTTCGGACT

CGAGCTCTAGACTCAGGCCTGAACATGTCGAGCAGGTACGGCTCTCACTAGGGCCGCCG

CCAGTGCTTGAGGTCGTCCTGGTACACTAGCGCGAAGAGCAACCCCAGAAACGAGTCCC

GCCTGACCCACGAGTCCATCACCAACAGCCCGTCGTCGTGCCCCGGCAGCGGCTACCCC

CACAAGACGACCATCACCAGCCGCTCGACGTGCGACGGCAGGAGCTACAACACCGCCTA

GAACTTCAACCGGAACTACGGCAAGAAGACGAACAGCCGCCACTATATCTGCAACACCG

ACTACATCAACATGAGGTCGAACACGGGGTCCTACAACGGCAGGAGGAACTTCAGCTAC

GGGAAGTCGAGCTACGCCAAGTGGTCCCACAGCGGGAGCTTGAAGTGGAGCCGCGCCCA

GAACATCAACGGCAGCAGGAACTTCTTCTACCACGCGAGGACCTGCATCGGAAGCCCGT

ACCGCCTGAACTTCTTCAGCACGACGAAGTACACCAGCCCCATCGCCGACTTCGTGACGT

GCGGGGTCCAGTCCCACCAGTGCTCCCACCCGGTCCCGTGCCCGTCGAACGGCCACCAC

GTCTACTTGAA 

GTCCCAGTCGAACGGCATCCACCGTAGCGGGAGCGGGAGCGGCCTGTGCGACTTGAACA

CCGGCAAATGCAGCGGCAGGTCGAGCTGGTCCTACCCGTGGTGGGGCCACTTGTCGAGG

AGCGGGAACGAGTGCCCGGGGGTGGCGGTTCTGGTGGCGGCACCGGTGGCGGTTCTGGT

GGCATGACGACCGCGTCCACCTCGCAGGTGCGCCAGAACTACCACCAGGACTCAGAGGC

CGCCATCAACCGCCAGATCAACCTGGAGCTCTACGCCTCCTACGTTTACCTGTCCATGTC

TTACTACTTTGACCGCGATGATGTGGCTTTGAAGAACTTTGCCAAATACTTTCTTCACCA

ATCTCATGAGGAGAGGGAACATGCTGAGAAACTGATGAAGCTGCAGAACCAACGAGGT

GGCCGAATCTTCCTTCAGGATATCAAGAAACCAGACTGTGATGACTGGGAGAGCGGGCT

GAATGCAATGGAGTGTGCATTACATTTGGAAAAAAATGTGAATCAGTCACTACTGGAAC

TGCACAAACTGGCCACTGACAAAAATGACCCCCATTTGTGTGACTTCATTGAGACACATT

ACCTGAATGAGCAGGTGAAAGCCATCAAAGAATTGGGTGACCACGTGACCAACTTGCGC

AAGATGGGAGCGCCCGAATCTGGCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGG

AGACAGTGATAATGAAAGCTAAGCTT 

pQE-30 

CBDCenA GCTCCCGGCTGCCGCGTCGACTACGCCGTCACCAACCAGTGGCCCGGCGGCTTCGGCGC

CAACGTCACGATCACCAACCTCGGCGACCCCGTCTCGTCGTGGAAGCTCGACTGGACCT

ACACCGCAGGCCAGCGCATCCAGCAGCTGTGGAACGGCACCGCGTCGACCAACGGCGGC

CAGGTCTCCGTCACCAGCCTGCCCTGGAACGGCAGCATCCCGACCGGCGGCACGGCGTC

pUC-57 
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GTTCGGGTTCAACGGCTCGTGGGCCGGGTCCAACCCGACGCCGGCGTCGTTCTCGCTCAA

CGGCACCACCTGCACGGGCACCGTGCCGACGACCAGCCCCACGGGTACC 

CBD-ECFP GCTCCCGGCTGCCGCGTCGACTACGCCGTCACCAACCAGTGGCCCGGCGGCTTCGGCGC

CAACGTCACGATCACCAACCTCGGCGACCCCGTCTCGTCGTGGAAGCTCGACTGGACCT

ACACCGCAGGCCAGCGCATCCAGCAGCTGTGGAACGGCACCGCGTCGACCAACGGCGGC

CAGGTCTCCGTCACCAGCCTGCCCTGGAACGGCAGCATCCCGACCGGCGGCACGGCGTC

GTTCGGGTTCAACGGCTCGTGGGCCGGGTCCAACCCGACGCCGGCGTCGTTCTCGCTCAA

CGGCACCACCTGCACGGGCACCGTGCCGACGACCAGCCCCACGGGTACCGGTACAGGTG

GTTCTGGTGGTGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTC

GAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCG

ATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTG

CCCTGGCCCACCCTCGTGACCACCCTGACCTGGGGCGTGCAGTGCTTCAGCCGCTACCCC

GACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGA

GCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCG

AGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGG

CAACATCCTGGGGCACAAGCTGGAGTACAACTACATCAGCCACAACGTCTATATCACCG

CCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGA

CGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCG

TGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAAC

GAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGG

CATGGACGAGCTGTACAAGTCCGGACTCAGATCTCGAGCTCAGGCTTCGAATTCTGCAGT

CGACGGCACCGCGGGCCCAGGATCTACCGGATCTAGAGGTACC 

pQE-30 

CBD-

GCaMP2 

GCTCCCGGCTGCCGCGTCGACTACGCCGTCACCAACCAGTGGCCCGGCGGCTTCGGCGC

CAACGTCACGATCACCAACCTCGGCGACCCCGTCTCGTCGTGGAAGCTCGACTGGACCT

ACACCGCAGGCCAGCGCATCCAGCAGCTGTGGAACGGCACCGCGTCGACCAACGGCGGC

CAGGTCTCCTCACCAGCCTGCCCTGGAACGGCAGCATCCCGACCGGCGGCACGGCGTCG

TTCGGGTTCAACGGCTCGTGGGCCGGGTCCAACCCGACGCCGGCGTCGTTCTCGCTCAAC

GGCACCACCTGCACGGGCACCGTGCCGACGACCAGCCCCACGGGTACCGGTACAGGTGG

TTCTGGTGGTATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGTACGACG

ATGACGATAAGGATCTCGCCACCATGGTCGACTCATCACGTCGTAAGTGGAATAAGACA

GGTCACGCAGTCAGAGCTATAGGTCGGCTGAGCTCACTCGAGAACGTCTATATCATGGC

CGACAAGCAGAAGAACGGCATCAAGGCGAACTTCAAGATCCGCCACAACATCGAGGAC

GGCGGCGTGCAGCTCGCCTACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGT

GCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCAAACTTTCGAAAGACCCCAACG

AGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGC

ATGGACGAGCTGTACAAGGGCGGCACCGGAGGGAGCATGGTGAGCAAGGGCGAGGAGC

TGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAG

TTCAGCGTGTCCGGCGAGGGTGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTT

CATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTA

CGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTC

CGCCATGCCCGAAGGCTACATCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACT

ACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTG

AAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACA

CGCGTGACCAACTGACTGAAGAGCAGATCGCAGAATTTAAAGAGGCTTTCTCCCTATTTG

ACAAGGACGGGGATGGGACAATAACAACCAAGGAGCTGGGGACGGTGATGCGGTCTCT

GGGGCAGAACCCCACAGAAGCAGAGCTGCAGGACATGATCAATGAAGTAGATGCCGAC

GGTAATGGCACAATCGACTTCCCTGAGTTCCTGACAATGATGGCAAGAAAAATGAAAGA

CACAGACAGTGAAGAAGAAATTAGAGAAGCGTTCCGTGTGTTTGATAAGGATGGCAATG

GCTACATCAGTGCAGCAGAGCTTCGCCACGTGATGACAAACCTTGGAGAGAAGTTAACA

pQE-30 
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GATGAAGAGGTTGATGAAATGATCAGGGAAGCAGACATCGATGGGGATGGTCAGGTAA

ACTACGAAGAGTTTGTACAAATGATGACAGCGAAGGGTACC 

ECFP GGTACAGGTGGTTCTGGTGGTATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGA

TCTGTACGACGATGACGATAAGGATCTCGCCACCATGGTCGACTCATCACGTCGTAAGTG

GAATAAGACAGGTCACGCAGTCAGAGCTATAGGTCGGCTGAGCTCACTCGAGAACGTCT

ATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGCGAACTTCAAGATCCGCCACAAC

ATCGAGGACGGCGGCGTGCAGCTCGCCTACCACTACCAGCAGAACACCCCCATCGGCGA

CGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCAAACTTTCGAAAG

ACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATC

ACTCTCGGCATGGACGAGCTGTACAAGGGCGGCACCGGAGGGAGCATGGTGAGCAAGG

GCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAAC

GGCCACAAGTTCAGCGTGTCCGGCGAGGGTGAGGGCGATGCCACCTACGGCAAGCTGAC

CCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCAC

CCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACT

TCTTCAAGTCCGCCATGCCCGAAGGCTACATCCAGGAGCGCACCATCTTCTTCAAGGACG

ACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGC

ATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGG

AGTACAACACGCGTGACCAACTGACTGAAGAGCAGATCGCAGAATTTAAAGAGGCTTTC

TCCCTATTTGACAAGGACGGGGATGGGACAATAACAACCAAGGAGCTGGGGACGGTGAT

GCGGTCTCTGGGGCAGAACCCCACAGAAGCAGAGCTGCAGGACATGATCAATGAAGTA

GATGCCGACGGTAATGGCACAATCGACTTCCCTGAGTTCCTGACAATGATGGCAAGAAA

AATGAAAGACACAGACAGTGAAGAAGAAATTAGAGAAGCGTTCCGTGTGTTTGATAAG

GATGGCAATGGCTACATCAGTGCAGCAGAGCTTCGCCACGTGATGACAAACCTTGGAGA

GAAGTTAACAGATGAAGAGGTTGATGAAATGATCAGGGAAGCAGACATCGATGGGGAT

GGTCAGGTAAACTACGAAGAGTTTGTACAAATGATGACAGCGAAGGGTACC 

pQE-30 

gCaMP2 ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAA

GGATCTCGCCACCATGGTCGACTCATCACGTCGTAAGTGGAATAAGACAGGTCACGCAG

TCAGAGCTATAGGTCGGCTGAGCTCACTCGAGAACGTCTATATCATGGCCGACAAGCAG

AAGAACGGCATCAAGGCGAACTTCAAGATCCGCCACAACATCGAGGACGGCGGCGTGC

AGCTCGCCTACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCC

GACAACCACTACCTGAGCACCCAGTCCAAACTTTCGAAAGACCCCAACGAGAAGCGCGA

TCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCT

GTACAAGGGCGGCACCGGAGGGAGCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGG

GTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTC

CGGCGAGGGTGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCA

CCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGT

GCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCG

AAGGCTACATCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGC

GCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGA

CTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACACGCGTGACCAAC

TGACTGAAGAGCAGATCGCAGAATTTAAAGAGGCTTTCTCCCTATTTGACAAGGACGGG

GATGGGACAATAACAACCAAGGAGCTGGGGACGGTGATGCGGTCTCTGGGGCAGAACC

CCACAGAAGCAGAGCTGCAGGACATGATCAATGAAGTAGATGCCGACGGTAATGGCAC

AATCGACTTCCCTGAGTTCCTGACAATGATGGCAAGAAAAATGAAAGACACAGACAGTG

AAGAAGAAATTAGAGAAGCGTTCCGTGTGTTTGATAAGGATGGCAATGGCTACATCAGT

GCAGCAGAGCTTCGCCACGTGATGACAAACCTTGGAGAGAAGTTAACAGATGAAGAGGT

TGATGAAATGATCAGGGAAGCAGACATCGATGGGGATGGTCAGGTAAACTACGAAGAG

TTTGTACAAATGATGACAGCGAAGCCCGGG 

pQE-30 
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2.2.3.1 Fluorescent proteins 

Vector encoding for EGFP with N-terminal His6-tag in pQE-30 (Qiagen, UK) was donated by Dr. I. 

Okkelman (University College Cork, Ireland). Plasmid DNA encoding TagBFP2 with N-terminal His6-

tag in pQE-30 was purchased from Evrogen (Moscow, Russia). Sequence encoding for DsRed was 

synthesised from DsRed-Express-N1 vector as a template via PCR using 5′- 5′-

AGTCGGTACCATGGCCTCCTCCGAGGACGTC (forward) and AGTCGGTACCCAGG 

AACAGGTGGTGGCGGCC (reverse) primers. The resulting sequence was subcloned into pQE-30  

vector via KpnI site (Table 1).  All constructs were transformed into E. coli SG13009 (Qiagen) cells.  

All the produced expression constructs were verified by sequencing (GATC Biotech AG). 

 

2.2.3.2 ELPCP Constructs 

pET-15b vector encoding for N terminal His6-tag, H6-ELPCP was donated by Prof. Jan C. M. Van Hest 

(Radboud University, Netherlands) (Table 1).  C terminal His-tag ELPCP-H6 sequence was synthesised 

from H6-ELPCP vector via PCR using CCMV-F (5′-

TAGCGGATCCGTTCCGGGCGTCGGTGTTCCT) and CCMV-R 

(GATCAGATCTACCGCCACCATACACCGGAGT) primers. The resulting sequence was subcloned 

into pQE-16 vector via BamHI and BglII sites.  Both constructs were transformed into E. coli BL21 

(DE3) cells. All the produced expression constructs were verified by sequencing (GATC Biotech AG). 

 

2.2.3.3 EGFP- Human heavy chain ferritin (FTNH) Constructs  

Construct 1 (BN7-His7-EGFP-linker-FTNH) was composed of heavy chain human ferritin (FTNH) 

with C-terminally attached to the N-terminal of EGFP via short linker sequence, to aid protein folding  

of EGFP (CCCGGGGGTGGCGGTTCTGGTGGCGGCACCGGTGGCGGTTCTGGTGGC) with C 

terminal  His7 tag for purification via Ni2+-NTA affinity chromatography, attached to cell penetrating 

peptide bactenecin 7 (BN7). Construct 2 (BN7-EGFP-linker-FTNH) did not include His7 purification 

tag. Sequences were synthesised by Genscript (Piscataway, NJ, USA) and supplied in pUC-57 plasmids 

which were treated with restriction enzymes BamHI and HindIII to remove the sequences. The 

sequences were then subcloned into pGe30 vectors and transformed into E. coli SG13009 (Qiagen) 

cells. All the produced expression constructs were verified by sequencing (GATC Biotech AG). 
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2.2.3.4 ECFP- Human heavy chain ferritin (FTNH) Construct 

Sequence obtained by restriction digest with XmaI to remove EGFP from FTNH-EGFP-BN7 Construct 

1. ECFP, synthesised by Genscript (Piscataway, NJ, USA) in pUC-57, was treated with XmaI and 

inserted into the digested construct 1 sequence, in place of the removed EGFP. The construct was then 

treated with BamHI to allow insertion of ENL cell targeting peptide sequence treated with BamHI 

between the pGe30 plasmid and BN7 sequence. pQE-30 vectors were re-ligated and transformed into 

E. coli SG13009 (Qiagen) cells. All the produced expression constructs were verified by sequencing 

(GATC Biotech AG). 

 

2.2.3.5 CBD-ECFP, CBD-EYFP and CBD-GCaMP2 

Sequence encoding for N-terminal CBD-CenA fragment (Ala32 -Thr137) was designed with BamHI, 

KpnI and SmaI restriction digest sites, and synthesised by Genscript (Piscataway, NJ, USA) in pUC-57 

plasmid (See Table 1). The sequence was subcloned in frame with human ferritin sequence in pQE-30 

plasmid. The human ferritin sequence was removed via restriction digestion with SmaI and HindIII 

enzymes, followed by treatment with T4 DNA polymerase and self-ligation, producing CBD(FTN) 

plasmid DNA (See Table 1).  ECFP, EYFP and GCaMP2 coding sequences were synthesised by 

Genscript (Piscataway, NJ, USA and supplied in pUC-57 plasmids (See Table 1). Polymerase chain 

reaction (PCR) was carried out with plasmid DNA as template and primers introducing KpnI restriction 

site and cloned in CBD(FTN) plasmid DNA, digested with KpnI,  pre-treated with Antarctic 

Phosphatase, ligated and transformed in E. coli SG13009 (Qiagen) cells, producing CBD-ECFP, CBD-

EYFP and CBD-gCaMP2 (Table 1). CBD-fusions were produced with GTGGSGG linker between CBD 

and FP. All the produced expression constructs were verified by sequencing (GATC Biotech AG). 

 

2.2.4 Bacterial protein production and purification 

 

2.2.4.1 mTagBFP, EGFP, DsRed and ECFP fluorescent proteins 

mTagBFP, EGFP, DsRed, and ECFP proteins were produced in E. coli SG13009 cells, and grown in 

LB medium, with Ampicillin (100 μg/mL) and Kanamycin (25 μg/mL), untill OD600 of 0.4−0.5 was 

reached (37 °C). Cells were induced with 0.25 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG)  

overnight at room temperature harvested and stored as pellets at -80°C.  Protein purification was carried 

out via lysing the bacterial pellets in “PCL” buffer (50 mM NaH2PO4, 0.3 M NaCl, 10 mM imidazole, 
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pH 8 (>5 volumes per mg of wet weight) with 1× Cell Lytic B (Sigma C8740), 0.25−1 mg/mL 

Lysozyme, 1× protease inhibitor cocktail (Sigma P2714), incubation on ice for 0.5 h, passing the extract 

through the needle (23 1/4 G, 5 times), and centrifugation (15 000g, 15 min, 4 C). Cleared extracts were 

applied on Ni2+-NTA resin (Sigma P6611) in gravity-flow columns, which were washed with PCL 

buffer and then eluted with PCL buffer supplemented with 250 mM Imidazole. Eluted proteins were 

dialysed against PCL buffer without imidazole or another buffer (8 kDa MWCO BioDesignDialysis 

Tubing™ Fisher Scientific, RT, 2× 1 hour ), concentrations were then quantified using Bradford assay. 

 

2.2.4.2 ELPCP 

H6-ELPCP and ELPCP-H6 were produced in E. coli BL21 (DE3) cells and purified according to the 

method described by authors [344] with minor modifications to the procedure. The bacterial pellets 

were lysed in 50 mM NaH2PO4, 10 mM Imidazole, 1.3 M NaCl, pH 8, (>5 volumes per mg of wet 

weight) with 1× CellLytic B (Sigma C8740), 0.25−1 mg/mL Lysozyme, 1× protease inhibitor cocktail 

(Sigma P2714) 10 μg/mL DNase, 10 μg/mL RNase A, incubation on ice for 0.5 h, passing the extract 

through the needle (23 1/4 G, 5 times), and centrifugation (15 000g, 15 min, 4 C). Cleared extracts were 

applied on Ni2+-NTA resin (Sigma P6611) in gravity-flow columns, which were washed with lysis 

buffer containing 20 mM imidazole, and then eluted with the same buffer containing 250 mM imidazole. 

To produce ELPCP dimers, the purified proteins were dialysed against ‘capsid’ buffer (50 mM Tris, pH 

7.5, 500 mM NaCl, 10 mM MgCl2, 1mM EDTA) (8 kDa MWCO, 1 h, RT), then against the same buffer 

without EDTA. To produce VLPs, dimers were further dialysed against ‘assembly’ buffer (50 mM 

CH3COONa, pH 5, 500 mM NaCl, 10 mM MgCl2). The dimers and assembled VLPs were stored at 4 

°C. Purity and molecular weight of proteins were assessed by SDS-PAGE and concentrations by 

Bradford assay.  

 

2.2.4.3 EGFP and ECFP- Human heavy chain ferritin (FTNH) Constructs 

All FTNH constructs were produced in E. coli SG13009 cells, and grown in LB medium, with 

Ampicillin (100 μg/mL) and Kanamycin (25 μg/mL), till OD600 of 0.4−0.5 was reached (37 °C). Cells 

were induced with 0.25 mM IPTG overnight at room temperature, harvested and stored as pellets at -

80°C.  Protein purification was carried out via lysing the bacterial pellets in ‘MiniSOG’ buffer (0.2 M 

NaCl, 30 mM NaH2PO4, 2 mM Tris-HCl, pH 8.3, with 1× Cell Lytic B (Sigma C8740), 0.25−1 mg/mL 

Lysozyme, 1× protease inhibitor cocktail (Sigma P2714), incubation on ice for 30 minutes, passing the 

extract through the needle (23 1/4 G, 5 times), and centrifugation (15 000 g, 15 min, 4 C). Cleared 

extracts were applied on Ni2+-NTA resin (Sigma P6611) in gravity-flow columns, which were washed 
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with MiniSOG buffer. Then the proteins were eluted with MiniSOG buffer supplemented with 250 mM 

Imidazole. Eluted proteins were dialysed against PBS (8 kDa MWCO, RT, 2× 1 h). Protein 

concentrations were quantified using Bradford assay and their purity was confirmed by SDS-PAGE. 

2.2.4.4 CBD-ECFP and CBD-GCaMP2 

Both CBD-ECFP and CBD-GCaMP2 were produced in E. coli SG13009 cells, and grown in LB 

medium, with Ampicillin (100 μg/mL) and Kanamycin (25 μg/mL), till OD600 of 0.4−0.5 was reached 

(37 °C). Cells were induced with 0.25 mM IPTG overnight at room temperature, harvested and stored 

as pellets at -80°C.  Protein purification was carried out via lysing the bacterial pellets in ‘MiniSOG’ 

buffer (0.2 M NaCl, 30 mM NaH2PO4, 2 mM Tris-HCl, pH 8.3, with 1× CellLytic B (Sigma C8740), 

0.25−1 mg/mL Lysozyme, 1× protease inhibitor cocktail (Sigma P2714), incubation on ice for 30 

minutes, passing the extract through the needle (23 1/4 G, 5 times), and centrifugation (15 000g, 15 

min, 4 C). Cleared extracts were applied on Ni2+-NTA resin (Sigma P6611) in gravity-flow columns, 

which were washed with MiniSOG buffer. Then the proteins were eluted with MiniSOG buffer 

supplemented with 250 mM Imidazole. Eluted proteins were dialysed against PBS (8 kDa MWCO, RT, 

2× 1 h). Protein concentrations were quantified using Bradford assay and their purity was confirmed by 

SDS-PAGE. 

 

2.2.5 Metallochelate coupling of PtCP-NTA to proteins 

5 mM of fluorescent proteins in PCL buffer were mixed with 1.5 to 2 x molar excess of PtCP-NTA, 0.5 

mM ZnSO4, and 0.1% Triton X100, in final volume of 500 µL. With the Negative control containing 

1 mM EDTA-Na. Samples were incubated for 1 hour at room temperature, protected from light on 

rotary shaker. The solutions were desalted on PD MiniTrap G25 (GE Healthcare, Buckinghamshire, 

UK) columns against PBS. Coupling efficiency was assessed by UV−vis spectrophotometry measured 

absorbance and molar extinction coefficent ε(PtCP) = 72,000 M−1 cm−1 (380 nm), through Beer Lambert 

Law in equation 2.2. 

Equation 2.2:  𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑦𝑒 =
𝐴 𝑋 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝜀
 

Where, A is the absorbance of PtCP-NTA and ε it’s molar extinction coefficient both at 380 nm. The 

concentration of the dye was then used to determine the coupling efficiency of fluorescent proteins to 

the dye PtCP in equation 2.3 

Equation 2.3:  
[𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑦𝑒] 

[𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛]
 𝑋 100 
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2.5mM dimer forms of ELPCP (N- or C-terminal His6) protein in capsid buffer was mixed with 7.5nmol 

of PtCP-NTA, 0.5mM ZnSO4, and 0.1% Triton X100, in final volume of 500µL. With the Negative 

control containing 1 mM EDTA-Na.  The samples were treated in the same manner as above.  The 

VLPs were assembled after coupling via dialysis against Assembly buffer at room temperature, cleared 

by centrifugation (10 000g, 10 min) and analysed spectrally and by dynamic light scattering (DLS) for 

size distribution for VLPs. Coupling efficncy of ELPCP to PtCP-NTA was calculated using equation 

2.2 and 2.3 as above for fluorescent proteins to PtCP-NTA 

 

2.2.5 Bioconjugation of fluorescein isocyanate (FITC) and Alexa Fluor 488 to horse ferritin 

4 nmoles of recombinant or horse spleen-derived ferritin protein were mixed 72 x molar excess (288 

nmoles) of fluorescein isocyanate (FITC) or Alexa Fluor 488 (ThermoFisher Scientific) and 0.2M 

sodium bicarbonate (pH 9), in final volume of 45 0µL. The reaction was carried out over 8 hours at 

4°C, protected from light on rotary shaker. The reaction was stopped by the addition of 50mM NH2Cl. 

The solutions were desalted on PD MiniTrap G25 columns against PBS. Coupling efficiencies were 

assessed by UV−vis spectrophotometry using ε(FITC) = 75,000 (488 nm) M−1 cm−1 and ε (Alexa 

Fluor 488) = 71,000 (488nm) M−1 cm−1. Nanoparticle sizes were analysed by DLS by size distribution. 

 

2.2.6 Encapsulation of Pt-Glc in horse ferritin 

1 nmoles of recombinant or horse spleen derived ferritin protein (Sigma) were disassembled by 

decreasing the pH of the solution to pH 2 via addition of 150 µL 0.2M HCl and incubating at room 

temperature for 2 hours.  The pH was increased to pH 6 via dialysis against 0.2 M Tris, 0.5 M NaCl pH 

6 buffer and incubated at room temperature for 1 hour. 32 x molar excess of Pt-Glc (32 nmoles) was 

added to the solution and the pH of the solution was increased to pH 9 via dialysis against 0.2M Tris, 

0.5M NaCl pH 9 buffer and incubated at room temperature overnight. The solutions were desalted on 

PD MiniTrap G25 columns against PBS. Encapsulation efficiency was assessed by UV−vis 

spectrophotometry using ε(PtGlc) = 75,000 (395 nm) and nanoparticle sizes were analysed by DLS by 

size distribution. 
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2.2.7 Cellulose-based hybrid scaffolds for FLIM  

2.2.7.1 Cellulose scaffold preparations  

GrowDex hydrogel (UPM) was diluted from 1.5% to 0.5% for experimental work with phenol red-free 

DMEM supplemented with 10 mM glucose, 1 mM sodium pyruvate, 2 mM L-glutamine for FLIM 

measurements or cell culture media and equal volume Matrigel, if imaging on upright microscope to 

prevent shaking or the scaffold.  BC spheres were produced and provided by Dr. Peter Timashev 

(Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian 

Federation). The spheres were cut into small sections for experimental work. Decellularisation of plant 

tissues was adapted from the method of [212]. Spinach leaves were cut with 5 mm diameter puncher 

and the petioles of the celery stems were cut into ~1 mm thick sections. They were then pre-treated with 

hexane, washed with PBS and incubated in 10% SDS for 4 days, then in a solution of 10% sodium 

hypochlorite / 0.1% Triton X100  for 48 hours, and finally in deionised water for 48 hours with gentle 

rocking at room temperature. Decellularised tissues were stored at 4 °C for 2 weeks in the presence of 

0.05% sodium azide or were sterilised by immersing in 70% ethanol and sequential washing in sterile 

Hanks’ Balanced Salt Solution for cell-based experiments. For imaging on an upright microscope, 

GrowDex and decellularised plant materials were embedded in Matrigel, at 50% scaffold: 50% Matrigel 

by volume.  

2.2.7.2 Scaffold labelling and fluorescence lifetime measurements 

Cellulose scaffold labelling of BC and GrowDex with CBD-ECFP and CBD-GCaMP2 was optimised 

to be 5µM with 30-minute incubation. For decellularised celery, carrot and potato incubated with 5µM 

CBD-EYFP with 30-minute incubation for optimal brightness and labelling efficiency in fluorescence 

microscopy.  Solution-based fluorescence lifetime measurements for CBD-ECFP labelled Growdex 

were carried out on Fluorolog-3 (Horiba) Spectrofluorometer at range of pH values using buffer 

solutions, adapted from [212] based on 270 mM KCl, 4 mM CaCl2, 2 mM MgCl2, 40 mM Sucrose and 

10% fetal bovine serum (FBS) and supplemented with either 20 mM MES (pH 5.8-6), 20 mM MOPS 

(pH 6.4-7.2), or 20 mM HEPES-Na (pH 7.6-8). Extracellular acidification (ECA) was measured on 

Victor2 TR-F microplate reader as described in [404] 

 

2.2.7.3 Cell culture with cellulose scaffolds 

Human colon cancer HCT116 wild-type (WT) and SCO2
-/- cells were grown in McCoy 5A medium 

supplemented with 10% FBS, 10 mM HEPES, pH 7.2, 2 mM Glutamine, 2 mM penicillin-streptomycin 
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essentially as described before in [36]. For microscopy, 200,000 cells were mixed with 0.5% GrowDex 

and embedded in 50 μL Matrigel in the centre of 35 mm TC Petri dish, grown for 2-3 days then stained 

with 5µM CBD-ECFP and analysed. For ECA assay, cells were seeded on collagen IV pre-coated 96-

well plate (30,000 per well) and grown for 2 days before analysis.  

 

2.2.7.4 Fluorescence microscopy and FLIM of CBD-tagged proteins 

Optimisation of staining with CBD-tagged proteins, stability and assessment of cell growth were 

performed on Axiovert 200 inverted fluorescence PLIM microscope [404] equipped with T/O2 control 

and LED excitation sources (390, 470 and 590 nm). CBD-tagged proteins were excited using 470 nm 

LED with emission collected at 510-560 nm, using 10x/0.3 or oil-immersion 40x/1.3 Plan Neofluar 

objectives. FLIM was performed on Axio Examiner Z1 upright laser-scanning FLIM-PLIM microscope 

[36] equipped with 5x/0.25 Fluar, 20x/1.0 W-Plan and 63x/1.0 W-Plan Apochromat dipping objectives, 

integrated T and Z-axis controls, DCS-120 confocal TCSPC scanner, photon counting detectors and 

SPC Image software (Becker & Hickl GmbH). TMRM was excited using 405 nm BDL-SMNI pulsed 

diode laser with emission collected at 565-605 nm. CBD-GCaMP2 was excited using 488 nm BDL-

SMNI pulsed diode laser (emission collected at 512-536 nm), CBD-ECFP was excited using 447 nm 

BDL-SMT pulsed diode laser (emission collected at 512-536 nm). Calibration of pH sensitivity of 

fluorescence lifetimes was carried out in buffer solutions from [36] based on 135 mM KCl, 2 mM CaCl2, 

1 mM MgCl2, 20 mM Sucrose and 10% FBS and supplemented with either 10 mM MES (pH 5.8-6), 10 

mM MOPS (pH 6.4-7.2), or 10 mM HEPES-Na (pH 7.6-8). Cell stimulations were carried out using 1 

µM Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) and 10 µM oligomycin or with 

equal amounts of DMSO (mock) with cells in phenol red-free DMEM supplemented with 10 mM 

glucose, 1 mM sodium pyruvate, and 2 mM L-glutamine (no HEPES). 

 

2.2.8 Ferritin constructs  

2.2.8.1 Cell culture and characterisation of ferritin constructs  

All ferritin nanoparticle size measurements were carried out by Dynamic Light Scattering (DLS) with 

Zetasizer Nano ZS 4 mW 633nm He-He Laser. Mouse embryonic fibroblasts (MEFs) were grown in 

Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serium (FBS) as 

described before [36]. For microscopy, 90,000 cells were seeded at the centre of a collagen IV: PDL 

coated 35 mm glass bottom dish (MatTek) and grown for 2-3 days or 30,000 cells were seeded per well 

on a collagen IV: PDL coated 8 well microscope insert plate. For hoFTN encapsulated PtGlc 
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experiments the MEF cells on the were then stained with 2.5µM FITC-hoFTN PtGlc (concentration of 

encapsulated PtGlc) or with 2.5µM Pt-Glc for 1 hour, with 1µM calcein counter stain for 30 minutes 

prior to analysis via confocal microscopy. Or stained with 2.5µM FITC-hoFTN PtGlc (concentration 

of encapsulated PtGlc) or with 2.5µM Pt-Glc for 20 hours with 1µM calcein counter stain for 30 minutes 

prior to analysis via confocal and fluorescence microscopy. For EGFP -FTNH constructs and Alexa 

Fluor 488-hoFTN experiments the MEF cells on the 8 well microscope insert plate were incubated with 

0.2 µM of EGFP -FTNH constructs 1 or 2 (concentration of FTNH) or 0.2 µM Alexa Fluor 488- hoFTN 

(concentration of hoFTN) for 16 hours, and counterstained with 0.2 nM TMRM for 30 minutes prior to 

measurements via fluorescence microscopy.  

 

2.2.8.2 Fluorescence microscopy imaging of ferritin constructs  

Optimisation of staining and cell growth were performed on an Axiovert 200 inverted fluorescence 

PLIM microscope [404] equipped with T/O2 control and LED excitation sources (390, 470 and 590 

nm).  

For EGFP -FTNH constructs and Alexa Fluor 488-hoFTN imaging was carried out with the above 

Axiovert 200 inverted fluorescence PLIM microscope [404].  EGFP and Alexa Fluor 488 were imaged 

with 470 nm LED excitation, with emission collected at 510-650 nm. While TMRM was imaged with 

590 nm LED excitation, with emission collected 600- 650 nm. Image collected using 10x/0.3 or 40x/1.3 

EC Plan Neofluar objectives. Confocal high powered imaging of ferritin constructs was carried out with 

Axio Examiner Z1 upright laser-scanning FLIM-PLIM microscope [36] equipped with 5x/0.25 Fluar, 

20x/1.0 W-Plan and 63x/1.0 W-Plan Apochromat dipping objectives, integrated T and Z-axis controls, 

DCS-120 confocal TCSPC scanner, photon counting detectors and SPCImage software (Becker & 

Hickl GmbH).  Ferritin constructs of FITC-hoFTN PtGlc excited using 488 nm tuneable fianium laser 

for FITC and calcein with emission collected at 510-560 nm and BDL-SMC picosecond 405 nm laser 

(Becker & Hickl GmbH) for Pt-Glc with emission collected at 635-675 nm using 10x/0.3 or oil-

immersion 63x Plan Neofluar objectives. All cellular stains used for microscopy measurements are 

listed in Table 2.2 

Table 2.2. Cellular stains for microscopy measurements 

Probe Concentration Function Staining procedure Excitation, 

emission (nm) 

TMRM 20 nM Stains mitochondria Add 20nM to sample, 30 

minutes before 

measurement 

543nm, 555-600nm 
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Hoechst 

33342 

1 µM Stains nucleic acid Add 1µM to sample, 30 

minutes before 

measurement 

350nm, 461-600nm 

Calcein 1 µM Stains whole cell for 

cell viability  

Add 1µM to sample, 30 

minutes before 

measurement 

495nm, 515-600nm 

 

2.2.9 Spectroscopy  

Absorption spectra were measured on 8453-diode array spectrophotometer (Agilent), fluorescence 

spectra were measured on LS50B (PerkinElmer) spectrometer in PBS, pH 7.4, as described previously 

[314].  

 

2.2.10 Data assessment of CBD-ECFP GrowDex scaffolds FLIM response and cell culture 

Fluorescence intensity images exported from widefield (ImSpectror Pro software, LaVision) or TCSPC-

FLIM (SPCImage software, Becker & Hickl) microscopes were used as is or assembled as 3D stacks 

in SVI Huygens Pro 17.0 software (Scientific Volume Imaging BV, Netherlands). For quantification of 

cell and scaffold staining efficiency and stability, fluorescence intensity images were analysed in 

ImageJ software (Fiji.sc). Data are presented here are as average values with standard deviation shown 

as error bars.  The experiments were performed in triplicate with the data presented as averaged values 

from independently chosen regions of interest (ROI). For statistical significance, data were evaluated 

using independent t-test, with confidence levels P=0.05 and P=0.005, indicated with asterisks in figures. 

The fluorescence lifetime decays were fitted directly in SPCImage software (Becker & Hickl) using 

tail-enhanced mono-exponential or double-exponential fitting functions to achieve 2 < 1.5. For pH 

calibration, the fluorescence lifetime distribution histograms (produced in SPCImage with optimised 

fitting function, three independent replicates per each pH point) were exported in Origin 6.0 software 

(Microcal Inc., USA), fitted with Cauchy-Lorentz distribution function to identify mean values and 

fitted for corresponding pH values using Sigmoid function in Origin 6.0. The following relationship 

was obtained for CBD-ECFP (447 nm exc.):  

Equation 2.4:  𝜏 =
2133

1+𝑒−1.42∗(𝑝𝐻−4.89)      

where τ is in ps. For conversion of measured fluorescence lifetime values in pH, a simplified polynomial 

relationship was used: 

Equation 2.5: 𝑝𝐻 = 16.48 − 0.0141 ∗ 𝜏 + 4.56 ∗ 10−6 ∗ 𝜏2  
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where τ is in ps.  

2.2.11 Dynamic light scattering 

 

All nanoparticle construct sizes were determined using dynamic light scattering (DLS) on Zetasizer 

NANO ZS equipped with 4 mW 633 nm laser (Malvern Instruments).  DLS technique measures 

nanoparticle size through the concept of the Brownian law of motion of nanoparticles in a liquid 

medium. The nanoparticles undergoing Brownian cause fluctuations in scattered light intensity, where 

smaller nanoparticles cause faster fluctuations in light intensity than larger ones. The DLS calculates 

nanoparticle size from the velocity of the Brownian motion, which is defined by the translational 

diffusion coefficient (D), which can be converted to nanoparticle size by using the Stokes-Einstein 

equation [405]. 

Equation 2.6:  𝑑𝐻 =  
𝑘𝑇

3𝜋𝜂𝐷
 

Where, 𝑑𝐻 is the hydrodynamic diameter of the nanoparticles, 𝑘 the Boltzmann’s constant, T the 

absolute temperature, 𝜂 the viscosity of the liquid medium, and D the diffusion constant.  

 

 

  



69 

 

Chapter 3: Evaluation of Metallochelate coupling for the design of new intracellular O2 probes. 

 

3.1 Introduction 

3.1.1 Phosphorescent oxygen sensitive probes 

Molecular oxygen is one of the key molecules for life in both prokaryotic and eukaryotic organisms 

including plants and human cells alike [406]. Oxygenation and supply of molecular oxygen (O2) within 

cells and tissues is of significant importance, with the dysregulation of O2 supply and oxygenation 

affecting major cellular functions, such as: proliferation, differentiation, apoptosis, energy production, 

cell signalling pathways and enzymatic reactions [225, 407-410]. O2 is an important marker of cell 

viability, metabolism, and normal physiological behaviour of cells [38, 411, 412]. There are several 

methodologies and techniques to measure physiological O2 gradients in cell and tissue models such as 

indirect staining with antibodies, hypoxia markers or FPs [413-415], as well as electron paramagnetic 

resonance (EPR), microelectrodes, and near infrared spectroscopy (NIRS) oximetry [416-418].  

However, the techniques listed do not allow for direct, non-invasive measurements of O2 gradients. 

Quenched-phosphorescence O2 detection is a technique that does allow for such measurements, along 

with the analysis of O2 in respiring cells with stable calibration, subcellular resolution and multiplexing 

potential [35, 419].  The technique utilises the ability of molecular O2 to quench photoluminescent 

signals. The luminophore in the triplet state undergoes quenching via collisional interactions with O2. 

The O2 molecule accepts energy from the luminophore-excited triplet state, thereby reducing 

phosphorescence signal intensity and lifetime. This measurement is O2 concentration dependent, 

allowing for calculation of O2 concentration via the Stern Volmer equation (1.1), in which the 

relationship of phosphorescence lifetime (τ) and intensity (I) is utilised.  

Equation 3.1 
𝐼0

𝐼
=

𝜏0

𝜏
= 1 + 𝐾𝑠−𝑣[𝑂2] = 1 + 𝐾𝑞𝜏0[𝑂2] 

Where, 𝐼0 and 𝜏0 are unquenched intensity and lifetime at zero O2 respectively.  𝐾𝑠−𝑣 is the stern volmer 

quenching constant. 𝐾𝑞 is the biomolecular quenching rate constant which depends on the environment 

of the reporter dye, temperature, and sterical factors. Luminescence lifetime is the average amount of 

time a luminophore remains in an excited state before the emission of energy as a photon of light. 

Lifetime measurements are highly suited for luminescence quenching measurements of O2  compared 

to intensity based measurements, as its response is independent of dye concentration used. 

Phosphorescence lifetimes of O2 sensitive dyes (i.e. Pt porphyrins) are in the longer microsecond range  

compared to fluorescence lifetime of FPs, which are in the nanosecond range. The longer lifetime range 

allows for easier and more reliable measurements. The above equation (1.1) can be rewritten as follows; 

Equation 3.2   [𝑂2] = (𝜏0 − 𝜏)/(𝜏𝐾𝑠−𝑣) 
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The Stern-Volmer equation (1.2) is only applied to homogeneous populations that produce a linear 

Stern-Volmer relationship. However, in practical applications, many populations possess a 

heterogeneous population, resulting in a nonlinear Stern-Volmer relationship. This can be overcome 

using a two-site model (also known as Demas model) equation (1.3) [420]. 

Equation 3.3  
𝐼0

𝐼
= 1/(

𝑓(𝛼1)

(1+𝐾𝑠𝑣1[𝑄])
) + (

𝑓(𝛼2)

(1+𝐾𝑠𝑣2[𝑄])
) 

Where, 𝑓(𝛼1) and 𝑓(𝛼2) are the two fractional contributions of the total luminescence emissions at two 

sites, and 𝐾𝑠𝑣1 and 𝐾𝑠𝑣2 are their respective quenching constants  [421].  

Many photoluminescent O2-sensitive materials are composed of synthetic indicator dyes, such as 

macrocyclic complexes of heavy metal ions Pd, Pt, Ru, and Ir. These complexes are known as 

metalloporphyrins. Among them, the Pt(II) and Pd(II)-porphyrins are the most popular dyes used as 

they possess strong phosphorescence signals with high molar absorption coefficients for high 

absorbance of light and large Stokes’ shifts, reducing interference and quenching between absorbance 

and emission. When comparing the two, Pt(II)-porphyrins possess lifetimes in the range of 20 to 100 

µs and are used for measurements within the physiological range of O2 0-200 µM, whereas Pd(II)-

porphyrins possess lifetimes in range of 400- 1000µs and are used for measurements at <50µM of O2 

[419]. As a result, Pt(II)-porphyrins are preferred over Pd(II)-porphyrins as they possess shorter 

emission times and are quenched less at conventionally used 21% O2. This decreases the acquisition 

times needed, making them more practical to use.  

The most popular of the Pt(II)-porphyrins are modified derivatives of platinum 

tetrakis(pentafuorophenyl)porphyrin (PtTFPP) and Pt(II) coproporphyrin I (PtCP). This is due to their 

brightness, photostability and relatively low cost. However, initially, they suffered from poor cellular 

delivery due to their high hydrophobicity resulting in self-aggregation and nonspecific binding to cells 

and proteins. It wasn’t until these issues were addressed that they became widely used.  To improve 

intracellular delivery, the dyes can be functionalised to hydrophilic groups via click chemistry to reduce 

hydrophobicity. PtTFPP has been functionalised with four monosaccharides thio-glucose (Pt-Glc) and 

thio-galactose (Pt-Gal) [196]. The monosaccharides confer probe hydrophilicity and cell permeability 

without compromising O2 sensitivity or probe brightness. In order to improve intracellular delivery and 

staining, PtCP has been conjugated to hydrophilic macromolecular carriers or cell targeting peptides. 

PtCP expressing an isothiocyanate reactive group was conjugated to bovine serum albumin (BSA) via 

isothiocyanate coupling, marketed as MitoXpress by Luxcel [422]. MitoXpress is applied in the 

quantitative assessment of intracellular O2 concentration and cellular oxygenation [423]. PtCP has also 

been conjugated to positively charged TAT derived peptides [424], in which the conjugates displayed 

well defined intracellular staining, which was more uniform than that of the MitoXpress and other 

carrier based probes, allowing for the study of both intracellular O2 levels and the monitoring of changes 
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in cell respiration in live cells [425]. Conjugation of PtCP to bactenecin 7 peptide fragment (BN7) [426] 

resulted in development of O2 sensitive probe that successfully displayed intracellular staining and 

displayed responses to changes in cell respiration, similar to that of the TAT conjugated probes in PC12 

cells [427].  

The PtTFPP dyes have also displayed improved intracellular staining by incorporating the dye inside 

polymers. Incorporation of PtTFPP into cationic polymer Eudragit RL-100, known as NanO2, has 

resulted in the development of probes suited for lifetime-based time resolved fluorescence (TR-F) 

detection and PLIM imaging of O2  [428]. The positive charge on the RL-100 polymer increases cell 

permeability, localising to lysosomes and endosomes. NanO2 displays suitability for measurements of 

phosphorescence lifetime in cell oxygenation upon metabolic treatments [423]. However, in 

neurosphere models, it displayed aggregation [429]. This issue has been addressed by the conjugation 

of negatively charged PMMA-AA/PtTFPP, which demonstrated improved intracellular staining in 

neural cell models of live cell brain slices and neurospehre spheroid cultures [430]. Research that 

conjugated blue fluorescent polymer polyfluorene to meso-

Tetrakis(pentafluorophenyl)porphyrinato]platinum(ii) (PtF20TPP), developed O2-sensitive 

phosphorescent nanoparticles with ratiometric FRET functionality [431]. This research inspired 

improvements to the RL-100 NanO2 PtTFPP nanoparticles via the addition of a polyfluorene polymer. 

Again, this polymer serves as a FRET antenna to improve brightness and confer the ability to carry out 

two photon excitation and ratiometric intensity-based detection. This probe was named MM2 [35].  

Despite advances in intracellular O2 sensors, only a certain number of probes and dyes achieve optimal 

intracellular staining and cell targeting. The inability to stain a diverse range of cell types and tissue 

models currently hinders their usage, due to their need for long impractical staining times. The 

development of intracellular O2 sensors with antenna dyes for FRET measurements, although a 

significant breakthrough, is limited by the range of suitable antenna dyes for successful application. 

Efforts to reduce the hydrophobicity and to add charged nanoparticles for intracellular delivery have 

reached a plateau, in that their height of their success has been realised.  

Therefore, the development of new structures is significant, such as conjugation to self-assembling 

nanoparticles that allow for the attachment for multiple dye molecules, targeting groups and protective 

groups (i.e. PEG). However, the development of such constructs is needed for regenerative medicine, 

where the measurement of O2 is of vital importance in the study of drug and metabolic responses in 

advanced tissue models such as spheroids and organoids. Here we have evaluated metallochelate 

coupling of Pt(II)-porphyrin dyes to self-assembling protein nanoparticles, and a range of FPs, as a 

viable strategy in the development of multiplexed imaging platforms and ratiometric sensors. 
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3.1.2 Fluorescent proteins for live cell imaging 

FPs are a homologous class of proteins that absorb light and re-emit it at a longer wavelength as 

fluorescence, like that of fluorescent molecules. In the case of FPs, this ability is derived from a 

sequence of 3 amino acids that form the chromophore. The first FP to be derived and characterised was 

green fluorescent protein (GFP), from the Aequorea Victoria jellyfish. Through protein mutation of the 

GFP chromophore structure, blue (BFP), yellow (YFP), cyan (CFP) FPs were discovered along with 

red (RFP), derived from Discosoma nummiforme (DSRed). Since this initial work, FP colour palette 

and properties has been expanded. To determine which FP is suitable for an experiment or imaging 

application, its intrinsic properties must be considered along with the experimental parameters, such as: 

brightness, photostability, environment, chromophore maturation, and oligomerisation.  

FPs are applied in live cell fluorescence imaging for the study of biological models. Here, they are used 

to study cellular processes and dynamics, allowing for the visualisation of small molecules, ions, 

proteins, nucleic acids, and biochemical reactions. Some FPs display sensitivities to pH, ion and polarity 

changes, affecting their fluorescence intensities and lifetimes, which allow for the quantitative 

measurements of these factors [283]. The development of photoactivatable FPs [297] has allowed for 

the analysis of protein tracking [301] and interactions [264], as well as applications in super-resolution 

imaging [261].  

FPs are applied in live cell imaging through the use of FP fusions (FPFs) for the visualisation of gene 

expression in target cells or via conjugation with nanoparticles, proteins (e.g. antibodies, self-

assembling protein nanoparticles), or genetic material for cell delivery [432]. FPFs are plasmid vectors 

that contain FP encoding genes at either the N or C terminal of the protein of interest. The placement 

of the FP gene is dependent on the FP being used and the experimental aims. Issues regarding the 

positioning of the FP must be considered with regards to the placement of the FP gene at the correct 

terminal, so as not to block targeting domains for specific sub-cellular localisation. Enough space must 

also be given for FP to fully fold into its tertiary structural conformation. Once designed, the FPF 

plasmid is transfected into the target cells via lipofection [433] . In the cell, the promoter expression is 

induced, causing the FPF genes to be transcribed and translated into proteins, thereby allowing for the 

study of protein expression and localisation in cellular organelles [252, 434, 435]. However, FPFs are 

not without their downfalls.  FPs can potentially interfere with the structure or function of the protein 

to which they are fused, by oligmersing and aggregating in high concentrations, or when in close 

proximity to each other. Alternative methods of attaching FPs or small molecule fluorophores to 

scaffolds like nanoparticles, peptides or other carriers have been explored for live cell imaging [332, 

436, 437]. The advantages of coupling to nanoparticles allows for the control over the number and ratio 

of attached FPs or small molecule fluorophores, which can reduce issues with oligomerisation and 

aggregation, as well as the attachment of various targeting peptides for intracellular delivery.  
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3.1.3 Metallochelate coupling 

An alternative strategy to FPF genetic constructs in probing cells and tissues for visualisation of cells 

and protein dynamics is the use of chelating FPs to oligo- histidine tags on the surfaces of nanoparticles 

or proteins of interest. This strategy is known as metallochelate coupling (also referred to as metal 

histidine coordination in literature). Oligo-histidine sequences are capable of coordinating transition 

metal ions (Zn2+, Ni2+, Co2+, or Cu2+) which are chelated partly by nitrilotriacetic acid (NTA) and 

iminodiacetic acid (IDA) chelating groups. His tags can be inserted into the N or C terminus of 

recombinant protein for purification via affinity chromatography, in which NTA- Ni2 selectively binds 

to recombinant His-tagged proteins. This coordination can also be used for labelling strategies of 

attaching His- tagged recombinant proteins to NTA or IDA expressing groups such as fluorophores, 

organic and synthetic dyes [438, 439]. The most commonly used transition metal for coordination is 

Ni2+. However, the drawback of using NTA- Ni2+ is that Ni2+ is a heavy metal therefore, it can be both 

toxic to cells and quench the fluorescence of its attached fluorophore. An alternative is Zn2+ which 

occurs naturally in biological systems and is not a quencher of fluorescence [440].  

The labelling of proteins of interest with small molecule-based fluorescent probes via metallochelate 

coupling is viewed to be an alternative to FPF genetic constructs, many of which fail to cross the plasma 

cell membrane. Therefore, they have been only used successfully for proteins on the plasma cell 

membrane. The probe consists of NTA-Ni2+ group for binding and a fluorophore for visualisation. The 

probe is then added to the cell culture. Here, it binds to the expressed protein of interest that contains 

the specific peptide for binding. These probes selectively bind to oligo-histidine tagged proteins of 

interest, thereby allowing for their characterisation (i.e. localisation).  Recent work has been centred on 

the development of probes for intracellular cell staining. A synthetic fluorescent probe consisting of 

Ni2+-NTA group and fluorophore based on coumarin derivative, along with a arylazide moiety (AC) 

known as Ni2+-NTA-AC was developed for live cell imaging of the His-tagged recombinant DNA repair 

protein, Xeroderma pigmentosum group A (XPA122) [441]. The probe was specifically designed with 

reduced negative charge to be intracellular and was successful in the staining of HeLa cells and 

specifically complexed to the transfected His-tagged XPA122 protein. When compared to the FPF 

genetic construct of His-RFP-His-XPA122, it was found that localisation was distributed evenly 

throughout the cell, suggesting that RFP affects protein localisation. However, one significant drawback 

of the probe was that it was observed to bind to histidine rich proteins in cell, resulting in lower 

sensitivity.  Cell penetrating peptide transactivator of transcription (TAT) was coordinated to 

fluorescently labelled carrier complex containing three NTA groups via its His6-tag [442]. The TAT 

penetrating peptide transports the tris-NTA complex across the plasma cell membrane into the cell, 

where it preferentially binds to the recombinant His10-tagged protein of interest and releases the His6-

tagged TAT peptide. The probe was evaluated with HeLa and C2C12 cells for the specific binding of 
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His10 tagged antigen translocation complex (TAP) in the cellular ER and for the DNA-silencing 

complex methyl CpG-binding protein 2 (MeCP2) in the nucleus. Site specific staining of both 

recombinant proteins was observed, like that of the FPF genetic constructs: TAP1-mVenus-His10 and 

MeCP2-GFP- His10. These are examples of such small molecule probes that can stain intracellularly 

specific His-tagged proteins of interest, without perturbing protein folding or localisation, providing a 

possible alternative to FPF genetic constructs. 

From evidence that supported metallochelate coupling’s ability to attach oligo-histidine tagged proteins 

to NTA expressing molecules, we hypothesised that it could be a viable strategy (Fig 3.1 A) in the 

coupling of protein-based nanoparticles and FPs to O2-sensitive dyes labelled with NTA, such as PtCP-

NTA (Fig 3.1 B). The use of metallochelate coupling to attach FP to PtCP-NTA would facilitate the 

design of an O2-sensitive probe with fluorescence-based localisation and ratiometric-based 

measurements of O2, where FP can be used as an O2-insensitive reference (i.e. like that of MM2 and 

polyfluorene). Here we selected FPs over organic fluorescent dyes due to the need for genetic 

expression of the oligo-histidine tag on FPs for metallochelate coupling. This combined with the ability 

to attach different coloured FPs allows for the detection and optimisation of FRET between the PtCP-

NTA. In the case of protein based nanoparticles, we selected ELPCP, a viral-like particle composed of 

elastin like polypeptide (ELP) and cowpea chlorotic mottle virus (CCMV) protein capsid [443]. This 

dual structure results in two different self-assembly mechanisms within the one VLP. ELP thermal 

induced assembly in which subunits of ELPCP are dialyzed against a pH7.5 1.3M NaCl buffer at 35°C 

for 15 minutes. This resulted in the production of 18nm sized VLPs, comprised of 90 subunits. The 

second mechanism is via CCMV pH induced assembly. Here the ELPCP subunits are dialysed against 

pH 7.5 buffers which induces dimerization of the subunits. Then they are dialysed against pH 5 buffers 

which results in the production of assembled 28nm VLPs comprised of 180 subunits. We used the pH 

induced assembly pathway, as the conditions were compatible with those of metallochelate coupling 

and generated more ELPCP subunits for coupling of PtCP-NTA, thereby increasing the potential 

phosphorescence brightness of the construct.  
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Figure 3.1. Schematic of metallochelate coupling strategy and structure of PtCP-NTA. (A) Oligo-histidine 

sequences on our protein-based constructs coordinate transition metal ions (Zn2+, Ni2+, Co2+, or Cu2+), which are 

chelated partly by nitrilotriacetic acid (NTA) chelating groups on Pt-Porphyrin O2 sensor dye (i.e. PtCP-NTA). 

Thereby coupling protein-based constructs to O2 sensitive dyes labelled with an NTA group. (B) Structure of Pt-

Porphyrin O2 sensor dye, PtCP-NTA 

 

3.2 Aims 

Here, we aim to evaluate metallochelate coupling as a viable strategy to couple PtCP-NTA 

phosphorescent O2-sensitive dye to His6-tagged FPs and VLP subunits of ELPCP, with the goal of 

developing O2-sensitive complexes for live cell imaging.  

3.3 Results 

3.3.1 Optimisation of fluorescent protein production  

First, we evaluated several monomeric FPs for applications in metallochelate coupling. From the 

literature of FPs, we selected FPs with high brightness and high expression in E.coli bacterial protein 

production system, along with a high degree of solubility. For optimisation of production and 

purification conditions we selected EGFP, DsRed express, and TagBFP. We cloned all three into pQE-

30 His6-tagged expression vector and transfected them into SG13009 strain E.coli cells supplied by 

Qiagen. This is due to the SG13009 strain‘s optimal pREP4 plasmid expression regulation over the 

pQE-30 expression vector. With EGFP, following growth at 37°C until OD600= ~0.4, we used the 

following induction conditions: 72 hours at 4°C, 16 hours at room temperature, and 4 hours at 37°C. 

With different concentrations (of inducer of expression) IPTG at 1 mM, 0.5 mM, or 0.25 mM to induce 

expression. From sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis 
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and visualisation of EGFP’s fluorescent spectra, we found the optimal production conditions to be 16 

hours at room temperature, with 0.25 mM IPTG induction (Fig 3.2).  

.  
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Figure 3.2. Optimisation of EGFP protein production. (A, C, and E) Bacterial IPTG induced EGFP protein 

samples and uninduced samples, ran on SDS-PAGE 4-10 % gel and analysed via Coomassie staining. With lane 

1 loaded with uninduced samples and 1 mM, 0.5 mM and 0.25 mM IPTG induced samples respectively for each 

time point. With expected size of EGFP ~27kDa (A) 4°C for 72 hours, (C) Room temperature for 16 hours, (E) 
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37°C for 4 hours. (B, D, and F) Fluorescence excitation (Em. 507 nm) and emission (Exc. 488 nm) spectra of 

EGFP (B) 4°C for 72 hours, (D) Room temperature for 16 hours, (F) 37°C for 4 hours.  

 

We then subsequently used the optimal room temperature for 16 hours with 0.25mM IPTG production 

conditions for EGFP, in the production of DsRed and TagBFP2 (Fig 3.3). 

 

 

Figure 3.3. Fluorescent protein production. (A) Purification products of TagBFP2, EGFP, and DsRed-Express. 

Products ran on 4-10 % SDS -PAGE gel and analysed via coomassie staining. Lane 1 TagBFP2, Lane 2 EGFP, 

and Lane 3 DsRed-Express, ~25-27 kDa. (B) Fluorescence excitation and emission spectra of TagBFP2 excitation 

(Em.457 nm) and emission (Exc.402 nm), EGFP excitation (Em. 507 nm) and (emission Exc. 488 nm), and 

DsRed-Express excitation (Em.583 nm) and emission (Exc.556 nm). (Figure modified from [314]) 
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3.3.2 Metallochelate coupling of fluorescent proteins to PtCP-NTA 

With the production of FPs optimised, we set out to evaluate metallochelate coupling via their respective 

His6-tags to the NTA group on the O2-sensitive phosphorescent dye, PtCP-NTA. Metallochelate 

coupling of EGFP to PtCP-NTA was carried out in the presence of ZnSO4, providing Zn2+ ions for 

chelation. We carried out optimisation experiments with various ratios of EGFP to PtCP-NTA and 

found that 1.5 to 2 times molar excess of PtCP-NTA was optimal (Fig 3.4). The results of metallochelate 

coupling showed an approximately >40 % yield of complexation of PtCP-NTA to EGFP (see Materials 

and Methods section 2.2.5), compared to the negative control as seen from the absorbance spectra (Fig 

3.4 A). EGFP-PtCP-NTA complex displayed similar fluorescence to that of uncoupled EGFP, along 

with presence of phosphorescence emission band (650 nm) sensitive to O2 (Fig 3.4 B).  
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Figure 3.4. Metallochelate coupling of EGFP to PtCP-NTA. (A) Absorbance spectra of EGFP, coupled EGFP-

PtCP, and negative EDTA control. Peak at 380 nm for PtCP-NTA confirms efficient coupling. (B) Luminescent 

properties of coupled EGFP and PtCP-NTA. Fluorescence excitation (Em. 507 nm) and emission (Exc. 488 nm) 

of EGFP and EGFP-PtCP. With phosphorescence emission (Exc. 380 nm) spectra of EGFP-PtCP, under 

oxygenated and deoxygenated conditions. (Figure modified from [314]) 

 

We then set out to evaluate metallochelate coupling of PtCP-NTA to other N-Terminally His6-tagged 

FPs, TagBFP2 and DsRed Express (Fig 3.5 and 3.6). Metallochelate coupling was carried out using the 

conditions optimised previously with EGFP. TagBFP2-PtCP-NTA complex displayed similar 

fluorescence to that of uncoupled TagBFP2 (Fig 3.4 A). The presence of a phosphorescence emission 

band at 650nm showed that metallochelate coupling was successful (Fig 3.5 A). The complex was also 

sensitive to changes in O2 (Fig 3.5 B).  
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Figure 3.5. TagBFP2 and coupled TagBFP2-PtCP luminescence spectra. (A) Fluorescence excitation 

(Em.457nm) and emission (Exc.402nm) spectra of TagBFP2 and coupled TagBFP2-PtCP. With deoxygenated 

phosphorescence spectra of coupled TagBFP2-PtCP. (B) Phosphorescence emission (Ex.380nm) of coupled 

TagBFP2-PtCP with response to deoxygenation. (Figure modified from [314]) 

 

DsRed Express-PtCP-NTA complex displayed similar fluorescence to that of uncoupled DsRed 

Express. The presence of a phosphorescence emission band at 650nm showed that metallochelate 

coupling was successful (Fig 3.6 A). The complex was also sensitive to changes in O2 (Fig 3.6 B).  

Overall, metallochelate coupling with FP displayed that metallochelate coupling is a viable strategy for 

large proteins.   
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Figure 3.6. DsRed and coupled DsRed-PtCP luminescence spectra. (A) Fluorescence excitation (Em.583nm) and 

emission (Exc.556nm) spectra of DsRed and coupled DsRed-PtCP. With deoxygenated phosphorescence spectra 

of coupled DsRed-PtCP. (B) Phosphorescence emission (Ex.380nm) of Coupled DsRed-PtCP with response to 

deoxygenation. (Figure modified from [314]) 

 

3.3.3 Optimisation of ELPCP production and metallochelate coupling to PtCP-NTA 

We first evaluated metallochelate coupling with N-terminal His6-tagged ELPCP (His6-ELPCP) and C-

terminal His6-tagged ELPCP (ELPCP -His6) (Fig 3.7 A) to PtCP-NTA, using the conditions used for 

coupling to FPs. We produced and purified both ELPCP protein constructs as described in materials 

and methods section 2.2.4.2 and as shown in the schematic below (Fig 3.7 A), obtaining proteins and 

assembled VLPs of the correct size for both as shown on SDS -PAGE gel (Fig 3.7 B) and DLS 

measurement (see Materials and Methods section 2.2.11) (Fig 3.7 C-D).  Coupling to dimer forms of 

both His6-ELPCP and ELPCP-His6 was successful, however, when we carried out assembly in 
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‘Assembly dialysis buffer’ pH5 we did not obtain VLPs of the correct size in the case of His6-ELPCP. 

We theorised that the N terminal His6-tag of His6-ELPCP was facing the internal cavity of the assembled 

VLPs. Therefore, when coupled to PtCP-NTA, it sterically hindered assembly. C-terminal His6-tagged 

ELPCP in its dimer form achieved 65% coupling efficiency (see Materials and Methods section 2.2.5) 

compared to the EDTA control (Fig 3.7 E). After assembly we obtained VLPs of the correct size at 

~28nm.  
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Figure 3.7. ELP-CP production and coupling to PtCP-NTA. (A) Schematic representation of ELPCP-H6. And 

H6.-ELPCP constructs and pH assembly process. (B) Purification products of ELPCP-H6. And H6.-ELPCP. 

Products ran on 4-10% SDS -PAGE gel lanes 1 and 2 respectively and analysed via coomassie staining. (C and 
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D) Nanoparticle sizes of (B) ELPCP-H6 and (C) H6.-ELPCP. (E) Absorbance spectra of ELPCP-H6-PtCP/Zn2+ 

complex in comparison with EDTA negative control. (Figure modified from [314]) 

 

We then compared ELPCP-H6-PtCP to the commercial O2 probe MitoXpress (Luxcel biosciences) in 

terms of their phosphorescence and O2 sensitivity. The VLPs showed ~7 times higher phosphorescence 

intensity under deoxygenated conditions than MitoXpress (Fig 3.8 A). This is possibly due to the higher 

dye content of ~117 molecules of PtCP per capsid at 65% coupling efficiency, whereas MitoXpress 

possess a yield of coupling in the ratio of 1:3 to 1:5 of bovine serum albumin protein to dye. When 

deoxygenated VLPs demonstrated a 5.3-fold increase in phosphorescence intensity compared to 2.45-

fold increase for MitoXpress (Fig 3.8 B). In terms of phosphorescence lifetime VLPs showed ~37 times 

higher signals when deoxygenated than MitoXpress, however its lifetime range of 27 – 67 µs was 

similar to that of MitoXpress (Fig 3.8 C). This is possibly due to self-quenching of PtCP or quenching 

by the protein backbone.  
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Figure 3.8. Comparison of ELPCPH6-PtCP and MitoXpress phosphorescence and oxygen sensitive properties. 

(A) Absorbance of ELPCPH6-PtCP and MitoXpress, both at 15 nM concentration. (B) Phosphorescence lifetime 

response to oxygenation of ELPCPH6-PtCP. (C) Phosphorescence and excitation (Em.650nm) and emission 

(Exc.380nm) spectra of ELPCPH6-PtCP and MitoXpress both at 7.5 nM concentration, with response to 

oxygenation. (Figure modified from [314]) 

 

3.4 Discussion. 

The aim of this research was to produce new O2-sensitive probes via metallochelate coupling to 

monomeric proteins and protein subunits of self-assembling protein complexes. We hypothesised that 

metallochelate coupling was a viable strategy due to both the high binding affinity of histidine tags and 

NTA-Ni2+ with a dissociation constant between approximately 7 x 10 -8 and 7 x 10 -7 M [444] and also 

the compatibility of coupling the NTA group (on PtCP-NTA) to His6-tagged protein subunits of 

monomeric FPs and multi protein VLPs. We tested this by first optimising conditions for coupling 
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PtCP-NTA to monomeric FP EGFP in the design of ratiometric O2-sensitive probes. Here we observed 

a >40% yield of coupling of PtCP-NTA to EGFP compared to the EDTA negative control (Fig 3.4 A). 

The coupled EGFP showed no perturbing effects of coupling to its fluorescence when compared to 

uncoupled EGFP (Fig 3.4 B). Coupled EGFP also displayed phosphorescence emission peak at 650 nm, 

which was responsive to changes in O2 (Fig 3.4 B). We then expanded our evaluation of metallochelate 

coupling to FPs TagBFP2 and DsRed-express. Similarly, to EGFP we observed successful coupling in 

terms of no perturbing effects of coupling on the fluorescence spectra and the presence of 

phosphorescence emission at 650nm, demonstrating responsiveness to changes in O2 (Fig 3.5 and 3.6). 

The results here show that metallochelate coupling is a viable strategy for the coupling of His6-tagged 

monomeric FPs to oxygen sensitive PtCP-NTA, producing O2-sensitive complexes that have combined 

fluorescence of a wide array of monomeric FPs. Such complexes can be used for ratiometric-based 

measurements of O2, where FP can be used as O2-insensitive reference. The coupling yield here of 

~40% along with the brightness of the probe can be improved by introducing more NTA groups to PtCP 

porphyrin dye, increasing the number of His6 tags on the FPs, and possibly by optimising the chelating 

metal ion concentration further. The ability to potentially couple to any monomeric FP could allow for 

flexibility in experimental design. For example, coupling with far red or infrared FPs could expand the 

usage to high resolution imaging from confocal fluorescence imaging, due to increased light penetration 

depth.  

We moved forward to a more complex protein system of self-assembling VLPs. We wanted to evaluate 

whether metallochelate coupling and the coupling of PtCP-NTA to protein subunits of the VLPs would 

perturb its self-assembly process. We carried out coupling of PtCP-NTA with N-terminally and C-

terminally His6-tagged ELPCP protein subunits (Fig 3.7 A-D). From the N-terminal His6-tagged 

coupling, we did not obtain VLPs of the expected size. This suggested that the self-assembly process 

of ELPCP VLPs was hindered by the presence of the PtCP dye on the inside of the ELPCP internal 

cavity. This was confirmed when we obtained ELPCP-H6-PtCP VLPs of the correct size ~28nm with 

the C-terminal His6-tagged subunits, in which the PtCP dye molecules are expressed on the outside of 

the ELPCP VLPs. We achieved coupling efficiency of ~65%, compared to the EDTA control (Fig 3.7 

E). We then compared the ELPCP-H6-PtCP complex to commercial O2-sensitive probe MitoXpress. 

The ELPCP-H6-PtCP VLPs displayed ~25.8 times higher absorptivity (Fig 3.8 A) and ~7 times higher 

phosphorescence intensity than MitoXpress (Fig 3.8 C). This is due to the greater number of PtCP dye 

molecules attached to the VLPs than MitoXpress, with ~117 per VLP. When deoxygenated, the VLPs 

displayed a 5.3-fold increase in phosphorescence intensity compared to the 2.45-fold increase in 

MitoXpress (Fig 3.8 C). When comparing phosphorescence lifetimes, the VLPs showed ~37 times 

higher signals when deoxygenated. However, the lifetime range of 27-67 µs was similar to MitoXpress 

(Fig 3.8 B).  This similar range in lifetime could possibly be due to self-quenching of PtCP or quenching 

by the protein backbone of the VLP subunits. The results here show that metallochelate coupling is a 
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viable strategy for the coupling of His- tagged protein subunits of VLPs to O2-sensitive PtCP-NTA, and 

the VLP subsequent self-assembly.  

The most significant result here is the first example of a phosphorescent VLP structure, which allows 

for multiple coupling of Pt-porphyrins, conferring higher brightness, high lifetime signals and increased 

sensitivity in response to O2 than commercial probe MitoXpress. The main advantage lies with the 

ability to attach peptide targeting sequences to the VLPs for targeted delivery of the Pt-porphyrins to 

cells and tissues. Similarly, to FP, the coupling efficiency of ~65% which can potentially be improved 

upon by increasing NTA groups on the Pt-porphyrins and the number of His6 tags on the protein 

subunits. The phosphorescent brightness can be improved using brighter and more photostable Pt-

porphyrin dyes like PtTFPP and Pt-benzoporphyrin derivatives. However, their hydrophobicity and 

nonspecific binding to proteins would need to be decreased for this to be viable. In its current form the 

ELPCP-H6-PtCP VLPs can be applied in time-resolved fluorescence microplate reader measurements. 

If increased brightness and cell specific targeting can be achieved, then fluorescence microscope 

imaging can be applied for cell studies. However, with the use of VLPs and other self-assembling 

protein nanoparticles, complex issues are raised with regards to the dynamic interactions of nanoparticle 

materials and biological systems. These interactions lead to the formation of protein coronas, particle 

wrapping, intracellular uptake and subcellular localisations, and effects on cellular processes. The 

understanding of these nano-bio interfaces and their effects are key to designing nanoparticle constructs 

with properties that can improve intracellular and subcellular staining, while addressing concerns with 

immunogenicity and toxicity. However, investigating these interfaces isn’t straight forward, and 

progress to date has been slow due to the dynamic states of the interfaces, thereby hindering progress 

of nanoparticle material development and ultimately their applications.    

 

3.5 Conclusion 

 Overall, we have demonstrated that metallochelate coupling is a viable strategy for conjugation of NTA 

expressing Pt-porphyrins to His6-tagged monomeric proteins and self-assembling VLPs. Coupling to 

VLPs allows for the first instance of a phosphorescence VLP structure. The flexibility to potentially 

couple any suitable monomeric FP or VLP subunit for assembly to an NTA expressing Pt-porphyrin or 

dye molecule makes metallochelate coupling a very attractive methodology for conjugation.  
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Chapter 4: Design and development of ferritin-based nanoparticles for pH and O2 imaging  

4.1 Introduction 

Ferritin is a major iron storage protein found in most living organisms, including mammals [364],  

bacteria [365], and plants [366]. Mammalian ferritin is composed of 24 subunits of either 21 kDa heavy 

(FTNH) or 19 kDa light (FTNL) chains [367] (Fig 4.1 A & B). The fully assembled ferritin folds into 

a 24-mer spherical cage-like structure, 450 kDa in size, with an internal cavity of 8 nm and an external 

size of 12 nm [368] (Figure 4.1 B). The primary role of ferritin is iron storage, and the transportation to 

and from cells via receptor mediated endocytosis. Ferritin’s intrinsic ability to enter cellular cytosol via 

ferritin receptors such as TfR-1 and TfR-2 in both murine  and human cells [378] along with T cell 

immunoglobulin and mucin domain containing 2 (TIM-2) [369, 370] and scavenger receptor class A, 

member 5 (Scara5) [379] receptors in murine cells, makes it advantageous for biomedical applications 

in human cell and tissues models as well as mouse models. Ferritin can be functionalised genetically 

and chemically at its exterior to express a wide array of proteins such as targeting peptides, fluorescent 

and dye molecules [381], and antibodies [382, 383]. Ferritin’s interior cavity allows the encapsulation 

of drugs and imaging agents [384, 385]. There are several ways of functionalising the ferritin structure, 

either externally or internally. 

 

 

 

Figure 4.1. Resolved protein structures of (A) human ferritin heavy chain subunit 21 kDa, (B) human ferritin light 

chain subunit 18 kDa, (C) fully assembled 24-mer human ferritin 440 kDa (10.2210/pdb1FHA/pdb [445]). Images 

from [446]. 
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4.1.1. Ferritin chemical modification 

Ferritin nanoparticles can be chemically modified via reactive amino acid side-chains such as lysine, 

cysteine, aspartate, and glutamate present on the exterior of the structure [317]. Lysine amino acids are 

modified via N-hydroxysuccinimide esters’ (NHS-esters) reaction with the N-terminal primary amine 

group (-NH2). Cysteine amino acids are conjugated at their thiol groups via Michael acceptors, such as 

maleimides, whereas carboxylic amino acids aspartate, and glutamate are modified by activating 

carboxylic acid groups with 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), which can then 

react with NHS to form an NHS-ester group. This NHS-ester group is then conjugated to a ligand, 

expressing a primary amine like that of lysine conjugations.  Several fluorescent molecules have been 

successfully attached to the ferritin nanoparticle surface, such as Cy5.5 and Alexa Fluor 488 [389], via 

NHS-ester chemistry and Fluorescein isocyanate (FITC) [386-388] using isothiocyanate chemistry.  

Ferritin nanoparticles have also been PEGylated through maleimide [392] or EDC [393] chemistry, to 

alter its pharmacokinetics and biodistribution. Here, we utilised the coupling of fluorophores: Alexa 

Fluor 488 to lysine amino acids via amine group NHS-ester bioconjugation, and isothiocyanate coupling 

with fluorescein isothiocyanate (FITC), to localise our nanoparticle constructs in cell models.  

4.1.2 Ferritin genetic engineering  

Ferritin subunits can also be genetically engineered to express targeting peptides, antigens, and FPs. 

Both the C and N- terminal of the FTNH subunit sequence can be engineered to express recombinant 

protein sequences of interest. When engineering at the N-terminus, the protein is expressed externally; 

for the C-terminal, expression is internal. However, there are conflicting reports in the literature that 

demonstrate genetic linkage of recombinant proteins to the C-terminus result in the FTNH, expressing 

the engineered C-terminus externally when ferritin is fully assembled [383, 394].  This research is 

conflicting to our own experiences with engineering ferritin at the C-terminus, in that we found that the 

self-assembly process of ferritin is perturbed when we functionalised ferritin with FPs at the C-terminus. 

It is possible that the size of the linker used here could allow enough spatial separation for the 

engineered protein to be expressed outside and for correct ferritin assembly.  FTNH has been genetically 

engineered at the N-terminus to express the cell receptor targeting peptide, RGD-4C for the targeting 

of αvβ3 integrin [447], which is implicated in angiogenic tumour vasculature as biomarkers for 

inflammation and angiogenesis. The fully assembled ferritin showed no inhibiting affects to its 

structure, with a higher affinity for the αvβ3 integrin expressing macrophage cells. The RGD-4C 

engineered ferritin was then loaded with Cu2+-complexed Dox via encapsulation for targeted drug 

delivery to the glioblastoma tumor model U87MG [395]. This displayed longer circulation half-life, 

reduced cardiotoxicity, and higher tumor uptake.  However, there is debate on whether it is the peptides, 
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the passive transport (e.g. endocytosis), or the intrinsic targeting property of the nanoparticle that is 

directing the delivery.  

Here, we aim to functionalise ferritin nanoparticles by genetic engineering to express a range of FPs for 

localisation, and to produce biosensor nanoparticle constructs, e.g. quantitative (FLIM) imaging of pH 

using pH-sensitive FPs. We are also aiming for the expression of targeting peptides to optimise 

biodistribution and specific cell targeting for intracellular staining. Intracellular pH gradients play 

important roles in cellular processes such as proliferation, senescence, and apoptosis, and is tightly 

regulated within mammalian cells and organelles. The organelles of a cell require a different range of 

pH to carry out their physiological functions [448]. Pathologic conditions can significantly alter 

intracellular and extracellular pH through effects on ion homeostasis. pH is an important biomarker for 

disease states, such as cancer and neurological disorders [449, 450], and therefore requires the 

development of novel biosensors for detection. FPs are sensitive to changes in pH due to protonation at 

their chromophore, altering its conformation and its photophysical properties. A range of FPs such as 

pHRed and ECFP can measure pH changes due to responses in their fluorescence lifetimes [212, 213]. 

Here we carried out genetic engineering to produce FTNH that expresses ECFP, developing a pH-

sensitive nanoparticle probe. 

Through the attachment of the cell penetrating peptide Bactenecin 7 [446] we aim to improve cellular 

uptake and intracellular staining. BN7 is derived from antimicrobial protein against gram negative 

bacteria, which has been used to efficiently load Pt(II) coproporphyrin I (PEPP0) into various 

mammalian cell types including PC12, HCT116, SH‐SY5Y and HeLa. We also genetically attached a 

cell targeting peptide to FTNH, α-Enolase–binding peptide, for the  specific uptake into the colon cancer 

cell line HCT116 [451].  

 

4.1.3 Ferritin encapsulation 

The widely known approach of functionalising ferritin for loading cargo molecules is via encapsulation. 

The structure and self-assembly process of ferritin has been found to be regulated by changes in pH. At 

low pH, the ferritin structure is disassembled into its 24 subunit parts and reassembled as pH is increased 

back to neutral. This allows for the encapsulation of various cargos within the fully assembled ferritin’s 

internal 8 nm-sized cavity.   

We hypothesised that the pH-dependent assembly process of ferritin nanoparticles from its subunits 

could be utilised to encapsulate the Pt-porphyrin-based O2 probe, Pt-Glc [196], creating O2-sensitive 

nanoparticles for intracellular imaging. This is based on research in which the Pt-based drug compound, 

Cisplatin, was successfully encapsulated within ferritin nanoparticles [452, 453]. X-ray crystallography 

found that the Pt centre of Cisplatin was coordinated to the interior ferritin core, bound to five amino 
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acid residues on the FTNH subunits, His136 and Lys68, His105, Cys90, and Cys102 [397]. Therefore, 

evidence shows that Pt-based compounds are complexed within the ferritin structure when 

encapsulated. 

 

4.2 Aims 

Here, we set out to design intracellular nanoparticle probes for live cell imaging based on ferritin self-

assembling protein nanocages, for the measurement of intracellular pH and O2. We aimed to achieve 

this by employing various strategies and techniques: (i) by genetic engineering for the expression of 

FPs for localisation and pH sensor applications and targeting peptides for cell-specific targeting (Fig 

4.1 A). (ii) Through chemical modification for the attachment of fluorescent molecules for localisation 

(Fig 4.1 B). (iii) With the encapsulation of the O2-sensitive phosphorescent probe, Pt-Glc, into the 

internal cavity of the assembled ferritin structure (Fig 4.1 C).  

 

Figure 4.2 Schematic representation strategies for the functionalisation of ferritin. (A) Genetic engineering for 

expression of FP and cell penetrating peptides, for example EGFP and ECFP along with BN7 and ENL. (B) 

Chemical modification for expression of fluorophores via amino acid bioconjugations, for example NHS-ester 

amine coupling to Alexa Fluor 488 and isothiocyanate coupling with FITC. (C) Encapsulation via pH dependent 

disassembly and reassembly, for example O2 sensitive phosphorescent dye Pt-Glc.    
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4.3 Results 

4.3.1 Development of genetically engineered ferritin nanoparticles 

Based on research by Kim et al. 2011, [454] in which FTNH subunits were genetically engineered at 

the C-terminus to express EGFP, we carried out proof-of-concept experiments to examine the types of 

FPs that could be successfully expressed on the FTNH subunit. However, we were unsuccessful in 

obtaining correctly sized nanoparticles of fully assembled ferritin expressing EGFP. 

We hypothesised that the expression of EGFP on the C-terminal of the FTNH subunit would expose 

EGFP to the interior of the ferritin structure, therefore impeding self-assembly. Thus, we produced two 

constructs of FTNH genetically expressing EGFP at its N-terminus (Fig 4.3 A).  Construct 1 and 2 both 

consisted of His6 for protein purification, BN7 cell penetrating peptide (amino acid sequence: val- val- 

ala- ala- arg- val- val- leu- met- val- arg- arg) for increased cell penetration, with EGFP attached to 

ferritin by a short linker (amino acid sequence: pro- gly- gly- gly- gly- ser -gly- gly- gly- thr- gly- gly- 

gly- ser- gly- gly) to facilitate an increase in protein folding of both proteins. In the case of Construct 1, 

a second oligohistidine sequence, His7, was inserted between EGFP and the BN7 to allow for protein 

folding of EGFP, as well as providing a potential second protein purification tag. We cloned both 

constructs into pQE-30 His6-tagged expression vector and transfected them into E.coli SG13009 cells 

(Qiagen). Following production at 37°C until OD600= ~0.4, we induced with 0.125 mM IPTG for 16 

hours. We then subsequently purified both recombinant protein constructs under native conditions using 

His6-tagged Ni2+-NTA affinity chromatography (see Materials and Methods 2.2.4.3). We obtained 

protein yields of ~12 mg/L with a folding rate of ~30-40% for EGFP in both constructs (assessed by 

UV-Vis spectroscopy). We then measured the nanoparticle size via dynamic light scattering (DLS) (see 

materials and methods section 2.2.11) (Fig 4.3 A & B) and observed nanoparticles of the correct size at 

23 nm. The attachment of EGFP to the N-terminal end of FTNH allowed for the assembly of ferritin 

nanoparticles, with EGFP expressed to the exterior of the nanoparticle constructs, therefore 

demonstrating that the attachment of FP EGFP to FTNH via genetic engineering is a viable strategy, 

with potential for applications to other FPs. Next, we wanted to examine whether attachment to FTNH 

perturbs the photophysical properties of EGFP.  We compared EGFP fluorescence spectra for 

Constructs 1, 2 and the untagged EGFP and found that attachment to FTNH does not affect the 

fluorescence spectra of EGFP (Fig 4.3 C). We wanted to then examine fluorescent molecules like Alexa 

Fluor 488 or FITC coupled to horse spleen derived FTNH (hoFTN), and how they would compare to 

genetically expressed EGFP-FTNH constructs in terms of their photophysical properties and cell 

staining. We carried out amine deprotonation of lysine groups on hoFTN with NHS-ester of Alexa Fluor 

488 (see materials and methods section 2.2.5), achieving a ratio of 24:1 of Alexa Fluor 488 to hoFTN 

when assembled. Similarly to Constructs 1 and 2, we measured nanoparticle size via DLS and obtained 
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nanoparticles of ~23 nm (Fig 4.3 D). We then assessed the photophysical properties of the Alexa Fluor 

488 coupled to hoFTN compared to uncoupled and observed no perturbing effects of coupling (Fig 4.3 

E). We find in all cases that whilst the fluorescent spectra of the fluorophore or fluorescent proteins are 

unperturbed by coupling, there is a loss of fluorescent brightness when they are coupled to the ferritin 

structure. This could be due to suboptimal protein folding in the case of EGFP or suboptimal attachment 

of the fluorophores to the exterior of the ferritin structure in the case of Alexa Fluor 488, and possible 

quenching of fluorescence emission by the ferritin protein structure.  
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Figure 4.3. Design and evaluation of FTNH-EGFP and hoFTN-Alexa Fluor 488 constructs. (A) Structures of 

FTNH-EGFP constructs 1 and 2. Construct 1 consisted of FTNH attached to EGFP via short linker, with BN7 cell 

penetrating peptide and His6 purification tag. Construct 2 consisted of FTNH attached to EGFP via short linker, 

with His7 purification tag, BN7 cell penetrating peptide and His6 purification tag. (B) Nanoparticle sizes of 

constructs 1 and 2 at ~23 nm. (C) Fluorescence excitation (Em. 507 nm) and emission (Exc. 488 nm) spectra of 
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EGFP attached to Construct 1 and 2 with uncoupled EGFP, normalised to uncoupled EGFP. (D) Nanoparticle size 

of hoFTN-Alexa Fluor 488 at ~23nm. ) (E)Fluorescence excitation (Em. 507nm) and emission (Exc. 488nm) 

spectra of hoFTN-Alexa Fluor 488 with uncoupled Alexa Fluor 488, normalised to uncoupled Alexa Fluor 488. 

 

4.3.1.1 Evaluation of genetic engineered and chemically modified ferritin constructs in cells  

We then set out to evaluate Construct 1 and 2, along with hoFTN-Alexa Fluor 488, with the cell model 

of mouse embryonic fibroblast (MEF) cells visualised with the Tetramethylrhodamine Methyl Ester, 

Perchlorate (TMRM) mitochondrial stain. We observed no visible toxicity to the cells for all the 

constructs. When subsequently analysed and compared, fluorescence intensity of all three constructs 

showed that Construct 1 provided significantly higher brightness and cell staining than construct 2 and 

hoFTN-Alexa Fluor 488 (Fig 4.4 C).  This result is possibly due to the extra His7 tag acting as a linker, 

increasing EGFP folding and brightness. Then in comparing EGFP-FTNH genetic fusion constructs 1 

& 2 to chemically modified hoFTN-Alexa Fluor 488, it is possible to conclude that EGFP genetic 

coupling provides a brighter more efficient nanoparticle construct.  
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Figure 4.4. Evaluation of FTNH-EGFP and hoFTN-Alexa Fluor 488 constructs in cell-based model.  

Transmission light (TL), EGFP or Alexa Fluor 488 (470 nm exc., 510-650 nm em.) and TMRM (590 nm exc., 

600-650 nm em.) microscopy images. Fluorescence microscope images of MEF cells incubated with (A) FTNH-

EGFP constructs 1 and 2 (0.2 µM concentration of ferritin, 16 hours) and counterstained with TMRM (0.2 nM, 

30 minutes). (B) hoFTN-Alexa Fluor 488 (0.2 µM concentration of hoFTN, 16 hours) and counterstained with 
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TMRM (0.2 nM, 30 minutes). (C)  Comparison of FTNH-EGFP constructs and hoFTN-Alexa Fluor 488 

fluorescence intensities.  

 

Following on from our successful proof of concept EGFP-FTNH genetic Construct 1, we set out to 

develop ferritin nanoparticle probes capable of measuring intracellular pH through FLIM. We carried 

out genetic engineering, removing EGFP from construct 1 and replacing with the pH-sensitive FP ECFP 

(Fig 4.5 A), and inserting a secondary cell penetrating peptide α-Enolase (ENL) (amino acid sequence: 

val- val- ala- ala- arg- val- val -leu -met -val -arg -arg) for colon cancer cell targeted delivery. This 

construct is referred to as ECFP-FTNH. As with the previous constructs, we cloned ECFP-FTNH into 

pGe30 His6-tagged expression vector and transfected them into the SG13009 strain E.coli cells (Qiagen) 

(see materials and methods section 2.2.3.4) . Following production at 37°C until OD600= ~0.4, we 

induced with 0.125mM IPTG for 16 hours room temperature. We then subsequently purified under 

native conditions using His6-tagged Ni2+-NTA affinity chromatography (see materials and methods 

2.2.4.3) and evaluated the purity of the proteins via SDS-PAGE (Fig 4.5 B) with yields of  6.8mg/L 

culture, and a folding rate of 64% (assessed by UV-Vis spectroscopy). We found from the SDS-PAGE 

that the protein solution purified contained presence of degradation products and aggregated proteins. 

We attempted to alter purification conditions, however the conditions used her were found to be the 

most optimal for purification and protein yield. We wanted to then examine any obstructing effects on 

ECFP photophysical properties of coupling to FTNH. We observed good sensitivity to changes of pH 

in fluorescence intensity, with a 1.6-fold increase from pH 5 to pH 8 (Fig 4.5 D).  



99 

 

 

Figure 4.5. Design and evaluation of FTNH-ECFP construct. (A) Structure of FTNH-ECFP construct consisting 

of FTNH attached to ECFP via short linker, with His7 purification tag, cell penetrating peptides BN7 and ENL, 

and His6 purification tag. (B) Purification products of FTNH-ECFP. 4-10% SDS -PAGE and analysed via 
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Coomassie staining with FTNH-ECFP ~45kDa.(C) Nanoparticle size of FTNH-ECFP constructs at ~23 nm.(D) 

Fluorescence excitation (em. 477nm) and emission (exc. 434 nm) spectra of FTNH-ECFP with fluorescence 

intensity responses to changes in pH. 

 

We then assessed the fluorescence lifetime response to changes in pH of ECFP-FTNH compared to 

uncoupled ECFP. We observed that ECFP-FTNH displayed a fluorescence lifetime response of 0.45 

ns; 1.37 ns at pH4.5 to 1.82 ns at pH8 in solution (Fig 4.4 A &C), compared to uncoupled ECFP, which 

demonstrated a lifetime change of 0.72 ns: 1.35 ns at pH4.5 to 2.07 ns at pH8 (Fig 4.6 B & C).  
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Figure 4.6. Fluorescence lifetime decays for FTNH-ECFP construct and uncoupled ECFP measured in solutions 

buffered at different pH values. (A) FTNH-ECFP lifetime decays in buffered pH solutions 1.37ns (pH4.5) to 

1.82ns  (pH8). (B) Uncoupled ECFP lifetime decays in buffered pH solutions 1.35ns (pH4.5) to 2.07ns at pH8. 

Prompt (background) fluorescence signals are also shown. (C) Changes in lifetime with pH of FTNH-ECFP 

response of 0.45ns and uncoupled ECFP response of 0.72ns. 
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4.3.2 Design of O2 sensitive ferritin nanoparticles by encapsulation of Pt-Glc 

We set out to evaluate whether encapsulation was a viable strategy in developing O2-sensitive ferritin 

nanoparticles. Ferritin can be disassembled and reassembled by altering the pH of its solution, meaning 

that assembled ferritin disassembles into its subunits at low pH (~pH 2) and reassembles into its protein 

cage structure at high pH (~pH 9).  Here, we utilised this intrinsic property to encapsulate the O2-

sensitive phosphorescence probe Pt-Glc within hoFTN. Pt-Glc is one of the most widely applied O2-

sensitive probes in 3D cell and tissue models, displaying hydrophilicity, minimal aggregation and self-

quenching, with in-depth staining of many cell types and cellular aggregates [196], along with tissue 

models such as mouse intestinal organoids [73]. These advantageous characteristics and applications, 

along with studies showing the Pt-based drug , Cis-platin, are coordinated to FTNH when encapsulated, 

making Pt-Glc an ideal probe for our experiments [452, 453]. 

 

 

 

Figure 4.7. Disassembly and reassembly of ferritin via alteration of pH. After dialysis at pH 6 we added Pt-Glc 

to the solution of partially reassembled ferritin, and increased pH to 9 via dialysis with 0.2M Tris pH 9 buffer; 

this fully reassembles ferritin and encapsulates the sensor dye within its cavity. 
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We first wanted to determine the optimal concentration of Pt-Glc that could be encapsulated within the 

structure of hoFTN, without interfering with its self-assembly process. We initially selected ratios of 

1:8, 1:16, and 1:32 , to represent the ratios between hoFTN and Pt-Glc. We carried out the disassembly 

and reassembly process (Fig 4.4), and measured nanoparticle sizes via DLS to determine the effects of 

encapsulation on ferritin. We observed hoFTN nanoparticles of correct sizes in all three conditions (Fig 

4.5 B, D, & F). We then evaluated the phosphorescence brightness of hoFTN encapsulated Pt-Glc 

compared to free Pt-Glc of the same concentration (Fig 4.5 A, C, & E). We found that hoFTN 

encapsulated Pt-Glc was brighter than the free Pt-Glc in all three conditions, with 1:32 being the most 

optimal ratio, possessing a 5-fold increase over 1:8, a 1.6-fold increase over 1:16, and a 10-fold increase 

over free Pt-Glc of the same concentration (3.2 nmoles).  
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Figure 4.8. Evaluation of hoFTN encapsulated Pt-Glc. Phosphorescence emission (ex.395 nm) and excitation 

(em.650 nm) spectra of hoFTN encapsulated Pt-Glc and unencapsulated Pt-Glc. Ratios of hoFTN to Pt-Glc (A) 

1:8. (C) 1:16. (E) 1:32. Measurement of nanoparticle sizes (B) 1:8. (D) 1:16. (F) 1:32. Spectra normalised to 1:32 

hoFTN Pt-Glc phosphorescence spectra.  

 

To localise the hoFTN encapsulated Pt-Glc construct in cell and tissue culture, we needed to attach 

fluorophore to the outside of the hoFTN structure. The use of EGFP-FTNH or ECFP-FTNH for 

encapsulation here is not possible as we observed that upon disassembly and reassembly, we could not 
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obtain nanoparticles of the correct sizes, we believe this is due to a steric hinderance of the reassembly 

process by the large size of the FP. Having already carried out bioconjugation of Alexa Fluor 488 to 

hoFTN, we selected a second fluorescent molecule and strategy of isothiocyanate coupling with 

fluorescein to compare the suitability of both. In the case of FITC, we used higher ratios, as its 

brightness is reportedly less than that of Alexa Fluor 488. Here, we found that 1:120 gave the optimal 

fluorescence brightness (Fig 4.9 A), with no aggregation of hoFTN nanoparticles (Fig 4.9 B). From the 

fluorescence spectra of both FITC and Alexa Fluor 488, we observed no perturbing effects on 

photophysical properties after coupling to hoFTN. We moved forward with FITC fluorescent molecules 

due to an easier coupling protocol and cost efficiency. 

 

  

Figure 4.9. Labelling ferritin with FITC and Alexa Fluor488. Fluorescence emission (ex.495 nm) and excitation 

(em.519 nm) spectra of coupled FITC-hoFTN and Alexa Fluor488- hoFTN, with uncoupled FITC and Alexa 

Fluor488. (A) Coupled FITC- hoFTN compared to uncoupled FTIC. (C). Coupled Alexa Fluor488- hoFTN 

compared to uncoupled Alexa Fluor488. Nanoparticle size graphs by DLS of (B) hoFTN-FITC and (D) hoFTN-

Alexa Fluor 488. 
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We carried out encapsulation with optimised 1:32 ratio conditions of hoFTN to Pt-Glc, then, after 

encapsulation was completed, we carried out bioconjugation to FITC fluorophore with 1:120 ratio 

conditions previously optimised. We obtained nanoparticles of the expected size (Fig 4.10 C), as well 

as an increased phosphorescence brightness of hoFTN encapsulated Pt-Glc, compared to the free Pt-

Glc, with a 10-fold increase in brightness (Fig 4.10 A). We then evaluated its response to oxygenation 

and observed a 2.5-fold increase in phosphorescence intensity when we deoxygenated the solution (Fig 

4.10. B), demonstrating that the hoFTN Pt-Glc nanoparticles are responsive to changes in O2.   
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Figure 4.10. hoFTN Pt-Glc construct characterisation. (A) Phosphorescence emission (ex.395 nm) and 

excitation (em.650 nm) spectra of hoFTN Pt-Glc and unencapsulated Pt-Glc. (B) Phosphorescence emission 

(Ex.380 nm) of  hoFTN Pt-Glc with response to deoxygenation. (C) Measured nanoparticle size via DLS; obtained 

nanoparticles of 12.25 nm. 
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4.3.2.1 Evaluation of O2 sensitive hoFTN Pt-Glc nanoparticle construct in cells 

We set out to evaluate hoFTN Pt-Glc nanoparticle construct in comparison with free Pt-Glc in MEF 

cells, visualised with TMRM cell mitochondrial stain. We observed no visible cellular toxicity, with 

comparable intracellular staining of hoFTN Pt-Glc nanoparticles to free Pt-Glc (Fig 4.11 A & B). From 

lack of whole cell staining and presence of granular like staining pattern inside the cells it is possible to 

conclude that  both the hoFTN Pt-Glc nanoparticles and the free Pt-Glc dye molecules was found to be 

confined to endosomes. This potentially restricts our constructs and subsequent imaging to the 

endosomal pathway of the cell and limits long term applications due to degradation. We carried out 

analysis of fluorescence brightness and phosphorescence lifetimes of both hoFTN Pt-Glc nanoparticles 

and free Pt-Glc (Fig 4.11 C & D). We observed similar fluorescence intensity over 20 hours, with Pt-

Glc possessing longer lifetime of ~20 µs compared to the hoFTN Pt-Glc lifetime of ~15 µs. Free Pt-Glc 

was also observed to load into cells at a faster rate (Fig 4.11 C). 
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Figure 4.11. Evaluation of FITC-hoFTN Pt-Glc construct in MEF cell model. Confocal microscopy images 

of MEF cells stained with: (A) Pt-Glc (2.5 µM, 2 hours ) and calcein (1 µM, 30 minutes ex. 470 nm). (B) hoFTN 
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Pt-Glc (2.5 µM, 20 hours; ex. 405 nm) Pt-Glc (2.5 µM, 20 hours; ex. 405 nm). (C) Fluorescence intensity 

comparison of free Pt-Glc and hoFTN Pt-Glc at 2 and 20 hours. (D) Phosphorescence lifetime comparison of free 

Pt-Glc and hoFTN Pt-Glc.  

 

4.4 Discussion 

We set out to develop nanoparticle biosensors for live cell imaging based on ferritin self-assembling 

protein nanocages, for the measurement of intracellular pH and O2. To achieve such nanoparticle 

probes, we utilised three strategies consisting of: (i) genetic engineering, (ii) chemical modification, 

and (iii) encapsulation. We initially wanted to evaluate whether genetic engineering of FTNH with cell 

penetrating peptides and FPs was a viable strategy. We designed two constructs, both expressing EGFP 

and BN7 cell penetrating peptide.  

We observed no impeding effects on ferritin self-assembly or on the spectral properties of EGFP. 

However, EGFP-FTNH suffered a decrease in fluorescence brightness compared to uncoupled EGFP 

(Fig 4.3 A-C). This is most likely due to a suboptimal protein folding of EGFP attached to FTHH, which 

may be improved through the introduction of a longer linker sequence between FTNH and EGFP. It 

could also potentially be due to the presence of solution FRET, quenching the fluorescence of the donor, 

EGFP, as a result of the close proximity and spectral overlap of the EGFP molecules on the ferritin 

nanoparticles. This could potentially be investigated by decreasing the number of FTNH subunits 

expressing EGFP that subsequently form the fully assembled ferritin structure, thereby decreasing the 

proximity of EGFP molecules. We then compared chemical modifications of hoFTN with fluorophore 

Alexa Fluor 488 to genetic expression of EGFP-FTNH in terms of fluorescent brightness and cell 

staining. Like EGFP-FTNH, we observed no inhibiting affects to ferritin self-assembly or to the spectral 

properties of Alexa Fluor 488, with coupled Alexa Fluor 488 possessing lower fluorescence brightness 

than uncoupled Alexa Fluor 488. This is possibly due to suboptimal bioconjugation, or solution FRET, 

quenching the fluorescence of the donor, Alexa Fluor 488, due to the close proximity of fluorophores 

and potential spectral overlap (Fig 4.3 D & E). We characterised both EGFP-FTNH constructs and 

hoFTN-Alexa Fluor 488 in MEF cells, selecting this cell line for initial examinations due to the 

abundance of fibroblasts  mammalian tissues and as their large spindle structure is ideal for the 

visualisation of intracellular staining.  In both EGFP-FTNH constructs and hoFTN-Alexa Fluor 488, 

we observed similar staining confined to endosomes (Fig 4.3 A & B). Due to the lack of the BN7 cell 

penetrating peptide on the hoFTN-Alexa Fluor construct, it is possible to conclude that BN7 is not 

involved in cellular uptake for the EGFP-FTNH constructs, and that the mechanism of the uptake of 

ferritin nanoparticles is through endocytosis. In comparing fluorescence intensity from MEF cell 

staining (Fig 4.4 C), we observe that Construct 1 is the brighter of the two genetically engineered EGFP-

FTNH constructs, possibly due to an extra His7 tag acting as a linker, allowing for better protein folding. 



111 

 

The two EGFP-FTN constructs are brighter than hoFTN-Alexa Fluor 488, concluding that genetic 

attachment of EGFP to FTNH allows for the controlled expression of 1 molecule of EGFP per FTNH 

subunit, resulting in the expression of 24 molecules of EGFP per fully assembled ferritin nanoparticle. 

With this in mind, it is clear that, in the case of chemical modification by bioconjugation of Alexa Fluor 

488 to amine groups of lysine amino acids, the strategy will not result in the same optimal controlled 

attachment of the fluorophore to the assembled hoFTN nanoparticles. 

The proof of concept studies for EGFP-FTNH constructs showed that genetic engineering is a viable 

strategy in functionalising ferritin nanoparticles. From these results, we hypothesised that other FPs that 

are responsive in FLIM to changes in pH could be attached in place of EGFP. In EGFP-FTNH construct 

1, we replaced EGFP with the pH-sensitive ECFP and inserted the cell targeting peptide α-Enolase, 

which has been shown to enhance cellular uptake into colorectal cancer cells [451] (Fig 4.5 A). We 

obtained nanoparticles of the correct size, with no perturbing effects of genetic attachment on either 

FTNH assembly or ECFP spectral properties (Figure 4.4 C & D). We observed changes in fluorescence 

intensity in response to changes in pH, with a 1.6-fold increase from pH 5 to pH 8 (Figure 4.5 C & D). 

ECFP-FTNH was also shown to be responsive in fluorescence lifetime to changes in pH, with a  0.45ns 

response (1.37ns at pH 4.5 to 1.82ns at pH 8), compared to that of 0.72ns of the uncoupled ECFP (1.35ns 

at pH 4.5 to 2.07ns at pH 8) (Fig 4.6). This decreased fluorescence lifetime response could be a result 

of a suboptimal protein folding, or due to solution FRET quenching the ECFP donor’s excited state 

lifetime by other ECFP molecules in close proximity on the ferritin nanoparticles.  

We then moved forward to evaluate the ECFP-FTNH construct in cell-based models of HCT116 and 

MEF. Unfortunately, to visualise the construct in cells via confocal microscopy with FLIM, a higher 

concentration was needed. This was observed to be very toxic to cells, resulting in high incidences of 

cell death. Our attempts to increase brightness of ECFP-FTNH to date have not yielded any significant 

improvements.  

We evaluated the strategy of pH dependent disassembly and reassembly encapsulation to develop O2-

sensitive, ferritin-based nanoparticles, encapsulating the O2-sensitive phosphorescent probe Pt-Glc. We 

carried out proof of concept experiments, determining a 1:32 ratio of the hoFTN molecule to Pt-Glc 

molecules to be optimal in terms of phosphorescence brightness and minimal interference with the 

reassembly process of hoFTN (Fig 4.7). We then successfully attached FITC via isothiocyanate 

coupling at 1:120 ratio, to localise the hoFTN-Pt-Glc construct in cell-based models (Fig 4.9 A & B). 

We observed a higher phosphorescence intensity signal in hoFTN-Pt-Glc constructs than free Pt-Glc. 

This is possibly due to the concentrated number of Pt-Glc molecules in close proximity within the 

ferritin structure, rather than being diffused throughout the media (Fig 4.10 A). Another possible reason  

could be potentially due to the presence of imidazole from protein purification, which has been shown 

to increase phosphorescence of gadolinium-porphyrin based dye gadolinium-coordinated 
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hematoporphyrin monomethyl ether, by partially inhibiting energy transfer from the lowest triplet state 

of the compound to the oxygen molecules [455].  hoFTN-Pt-Glc was observed to be responsive to 

changes in oxygenation, with increased phosphorescence when deoxygenated (Fig 4.10 B), showing 

that the construct was sensitive to oxygenation in phosphorescence intensity.  

In characterisation of hoFTN-Pt-Glc nanoparticles in MEF cells via confocal PLIM, we observed a 

comparable intracellular staining of the nanoparticles and free Pt-Glc confined to endosomes (Fig 4.10 

A-B) with a granular appearance that has been commonly observed for fluorescently labelled 

nanoparticles trapped in endosomes of the cell [456]. From merged FITC and Pt-Glc signals, we 

observed co-localisation hoFTN with Pt-Glc (Fig 4.11 B); therefore, combined with relative staining 

efficiency of 2 to 20 hours (Fig 4.11 B) it is possible to conclude that Pt-Glc remains encapsulated 

within the ferritin structure after entering the cell. From analysis of fluorescence brightness and 

phosphorescence lifetimes of hoFTN-Pt-Glc and free Pt-Glc (Fig 4.11 C & D), we observed a higher 

intensity of free Pt-Glc after 2 hours than hoFTN-Pt-Glc, suggesting faster loading of Pt-Glc, which has 

previously shown cellular staining in a range of cell types [196]. Free Pt-Glc also displayed a longer 

phosphorescence lifetime of ~20 µs, compared to a hoFTN-Pt-Glc lifetime of ~15 µs. This decrease 

could be due to the quenching of phosphorescence lifetime as a result of high concentration of and 

proximity to the Pt-Glc molecules, or from the protein-based backbone of the construct. It is therefore 

possible to conclude that encapsulation here does not improve intracellular staining, nor does it achieve 

whole cell staining or show increases in phosphorescence lifetime, which is similarly seen in the 

genetically engineered construct of EGFP -FTNH and hoFTN-Alexa Fluor 488. Endosomal escape 

could potentially be plausible here through the use of peptides to destabilise the endosomes, e.g. 

endosomolytic dfTAT, a disulphide bond dimer of TAT peptide attached to fluorophore 

tetramethylrhodamine (TRITC), which induces endosomal leakage [457]. Endosomal escape could also 

be achieved through the use of noncovalent cell penetrating cargo linkers, e.g. TAT-fused calmodulin 

(TAT-CaM) attached to the cargo by a calmodulin binding site which releases the cargo from the early 

endosome due to its low Ca2+ environment [458].  

 

4.5 Conclusion 

The strategies for ferritin nanoparticle design described and evaluated here allow for an interchangeable 

approach for live cell imaging, where a wide range of FPs, fluorophores and sensor probes for 

biosensing applications and targeting peptides for specific cell targeting can be attached to suit the 

applications of specific experiments. In the case of encapsulation, we found that the strategy was hard 

to reproduce correctly each time in terms of obtaining nanoparticles of the correct size. Special care 

must be taken during the selection regarding the size and charge of sensor dyes, fluorophores and 
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targeting peptides, which may interfere with the reassembly process. The toxicity of the genetically 

engineered ferritin constructs was also a key issue, where the constructs were not bright enough for the 

confocal FLIM imaging in cells, and therefore higher concentrations were needed. An overall issue with 

ferritin nanoparticle constructs made by encapsulation or genetic engineering was poor intracellular 

staining confined to the endosomes of cells. This could potentially be overcome through strategies of 

the destabilisation of endosomes through reagents, cleavable linkers and non-covalent attachments to 

free the nanoparticle from the cell penetrating peptide evading the early endosome.  
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Chapter 5: Development of hybrid cellulose scaffold for FLIM for tissue engineering applications 

5.1 Introduction 

5.2.1 Cellulose scaffold materials and applications 

Cellulose is the most abundant organic polymer on the planet, with many applications in tissue 

engineering, biosensing and biomaterials research [77]. In tissue engineering applications, cellulose 

displays the features of an ideal scaffold for cell and tissue growth. This is due to cellulose possessing 

structural similarities with ECM, mimicking its mechanical properties. Cellulose is also biocompatible 

due to its biological nature. It is also cost effective to produce. Cellulose is utilised as a 3D scaffold 

material in the form of extracts or processed cellulose materials with nano-size dimensions, known as 

nanocellulose. Such materials are subdivided into three groups: CNCs, NFC and BC.  Nanocellulose as 

a scaffold material [76, 78, 79] has found applications in cartilage tissue regeneration [80], bone tissue 

[81], differentiating endothelial cells [82] and more. Nanocellulose scaffolds can be modified to 

improve cell adhesion, biocompatibility and provide a flexible scaffold architecture: i. chemically with 

polyethyleneglycole, thiols and other oligo- and polymers [79],  ii. by using proteins with cellulose-

binding domains [76, 459] and iii. biosynthetically [93].  Recently, the concept of using decellularised 

plant materials, such as leaves and stems, was proposed as an alternative scaffold for animal tissue 

engineering [460, 461]. Such decellularised plant materials show tuneable physical characteristics in 

regard to their porosity and tensile strength, with the presence of a vascular network, and are highly 

compatible with further modification with extracellular matrix components and other molecules [461], 

making decellularised plant materials a promising and versatile scaffold material for animal tissue 

engineering.  

Nanocellulose can be modified for biosensing applications, for example, with nanocrystals [94] and 

gold nanoparticles immobilised via antibodies [95]. One such way of labelling the nanocellulose 

scaffold is through the use of protein binding domains. Carbohydrate binding modules (CBMs) are 

protein domains found in carbohydrolase enzymes, where their major function is to bind the enzyme to 

the carbohydrate substrate for hydrolysis. CBMs were previously known as CBDs due to initial 

discovery of cellulose binding properties, however the nomenclature has been updated from CBDs to 

CBMs due to the discovery of domains present in enzymes that do not hydrolyse cellulose. CBMs are 

grouped into families based on amino acid similarity, with 83 defined to date from the Carbohydrate-

Active enZymes Database (CAZy) [462], and have been utilised for attachment of proteins to cellulose 

scaffolds for labelling and immobilisation, as well as protein purification.  Approximately 200 protein 

domains binding the cellulose exist, varying in structure, size (4-20 kDa) and specificity towards 

cellulose [463]. The binding of cellulose can be reversed by the presence of denaturants or competitive 
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elution with cellobiose.  In particular, Cellulomonas fimi CenA protein fragment [464] (termed as CBD) 

was successfully used as an affinity tag in bacterial, yeast and mammalian expression systems, 

maintaining solubility and folding of fused proteins. However, CBMs for specific and affinity 

modification of cellulose-based scaffolds are rarely used in tissue engineering [76].  

 

5.1.2 Fluorescent protein-based biosensors for pH and calcium imaging 

Functional analysis of biomarkers and monitoring of 3D engineered model development is of increasing 

importance in regards to the successful utilisation of the full potential and variety of scaffold materials 

[465-467].  For example, stem cell niche growth in a 3D culture depends heavily on both external and 

internal signals from physical, chemical and biological factors such as pH, Ca2+, material stiffness, 

extracellular matrix and others [468]. Therefore, the non-invasive and quantitative measurements of 

such factors would allow for the development of a physiologically relevant stem cell niche.  

Extracellular acidification is indicative of the glycolytic flux, and thus can be directly used to analyse 

the cell energy budget in terms of oxidative phosphorylation, glycolysis and other cell energy 

production pathways [469].  Consequently, extracellular acidification is an imperative biomarker for 

cancer and normal non-transformed tissues and its control is of significant importance [470]. 

Extracellular acidification has been  observed to play a key role in bone tissue engineering [471], drug 

and growth factor delivery [472] and modelling of extracellular matrix [473]. Acidification can be 

quantitatively measured using FPs. Changes in pH affect protonation of the FP’s chromophore at the 

phenolic hydroxyl site, altering its spectral properties, such as fluorescence intensity and lifetime. The 

chromophore’s pKa value can be altered by mutagenesis to generate FPs with different sensitivities to 

a range of pH values [474]. ECFP is a pH sensitive FP with a pKa of 4.7, that undergoes changes in its 

fluorescence lifetime of 0.8ns from pH 5 (~1.4 ns) to pH 7 (~2.2 ns) at 37°C. The most popular FP-

based pH sensors are ECFP, pHRed and superfolder YFP (sfYFP). ECFP has been successfully applied 

as a pH sensor via fluorescence lifetime imaging microscopy (FLIM) in PC12 cells [212]. pHRed is a 

ratiometric single red protein pH sensor derived from the FP mKeima. pHRed exhibits changes in 

fluorescence lifetime of ~0.4ns over a range of pH 5 to pH 8, and has been successfully applied to the 

imaging of pH changes in cytosol and mitochondria [213]. YFP is environmentally sensitive to changes 

in pH and Cl-. This sensitivity to pH has been used in the development of YFP-based pH sensors. sfYFP 

is a ratiometric pH sensor suitable for the range of pH within pH 6 to pH 8.4, and has been successfully 

attached to synthetic organic polymers and other matrices [92]. While EYFP has also displayed 

applications in cytosolic, golgi, and mitochondrial matrix pH analysis, EYFP and sfYFP applications 

in FLIM have yet to be examined. 
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Extracellular Ca2+ regulation is of key importance in most cells and tissues in the body due to its 

important roles in cell signalling and extracellular matrix remodelling, which can be observed in the 

stimulation of goblet cell differentiation in the gastrointestinal tract [475], and affects cell bioenergetics 

in neurosecretory cells [476]. Extracellular Ca2+ signalling is also implicated in tumour progression, 

with consequences in proliferation, invasion and sensitivity to cell death, with specific Ca2+ signalling 

pathways identified in the establishment and preservation of multidrug resistance and the tumour 

microenvironment [477]. GECIs are a widely used tool for Ca2+ imaging, in which upon binding of Ca2+ 

they undergo a conformational change resulting in an alteration in fluorescence intensity. The GCaMP 

series is the most popular of the GECIs. It is comprised of a Ca2+ binding protein calmodulin (CAM) 

attached to a binding motif M13 and a circularly permuted green fluorescent protein (cpEGFP). The 

binding of Ca2+ induces a conformational change that alters the chromophore’s protonation state, 

increasing fluorescence intensity. GCaMP2 was developed with improved stability at a mammalian 

body temperature of 37°C, facilitating the first measurements in vivo with high signal-to-noise ratio 

[478]. The resolving of GCaMP2 crystal structure has served as the basis for the structural developments 

in improving the GCaMP series [479] from the breakthrough GCaMP3, which is useful for imaging 

neuronal activity to current GCaMP6 [480, 481]. Current advancements have been in the development 

of red fluorescent-based variants of  RCaMP, such as mRuby derived RCaMP [482]. Red fluorescent 

variants would be preferable to green due to lower phytotoxicity and higher tissue penetration. Other 

Ca2+ indictors utilise two FP FRET, such as the TN series (e.g. TN-XL, -XXL and Twtich) [483-485], 

which uses troponin C instead of CAM to induce conformational change and bring the FP FRET pair 

closer in proximity. This allows for FRET to occur, increasing fluorescence intensity and fluorescence 

lifetime changes in the donor fluorophore for FLIM-FRET measurements.  

Sensor probes such as small molecule dyes, nanoparticles, and FPs allow for the real time monitoring 

and quantitative measurement of extracellular pH and Ca2+, which as of yet have not been applied in 

tissue-engineered constructs. Here, quantitative measurements are carried out by either ratiometric 

intensity-based detection or FLIM [486]. As lifetime is an intrinsic property of a fluorophore, FLIM 

based measurements are more reliable than intensity-based measurements. Therefore, results are largely 

independent from fluorophore concentration and imaging is not affected by issues of light scattering, 

photobleaching, or variations in excitation light [163]. FLIM-based pH sensing can be carried out using 

a number of proteins, such as enhanced cyan FP (ECFP) [212] and FP pHRed [487], some small 

molecule dyes [215, 488] and pH-sensitive nanoparticles [214]. The number of Ca2+-sensing probes is 

also comprehensive, ranging from dyes to advanced FPs, with some of them suitable for FLIM [216, 

489-491]. 
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5.2 Aims   

Here we set out to design extracellular pH and Ca2+ sensitive protein-based biosensor probes for the 

attachment via CBM , CBDcenA from Cellulomonas fimi to cellulose scaffolds for FLIM measurements 

in 3D tissue models and organoids. 

 

5.3 Results  

5.3.1 Design of cellulose binding domain biosensors CBD-ECFP and CBD-GCaMP2 

Initially we designed two FLIM protein-based biosensor probes containing CBDcenA from C.fimi (CBD), 

genetically attached to either ECFP for pH measurements or to gCAMP2 for Ca2+ measurements [492, 

493] via a short linker to facilitate the improvement of the folding rate of produced proteins. We cloned 

both constructs into pQE-30 His6-tagged expression vectors and transfected them into the SG13009 

strain of E.coli cells (see materials and methods section 2.2.4.4).Following production at 37°C until 

OD600= ~0.4, we induced with 0.125 mM IPTG for 16 hours (see Materials and Methods 2.2.4.4). We 

then subsequently purified both recombinant protein constructs under native conditions using His6-

tagged Ni2+-NTA affinity chromatography. We then evaluated the purity of the proteins via SDS-PAGE 

(Fig 5.1B & D), with yields of ~6 mg/L culture, and a folding rate of 55 to 70% (assessed by UV-Vis). 

We then evaluated the biosensing properties of the two constructs in solution. We observed good 

sensitivity through changes in fluorescent intensity to the respective analytes (pH, Ca2+) comparable to 

the untagged proteins, with a 2-fold increase in CBD-ECFP and 1.25-fold increase in CBD-gCAMP2 

(Fig 5.1 C & E).  
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Figure 5.1. Design and evaluation of CBD-tagged biosensors. (A) Structures of protein biosensor constructs. CBD 

C-terminally attached to the N terminal of ECFP or GCaMP2 via Gly-linker. (B) Purification products of CBD-

ECFP, and ECFP. Products ran on 4-10% SDS -PAGE and analysed via coomassie staining. Lane 1 CBD-ECFP 

~40 kDa and Lane 2 ECFP~27 kDa. (C) Fluorescence excitation (Em. 477 nm) and emission (Exc. 434 nm) 

spectra of CBD-ECFP and ECFP with fluorescence intensity responses to changes in pH. (D) Purification products 

of CBD-GCAMP2 and GCaMP2.  Products ran on 4-10% SDS -PAGE and analysed via coomassie staining. Lane 
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1 CBD-GCaMP2 ~60 kDa, Lane 2 gCAMP2 ~47 kDa. (E) Fluorescence excitation (Em. 507 nm) and emission 

(Exc. 488 nm) spectra of CBD-GCaMP2 and GCaMP2 with fluorescence intensity responses to changes in Ca 2+. 

(Figure reproduced from [494]) 

 

CBD-ECFP also displayed a response in lifetime of 0.3 ns; 1.9 ns at pH 4.5 to 2.2 ns at pH 8 in solution 

(Fig 5.2 B). Compared to untagged ECFP response in lifetime of 0.29 ns: 1.89 ns at pH 4.5 to 2.18 ns 

at pH 8 (Fig 5.2 A).  Therefore, the genetic attachment of CBD to the respective FPs did not affect their 

photophysical properties. 

 

 

Figure 5.2. Fluorescence lifetime decays for ECFP and CBD-ECFP proteins measured in solution at different pH. 

(A) ECFP lifetime decays in buffered pH solutions 1.35 ns (pH 4.5) to 2ns (pH 8). (B) CBD-ECFP lifetime decays 

in buffered pH solutions 1.89 ns (pH 4.5) to 2.18 ns (pH 8). Standard deviations are shown in grey. Prompt 

(background) fluorescence signals are also shown. (Figure reproduced from [494]) 
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5.3.2 Staining of cellulose materials and sensing properties 

We selected three different types of cellulose scaffold materials for labelling with our CBD-based 

biosensors due to their respective characteristics: NFC material is commercially available as GrowDex 

matrix – a hydrogel with tunable viscosity. BC is produced by Gluconacetobacter xylinus, forming 

scaffold material with a high mechanical strength and large surface area. Finally, decellularised plant 

materials provide a pre-vascularised scaffold with high tensile strength and tunability.  

First, we set out to evaluate the labelling of GrowDex with our biosensor CBD-ECFP. We observed 

efficient staining, distinct from background signals with concentrations over 2 µM per 0.5% volume of 

GrowDex, incubated for 15 minutes at room temperature (Fig 5.3 A). The staining of GrowDex was 

concentration dependent and the CBD-ECFP signal reached saturation at ~10 µM concentration (Fig 

5.4 A). CBD-ECFP staining was also observed to be stable, decreasing after 10 days of storage at 4 0C 

in solution (Fig 5.4 B). Untagged ECFP also displayed an insignificant degree of staining with 

GrowDex, as seen from background signals (Fig 5.4 E). Furthermore, optical sectioning using confocal 

microscopy confirmed efficient 3D, in-depth staining of GrowDex with CBD-ECFP (Fig 5.3 B). We 

carried out the same procedures with CBD-GCaMP2, where we observed similar data possessing 

comparable kinetics of staining, along with staining efficiency and storage stability (Fig 5.4 C, D & F).  

The BC samples were produced by our colleagues from the Institute for Regenerative Medicine, (I.M. 

Sechenov First Moscow State University, Moscow, Russian Federation), using conventional methods 

[495]. The BC samples were cut into small pieces (~2x5 mm) for easier applications in the experiments. 

The BC showed similar staining efficacy and stability with CBD-ECFP as it did with the GrowDex 

matrix (Fig 5.4 A & B). However, 3D reconstruction of labelled BC showed its highest brightness at 

both the periphery and surface regions of ~ 20-30 µm depth (Fig 5.3 B).  BC therefore suffered from 

poor staining distribution as observed from previous fluorescence microscope images and 3D 

reconstructions. This loss of brightness could be explained by the possible limited light penetration, due 

to BC being more solid and less transparent in nature than our example of GrowDex, especially when 

used with the blue-green emitting ECFP protein. 

In conclusion, we observed efficient staining of our selected cellulose scaffold materials – GrowDex 

and BC with CBD-ECFP and CBD-GCaMP2. In the case of GrowDex, we achieved better staining 

efficacy and specificity than seen in BC. This is possibly due to the nanofiblar patch-like structure of 

GrowDex, whereas, in the case of BC, light penetration was a significant issue due to the less-than-

transparent nature of the material, thereby limiting the use of BC. 
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Figure 5.3. Staining of Growdex and BC scaffolds with CBD-ECFP. (A) transmission light (TL) and fluorescence 

(470 nm exc., 510-650 nm em.) microscopy images of GrowDex and BC stained with CBD-ECFP (5 µM, 15 

min). (B) 3D reconstructions (45 µm Z stack) of CBD-ECFP-labelled GrowDex and BC scaffolds (447 nm exc., 

512-536 nm em.) (3D reconstructions carried out with supervisor Dr. Ruslan Dmitriev). Fluorescence images of 

GrowDex and BC were processed using deconvolution in SVI Huygens software. The Scale bar is in µm. (Figure 

reproduced from [494]) 
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Figure 5.4. Concentration dependent staining and stability of CBD-ECFP and CBD-GCaMP2 with GrowDex 

scaffold. (A) Concentration-dependent staining of GrowDex with 1 to 10 µM CBD-ECFP (incubation time 15 

min, in PBS) The data were normalised to the maximal background-corrected fluorescence signals. (B) Stability 

of CBD-ECFP labelled GrowDex scaffold, fluorescence measured by microscopy of the sample (labelled with 10 

µM, 15 min) over 10 days. (C) Concentration-dependent staining of GrowDex with 1 to 10 µM CBD-GCaMP2 

(incubation time 15 min, in PBS). (D) Stability of CBD-GCaMP2-labelled GrowDex scaffold fluorescence 
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measured by microscopy of the sample (labelled with 10 µM, 15 min) over 7 days. (E) Comparison of staining of 

GrowDex with CBD-ECFP and ECFP. (F) Comparison of staining of GrowDex with CBD-GCaMP2 and 

GCaMP2. Both Growdex and BC matrices were incubated with 10 µM of respective proteins for 15 min in PBS, 

washed and measured on fluorescence microscope (470 nm exc., 510-560 nm em.). The data here was normalised 

to the initial background-corrected fluorescence. (Figure reproduced from [494]) 

 

5.3.3 FLIM calibrations of GrowDex with CBD-ECFP and CBD-GCaMP2 in solution 

Due to suboptimal brightness and staining distribution in BC samples, we moved forward with 

GrowDex for evaluation of FLIM response with CBD-ECFP and CBD-GCaMP2. We carried out FLIM 

experiments in buffered solutions with different pH values for CBD-ECFP (pH 5.5 – 8) and different 

concentrations of Ca2+ (0 to 5 mM CaCl2) (See Materials and Methods section 2.2.7.2). The CBD-ECFP 

fluorescence decay curves were fitted using a double-exponential function and showed pH-sensitive 

changes observed from the distribution histograms and FLIM images, with 1.9 ns at pH 6 and 2.3 ns at 

pH 8, for a change of 0.4 ns (Fig 5.5 B & C). Calibration of pH across a physiological range of pH 5.5 

to pH 8 showed a change in lifetime of 0.7 ns, and the calibration demonstrates the highest sensitivity 

of the CBD-ECFP in range of pH 5.5 to 7 (Fig 5.5 D). CBD-ECFP demonstrated pKa values close to 

the literature data for ECFP (pka ~ 4.7).  However, despite being acidic, the pKa values are still useful 

for cellular pH measurements due to the acidic nature of the intracellular organelles and extracellular 

acidification. Therefore, CBD-ECFP can be potentially used for quantitative FLIM-based pH sensing. 

We carried out similar experiments with CBD-GCaMP2 and GrowDex. Here we evaluated CBD-

GCaMP2 protein’s potential use as a FLIM biosensor for changes in Ca2+. GCaMP series constructs 

have mostly been successful in in vivo intensity-based measurements, however, research analysing the 

photophysical properties for GCaMP2, GCaMP3, and GCaMP5 detected fluorescence lifetime 

responses in buffers of CaCl2 under two photon excitation [496]. We therefore hypothesised that 

GCaMP2 could be applicable in FLIM with responses in lifetime caused by changes in the concentration 

of Ca2+. We incubated CBD-GCaMP2 in solutions of CaCl2.ranging in concentration from 0 – 5mM 

Ca2+. Unfortunately, we did not observe any response in fluorescence lifetime, this could be due 

suboptimal protein folding or the high affinity nature of GCaMP2 for Ca2+ions makes it more suitable 

for lower, intracellular Ca2+ concentration ranges of approximately 100 nM [497], whereas we require 

a lower affinity Ca2+ sensor for higher concentrations present in extracellularly.  
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Figure 5.5. Evaluation of CBD-ECFP labelled GrowDex biosensing scaffold in FLIM. (A)  Fluorescence decay 

of CBD-ECFP labelled GrowDex matrix (exc. 447 nm, em. 512-536 nm). (B) Fluorescence lifetime distributions 

(normalised by area) for CBD-ECFP GrowDex matrix exposed to different pH 5.5 to 8 at 37 oC. (C) Fluorescence 

lifetime images for CBD-ECFP labelled GrowDex matrix at different pH from pH 5.5 to 8. Scale bar is in µm. 

(FLIM measurements carried out with supervisor Dr. Ruslan Dmitriev). (Figure reproduced from [494]) 

 

In conclusion, both CBD protein biosensors displayed strong ability to label cellulose scaffolds and 

demonstrated attractiveness in applications as biosensing reagents. However, only the CBD-ECFP 

displayed reasonable evidence for its pH-sensing properties, with applications in analysis of 

extracellular acidification environment in cells and tissues, as well as demonstrating the potential for 

the cloning of a range of other prospective biosensors with the CBD tag.  
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5.3.4 Design of cellulose binding domain biosensor CBD-EYFP 

Following on from the design and application of CBD-ECFP and CBD-GCaMP2, we designed a second 

generation of a pH-sensitive FLIM protein-based biosensor, containing EYFP connected to CBD via a 

short, Gly-rich linker. Like the previous CBD-based recombinant proteins, we cloned the CBD-EYFP 

construct into a pQE-30  His6-tagged expression vector and transfected it into an SG13009 strain of 

E.coli cells. Using the previously optimised bacterial production conditions of 37°C until OD600= ~0.4, 

we induced with 0.125mM IPTG for 16 hours and purified under native conditions using His6-tagged 

Ni2+-NTA affinity chromatography. The purity of the CBD-EYFP recombinant protein was evaluated 

via SDS-PAGE gel electrophoresis (Fig 5.9 B), with a yield of ~ 2.55 mg/L culture and a folding rate 

of 44% (assessed by UV-Vis). We then evaluated pH sensing properties of CBD-EYFP in solution, 

with a 5-fold increase from pH4 to pH7 (Fig 5.9 C). Therefore, the genetic attachment of CBD to EYFP 

did not affect it’s photophysical properties.  We then assessed CBD-EYFP staining of the GrowDex 

matrix, observing an efficient staining distinct from background signals with concentrations over 2 µM 

per 0.5% volume of GrowDex, incubated for 15 minutes at room temperature (Fig 5.9 D). Similarly, 

for CBD-ECFP and CBD-GCaMP2, the staining of GrowDex in the case of CBD-EYFP was 

concentration dependent, with the signal reaching saturation at ~10µM concentration (Fig 5.9 E). 
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Figure 5.6. Design and evaluation of CBD-EYFP. (A) Structures of protein biosensor construct. CBD-YCFP with 

CBD C terminally attached to the N terminal of EYFP via Gly-linker. (B) Purification products of CBD-EYFP. 

Ran on 4-10% SDS-PAGE and analysed via Сoomassie staining with Lane 1 CBD-EYFP ~43 kDa (C 

Fluorescence excitation (Em. 525 nm) and emission (Exc. 10 nm) spectra of CBD-EYFP with fluorescence 

intensity responses to changes in pH. (D) Transmission light (TL) and fluorescence (470 nm exc., 510-650 nm 

em.) microscopy images of GrowDex labelled with CBD-EYFP (5 µM, 15 min). The Scale bar is in µm. (E) 
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Concentration-dependent staining of GrowDex with 1 to 10 µM CBD-EYFP (incubation time 15 min, in PBS) 

The data were normalised to the maximal background-corrected fluorescence signals. 

 

5.3.5 FLIM calibrations of GrowDex with CBD-EYFP in solution. 

We wanted to evaluate CBD-EYFP labelled GrowDex fluorescence lifetime response to changes in pH 

via FLIM. We carried out FLIM experiments in buffered solutions with different pH values (pH 5.5 – 

8). The CBD-EYFP fluorescence decay curves were fitted using double-exponential function and 

showed pH-sensitive changes observed from the distribution histograms and FLIM images, with 2.55 

ns at pH 5.5 and 2.9 ns at pH 6.8, for a change of 0.3 ns (Fig 5.10 B & C). Calibration of pH across a 

physiological range of pH 5.5 to pH 8 showed a change in lifetime of 0.2 ns, and that the highest 

sensitivity of CBD-EYFP is within the range of pH 5.5 to 7 (Fig 5.10 D). However, for CBD-EYFP, 

the change in lifetime is shorter than that of CBD-ECFP and shows limited sensitivity above pH 7. This 

is possibly due to the high pKa value of EYFP at ~6.9. Overall, from the comparison of CBD-EYFP to 

CBD-ECFP, the later appears to be the most useful in terms of quantitative FLIM-based pH sensing, 

due to its longer lifetime and sensitivity to lower acidic pH values. However, for intensity-based 

measurements, CBD-EYFP possess a 5- fold increase in change of pH from 4 to 7, whereas CBD-ECFP 

displayed a 2-fold increase across the same range.  
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Figure 5.7. Evaluation of CBD-EYFP labelled GrowDex biosensing scaffold in FLIM. (A) Fluorescence 

decay of CBD-ECFP labelled GrowDex matrix (exc. 447 nm; em. 512-536 nm). (B) Fluorescence lifetime 

distributions (normalised by area) for CBD-EYFP GrowDex matrix exposed to different pH 5.5 to 8 at 37 oC. (C) 

Fluorescence lifetime images for CBD-EYFP labelled GrowDex matrix at different pH. Scale bar is in µm. (D) 

pH FLIM calibration of CBD-EYFP labelled GrowDex from pH 5.5 to 8.  
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5.3.6 Decellularised plant materials as cell culture scaffolds 

Decllualrised plant materials have been recently proposed as an alternative, viable scaffold material for 

cell culture, possessing good porosity and a pre-existing vascular system. We tested 3 plant-based 

materials produced from celery stems, carrot, and potato tubers. We selected celery stems and carrot 

tubers here due to the dicot arranged central vasculature system consisting of large vessels present with 

high potential for cell and tissue culture. Potato was selected for its contrasting low porosity and 

structural stiffness for applications with cell cultures that grow and differentiate differently with varying 

matrix stiffness.  

We cut the celery stem, carrot, and potato tubers into small ~1 mm thick section, and subsequently 

carried out the decellularisation process (see Materials and Methods section 2.2.7.1). After 

decellularisation, the celery and carrot sections became optically transparent, while the potato sections 

remained optically opaque (Fig 5.11 A). We then wanted to evaluate CBD-EYFP staining with the 

decellularised plant materials and determine whether there was any autofluorescence present. We 

incubated all three decellularised sections in 5 µM CBD-EYFP for 15 minutes in PBS (pH 7.4) (Fig 

5.11 B). We observed efficient staining of all three decellularised plant materials, with all three 

displaying no background fluorescence. However, only the decellularised celery provided the most 

optically transparent decellularised plant material, with the carrot and potato tubulars being thick and 

significantly less transparent. Further complications arose from use of the potato tubers, in that their 

heavy starch content made them very prone to breaking apart. Therefore, we proceeded with 

experiments using decellularised materials from celery due to its optical transparency and presence of 

large vessels with honeycomb-like structures for cell culture, which was beneficial for uniform size 

distribution of cell aggregates. CBD-EYFP remained stably attached to celery for over 7 days (Fig 5.11 

C), allowing for long term biosensing applications. 
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Figure 5.8. Production and staining of decellularised plant materials for cell culture. (A) Photographs of 

celery stem, carrot and potato tuber sections before and (B) after decellularisation. A one-euro coin is shown for 

scale. (C) Transmission light and widefield fluorescence (470 nm exc., 510-560 nm em.) microscopy images for 
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stem, carrot and potato tuber sections after decellularisation and following labelling with CBD-EYFP. The same 

acquisition settings were used for fluorescence images. Scale bar is in µm. (D) Storage stability of labelled 

decellularised celery (5 µM, 15 minutes) over 10 days.  

We then set out to evaluate the viability of decellularised celery scaffolds for applications in cell and 

tissue cell culture.  We initially wanted to examine decellularised celery’s ability to support cell growth 

using HCT116 cells. Disappointingly, observed cell growth was suboptimal, with many cells not 

attaching to the scaffold. However, work carried out by Dr. R. Dmitriev and Dr. I. Okkelman 

demonstrated the growth of small intestinal organoids within the decellularised celery scaffold material 

coated in Matrigel to support growth of the organoids and labelled with CBD-ECFP to measure 

responses in pH. Multiplexed FLIM-PLIM microscopy was subsequently carried out with the CBD-

ECFP labelled decellularised celery scaffold for extracellular pH measurements in FLIM, and the 

organoid culture was labelled with the phosphorescent O2-sensitive probe Pt-Glc for O2 measurements 

in PLIM. This allowed for the study of live organoid oxygenation and extracellular acidification, 

analysing the dynamics of both pH and O2 at rest and upon stimulations with mock (DMSO) and FCCP. 

The organoid culture was found to be deoxygenated at rest, with low extracellular pH. After stimulation 

with FCCP, a drop in pH was detected, with no decreases in oxygenation (possibly due to the already 

hypoxic state of the organoid), confirming the growth of viable and metabolically active organoids in 

the decellularised celery scaffold material. 

 Table 5.1. Comparison of CBD based biosensors. Comparing stability, lifetime in solution and applications of 

pH Sensitive CBD-ECFP and CBD-EYFP and Ca2+ CBD-GCaMP2.  

Name Sensitive 

to 

Stability  Initial 

lifetime (τi) 

(ns) 

Final 

lifetime 

(τf) (ns)  

Change in 

lifetime 

(Δτ) (ns) 

Comments 

CBD-ECFP pH Over 10 days on 

GrowDex and 

decellularised 

materials. 

1.5 ns at pH 

5.5 

2.2 ns at 

pH 8 

0.7 ns Longer lifetime 

changes over 

physiological range of 

pH compared to 

EYFP.  

Applied in detection 

of extracellular pH 

changes in FLIM with 

HCT116 cells and 

organoid model (with 

joint O2 PLIM) 

CBD-

EYFP 

pH Over 10 days on 

GrowDex and 

decellularised 

materials. 

2.55 ns at 

pH 5.5 

2.75 ns at 

pH 8 

0.2ns Shorter lifetime 

changes over 

physiological range of 

pH compared to 

ECFP. 

CBD-

GCaMP2 

 

Ca2+ 7 days on 

GrowDex. 

N/A N/A N/A No response to 

changes of Ca2+ in 

FLIM. 
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5.3.7 Extracellular acidification in 3D culture of cancer cells 

We set out to evaluate the CBD-ECFP labelled GrowDex scaffold to support cell growth and detect 

changes in extracellular acidification via FLIM in work executed in cooperation with supervisor Dr. 

Ruslan Dmitriev. We first wanted to see if the presence of CBD-ECFP on the GrowDex scaffold could 

alter cell growth. Therefore, we tested CBD-ECFP labelled and unlabelled GrowDex scaffolds with a 

culture of human colon cancer HCT116 cells visualised with Hoechst 33342 nucleic acid cell marker. 

We observed comparable cell growth between the labelled and unlabelled Growdex matrix (Fig 5.6), 

which continued for more than 3-7 days with cells forming multi-cellular aggregates. BC was also 

tested, however, disappointingly, the HCT116 wild-type (WT) cells grown in the scaffold were of a 

lesser efficiency, possibly due to lower porosity of the thicker BC. 
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Figure 5.9. Cell growth in unlabelled and CBD-ECFP-labelled Growdex. HCT116 cells were seeded and grown 

for 0-7 days in either (A) labelled (5 µM CBD-ECFP, 15 min)  or (B) unlabelled Growdex matrices. Quantified 

by using fluorescence microscopy with Hoechst 33342 staining (1 µM, 30 min, 390 nm exc.). Note that in 

Growdex cells tend to form multicellular aggregates over time. Scale bar is in µm (Experiment carried out with 

supervisor Dr. Ruslan Dmitriev). (Figure reproduced from [494]) 
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We then evaluated CBD-ECFP extracellular pH sensitivity with HCT116 cells, using both WT and the  

oxidative phosphorylation deficient knock-out cell line SCO2
-/-, with SCO2

-/- being of particular interest 

as it acidifies its environment more strongly than the WT cell line [498]. A problem we first encountered 

was the issue of a shaking and vibration of the scaffold when viewed under the confocal microscope, 

due to its upright architecture and dipped objective lens. To resolve this issue, we imbedded the scaffold 

with HCT116 cells (WT and SCO2
-/-) within the collagen-rich Matrigel matrix. We selected Matrigel to 

support and hold the cellulose matrices in place for the confocal experiments, and in addition, Matrigel 

is also known to support both the survival and growth of cancer cell aggregates. We observed 

comparable growth over 3 days, with cells forming small 3D cellular aggregates (Fig 5.10 A) which 

were visualised with the mitochondrial marker, TMRM. These results again demonstrate that the CBD 

protein-based biosensor has no effect on cell growth, and that the cellulose scaffold supports the growth 

of a 3D cell culture. Moreover, we also observed no evidence of non-specific staining of Matrigel with 

CBD-ECFP.   

We then carried out FLIM with both HCT116 WT and SCO2
-/- cells in CBD-ECFP labelled GrowDex, 

embedded in Matrigel. When comparing average fluorescence lifetimes with WT and SCO2
-/- HCT116 

cell cultures, we observed similar pH values of pH 7.6 to 8, thereby demonstrating an absence of the 

acidification of the cell culture medium (Fig 5.10 B). However, when we treated SCO2
-/- HCT116 cells 

with the mitochondrial uncoupler, FCCP, we observed a minor decrease in extracellular pH 

corresponding to acidification of the cell culture media. This decrease was detected by fluorescence 

lifetime histogram (Fig 5.11 D), and not observed with the mock DMSO treatment (Fig 5.10 C). Due 

to a pKa of ~ 4.7, ECFP at this pH range displays high variability and low sensitivity. However, despite 

this issue, we were able to identify decreases in fluorescence lifetimes and pH for the FCCP-treated 

samples.  
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Figure 5.10. FLIM of extracellular pH using CBD-ECFP labelled GrowDex scaffolds with HCT116 cells. (A) 

Optical section of HCT116 SCO2
-/- cells stained with TMRM (in red) growing within CBD-ECFP scaffold (in 

green) and shown co-localisation in intensity images and FLIM images. (B) Fluorescence lifetime distribution 

histograms for resting wild type and SCO2
-/- HCT116 cells (normalised by height). Measured fluorescence lifetime 

distribution histograms for SCO2
-/- cells treated with (C) DMSO and (D) FCCP. Scale bar is in µm. (FLIM 

measurement carried out with supervisor Dr. Ruslan Dmitriev). (Figure modified from [494]) 

 

We then carried out 3D reconstruction of HCT116 cells labelled with TMRM grown in CBD-ECFP 

labelled GrowDex, which was embedded in Matrigel via confocal microscopy with 76 µm thick Z stacks 

(Fig 5.10). From this 3D reconstruction we observed that the HCT116 cells grew within the GrowDex 

scaffold, forming 3D cellular aggregates and did not simply attach to the exterior of the scaffold. 
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Figure 5.11. 3D reconstruction of cells grown within GrowDex. 3D reconstructions (76 µm thick Z stacks) of 

Growdex scaffolds embedded in Matrigel, with HCT116 cells stained with TMRM (in red) without CBD-ECFP 

(A) and with CBDECFP (in green) (B). (3D reconstructions carried out with supervisor Dr. Ruslan Dmitriev). 

(Figure modified from [494]) 

 

Overall, we demonstrated that CBD-ECFP labelled GrowDex scaffolds are compatible with cancer cell 

growth and subsequent analysis with FLIM methodology, and allow growth of cultured cells throughout 

the scaffold.  However, we were not able to produce high cell densities in BC scaffolds, but GrowDex 

matrix did allow for the efficient formation of small cell aggregates with no visible negative effects on 

the cell growth. 

 

5.4 Discussion 

The aim of this research was the development of hybrid biosensing cellulose scaffold materials capable 

of measuring extracellular pH and Ca2+ in 3D cell culture. We hypothesised and subsequently proved 

that through genetic engineering used to fuse CBD to FLIM-responsive FPs with pH or Ca2+ sensitivity, 

this would allow for the attachment of the protein-based biosensor probes to the cellulose scaffold 

materials.  Here, we designed three such recombinant proteins with CBD attached to ECFP or EYFP 

for extracellular pH measurements and GCaMP2 for Ca2+ measurements, evaluating their attachment to 

cellulose scaffold-based materials: GrowDex, BC and decellularised plant materials. Then, 

subsequently, these CBD-biosensors were used in the measuring of extracellular pH and Ca2+ in 3D cell 

cultures in FLIM.  

First, we wanted to examine whether attachment of CBD to FPs affects their photophysical properties 

(Fig 5.1 and Fig 5.9). In all cases, we obtained recombinant proteins of the correct sizes with a 44-70% 

protein folding rate. In the case of CBD-ECFP, we observed a 2-fold increase in intensity response to 

changes in pH from 4 to 7 (Fig 5.1 C). Furthermore CBD-ECFP displayed responses in lifetime of 0.29 
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ns in solution: 1.89 ns at pH 4.5 to 2.18 ns at pH 8 (Fig 5.2). For CBD-GCaMP2, we observed a 1.25-

fold increase in intensity response to changes in Ca2+(Fig 5.1 E). Finally, in the case of CBD-EYFP, we 

observed a 5-fold increase in intensity response to changes in pH from 4 to 7 (Fig 5.9 C). Therefore, it 

is possible to conclude that the genetic attachment of CBD to the respective FPs did not affect their 

photophysical properties. When evaluating the staining of cellulose scaffold materials and the sensing 

properties of the protein-based biosensing probes, we found that the CBD tag facilitated stable 

attachment for over 7 to 10 days in GrowDex (Fig 5.3 B & D) and the decellularised celery scaffolds 

(Fig 5.11 C). This long-term labelling stability would allow for the growth of cell and tissue cultures 

within the scaffold for a period of at least 7 days, allowing for the continued measurement of cellular 

growth and differentiation during this time, for example, in the case of monitoring stem cell growth and 

differentiation, and in organoid tissue development.  Also evaluated was an optimal concentration for 

clear visualisation of fluorescence, with the saturation of ECFP (Fig 5.3 A), EYFP (Fig 5.9 E) and 

GCaMP2 (Fig 5.3 C) signal at concentrations of 10 µM, with 5 µM concentration optimal for imaging 

experiments with fluorescence and confocal microscopy.   

CBD-EYFP was developed to examine if the fluorescence lifetime response to pH changes with ECFP 

could be improved upon. However, in comparing CBD-ECFP and CBD-EYFP in their performance of 

pH FLIM with GrowDex, we see that CBD-ECFP possess a significantly broader response to changes 

in pH from pH 5.5 to pH 8 with a change in fluorescence lifetime of 0.7 ns (Fig 5.5), whereas with 

CBD-EYFP there is a change of only 0.2 ns in the same pH range (Fig 5.10) (Table 5.1). With CBD-

GCaMP2, although we observed a response to Ca2+ in intensity, it did not display sensing properties in 

FLIM. Encouragement, however, should be taken from the evidence that CBD can be easily fused to a 

vast array of ever-expanding numbers of FPs suitable for FLIM applications. The performance of pH 

sensing through FLIM can be improved upon with the use of other pH sensitive FPs, such as pHRed, 

which displayed a 0.4 ns lifetime response in solution, and a 0.3 ns response in the mouse neuroblastoma 

cell line, Neuro2a, within a pH range of 5 to 8 [213]. pHRed is also two-photon excitable, and emits 

red fluorescence, allowing for reduced phototoxicity and further in-depth imaging. In the case for Ca2+ 

FLIM measurements, indicators that utilise a Ca2+ binding protein between a FP FRET pair have found 

applications in FLIM-FRET imaging, wherein the fluorescence lifetime measurements are made from 

the decrease in the lifetime of the donor fluorophore during FRET.  A FLIM probe based on calmodulin-

dependent protein kinase II (CaMKII) and a FRET pair of mRFP and GFP displayed a fluorescence 

lifetime response to changes in Ca2+ concentrations in HEK293T cells upon stimulation with Ca2+ 

ionophore, 4-Br-A23182, with changes in lifetime of ~1.01 ns over 10 minutes [499]. The mTFP-TnC-

Cit FLIM-FRET Ca2+ sensor was developed with a FRET pair of monomeric teal FP (mTFP1) as a 

FRET donor, with Citrine FP as a FRET acceptor, with both FPs attached by a Troponin-C fragment 

for Ca2+ binding. mTFP-TnC-Cit displayed changes in lifetime of ~0.33ns in solution from 0 µM to 40 

µM Ca2+, and ~0.15 ns after stimulation with Ca2+ ionophore, ionomycin, in HEK293T cells [500].  
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We selected three cellulose scaffolds, all with their own strengths and potential drawbacks, depending 

on their cell culture applications: GrowDex due to its’ tuneable viscosity, BC for its’ large surface area 

and high mechanical strength, and decellularised plant materials, as they provide a pre-vascularised 

scaffold with high tensile strength and tunability. With all three scaffold materials, we set out to evaluate 

their respective compatibility in labelling with protein-based biosensors and cell culture applications. 

In the case of BC, we observed poor staining distribution of the CBD-tagged, protein-based biosensors 

(Fig 5.3). This is possibly due to limited light penetration as a result of BC being thick and opaque in 

nature, and limitations in imaging high depths, with a blue-green emission from ECFP and GCaMP2. 

In contrast, both GrowDex (Fig 5.3) and decellularised celery (Fig 5.11) provided cellulose scaffold 

materials that were optically clear and achieved both specific and high staining efficiency. This is due 

to a nanofibrillar patch-like structure in the case of GrowDex, and high porosity of the decellularised 

celery. CBD-ECFP labelled GrowDex provided a hybrid scaffold material compatible with cancer cell 

growth (WT and SCO2
-/- HCT116 cell cultures) and the formation of small cellular aggregates within 

the scaffold (Fig 5.7 A-C). The formation of such aggregates is highly advantageous for extracellular 

measurement of pH due to stronger extracellular acidification.  The GrowDex hydrogel scaffold has 

potential to be highly flexible in compatibility with a wide range of cell lines due to the ability to alter 

the hydrogel’s concentration. GrowDex has been shown to support the development of the stem cell 

niche with the formation of spheroid cultures of human pluripotent stem cells (hPSCs), grown at 0.5%, 

supporting hPSCs pluripotency over 26 days, along with hydrogel’s enzymatic removal facilitating 

cellular differentiation [84]. HepaRG liver progenitor cells also form multicellular spheroids within 1% 

GrowDex, displaying structural hallmarks of liver tissue [501]. NRAS mutated cutaneous melanoma 

(MUG-Mel2) formed spheroids in GrowDex at 0.4%, with maintenance of natural cell behavior [502]. 

Cultures of multipotent human adipose tissue-derived and bone marrow-derived mesenchymal stem 

cells (adMSCs and bmMSCs) were grown in 0.2 and 0.5% GrowDex, which supported cellular 

differentiation into osteogenic cells within the scaffold [503].  Cellulose scaffolds compared to synthetic 

scaffolds degrade at a much slower rate with mammalian cell and tissue models. This is due to the 

presence of cellulose 1,4-glycosidic bond which is only cleaved by cellulolytic enzymes, found in 

microbial or fungal cells. Whilst advantageous for cell and tissue culture in long term cultures, its usage 

as a tissue engineering scaffold for tissue regeneration is limited. Here, the cellulose scaffold’s structure 

and crystallinity would need to be altered, for example, by oxidization, making it susceptible to 

hydrolysis [504]. BC has found such applications as a scaffold in the tissue replacement of cartilage 

and engineered blood vessels [505, 506]. Cellulose scaffolds have therefore been applied as a scaffold 

material for a wide array of cell lines, including stem and cancer cell types supporting a 3D organization, 

as well as in tissue engineering for regenerated tissues for transplantation. This makes cellulose 

scaffolds ideal matrices in 3D cell and tissue culture, and regenerative medicine. 
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We subsequently evaluated extracellular acidification of HCT116 cells with the CBD-ECFP labelled 

GrowDex scaffold via FLIM.  After treating SCO2
-/- HCT116 cells with the mitochondrial uncoupler, 

FCCP, we observed a minor decrease in extracellular pH corresponding to the acidification of the cell 

culture media (Fig 5.7 D-G). Here, the CBD-ECFP labelled GrowDex scaffold was able to identify 

statistically significant decreases in fluorescence lifetimes and pH for FCCP-treated samples via FLIM.  

CBD-ECFP labelled decellularised celery provided a hybrid scaffold material with the compatibility in 

3D cell culture of small intestinal organoids. Experiments carried out by Dr. R. Dmitriev and Dr. I. 

Okkelman, published in [494], showed that CBD-ECFP labelled decellularised celery provided scaffold 

material for the growth of viable and metabolically active organoid cultures, with applications in the 

combined monitoring of extracellular pH and cellular O2 in FLIM and PLIM respectively. Therefore, 

CBD-ECFP labelled GrowDex and decellularised celery provided hybrid scaffold materials for 

potential dual extracellular pH and intracellular O2 monitoring in the real time assessment of 

mitochondrial function, glycolysis, redox status, and the overall balance of energy production 

mechanisms. All of these cellular functions exist in dynamic states during cell proliferation and 

differentiation, or upon drug treatment in both stem and cancer cell cultures.  

 

5.5 Conclusion 

Through this research we have developed protein-based biosensor probes that, through genetic 

engineering, can be altered to fuse CBD to a wide array of FPs suitable for FLIM applications in 

measuring extracellular pH and a range of metabolic gradients, as well as the potential application of 

modular peptides for cell differentiation  [507]. The cellulose scaffolds GrowDex and decellularised 

plant materials (i.e. celery), along with the labelling strategy developed here provide the potential for 

combined multiplexed FLIM-PLIM imaging of 3D models, such as cellular aggregates and organoid 

cultures. The use of such hybrid biosensing scaffold materials will allow for the real time monitoring 

of dynamic cellular processes and mechanisms that take place during cellular proliferation, 

differentiation and drug treatments. The real time assessment abilities will allow for improvement in 

the production of a physiologically relevant cell and tissue model for tissue engineering applications. 

  



140 

 

 

6. Overall conclusion 

The development of non-invasive biosensor constructs that allow for quantitative imaging of metabolic 

intracellular and extracellular gradients of cells and tissues, grown in tissue engineered models, is key 

to producing physiologically relevant models, truly representative of normal and diseased states. This 

thesis has demonstrated the development of protein-based biosensors for hybrid scaffold design, 

measuring the extracellular pH of small cellular aggregates via FLIM, along with the evaluation of 

design strategies for self-assembling protein nanoparticle-based biosensors for measurements of 

intracellular O2 via PLIM and ratiometric-based measurements, as well as intracellular pH for FLIM 

applications. 

Hybrid scaffold materials developed here are composed of genetically engineered protein-based 

biosensor probes, sensitive to pH (CBD-ECFP and CBD-EYFP) and Ca2+ (CBD-GCaMP2) in intensity 

and FLIM and attached via CBD to cellulose scaffolds including nanofibrillar GrowDex, BC and 

decellularised plant materials. Out of the three cellulose scaffold materials, GrowDex and decellularised 

celery were optically clear and achieved both specific and high staining efficiency with all three 

biosensor constructs. In the case of CBD-ECFP and CBD-EYFP labelled GrowDex, the hybrid scaffold 

demonstrated pH sensitivity in fluorescence lifetime. This allowed for applications in FLIM-based 

measurements of extracellular pH, with CBD-ECFP demonstrating a broader response in FLIM, 

displaying lifetime changes of 0.7 ns over a pH range of 5.5 to 8, compared to the 0.2 ns change over 

the same range for CBD-EYFP. However, in the case of CBD-GCaMP2, despite displaying responses 

to Ca2+ in intensity, it showed no such response in FLIM. From these results, it is evident that the 

protein-based biosensor construct design can potentially facilitate the successful attachment of CBD to 

a vast array of FLIM responsive FPs, such as ECFP and pHRed for pH measurements, and CaMKII 

based FRET pair of mRFP and GFP, and mTFP-TnC-Cit for Ca2+ measurements, which possess better 

characteristics for biosensing applications. The most promising result came from the success of the 

CBD-ECFP labelled GrowDex hybrid scaffold which supported the growth of 3D cultured human colon 

cancer cells HCT116, with the ability to measure real time changes in extracellular pH. Using the CBD-

ECFP labelled GrowDex hybrid scaffold, we were able to detect decreases in pH after stimulation with 

the mitochondrial uncoupler FCCP. The development of new protein-based biosensor constructs with 

genetic attachments of CBD to pH FLIM sensitive FPs and FRET-FLIM sensitive Ca2+ indicators are 

underway, with the aim of improving FLIM responses. The expanded research into the described hybrid 

cellulose scaffold materials will allow for the real time monitoring of dynamic cellular processes that 

govern cellular proliferation, differentiation and response to drug treatments, thereby improving the 

physiological relevance of cell and tissue models of normal and diseased states. 
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Current intracellular imaging is reliant on synthetically based nanoparticles, which suffer from issues 

with suboptimal intracellular staining, along with high toxicity and immunogenicity. Here, we evaluated 

several design strategies for the development of self-assembling protein nanoparticle constructs based 

on the ELP-CP and protein nanocage ferritin. Such constructs hold promise due to their biological 

nature and low immunogenicity, making them more biocompatible and biodegradable, and thereby 

reducing toxicity and immunogenic responses. They are also amenable to multiple strategies of 

functionalisation such as genetic engineering, chemical modification, and encapsulation.  

Metallochelate coupling is an existing immobilisation, purification, and labelling technique where 

histidine-tagged recombinant proteins are bound to NTA or IDA groups. These groups form a complex 

with transition metal ions (i.e. Zn2+, Ni2+, Co2+, or Cu2+) which then co-ordinate histidine amino acids 

expressed on the recombinant protein.  We evaluated metallochelate coupling as a viable strategy for 

the design of intracellular O2 probes. Here, we produced ratiometric-based O2-sensitive phosphorescent 

probes from EGFP, TagBFP2 and DsRed-express coupled to PtCP-NTA. The resulting coupled FPs 

demonstrate no perturbing effects of coupling to their fluorescence properties and display O2-sensitive 

phosphorescence responses. This produces O2-sensitive complexes that have combined fluorescence, 

which can be applied in ratiometric-based measurements of both extracellular and intracellular O2, 

where FP is used as O2-insensitive reference. The potential exists to attach a wide array of monomeric 

FPs allows for flexibility in experimental design, with coupling to far red FPs facilitating high resolution 

imaging due to increased imaging depth. The biggest result here was the first known example of the 

development of an O2-sensitive ELP-CP-PtCP-NTA. Here, we carried out the metallochelate coupling 

of PtCP-NTA with C-terminally His6-tagged ELPCP protein subunit. We achieved coupling efficiency 

of ~65% and the VLP displayed ~25.8 times higher absorptivity and ~7 times higher phosphorescence 

intensity with comparable phosphorescence lifetime range to that of the commercial O2-sensitive probe 

MitoXpress. Metallochelate coupling can potentially allow for the attachment of targeting peptides for 

the cell specific delivery of the VLPs. The coupling efficiency can potentially be improved with the 

introduction of more NTA groups on the Pt-porphyrins and increasing the number of His6 tags on the 

protein subunits. ELPCP-H6-PtCP VLPs can be applied in time-resolved fluorescence microplate reader 

measurements. If increased brightness and cell specific targeting can be achieved, then fluorescence 

microscope imaging can be applied for cell studies. 

In addition to metallochelate coupling in self-assembling protein nanoparticle biosensor design, we 

evaluated genetic engineering, chemical modification and encapsulation as viable strategies for the 

development of pH and O2-sensitive ferritin nanoparticles. With genetic engineering, we designed two 

recombinant ferritin nanoparticle constructs: EGFP-FTNH expressing the cell penetrating peptide BN7, 

and the pH sensitive ECFP-FTN expressing BN7 and the cell targeting peptide ENL. In both genetically 

engineered constructs, we observed no perturbing effects to ferritin self-assembly or to the spectral 

properties of EGFP and ECFP. With ECFP-FTN displaying responses in intensity and lifetime, with 
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changes of 0.45 ns over a pH range of 4.5 to 8. However, in the case of EGFP-FTNH intracellular 

staining of MEF cells, it was observed to be suboptimal and confined to endosomes, and ECFP-FTNH 

proved to be toxic to HCT116 cells. We then finally evaluated the strategy of pH dependent disassembly 

and reassembly encapsulation to develop O2-sensitive ferritin-based nanoparticles, encapsulating the 

O2-sensitive phosphorescent probe Pt-Glc (hoFTN Pt-Glc). We observed a higher phosphorescence 

intensity signal in hoFTN-Pt-Glc constructs than free Pt-Glc. This is possibly due to the high number 

of Pt-Glc molecules in close proximity within the ferritin structure, rather than being diffused 

throughout the media or sample. Another potential explanation for this increase in phosphorescence 

intensity could be due to the presence of imidazole used for protein purification, which has been shown 

to increase phosphorescence of gadolinium-porphyrin based dye {Zang, 2016 #511}.  hoFTN-Pt-Glc 

was also observed to be responsive to changes in oxygenation, with increased phosphorescence intensity 

when deoxygenated. However, in characterising the construct in MEF cells, we observed suboptimal 

intracellular staining, with the construct being trapped within the endosomes. The uptake of hoFTN Pt-

Glc into MEF cells was observed to be slower than free Pt-Glc and possessed shorter phosphorescence 

lifetimes. These results showed that the encapsulation of Pt-Glc into ferritin in its current form did not 

improve intracellular staining, phosphorescence intensity or lifetime in cells. Improvements could be 

possible with the attachment of a wider range cell penetrating and targeting peptides that can escape the 

early endosome pathway. Despite the results in cell models, the strategies of genetic engineering and 

encapsulation displayed an interchangeable approach to the design of ferritin constructs for potential 

tailoring to experimental requirements in live cell imaging applications.  

The application of nanoparticles such as self-assembling protein nanoparticles in cell and tissue models 

is a complex area, in which issues are raised regarding the set of dynamic interactions of nanoparticle 

materials and biological systems being probed. These interactions lead to the formation of protein 

coronas. As well as this, intracellular uptake and subcellular localisations can cause effects on cellular 

processes. To develop nanoparticle constructs with optimal intracellular staining and sub cellular 

localisations, these nano-bio interfaces and their effects need to be studied. However, such studies are 

not straight forward, hindering the progress of nanoparticle development. The strategies evaluated here 

could potentially aid in the development of protein-based nanoparticles that could probe these interfaces 

due to the interchangeable nature of the attachments being expressed, such as targeting peptides for 

specific cell and subcellular staining, and fluorophores allowing for localisation.   

The most promising results came from the development of hybrid scaffold materials for FLIM in 3D 

tissue engineering, providing the potential for multiplexed PLIM-FLIM imaging of 3D models such as 

cellular aggregates and intestinal organoids. Hybrid scaffold materials of this nature would allow for a 

less invasive approach in real time monitoring of cell and tissue models, compared to intracellular 

nanoparticles, whose interactions with subcellular organelles and cellular processes are largely 

unknown along with the complexity of nano-bio interfaces are as of yet poorly understood.  
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The results presented in this thesis demonstrate the development and evaluation of multiple strategies 

in the production of hybrid scaffold materials and self-assembling protein nanoparticles, with an 

interchangeable approach to construct design. The flexibility in biosensor design could potentially allow 

for the quantitative imaging of multiple metabolites via FLIM and PLIM, aiding in the development of 

physiologically relevant tissue engineered models. 
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Thesis outcomes 

Peer reviewed papers: 

• “Cellulose-Based Scaffolds for Fluorescence Lifetime Imaging-Assisted Tissue Engineering”, 

(Acta Biomateriala, 2018) Authors: Neil O’Donnell, Irina A. Okkelman, Shannen A. Ruane, 

Peter Timashev, Tatyana I. Gromovykh, and Ruslan I. Dmitriev. 

• “Metallochelate Coupling of Phosphorescent Pt-Porphyrins to Peptides, Proteins, and Self-

Assembling Protein Nanoparticles” (ACS Bioconjugate Chemistry, 2016). Authors: Ruslan I. 

Dmitriev, Neil O’Donnell, and Dmitri B. Papkovsky. 

Book chapter: 

• “Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell 

Microscopy Of 3D Tissue Models: A Brief Overview” (Springer Link, 2017; Review). Authors: 

Neil O’Donnell, and Ruslan I. Dmitriev. 

Published conference abstracts: 

• “Hybrid biosensing cellulose-based scaffolds for imaging-assisted tissue engineering” 

(FASEB, 2018) Authors: Neil O’Donnell, Irina A. Okkelman, Shannen A. Ruane, Peter 

Timashev, Tatyana I. Gromovykh, and Ruslan I. Dmitriev 

Conference presentations: 

• Poster presentation: “Ferritin nanoparticles improve intracellular delivery of phosphorescent 

oxygen-sensitive probe” EUROPT(R)ODE XIII. Graz, Austria. March 20 - 23, 2016 
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