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Abstract

Let V be a variety of non necessarily associative algebras over a field of characteristic zero.
The growth of V is determined by the asymptotic behavior of the sequence of codimensions
en(V),n=1,2,..., and here we study varieties of polynomial growth. We classify all possible
growth of varieties V of algebras satisfying the identity x(yz) = 0 such that ¢, (V) < Cn®,
with 1 < a < 3, for some constant C. We prove that if 1 < a < 2 then ¢, (V) < Cin, and if
2 < a < 3, then ¢, (V) < Cyn?, for some constants Oy, Cy.
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1. Introduction

Let F be a field of characteristic zero and F{X} the free non associative algebra on
a countable set X over F. Let V be a variety of non necessarily associative algebras and
Id(V) be the T-ideal of identities of V. In characteristic zero without loss of generality
one can study the multilinear identities of V and a natural and well established way of
measuring the identities of V is through the study of the asymptotic behavior of its sequence
of codimensions ¢,(V), n = 1,2,.... More precisely, for every n > 1 let P,, be the space
of multilinear polynomials in the variables x1,...,2,. Since char F' = 0, the T-ideal Id(V)
is determined by the multilinear polynomials it contains; hence the relatively free algebra
F{X}/Id(V) is determined by the sequence of subspaces { P, /(P,,NId(V))}n>1. The integer
cn(V) =dim P, /(P, N Id(V)) is called the n-th codimension of V and the growth function
determined by the sequence of integers {c,,(V)}n>1 is the growth of the variety V.

If V = var(A) is the variety generated by an algebra A, then we write Id(V) = Id(A)
and ¢, (A) = ¢, (V).

The first result on the asymptotic behavior of ¢, (V) is due to Regev ([16]). He proved
that if V is a non-trivial variety of associative algebras, then the sequence of codimensions
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is exponentially bounded, i.e., there exist constants «,a > 0 such that ¢,(V) < aa®, for
all n. In case V is a variety of non associative algebras, such sequence has a much more
involved behavior and can have overexponential growth ([15]). Nevertheless for varieties of
associative and Lie algebras, no intermediate growth (between polynomial and exponential)
and no exponential growth between 1 and 2 is allowed ([9],[10],[11]).

The exponential rate of growth of the sequence of codimensions of an associative algebra
was determined in [5] and [6]. It was proved that for any associative Pl-algebra A, the
limit lim,, o, ¥/cn(A) exists and is a non-negative integer. In case of finite dimensional Lie
algebra the same result was proved in [17]. This is not an expected behavior for Lie algebras,
in fact in [18] was constructed an example of a Lie algebra whose sequence of codimensions
grows exponentially but the rate of growth is not integer.

In this paper we consider varieties V' of not necessarily associative algebras such that
the sequence of codimensions is polynomially bounded, i.e., there exist constants a,t > 0
such that ¢, (V) < an!, for all n. The asymptotic behavior of the codimensions of a unitary
algebra was described by Drensky ([3]). He proved that if V is a variety of associative or
Lie algebras whose sequence of codimensions is polynomially bounded then the growth of
the codimensions is exactly polynomial, i.e., there exist a positive integer k and a constant
C such that ¢, (V) = Cn* + O(n*=1), where O(n*~1) is a polynomial of degree < k — 1.

In this paper we deal with the variety, V = o/, of left nilpotent algebras of index two,
that is the variety of algebras satisfying the identity

z(yz) = 0.

For this class of algebras in [14] the authors constructed a variety W C 2 such that for
any n > 25

MV < (v) < Vi 2o+ 3V + 0

(V) -9 =2 <

In other words, the variety W has fractional polynomial growth between 3 and 4, more
precisely lim,,_, o log,, ¢, (V) = %

Motivated by this results in ([12], [13]) we classified the growth of varieties of commuta-
tive and anticommutative algebras with at most quadratic growth. We proved that if V is
a variety such that ¢, (V) < Cn® with 0 < o < 1, then ¢, (V) < 1, for n large. Moreover if
1 < a < 2, then either lim,,_, loge, (V) =1 or ¢, (V) < 1, for n large.

The purpose of this paper is to prove that if V is the variety of algebras satisfying the
identity z(yz) = 0 and ¢, (V) < Cn® with 1 < a < 2, then ¢, (V) < Cyn, for some constant
C1. Moreover if ¢, (V) < Cn®, with 2 < a < 3, then ¢, (V) < Can? for some constant Cs.

Preliminaries

Throughout F will be a field of characteristic zero, X = {z1,z2,...} a countable set
and F{X} the free non associative algebra on X over F. Let V be a variety and Id(V) =
{f € F{X}|f = 0 on V} be the T-ideal of identities of V. For every n > 1, let P, be
the space of multilinear polynomials of F{X} in the first n variables z1,zs,...,z,. Since
charF' = 0, it is well known that the sequence of spaces P, N Id(V), n = 1,2,..., carry all
information about Id(V). The symmetric group S,, acts on P, by permuting variables: if
o €8Sy, f(x1,...,2,) € Py,

of(,-yan) = f(@e@)s - Tom)-
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The space P, N Id(V) is invariant under this action and one studies the structure of
P,(V)=P,/(P,NId(V)) as an S,-module. The S,,-character of P,(V), denoted x,(V), is
called the nth cocharacter of A. Its degree ¢, (V) = x,(V)(1) is the nth codimension of V.
By complete reducibility one writes

Xn(v) = Z mx XA (1)

AFn

where Y, is the irreducible S,,-character corresponding to the partition A of n and my > 0
is the multiplicity of x» (see for instance [8] for the representation theory of the symmetric
group).

Notice that in case V is a variety of associative algebras, for the multiplicities m ) we have
that m) < dy, where dy = deg x) is the degree of the character x,. In the non associative
case this inequality does not hold any more. For instance for the free non associative algebra
A = F{X} we have that, in x,(A), my = C,dy where C,, is the nth Catalan number.

We next recall some basic properties of the representation theory of the symmetric group
that we shall use in the sequel. Let A - n and let T be a Young tableau of shape A F n.
We denote by er, the corresponding essential idempotent of the group algebra F'S,,. Recall
that er, = Ry, Cr, where

RT; = Z a,

JGRT,\

Cr, = Z (sgnt)T

T€CT,

and Rr,, Cr, are the row and column stabilizers of T}, respectively. Recall that if M)y
is an irreducible S,,-submodule of P,(V) corresponding to A, there exists a polynomial
f(z1,...,2,) € P, and a tableau T such that er, f(x1,...,z,) € Id(V).

In what follows we shall use also the representation theory of the general linear group.
Let m > 1 and U = spanp{x1,...,Zm}. The group GL(U) = GL,, acts naturally on the
left on the space U and we can extend this action diagonally to get an action on F,,{X} =
F{x1,...,2m}, the free algebra of rank m.

The space F,,{X} N Id(V) is invariant under this action, hence

Fn{X}

V= Fxntam

inherits a structure of left GL,,-module. Let F, ,, be the space of homogeneous polynomials
of degree n in the variables 1, ..., z,,, then

Fm,n

F - —
maV) = T

is a GLy,-submodule of F,,(V) and we denote its character by 1, (V). Write

djn(v) = Z m,\%\

AFn

where 1) is the irreducible GL,,-character associated to the partition A and m) is the
corresponding multiplicity. In [1] and [2] it was proved that if the character x, (V) has the
decomposition given in (1) then my = m,, for all A - n whose corresponding diagram has
height at most m.
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It is also known (see for instance [4, Theorem 12.4.12 ]) that any irreducible submodule
of Fpn(V) corresponding to A is generated by a non-zero polynomial fy, called highest
weight vector, of the form

A1
= HSthm)(fﬂh e TR (A)) Z aq0, (2)

=1 oES),

where o, € F, the right action of S,, on F% (A) is defined by place permutation, h;(\) is

m,n

the height of the ith column of the diagram of A and

Str(mla cee ,J}r) = Z (Sgn T)IT(I) L (r)
TES

is the standard polynomial of degree r with a suitable arrangement of the parentheses. Recall
that fy is unique up to a multiplicative constant.

For a Young tableau Ty, denote by fr, the highest weight vector obtained from (2) by
considering the only permutation o € S,, such that the integers o(1),...,0(h1(})), in this
order, fill in from top to bottom the first column of Ty, o(h1(A\) +1),...,0(h1(N) + ha(N))
the second column of T, etc.

By [4, Proposition 12.4.14 | we have that if

¢n(V) = Z m/\'(/})\

AFn

is the GL,,-character of F,,(V), then my is equal to the maximal number of linearly
independent highest weight vectors fr, in F, (V).

2. Classifying varieties V such that ¢,(V) < Cn*, 1 < a < 2

Throughout this section we shall assume that ) is the variety of left nilpotent algebras
of index two, that is the variety of algebras satisfying the identity

z(yz) =0
such that ¢, (V) < Cn®, for some 1 < a < 2, and for some constant C.
Our aim is to prove that for such variety ¢, (V) < Cin, for some constant Cj.

Notice that modulo the identity z(yz) = 0 all non-zero monomials of the free algebra are
left normed, i.e., are of the type (((z122)z3)...). Since we shall be working modulo such
identity throughout we shall omit the parenthesis in left normed monomials, hence we shall
write (((z122)x3)...7,) = X172 ... 7, and xy? for zyy.

In what follows we shall make use of the following lemma which was proved in [12].
Lemma 1. If A+ n is such that X & {(n), (1"), (n — 1,1),(2,1"7%)} then d) > in>.

From the above lemma it follows that if A - n is distinct from (n), (1?), (n—1,1), (2,1772),
then there exists N > 0 such that for all n > N we have that dy > Cn® and hence my = 0.
We fix the integer N from now on.

The following remark is obvious.

Remark 1. Let A n. If either A = (n) or A = (1") then my < 1.
4



Let A - n be a partition of n and f;, i = 1,2,...,deg x\, be polynomials corresponding
to the standard Young tableaux of shape A in P,. For every i, let T; be the corresponding
standard tableaux and denote by g; the polynomial obtained from f; by identifying with z;
all variables corresponding to the first row of T;, with x5 all variables corresponding to the
second row of T; and so on. Then, by [4, Proposition 12.4.14 |, my equals the dimension of
the space spanned by all g;, 1 < i < degx», mod Id(V). In what follows we shall use this
fact without mention it.

We shall adopt the convention of marking a set of alternating variables with the same
symbol ;. For instance, in 27y, Z2y2Z3 stands for 20653 (SEN0) T (1) Y10 (2)Y2T 0 (3) -

The following result concern the partition A = (n — 1, 1).
Proposition 1. If x,(V) = > ,.,, maxx and n > N we have that
Mp-1,1) < 2.
PROOF. Let A= (n—2,1,1) F n. For every i =0,...,n — 3, let
fi = B2t BTzt 3

be the left normed polynomials corresponding to the following standard tableaux

, 1L [2].. Ji+1]i+4]...[n]
TV =[G +2
i+t3

Since if n > N, by Lemma 1, dy > Cn%, 1 < a < 2, then it follows that, for every
1=0,...,n—3,

fi=0 (mod. Id(V)).
Let consider the following substitution z; = zz1 4+ x1 then we obtain

22 ZoZ327 3 = 0 (mod. Id(V))

and by putting x3 = x; we have

22T o2 ™% = 22t a2t ™73 (mod. Id(V)) (3)
for every i =0,...,n — 3.

Let n > N and consider, for every j = 0,...,n — 2, the polynomials
gj = fll‘jl.fgl’?ij72

corresponding to the standard Young tableaux of shape A = (n — 1, 1).
Notice that, by the identity (3), we obtain

gi = g1 (mod. Id(V))

for j = 2,...,n — 2. It follows that the subspace span{go,...,gn—2}, modulo Id(V), has
dimension bounded by 2. Hence m,,_1 1) < 2.

Our next objective is to find an upper bound for the multiplicity m) for the partition
A= (2,1"72).



Proposition 2. Let x,(V) = >\, maxa- If n > N then mg n-2y < 2.
PROOF. Let A = (3,17 =3). For every r = 1,..., N — 2 let

fr =T1%2 - ZTp X1 Ty 1T N2

be polynomials corresponding to the following standard tableaux

1 [r+1][N]

r+2

By Lemma 1, it follows that for every r=1,---, N — 2

T1To -+ frxlzfr+1 e IN_2T1 = 0 (HlOd Id(V))

Let consider the substitution 1 = 2122 + 21 the we obtain

212922  TpT1Tpy1 - TN—221 =0 (mod Id(V))

for r =2,..., N — 2. After multilinearization we have that
2129%2 X pX1Tpy1 " " TN-—22 = —2122X2 " Tp2Tp41 "  TN—2T1 (mod Id(V))
If we alternate on x1,xo,...,xn_2 it follows that

2129%71 "+ .’ErfrJrl e IN_2Z = aT7N2122f152 L 12Ty TN_2 (mod Id(V)) (4)

where > 3 and o, y = 1 according to the parity of » and N.

Let now n > N, and fi,..., fn—1 be polynomials corresponding to the standard Young
tableaux of shape (2,1"72) in P,. Then, if g,...,g,_1 are the polynomials obtained from
the f;’s by identifying with x; the two variables of the first row of the corresponding tableaux,
fori=1,...,n—1, we have that

i = 21%2 -+ TiZ1Ti41 - Tp—1-
Let look at the dimension of the span{gi,...,gn—1}
Notice that, by the identity (4) we obtain
gj = £gn—1 (mod. Id(V))

forj=2,...,n—2.
It follows that the subspace span{gi, ..., gn—1}, modulo Id()), has dimension bounded
by 2. Hence mz,1»-2) < 2 and we are done.

Now we are able to prove the following



Theorem 1. Let V be a variety of algebras satisfying the identity
x(yz) = 0.

If ¢, (V) < Cn® for some constant C > 0 and 1 < a < 2, then ¢, (V) < 4dn + Cy for some
constant C; > 0.

PRrROOF. Fix N so that, for all n > N, dy > Cn® for A & {(n),(1"),(n — 1,1),(2,1"72)}.
Then by Lemma 1, my = 0 for every A # (n)(n —1,1), (17), (2,1"72).
Thus for n > N,

Xn(V) = M) Xn) + Min—1,)X(n=1,1) + MamXam) + M21m-2)X(2,10-2)-

Since deg x(n—1,1) = degx(2,1n-2) = n — 1 and deg x(1n) = degxn) = 1, by recalling
Remark 1, Proposition 1 and Proposition 2, we get

(W) <142n—1)+142(n—-1) <4dn—2.
For 1 <n < N, let C; be such that ¢, (V) < 4n + C; and we are done.

3. Varieties V such that ¢, (V) < Cn*,2 < a <3
Let V be the variety of algebras satisfying the identity
x(yz) = 0.

Throughout this section we shall assume that ¢, (V) < Cn®, for some constants C' and
o, 2 <a<3.

Our aim is to prove that for such variety c, (V) < C1n?, for some constant C;.

Let observe that if A € {(n),(1?),(n — 1,1),(2,1"72)}, then mydy < n?, so from now
on we shall consider partitions A ¢ {(n), (1), (n — 1,1),(2,1"72)}. The strategy of the
proof will be the following: we shall first prove that, for n large enough, my = 0 for every
A {(n—2,1,1),(3,1"73),(n — 2,2),(2,2,1" %)} then for the above case we shall find an
upper bound for the multiplicities m.

Let start with the following

Lemma 2. If A= n, n # 6, is such that A & {(n — 2,1,1), (3, 1"73), (n —2,2),(2,2,1"~4)}
then dy > Z—i.

PROOF. Let A = (A1, Ag,...) F n and let denote by X = (A\],...,A]) F n the conjugate
partition of A. It easy to check that for any n # 6

n3

d(n-321) = d2,17-5) > dn-3,1,1,1) = d@2,17-5) > d(n-3,3) = d(2,2.217-0) > 7.

It follows that if Ay =n — 3, or \] = n — 3 or n <9 then the conclusion of the lemma
follows by direct computation from the hook formula (see [8]).

Hence we may assume that n > 10, A\; < n —4 and A} < n — 4. The proof will be by
induction on n. If the shape of the diagram of A is not a rectangle then there exist two
subdiagrams corresponding to partitions p and v each containing n — 1 boxes and satisfying



the hypotheses of the lemma. But then, by using induction and the branching rule, we have
that
(n—1)2 _nd
— >

44 44
If the shape of the diagram of A is a rectangle, there exist two different subdiagrams corre-
sponding to partitions p and v, each with n — 2 boxes, and they both satisfy the hypotheses
of the lemma. In this case we have

d)\zd#"i_duZQ

(n—2)% nd
> ,>2. 02
d)\_du—Fd > 1 >44

In fact let consider the sequence

m—2p w¢  (V2n=2)—n) ((V2(n=2)"+ V2(n - 2)n+n?)
4 44 44 '

ap =2+

Asn>10> \32/5/_51 then w(n —2)—n> 0. So, a, >0 for any n > 10 and we are done.

From the above lemma it follows that if A F n is distinct from (n—2,1,1),(3,1"73), (n —
2,2),(2,2,1"%), then there exists m > 0 such that for all n > m we have that dy > Z% >
Cn® and so my = 0. We fix the integer m > 4 from now and we shall also assume that the
integer m has the further property that ¢, (V) < Z—z for all n > m.

Let start with the following

Lemma 3. There exists r, with 0 < r < m — 3, such that

D A Z’yizlzgxizx’ln_i_Q (mod. Id(V)) (5)
i>r

where, for some i, v; # 0.

PROOF. Let A = (m —2,1,1) - m. For p=0,...,m — 3, we define the tableaux

1 2] ... [p+1l[p+4]...]
T)(\p): p+2
p+3

and we associate to TA(p ) the left-normed polynomials

= P— = m—p—3
Jp = T1X722T3T .

Notice that, for every p = 0, ..., m—3, the polynomials g, are obtained from the essential

idempotents corresponding to the tableaux Tip ) by identifying all the elements in each row
of \.
If the polynomials g, are linearly independent then my > m —2. In this case, by Lemma

2
1, dy > "¢ and we have

m?2 _ m3
m > —2)— > —>Cm*"
em(V) > (m )8>44>m
a contradiction. So, my will be less than m — 2 then it follows that the polynomials g, are
linearly dependent and this implies
8



-3
1T T T3] PP =0 (mod. Td(V)).

3

I
=)

P
Let us replace x3 with 2122 and x5 with z then we obtain
m—3
Z apz1292h (zwy — w1 2)2] TP 3=0 (mod. Id(V)).

p=0

Let now 7 be the minimum p such that o, # 0 and ¢ be the maximum p such that a; # 0.

If t = r then
21200 22T = 2z T 22T (mod. Td(V)).

If t # r then

41
Zﬁlzlzgxlzx’f =2=0 (mod. Id(V))

where 8, = o, #0, Bi41 = —ar 0 and B4 = apqj —pqjor forall 1 <j <t —r+1.

It follows that

t+1 t+1
izpxt 2T = g 5 zlzgxlzm{” =2 E Yiz1zt 2272 (mod. Id(V))
1=r+1 T i=r+1
h Bt+1 _ap
where yi+1 = By anr # 0.

From this lemma it easily follows the following

Remark 2. If s > m and t > m then
nrizat = Z%'lel zali (mod. Id(V))

where t; < m.

Lemma 4. Let k = 2m. For a fized q, with 0 < g < m, there exists rq, 0 <ry <k —q—3,

such that

Tq — _ k—r 3 k— 3
21290 TowlTgzay 01 g Biz1 zox’ Toxl Ty 2] i=a= (mod. Id(V)).
0<i<ry

PRrROOF. Let kK =2m. For a fixed ¢, 0 < g <m, and for p=0,...,k—q— 3 let
hpq = Z128Tox Zza P 973

be the left normed polynomials associated to the tableaux

1 L [p+1]p+3] . Jp+tq+2]...]
T)(\p,q): )
p+qg+3

(6)



where A = (k—2,1,1) - k.

As in the previous lemma, since m > 4, if m) > k — ¢ — 2 then,

(2m)?
8

@ _ L mt m)?

(k—q—2) 5 1

> (k—m—2)

> Ck* > ¢, (V)
a contradiction.
Then the polynomials h), 4, for any g, must be linearly dependent and so

k—q—3

Z aphpq =0 (mod. Id(V)).

p=0

Let now consider the following substitution x; = 2122 + =1 and let r, be the maximum
p such that oy, # 0. It follows that

. . k—r,—q—3 i — — k—i—q—3
21207 ToxlTax] T = E Biz1 200 Tax Ty "1 (mod. Id(V)),

0<i<rg

and we are done.

From now on we shall assume that k£ = 2m.
We have the following

Remark 3. For a fixred q, 0 < g < m, and s,t > k then either

2705 Toxi st = Zﬁizlxia’:gx({fgaﬁ“_i (mod. Id(V))
i<k

where B; # 0 for some i, or
2175 ToxiZ37t =0 (mod. Id(V)).

PROOF. Let consider the polynomial z125Z2z%Z3x! with ¢ < m, s > k and t > k.
If in (6) there exists ¢ such that ; # 0, then

2252 Taat = Zﬁizlxifgx‘ffgxf“*i (mod. Id(V))
i<k
and we are done.
Otherwise if in (6), 8; = 0 for alli, then we have
2202 Tox Tzt TP =0 (mod. Td(V)).
So, for any s,t > k, and 0 < g < m it follows that
225 ToxiZ32t =0 (mod. Id(V)).

Proposition 3. Let x,(V) = >\, maxa- If A= (n—2,1,1) then m,_211) < 5m?2.

10



PROOF. If n < k then my < d) < n? < 5m2.
Let n > k. The highest weight vectors corresponding to the standard Young tableaux of
shape A = (n — 2,1,1) are of the following type

Jopry = T100Toah Tax]

where a + 8 + v = n — 3. We want to find an upper bound for the dimension of the span
{90,841}

Let first assume 0 < 8 < m.

If « > k and v > k, by Remark 3, either go 34 = 0 or we can write go g,y as a linear
combination of polynomials a‘clx?/a_chffg,mq' where o’ < k.

Hence, if 3 < m we have to consider polynomials g, s~ such that either « < k or v <k
and so we obtain at most 2km polynomials.

Let now 8 > m.

If v > m then, by Remark 2, we can write g, g as a linear combination of polynomials
Ja’ 3~ Where v < m.

So let consider polynomials g, g~ with 8 > m and v < m.

If & > m then, by Remark 2, g, g, is equivalent to a linear combination of polynomials
Ja’ g~ Where 5/ < m.

So we have to consider polynomials g, g, With @ < m, 8 > m and v < m and this are
at most m?2.

It follows that the dim span{ga. s~} < 5m?.

Lemma 5.

1) There exists r, 0 < r < m — 2, such that

Z122%1 X pZTpy1 Tp—2 = Z ViZ122%1 TiZTig1 " Tm—2 (mod Id(V)), (7)
i>r

where yp41 = —1.
2) Let k = 2m, then for any fized g, 0 < g < m, there exists rq, 0 < 14 < k—q—2, such that

2122%2 - -+ jrqz‘fqurl e "Erq+q2frq+q+1 T2 = (8)

Z Bi2’122i‘2 tee a‘:isz_l s ji+q2fi+q+1 e jk_g (mod Id(V))

1<Tq

PROOF. 1) Let A = (3,1™73) - m. For every p € P = {1,3,5, -}, we define the standard
tableaux

1 [p+1l][p+2]

TA(P) — D
p+3

11



and we associate to T/Ep ) the left-normed polynomials

Jp =21 XTpT1X1Tpy1 - T2

Notice that for every p € P = {1,3,5,-- -}, the [(m + 1)/2] polynomials g, are obtained

)

from the essential idempotents corresponding to the tableaux Tf\p by identifying all the

elements in each row of A. Since ¢, (V) < % < [(m+1)/2] % it follows that the polynomials
gp are linearly dependent then

Z apgp =0 (mod. Id(V)).
pEP
By making the substitution 1 = 2129 + x1 we obtain
Z Qp2122T2 *+ TpX1T1Tpt1 - Tm—2 = 0 (mod Id(V))
peP

Let 7 be the minimum p such that «;, # 0, then

212922+ TpX1X1Trq1 " Tp—2 = E Biz129T9 - - TiT1T1Ti41 " Tm—2 (mod Id(V))
i>r

By substituting x1 with 1 + z; and by alternating on x1, 2o, ..., %;,_2 We obtain
2129%1 * ** Ifrzi‘r+1 Lo = Z’Y@legfl s 9_31‘21_77;4_1 o TN_2 (mod Id(V))
i>r
Let observe that 7,11 = —1 and we are done.
2) Let now k = 2m, for a fixed g =0,...,m—land for p=1,2,... )k —qg—2 let

1 p+1|p+qg+2
2

p+2

T)(\p’q) _

ptag+1l
p+q+3

be standard tableaux of shape A = (3,1%73) k. We associate to any tableaux Tip’q), p=
1,2,...,k —q— 2, the left-normed polynomials

hp,q =T ‘:prljzrkl Ce i'erqxli'erqul c Tp_o.
12



As before, by the hypothesis on c; (V) we have that the polynomials hy, , are linearly depen-
dent then

> apghyg =0 (mod. Id(V)).

Let r4 > 0 be the maximum p such that «, 4 7# 0, then after the substitution 1 = 2120+2
we obtain
2129%9 "+ * quZ.frq_H cee -frq+q257rq+q+1 T =

Z ﬂizlzgfg cee i’izfi+1 R :Zqua_chH c T2 (mod Id(V)),
i<rq

and we are done.

Remark 4.

1) If s> m and t > m then

Z21T1  TsZTs41 " Tt = 2%‘2@1 S TiZTiq1 - Tigy (mod. 1d(V)),
1

where t' < m.
2)If0<qg<m,s>kandt >k then either

Ty Te2Toq1  Tspq2Tstqil Tspqit =

Z ’ys’jl tee "ES/Z.’ES/+1 s fs’+qzjs/+q+1 ce js’+q+t’ (mod Id(V)),
s'<k
where vy #£ 0, for some s’ or
21Ty - Ts2Tgy1 - Tspt =0 (mod. Id(V)).

PROOF. 1) Let consider the polynomial z1Z -+ Z52Ts41 -+ Tsqe- If $ > m and t > m, by
(7) it follows that

2121 - i’szfs+1 e fSth = E ’yizla_cl s g‘vizfiﬂ R :ZZ-H/ (mod Id(V)),
i

where t' < m.
2) Let now consider the polynomial Zi - Ts2Ts41 " Ts4q2Tstqt1 " Tstqrt With 0 <
g<m,s>kandt>k Ifin (8), 8; # 0 for some ¢, then

T1 o Ts2Tsq1 TstqiTsiqrl * Tstqrt =

D VeEr By 2B BgyqZ g1 Bepgre (mod. Td(V)),
s'<k
where vy # 0, for some s'.
If in (8), B8; = 0 for any 7, then we have

2129%2 Ty 2Ty 110 Try i qZTrg i1 Th—2 =0 (mod. Id(V))
and this implies that
Ty {fSZi'5+1 s afs+qu5+q+1 s -’fs+q+t =0 (mod Id(V)),

for 0 < g<m and s,t > k.
13



Proposition 4. Let A = (3,1"73) - n, then my < 5m?.

PROOF. If n < k then my < dy < n? < 5m2.
So,letn>k.Forp=1,---n—2andp+qg+r=n—2let

Jpar =T1T2  TpT1 Tpy1 - Tpq @1 Tptgil T2

p q r

be the highest weight vectors corresponding to the standard tableaux of the partition
(3,1"73). The dimension of the space spanned by all f,,,, equals my. We want to find
an upper bound of this dimension.

Let first assume that g < m.

If p> k and r > k, by Remark 4, f, 4, is equivalent to a linear combination of polyno-
mials of the type fp 4., where p’ <k, and these polynomials are at most km.

If p > k and r < k we obtain again at most km polynomials.

So let assume that ¢ > m.

If p > m, by the first part of Remark 4, we obtain that f, , s is a linear combination of
polynomials f,s ¢ with ¢ < m.

So let suppose p < m, ¢ > m, and r > m. By Remark 4, we can write fp 4, as a linear
combination of polynomials fp/ 4, with ' < m. It follows that, if ¢ > m, the linearly
independent polynomials f, ,, are at most m?.

As consequence we obtain that my < 5m?.

Next we shall prove that for A = (n — 2,2) F n the multiplicity m) is bounded by some
constant.

Lemma 6. For any o, 3,7,0,n1 witha+ 8+~v4+3J+n>m—5 we have that

zlzgx‘f‘ylegjgsc}gjleggx'f =0 (mod. Id(V)), (9)

22008} 12) ol oz = 0 (mod. Id(V)). (10)

PrOOF. Let A =(2,2,1) 5 and u = (n —5) - n — 5. Let M &M, be the the S,- module
outer tensor product of the irreducible modules My and M, (see [7]). If we consider the
polynomials

Js2$Gr ) Gor ] rad o]
Jsa§ el 1] Gori o
obtained from the two modules My and M, from remark after Lemma 2, it follows that

these polynomials are identities of the variety V. Let substitute y3 with z125 and we are
done.

Proposition 5. Let A = (n —2,2) Fn then my < C where C = maz{4m + 3,m?}.

PrOOF. We shall construct polynomials corresponding to essential idempotents of the group
algebra of S,. Let e, € F'S,, be the essential idempotent corresponding to the tableau T},
we shall identify er, with the polynomial er, (z,,...,21) = en, @, - --x1 obtained by act-
ing with ey, on the left normed monomial x,, ---2;. We shall then identify all variables
corresponding to each row of the tableau. Let consider the standard Young tableaux corre-
sponding to A = (n — 2,2). This tableaux are of different types.

14



Type 1. Let consider first tableaux of the following types

L Ta-1lx]
where 4 <i < j<n-—2or

T,(:zl,) 2 \n—l\n\
where 4 <3 <n—2or

T,(Z; 3 \n—l\n\

where 4 <3 <n—2.
For this tableaux we obtain, by Lemma 6, that er; = 0.

Type 2. Let now consider tableaux of the following type

T/{:; 3]~ [n—2]n—-1]

" [n=2]n]
i |1 3 e ln—=2|n
= 2 n—-1

In the first case we obtain

and in the second case

QT;‘; = $1f2$?73j1f2f1 .

Type 3. If

ri-| L 2 —[n—2]

then we obtain the polynomial

~ - n—4~ —
eT;‘ = T2X2T X121

Type 4. Let now

! 2 [ n]
T**in—1

where 2 < i <n —1 then er; are polynomials of the following type

x1j2x?_i_2j2xli_3jljl,

By Lemma 3 and Remark 2, it follows that they are linear combination of polynomials of
the same type with n — i — 2 < m or ¢ —3 < m. So, in this case the linearly independent
polynomials are less than 2m.

15



Type 5. Let now consider the tableaux

2] [n-1]

Ti =

where 2 < ¢ < n — 1 then we obtain the polynomials

~ n—i—1= _i—3~ =
eT; = X274 Tl T1T1

By Remark 2, these polynomials are linear combinations of polynomials of the same type
with n — i —2 < m or i —3 < m. So, also in this case the polynomials that are linearly
independent are less than 2m.

It follows that, for n > m, my < 4m + 3.

If n < m then my < dy < m?. Hence for any n, my < C where C' = maz{4m + 3,m?}.

Now we shall prove that the multiplicity for the partition A = (2,2,1"%) - n is bounded
by some constant.

Lemma 7. For any «, 3,7,0,n witha+ 8 +~v+ 0 +n>m—5 we have

21227182 - - Talf1Tat1Ta+2 - - - TatBYaTa+B+1 - - - TatftrJ1Tatfay+1Tatfiyrz - (11)

- Tat Byt o Y2 T at fty+o41 - - - TatBiry+i+n = 0 (mod. 1d(V)).

PROOF. Let A = (3,2) F 5 and = (1) - n—5 and let M\&M,, be the S,, module outer
tensor product of the Ss-module M) and of the S, _s-module M,,.
Consider the polynomials

yli'l.’fg . i’a?lxa+1xa+2 . $a+g§2xa+g+1 . $a+ﬂ+7§1$a+ﬁ+7+1$a+ﬁ+7+2 .

c T By +5Y2T at Bty+6+1 - - - Lat-B+y+6+4n

obtained from the two modules M) and M,,. From remark after Lemma 2 these polynomials
are identities of the variety V. Let substitute y; with y; + 2129 and we are done.

Let’s now examine some consequences of the previous Lemma.

In (11) let substitute y; with y1 + 23, y2 with ys + z4, and multilinearize. For simplicity
we will not write the x}s, then, modulo Id(V), we obtain

z1z2...gj1...yz...23...24...—|—zlzz...z3...24...g]1...gj2...—|—

2122...53...:132...:&1...24...—|-le2...51...54...53...:&2... 0.
In particular we have that

2122...y1...y2...23...Z4...+2122...Z3...24...:Ij1...:ljg...—i—
2122 ...23...Y2...Yy1...24... —Z122...Y2...23...Yr ... 24 ...—
212’2...2’3...y2...24...y1...—|—2122...y2...23...24...yl...—|—

2122 ++--Y1.-..24...23...Y2... —2122...24...Y1...23...Y2...—

If
e

2129 .. Y1 R4 ... Y2 23 ...+ 2122 24 Y1 Y2 23
16



If we alternate on y1,y2 and on z3, 24, we obtain that, modulo Id(V),
22’1Z2...§1...y2...23...24...E—22122...53...24...:&1...@2...—{-

221290 ... 23 .. Yy Yg . B4 ... — 22120 Y B3 Y B —
22122233?124@2+22122§123,§4g2
Let now consider the following substitutions z; = Ta4g+y+6+n+i, for ¢ = 1,2,3,4, and let
alternate on the variables x1, 2, ..., Tatg4y+5+n+4, then it follows that, modulo Id(V),

1T ... fa+2g1fa+3 e .fa+[3+2g2fa+ﬁ+3 . ja+ﬂ+w+6+n+4 =

a-T1x2... fa+2g1fa+3 e ia+ﬁ+’y+3g25fo¢+ﬁ+'y+4 N ia+5+’y+5+17+4+
b-T1%2 ... Tat2l1Ta+3 - - - TatBty++4Y2TatBy+5+5 - - - Tatpty+s+n+at
C T1T2 . Lot p43Y1Tat B4 - - - Tat Bty+3Y2Tatfry+4 - - - TatBry+o+ntat

d-T1T3 .. TatB43U1Tatf+4 - - - LatBy++4T2T atBy+5+5 - - - Tatfty+o+n+at

€ T1Ta - Tat Bty +aY1Tat Bty +5 - TatBy+o+4Y2Tat fry+5+5 - - - TatBty+stn+d
where a, b, c,d, e are equals to 1 or —1 according to the parity of the numbers «, 3,7, d,7.

Let remark that from these identities it follows that it is possible to change the number
of alternating variables between different alternating pair and we shall use this observation
in the next proposition.

Proposition 6. If A = (2,2,1"7%) then my < 3m>.

PROOF. Let ey, € F'S, be the essential idempotent corresponding to the tableau Ty, we
shall identify e, with the polynomial er, (x1,...,2,) = er, o1 -z, obtained by acting
with er, on the left normed monomial z - - - zy,.

The polynomials corresponding to standard tableaux are of the following type

T1T2 ... i’a.’%lxa+11’a+2 . $a+5i'2$a+5+1 co s LBy

Ifa>m,>mand~vy>mora>m,f>mbuty<mthen, by Remark 4, we rewrite
such polynomials as a linear combination of polynomials of the same type with 8 < m and
~ < m, then we have less than m? linearly independent polynomials.

If 5 < m but v > m by the consequences of Lemma 7, we rewrite such polynomials as a
linear combinations of polynomials of the same type with 8 > m or 8 < m, v < m.

So, any polynomial is a linear combination of polynomials with & < m and S <m or § <m
and y <mor a<mandy<m.

It follows that, for n > m, my < 3m?2.

If n < m then my < dy < m2. Then, for any n, my < 3m? and we are done.

Now we are able to prove the following
Theorem 2. Let V be a variety of algebras satisfying the identity
x(yz) = 0.

If c,(V) < Cn® for some constant C > 0 and 2 < a < 3, then c,(V) < Cin? for some
constant C1 > 0.
17



Proor. By Lemma 2, it follows that

Since deg x () = deg x(1n) = 1,deg x(n—1,1) = deg x(2,1»—2) = n—1,deg x(3,1n-3) =

Xn(V) = M) X(n) + MamXar) + Mn-1,1)X(n—1,1) T M2,1n-2)X(2,1n-2)+
M(n—2,1,1)X(n—2,1,1) T M(3,1n=3)X(3,17—3) T M(n—-2,2)X(n—2,2) T M(2,2,17—4X(2,2,174)-

(n=1)(n—2)
2

and deg X (n—2,2) = deg X(2,2,1n—1) = @, by recalling Proposition 3, Proposition 4, Propo-
sition 5 and Proposition 6 we get

(10]

(11]

(12]

(13]

(14]

[15]

[16]
(17]

(18]

(V) < 242(n—1)% + (r-1)n-2) 1)2(” -2 (5m?) + (n=Dr-2) 1)2(" k) (5m?)+
”(”2_ Do ”(”2_ 3 3m? < n2(2 + 6.5m* + ).

So there exists a costant Oy such that ¢, (V) < C1n?.
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