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Abstract

Let V be a variety of non necessarily associative algebras over a field of characteristic zero.
The growth of V is determined by the asymptotic behavior of the sequence of codimensions
cn(V), n = 1, 2, . . . , and here we study varieties of polynomial growth. We classify all possible
growth of varieties V of algebras satisfying the identity x(yz) ≡ 0 such that cn(V) < Cnα,
with 1 < α < 3, for some constant C. We prove that if 1 < α < 2 then cn(V) ≤ C1n, and if
2 < α < 3, then cn(V) ≤ C2n

2, for some constants C1, C2.

Keywords: Varieties, codimension growth
2010 MSC: Primary 17A30 16R10, Secondary 16P90

1. Introduction

Let F be a field of characteristic zero and F{X} the free non associative algebra on
a countable set X over F . Let V be a variety of non necessarily associative algebras and
Id(V) be the T -ideal of identities of V. In characteristic zero without loss of generality
one can study the multilinear identities of V and a natural and well established way of
measuring the identities of V is through the study of the asymptotic behavior of its sequence
of codimensions cn(V), n = 1, 2, . . .. More precisely, for every n ≥ 1 let Pn be the space
of multilinear polynomials in the variables x1, . . . , xn. Since char F = 0, the T-ideal Id(V)
is determined by the multilinear polynomials it contains; hence the relatively free algebra
F{X}/Id(V) is determined by the sequence of subspaces {Pn/(Pn∩Id(V))}n≥1. The integer
cn(V) = dimPn/(Pn ∩ Id(V)) is called the n-th codimension of V and the growth function
determined by the sequence of integers {cn(V)}n≥1 is the growth of the variety V.

If V = var(A) is the variety generated by an algebra A, then we write Id(V) = Id(A)
and cn(A) = cn(V).

The first result on the asymptotic behavior of cn(V) is due to Regev ([16]). He proved
that if V is a non-trivial variety of associative algebras, then the sequence of codimensions
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is exponentially bounded, i.e., there exist constants α, a > 0 such that cn(V) ≤ αan, for
all n. In case V is a variety of non associative algebras, such sequence has a much more
involved behavior and can have overexponential growth ([15]). Nevertheless for varieties of
associative and Lie algebras, no intermediate growth (between polynomial and exponential)
and no exponential growth between 1 and 2 is allowed ([9],[10],[11]).

The exponential rate of growth of the sequence of codimensions of an associative algebra
was determined in [5] and [6]. It was proved that for any associative PI-algebra A, the
limit limn→∞

n
√
cn(A) exists and is a non-negative integer. In case of finite dimensional Lie

algebra the same result was proved in [17]. This is not an expected behavior for Lie algebras,
in fact in [18] was constructed an example of a Lie algebra whose sequence of codimensions
grows exponentially but the rate of growth is not integer.

In this paper we consider varieties V of not necessarily associative algebras such that
the sequence of codimensions is polynomially bounded, i.e., there exist constants α, t > 0
such that cn(V) ≤ αnt, for all n. The asymptotic behavior of the codimensions of a unitary
algebra was described by Drensky ([3]). He proved that if V is a variety of associative or
Lie algebras whose sequence of codimensions is polynomially bounded then the growth of
the codimensions is exactly polynomial, i.e., there exist a positive integer k and a constant
C such that cn(V) = Cnk +O(nk−1), where O(nk−1) is a polynomial of degree ≤ k − 1.

In this paper we deal with the variety, V = 2N , of left nilpotent algebras of index two,
that is the variety of algebras satisfying the identity

x(yz) ≡ 0.

For this class of algebras in [14] the authors constructed a variety W ⊂ 2N such that for
any n ≥ 25

([
√
n ]− 2)

n(n− 1)(n− 5)

6
≤ cn(V) ≤ n3

√
n+ n2(2n+ 3

√
n) + n2.

In other words, the variety W has fractional polynomial growth between 3 and 4, more
precisely limn→∞ logn cn(V) = 7

2 .
Motivated by this results in ([12], [13]) we classified the growth of varieties of commuta-

tive and anticommutative algebras with at most quadratic growth. We proved that if V is
a variety such that cn(V) < Cnα with 0 < α < 1, then cn(V) ≤ 1, for n large. Moreover if
1 < α < 2, then either limn→∞ log cn(V) = 1 or cn(V) ≤ 1, for n large.

The purpose of this paper is to prove that if V is the variety of algebras satisfying the
identity x(yz) ≡ 0 and cn(V) ≤ Cnα with 1 < α < 2, then cn(V) < C1n, for some constant
C1. Moreover if cn(V) ≤ Cnα, with 2 < α < 3, then cn(V) < C2n

2 for some constant C2.

Preliminaries

Throughout F will be a field of characteristic zero, X = {x1, x2, . . .} a countable set
and F{X} the free non associative algebra on X over F . Let V be a variety and Id(V) =
{f ∈ F{X}|f ≡ 0 on V} be the T-ideal of identities of V. For every n ≥ 1, let Pn be
the space of multilinear polynomials of F{X} in the first n variables x1, x2, . . . , xn. Since
charF = 0, it is well known that the sequence of spaces Pn ∩ Id(V), n = 1, 2, . . . , carry all
information about Id(V). The symmetric group Sn acts on Pn by permuting variables: if
σ ∈ Sn, f(x1, . . . , xn) ∈ Pn,

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).
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The space Pn ∩ Id(V) is invariant under this action and one studies the structure of
Pn(V) = Pn/(Pn ∩ Id(V)) as an Sn-module. The Sn-character of Pn(V), denoted χn(V), is
called the nth cocharacter of A. Its degree cn(V) = χn(V)(1) is the nth codimension of V.
By complete reducibility one writes

χn(V) =
∑
λ⊢n

mλχλ (1)

where χλ is the irreducible Sn-character corresponding to the partition λ of n and mλ ≥ 0
is the multiplicity of χλ (see for instance [8] for the representation theory of the symmetric
group).

Notice that in case V is a variety of associative algebras, for the multiplicitiesmλ we have
that mλ ≤ dλ, where dλ = degχλ is the degree of the character χλ. In the non associative
case this inequality does not hold any more. For instance for the free non associative algebra
A = F{X} we have that, in χn(A), mλ = Cndλ where Cn is the nth Catalan number.

We next recall some basic properties of the representation theory of the symmetric group
that we shall use in the sequel. Let λ ⊢ n and let Tλ be a Young tableau of shape λ ⊢ n.
We denote by eTλ

the corresponding essential idempotent of the group algebra FSn. Recall
that eTλ

= R̄Tλ
C̄Tλ

where

R̄Tλ
=

∑
σ∈RTλ

σ,

C̄Tλ
=

∑
τ∈CTλ

(sgnτ)τ

and RTλ
, CTλ

are the row and column stabilizers of Tλ, respectively. Recall that if Mλ

is an irreducible Sn-submodule of Pn(V) corresponding to λ, there exists a polynomial
f(x1, . . . , xn) ∈ Pn and a tableau Tλ such that eTλ

f(x1, . . . , xn) ̸∈ Id(V).
In what follows we shall use also the representation theory of the general linear group.

Let m ≥ 1 and U = spanF {x1, . . . , xm}. The group GL(U) ∼= GLm acts naturally on the
left on the space U and we can extend this action diagonally to get an action on Fm{X} =
F{x1, . . . , xm}, the free algebra of rank m.

The space Fm{X} ∩ Id(V) is invariant under this action, hence

Fm(V) = Fm{X}
Fm{X} ∩ Id(V)

inherits a structure of left GLm-module. Let Fm,n be the space of homogeneous polynomials
of degree n in the variables x1, . . . , xm, then

Fm,n(V) =
Fm,n

Fm,n ∩ Id(V)

is a GLm-submodule of Fm(V) and we denote its character by ψn(V). Write

ψn(V) =
∑
λ⊢n

m̄λψλ

where ψλ is the irreducible GLm-character associated to the partition λ and m̄λ is the
corresponding multiplicity. In [1] and [2] it was proved that if the character χn(V) has the
decomposition given in (1) then mλ = m̄λ, for all λ ⊢ n whose corresponding diagram has
height at most m.
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It is also known (see for instance [4, Theorem 12.4.12 ]) that any irreducible submodule
of Fm,n(V) corresponding to λ is generated by a non-zero polynomial fλ, called highest
weight vector, of the form

fλ =

λ1∏
i=1

Sthi(λ)(x1, . . . , xhi(λ))
∑
σ∈Sn

ασσ, (2)

where ασ ∈ F , the right action of Sn on FT
m,n(A) is defined by place permutation, hi(λ) is

the height of the ith column of the diagram of λ and

Str(x1, . . . , xr) =
∑
τ∈Sr

(sgn τ)xτ(1) · · ·xτ(r)

is the standard polynomial of degree r with a suitable arrangement of the parentheses. Recall
that fλ is unique up to a multiplicative constant.

For a Young tableau Tλ, denote by fTλ
the highest weight vector obtained from (2) by

considering the only permutation σ ∈ Sn such that the integers σ(1), . . . , σ(h1(λ)), in this
order, fill in from top to bottom the first column of Tλ, σ(h1(λ) + 1), . . . , σ(h1(λ) + h2(λ))
the second column of Tλ, etc.

By [4, Proposition 12.4.14 ] we have that if

ψn(V) =
∑
λ⊢n

m̄λψλ

is the GLm-character of Fm,n(V), then m̄λ is equal to the maximal number of linearly
independent highest weight vectors fTλ

in Fm,n(V).

2. Classifying varieties V such that cn(V) ≤ Cnα, 1 < α < 2

Throughout this section we shall assume that V is the variety of left nilpotent algebras
of index two, that is the variety of algebras satisfying the identity

x(yz) ≡ 0

such that cn(V) ≤ Cnα, for some 1 < α < 2, and for some constant C.
Our aim is to prove that for such variety cn(V) < C1n, for some constant C1.

Notice that modulo the identity x(yz) ≡ 0 all non-zero monomials of the free algebra are
left normed, i.e., are of the type (((x1x2)x3) . . .). Since we shall be working modulo such
identity throughout we shall omit the parenthesis in left normed monomials, hence we shall
write (((x1x2)x3) . . . xn) = x1x2 . . . xn, and xy

2 for xyy.

In what follows we shall make use of the following lemma which was proved in [12].

Lemma 1. If λ ⊢ n is such that λ ̸∈ {(n), (1n), (n− 1, 1), (2, 1n−2)} then dλ ≥ 1
8n

2.

From the above lemma it follows that if λ ⊢ n is distinct from (n), (1n), (n−1, 1), (2, 1n−2),
then there exists N > 0 such that for all n ≥ N we have that dλ > Cnα and hence mλ = 0.
We fix the integer N from now on.

The following remark is obvious.

Remark 1. Let λ ⊢ n. If either λ = (n) or λ = (1n) then mλ ≤ 1.
4



Let λ ⊢ n be a partition of n and fi, i = 1, 2, . . . , degχλ, be polynomials corresponding
to the standard Young tableaux of shape λ in Pn. For every i, let Ti be the corresponding
standard tableaux and denote by gi the polynomial obtained from fi by identifying with x1
all variables corresponding to the first row of Ti, with x2 all variables corresponding to the
second row of Ti and so on. Then, by [4, Proposition 12.4.14 ], mλ equals the dimension of
the space spanned by all gi, 1 ≤ i ≤ degχλ, mod Id(V). In what follows we shall use this
fact without mention it.

We shall adopt the convention of marking a set of alternating variables with the same
symbol ,̄ .̃ For instance, in x̄1y1x̄2y2x̄3 stands for

∑
σ∈S3

(sgnσ)xσ(1)y1xσ(2)y2xσ(3).

The following result concern the partition λ = (n− 1, 1).

Proposition 1. If χn(V) =
∑

λ⊢nmλχλ and n ≥ N we have that

m(n−1,1) ≤ 2.

Proof. Let λ = (n− 2, 1, 1) ⊢ n. For every i = 0, . . . , n− 3, let

fi = x̄1x
i
1x̄2x̄3x

n−i−3
1

be the left normed polynomials corresponding to the following standard tableaux

T
(i)
λ =

1 2 . . . i+ 1 i+ 4 . . . n
i+ 2
i+ 3

Since if n ≥ N, by Lemma 1, dλ > Cnα, 1 < α < 2, then it follows that, for every
i = 0, . . . , n− 3,

fi ≡ 0 (mod. Id(V)).

Let consider the following substitution x1 = zx1 + x1 then we obtain

zxi+1
1 x̄2x̄3x

n−i−3
1 ≡ 0 (mod. Id(V))

and by putting x3 = x1 we have

zxi+1
1 x2x

n−i−2
1 ≡ zxi+2

1 x2x
n−i−3
1 (mod. Id(V)) (3)

for every i = 0, . . . , n− 3.
Let n ≥ N and consider, for every j = 0, . . . , n− 2, the polynomials

gj = x̄1x
j
1x̄2x

n−j−2
1

corresponding to the standard Young tableaux of shape λ = (n− 1, 1).
Notice that, by the identity (3), we obtain

gj ≡ g1 (mod. Id(V))

for j = 2, . . . , n − 2. It follows that the subspace span{g0, . . . , gn−2}, modulo Id(V), has
dimension bounded by 2. Hence m(n−1,1) ≤ 2.

Our next objective is to find an upper bound for the multiplicity mλ for the partition
λ = (2, 1n−2).
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Proposition 2. Let χn(V) =
∑

λ⊢nmλχλ. If n ≥ N then m(2,1n−2) ≤ 2.

Proof. Let λ = (3, 1N−3). For every r = 1, . . . , N − 2 let

fr = x̄1x̄2 · · · x̄rx1x̄r+1x̄N−2x1

be polynomials corresponding to the following standard tableaux

T
(r)
λ =

1 r + 1 N
.
.
.
r

r + 2
.
.
.

.

By Lemma 1, it follows that for every r = 1, · · · , N − 2

x̄1x̄2 · · · x̄rx1x̄r+1 · · · x̄N−2x1 ≡ 0 (mod. Id(V)).

Let consider the substitution x1 = z1z2 + x1 the we obtain

z1z2x̄2 · · · x̄rx1x̄r+1 · · · x̄N−2x1 ≡ 0 (mod. Id(V))

for r = 2, . . . , N − 2. After multilinearization we have that

z1z2x̄2 · · · x̄rx1x̄r+1 · · · x̄N−2z ≡ −z1z2x̄2 · · · x̄rzx̄r+1 · · · x̄N−2x1 (mod. Id(V)).

If we alternate on x1, x2, . . . , xN−2 it follows that

z1z2x̄1 · · · x̄rx̄r+1 · · · x̄N−2z ≡ αr,Nz1z2x̄1x̄2 · · · x̄r−1zx̄r · · · x̄N−2 (mod. Id(V)) (4)

where r ≥ 3 and αr,N = ±1 according to the parity of r and N.
Let now n ≥ N, and f1, . . . , fn−1 be polynomials corresponding to the standard Young

tableaux of shape (2, 1n−2) in Pn. Then, if g1, . . . , gn−1 are the polynomials obtained from
the fi’s by identifying with x1 the two variables of the first row of the corresponding tableaux,
for i = 1, . . . , n− 1, we have that

gi = x̄1x̄2 · · · x̄ix1x̄i+1 · · · x̄n−1.

Let look at the dimension of the span{g1, . . . , gn−1}.
Notice that, by the identity (4) we obtain

gj ≡ ±gn−1 (mod. Id(V))

for j = 2, . . . , n− 2.
It follows that the subspace span{g1, . . . , gn−1}, modulo Id(V), has dimension bounded

by 2. Hence m(2,1n−2) ≤ 2 and we are done.

Now we are able to prove the following
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Theorem 1. Let V be a variety of algebras satisfying the identity

x(yz) = 0.

If cn(V) ≤ Cnα for some constant C > 0 and 1 < α < 2, then cn(V) ≤ 4n + C1 for some
constant C1 > 0.

Proof. Fix N so that, for all n ≥ N , dλ > Cnα for λ ̸∈ {(n), (1n), (n − 1, 1), (2, 1n−2)}.
Then by Lemma 1, mλ = 0 for every λ ̸= (n)(n− 1, 1), (1n), (2, 1n−2).

Thus for n ≥ N ,

χn(V) = m(n)χ(n) +m(n−1,1)χ(n−1,1) +m(1n)χ(1n) +m(2,1n−2)χ(2,1n−2).

Since degχ(n−1,1) = degχ(2,1n−2) = n − 1 and degχ(1n) = degχ(1n) = 1, by recalling
Remark 1, Proposition 1 and Proposition 2, we get

cn(V) ≤ 1 + 2(n− 1) + 1 + 2(n− 1) ≤ 4n− 2.

For 1 ≤ n < N, let C1 be such that cn(V) ≤ 4n+ C1 and we are done.

3. Varieties V such that cn(V) ≤ Cnα, 2 < α < 3

Let V be the variety of algebras satisfying the identity

x(yz) ≡ 0.

Throughout this section we shall assume that cn(V) ≤ Cnα, for some constants C and
α, 2 < α < 3.

Our aim is to prove that for such variety cn(V) < C1n
2, for some constant C1.

Let observe that if λ ∈ {(n), (1n), (n − 1, 1), (2, 1n−2)}, then mλdλ < n2, so from now
on we shall consider partitions λ ̸∈ {(n), (1n), (n − 1, 1), (2, 1n−2)}. The strategy of the
proof will be the following: we shall first prove that, for n large enough, mλ = 0 for every
λ ̸∈ {(n − 2, 1, 1), (3, 1n−3), (n − 2, 2), (2, 2, 1n−4)} then for the above case we shall find an
upper bound for the multiplicities mλ.

Let start with the following

Lemma 2. If λ ⊢ n, n ̸= 6, is such that λ ̸∈ {(n− 2, 1, 1), (3, 1n−3), (n− 2, 2), (2, 2, 1n−4)}
then dλ ≥ n3

44 .

Proof. Let λ = (λ1, λ2, . . .) ⊢ n and let denote by λ′ = (λ′1, . . . , λ
′
s) ⊢ n the conjugate

partition of λ. It easy to check that for any n ̸= 6

d(n−3,2,1) = d(3,2,1n−5) > d(n−3,1,1,1) = d(3,2,1n−5) > d(n−3,3) = d(2,2,2,1n−6) >
n3

44
.

It follows that if λ1 = n − 3, or λ′1 = n − 3 or n ≤ 9 then the conclusion of the lemma
follows by direct computation from the hook formula (see [8]).

Hence we may assume that n ≥ 10, λ1 ≤ n − 4 and λ′1 < n − 4. The proof will be by
induction on n. If the shape of the diagram of λ is not a rectangle then there exist two
subdiagrams corresponding to partitions µ and ν each containing n− 1 boxes and satisfying

7



the hypotheses of the lemma. But then, by using induction and the branching rule, we have
that

dλ ≥ dµ + dν ≥ 2 · (n− 1)3

44
>
n3

44
.

If the shape of the diagram of λ is a rectangle, there exist two different subdiagrams corre-
sponding to partitions µ and ν, each with n− 2 boxes, and they both satisfy the hypotheses
of the lemma. In this case we have

dλ ≥ dµ + dν ≥ 2 · (n− 2)3

44
>
n3

44
.

In fact let consider the sequence

an = 2 · (n− 2)3

44
− n3

44
=

(
3
√
2(n− 2)− n

) ((
3
√
2(n− 2)

)2
+ 3

√
2(n− 2)n+ n2

)
44

.

As n ≥ 10 > 2 3√2
3√2−1

then 3
√
2(n− 2)− n > 0. So, an > 0 for any n ≥ 10 and we are done.

From the above lemma it follows that if λ ⊢ n is distinct from (n−2, 1, 1), (3, 1n−3), (n−
2, 2), (2, 2, 1n−4), then there exists m > 0 such that for all n ≥ m we have that dλ >

n3

44 >
Cnα and so mλ = 0. We fix the integer m ≥ 4 from now and we shall also assume that the

integer m has the further property that cn(V) < n3

44 for all n ≥ m.
Let start with the following

Lemma 3. There exists r, with 0 ≤ r ≤ m− 3, such that

z1z2x
r
1zx

m−r−2
1 ≡

∑
i>r

γiz1z2x
i
1zx

m−i−2
1 (mod. Id(V)) (5)

where, for some i, γi ̸= 0.

Proof. Let λ = (m− 2, 1, 1) ⊢ m. For p = 0, . . . ,m− 3, we define the tableaux

T
(p)
λ =

1 2 . . . p+ 1 p+ 4 . . .
p+ 2
p+ 3

and we associate to T
(p)
λ the left-normed polynomials

gp = x̄1x
p
1x̄2x̄3x

m−p−3
1 .

Notice that, for every p = 0, . . . ,m−3, the polynomials gp are obtained from the essential

idempotents corresponding to the tableaux T
(p)
λ by identifying all the elements in each row

of λ.
If the polynomials gp are linearly independent then mλ ≥ m−2. In this case, by Lemma

1, dλ >
m2

8 and we have

cm(V) ≥ (m− 2)
m2

8
>
m3

44
> Cmα

a contradiction. So, mλ will be less than m− 2 then it follows that the polynomials gp are
linearly dependent and this implies

8



m−3∑
p=0

αpx̄1x
p
1x̄2x̄3x

m−p−3
1 ≡ 0 (mod. Id(V)).

Let us replace x3 with z1z2 and x2 with z then we obtain

m−3∑
p=0

αpz1z2x
p
1(zx1 − x1z)x

m−p−3
1 ≡ 0 (mod. Id(V)).

Let now r be the minimum p such that αp ̸= 0 and t be the maximum p such that αp ̸= 0.
If t = r then

z1z2x
r
1zx

m−r−2
1 ≡ z1z2x

r+1
1 zxm−r−1

1 (mod. Id(V)).

If t ̸= r then

t+1∑
i=r

βiz1z2x
i
1zx

m−i−2
1 ≡ 0 (mod. Id(V))

where βr = αr ̸= 0, βt+1 = −αt ̸= 0 and βr+j = αr+j − αr+j−1 for all 1 ≤ j < t− r + 1.
It follows that

z1z2x
r
1zx

m−r−2
1 ≡

t+1∑
i=r+1

βi
βr
z1z2x

i
1zx

m−i−2
1 =

t+1∑
i=r+1

γiz1z2x
i
1zx

m−i−2
1 (mod. Id(V))

where γt+1 = − βt+1

βr
= αt

αr
̸= 0.

From this lemma it easily follows the following

Remark 2. If s ≥ m and t ≥ m then

z1x
s
1zx

t
1 ≡

∑
i

γiz1x
si
1 zx

ti
1 (mod. Id(V))

where ti < m.

Lemma 4. Let k = 2m. For a fixed q, with 0 ≤ q < m, there exists rq, 0 ≤ rq ≤ k − q − 3,
such that

z1z2x
rq
1 x̄2x

q
1x̄3zx

k−rq−q−3
1 ≡

∑
0≤i<rq

βiz1z2x
i
1x̄2x

q
1x̄3zx

k−i−q−3
1 (mod. Id(V)). (6)

Proof. Let k = 2m. For a fixed q, 0 ≤ q < m, and for p = 0, . . . , k − q − 3 let

hp,q = x̄1x
p
1x̄2x

q
1x̄3x

k−p−q−3
1

be the left normed polynomials associated to the tableaux

T
(p,q)
λ =

1 . . . p+ 1 p+ 3 . . . p+ q + 2 . . .
p+ 2

p+ q + 3
9



where λ = (k − 2, 1, 1) ⊢ k.
As in the previous lemma, since m ≥ 4, if mλ ≥ k − q − 2 then,

(k − q − 2)
(2m)2

8
> (k −m− 2)

(2m)2

8
= (m− 2)

m2

2
>

(2m)3

44
> Ckα ≥ ck(V)

a contradiction.
Then the polynomials hp,q, for any q, must be linearly dependent and so

k−q−3∑
p=0

αphp,q ≡ 0 (mod. Id(V)).

Let now consider the following substitution x1 = z1z2 + x1 and let rq be the maximum
p such that αp ̸= 0. It follows that

z1z2x
rq
1 x̄2x

q
1x̄3x

k−rq−q−3
1 ≡

∑
0≤i<rq

βiz1z2x
i
1x̄2x

q
1x̄3x

k−i−q−3
1 (mod. Id(V)),

and we are done.

From now on we shall assume that k = 2m.
We have the following

Remark 3. For a fixed q, 0 ≤ q < m, and s, t ≥ k then either

z1x
s
1x̄2x

q
1x̄3x

t
1 ≡

∑
i<k

βiz1x
i
1x̄2x

q
1x̄3x

s+t−i
1 (mod. Id(V))

where βi ̸= 0 for some i, or

z1x
s
1x̄2x

q
1x̄3x

t
1 ≡ 0 (mod. Id(V)).

Proof. Let consider the polynomial z1x
s
1x̄2x

q
1x̄3x

t
1 with q < m, s ≥ k and t ≥ k.

If in (6) there exists i such that βi ̸= 0, then

z1x
s
1x̄2x

q
1x̄3x

t
1 ≡

∑
i<k

βiz1x
i
1x̄2x

q
1x̄3x

s+t−i
1 (mod. Id(V))

and we are done.
Otherwise if in (6), βi = 0 for all i, then we have

z1z2x
rq
1 x̄2x

q
1x̄3x

k−rq−q−3
1 ≡ 0 (mod. Id(V)).

So, for any s, t ≥ k, and 0 ≤ q < m it follows that

z1x
s
1x̄2x

q
1x̄3x

t
1 ≡ 0 (mod. Id(V)).

Proposition 3. Let χn(V) =
∑

λ⊢nmλχλ. If λ = (n− 2, 1, 1) then m(n−2,1,1) ≤ 5m2.

10



Proof. If n < k then mλ ≤ dλ < n2 < 5m2.
Let n ≥ k. The highest weight vectors corresponding to the standard Young tableaux of

shape λ = (n− 2, 1, 1) are of the following type

gα,β,γ = x̄1x
α
i x̄2x

β
1 x̄3x

γ
1

where α + β + γ = n − 3. We want to find an upper bound for the dimension of the span
{gα,β,γ}.

Let first assume 0 ≤ β < m.
If α ≥ k and γ ≥ k, by Remark 3, either gα,β,γ ≡ 0 or we can write gα,β,γ as a linear

combination of polynomials x̄1x
α′

i x̄2x
β
1 x̄3x

γ′

1 where α′ < k.
Hence, if β < m we have to consider polynomials gα,β,γ such that either α < k or γ < k

and so we obtain at most 2km polynomials.
Let now β ≥ m.
If γ ≥ m then, by Remark 2, we can write gα,β,γ as a linear combination of polynomials

gα′,β′,γ′ where γ′ < m.
So let consider polynomials gα,β,γ with β ≥ m and γ < m.
If α ≥ m then, by Remark 2, gα,β,γ is equivalent to a linear combination of polynomials

gα′,β′,γ′ where β′ < m.
So we have to consider polynomials gα,β,γ with α < m, β ≥ m and γ < m and this are

at most m2.
It follows that the dim span{gα,β,γ} ≤ 5m2.

Lemma 5.

1) There exists r, 0 ≤ r ≤ m− 2, such that

z1z2x̄1 · · · x̄rzx̄r+1 · · · x̄m−2 ≡
∑
i>r

γiz1z2x̄1 · · · x̄izx̄i+1 · · · x̄m−2 (mod. Id(V)), (7)

where γr+1 = −1.

2) Let k = 2m, then for any fixed q, 0 ≤ q < m, there exists rq, 0 < rq < k− q−2, such that

z1z2x̄2 · · · x̄rqzx̄rq+1 · · · x̄rq+qzx̄rq+q+1 · · · x̄k−2 ≡ (8)∑
i<rq

βiz1z2x̄2 · · · x̄izx̄i+1 · · · x̄i+qzx̄i+q+1 · · · x̄k−2 (mod. Id(V))

Proof. 1) Let λ = (3, 1m−3) ⊢ m. For every p ∈ P = {1, 3, 5, · · ·}, we define the standard
tableaux

T
(p)
λ =

1 p+ 1 p+ 2
.
.
.
p

p+ 3
.
.
.

11



and we associate to T
(p)
λ the left-normed polynomials

gp = x̄1 · · · x̄px1x1x̄p+1 · · · x̄m−2.

Notice that for every p ∈ P = {1, 3, 5, · · ·}, the [(m+ 1)/2] polynomials gp are obtained

from the essential idempotents corresponding to the tableaux T
(p)
λ by identifying all the

elements in each row of λ. Since cm(V) < m3

44 < [(m+1)/2]m
2

8 it follows that the polynomials
gp are linearly dependent then ∑

p∈P

αpgp ≡ 0 (mod. Id(V)).

By making the substitution x1 = z1z2 + x1 we obtain∑
p∈P

αpz1z2x̄2 · · · x̄px1x1x̄p+1 · · · x̄m−2 ≡ 0 (mod. Id(V)).

Let r be the minimum p such that αp ̸= 0, then

z1z2x̄2 · · · x̄rx1x1x̄r+1 · · · x̄m−2 ≡
∑
i>r

βiz1z2x̄2 · · · x̄ix1x1x̄i+1 · · · x̄m−2 (mod. Id(V)).

By substituting x1 with x1 + z1 and by alternating on x1, x2, . . . , xm−2 we obtain

z1z2x̄1 · · · x̄rzx̄r+1 · · · x̄m−2 ≡
∑
i>r

γiz1z2x̄1 · · · x̄izx̄i+1 · · · x̄N−2 (mod. Id(V)).

Let observe that γr+1 = −1 and we are done.

2) Let now k = 2m, for a fixed q = 0, . . . ,m− 1 and for p = 1, 2, . . . , k − q − 2 let

T
(p,q)
λ =

1 p+ 1 p+ q + 2
2
.
.
.
p

p+ 2
.
.
.

p+ q + 1
p+ q + 3

.

.

.

be standard tableaux of shape λ = (3, 1k−3) ⊢ k. We associate to any tableaux T
(p,q)
λ , p =

1, 2, . . . , k − q − 2, the left-normed polynomials

hp,q = x̄1 · · · x̄px1x̄p+1 · · · x̄p+qx1x̄p+q+1 · · · x̄k−2.
12



As before, by the hypothesis on ck(V) we have that the polynomials hp,q are linearly depen-
dent then ∑

αp,qhp,q ≡ 0 (mod. Id(V)).

Let rq > 0 be the maximum p such that αp,q ̸= 0, then after the substitution x1 = z1z2+z
we obtain

z1z2x̄2 · · · x̄rqzx̄rq+1 · · · x̄rq+qzx̄rq+q+1 · · · x̄k−2 ≡∑
i<rq

βiz1z2x̄2 · · · x̄izx̄i+1 · · · x̄i+qzx̄i+q+1 · · · x̄k−2 (mod. Id(V)),

and we are done.

Remark 4.

1) If s ≥ m and t ≥ m then

z1x̄1 · · · x̄szx̄s+1 · · · x̄s+t ≡
∑
i

γiz1x̄1 · · · x̄izx̄i+1 · · · x̄i+t′ (mod. Id(V)),

where t′ < m.

2) If 0 ≤ q < m, s ≥ k and t ≥ k then either

x̄1 · · · x̄szx̄s+1 · · · x̄s+qzx̄s+q+1 · · · x̄s+q+t ≡∑
s′<k

γs′ x̄1 · · · x̄s′zx̄s′+1 · · · x̄s′+qzx̄s′+q+1 · · · x̄s′+q+t′ (mod. Id(V)),

where γs′ ̸= 0, for some s′ or

z1x̄1 · · · x̄szx̄s+1 · · · x̄s+t ≡ 0 (mod. Id(V)).

Proof. 1) Let consider the polynomial z1x̄1 · · · x̄szx̄s+1 · · · x̄s+t. If s ≥ m and t ≥ m, by
(7) it follows that

z1x̄1 · · · x̄szx̄s+1 · · · x̄s+t ≡
∑
i

γiz1x̄1 · · · x̄izx̄i+1 · · · x̄i+t′ (mod. Id(V)),

where t′ < m.
2) Let now consider the polynomial x̄1 · · · x̄szx̄s+1 · · · x̄s+qzx̄s+q+1 · · · x̄s+q+t with 0 ≤

q < m, s ≥ k and t ≥ k. If in (8), βi ̸= 0 for some i, then

x̄1 · · · x̄szx̄s+1 · · · x̄s+qzx̄s+q+1 · · · x̄s+q+t ≡∑
s′<k

γs′ x̄1 · · · x̄s′zx̄s′+1 · · · x̄s′+qzx̄s′+q+1 · · · x̄s′+q+t′ (mod. Id(V)),

where γs′ ̸= 0, for some s′.
If in (8), βi = 0 for any i, then we have

z1z2x̄2 · · · x̄rqzx̄rq+1 · · · x̄rq+qzx̄rq+q+1 · · · x̄k−2 ≡ 0 (mod. Id(V))

and this implies that

x̄1 · · · x̄szx̄s+1 · · · x̄s+qzx̄s+q+1 · · · x̄s+q+t ≡ 0 (mod. Id(V)),

for 0 ≤ q < m and s, t ≥ k.
13



Proposition 4. Let λ = (3, 1n−3) ⊢ n, then mλ ≤ 5m2.

Proof. If n < k then mλ ≤ dλ < n2 < 5m2.
So, let n ≥ k. For p = 1, · · ·n− 2 and p+ q + r = n− 2 let

fp,q,r = x̄1x̄2 · · · x̄p︸ ︷︷ ︸
p

x1 x̄p+1 · · · x̄p+q︸ ︷︷ ︸
q

x1 x̄p+q+1 · · · x̄n−2︸ ︷︷ ︸
r

be the highest weight vectors corresponding to the standard tableaux of the partition
(3, 1n−3). The dimension of the space spanned by all fp,q,r, equals mλ. We want to find
an upper bound of this dimension.

Let first assume that q < m.
If p > k and r > k, by Remark 4, fp,q,r is equivalent to a linear combination of polyno-

mials of the type fp′,q,r′ where p
′ < k, and these polynomials are at most km.

If p > k and r < k we obtain again at most km polynomials.
So let assume that q ≥ m.
If p > m, by the first part of Remark 4, we obtain that fp,q,s is a linear combination of

polynomials fp′,q′,r′ with q
′ < m.

So let suppose p < m, q ≥ m, and r > m. By Remark 4, we can write fp,q,r as a linear
combination of polynomials fp′,q′,r′ with r′ < m. It follows that, if q ≥ m, the linearly
independent polynomials fp,q,r are at most m2.

As consequence we obtain that mλ ≤ 5m2.

Next we shall prove that for λ = (n− 2, 2) ⊢ n the multiplicity mλ is bounded by some
constant.

Lemma 6. For any α, β, γ, δ, η with α+ β + γ + δ + η ≥ m− 5 we have that

z1z2x
α
1 ȳ1x

β
1 ȳ2x

γ
1 ỹ1x

δ
1ỹ2x

η
1 ≡ 0 (mod. Id(V)), (9)

z1z2x
α
1 ȳ1x

β
1 ỹ1x

γ
1 ỹ2x

δ
1ȳ2x

η
1 ≡ 0 (mod. Id(V)). (10)

Proof. Let λ = (2, 2, 1) ⊢ 5 and µ = (n− 5) ⊢ n− 5. Let Mλ⊗̂Mµ be the the Sn- module
outer tensor product of the irreducible modules Mλ and Mµ, (see [7]). If we consider the
polynomials

ȳ3x
α
1 ȳ1x

β
1 ȳ2x

γ
1 ỹ1x

δ
1ỹ2x

η
1

ȳ3x
α
1 ȳ1x

β
1 ỹ1x

γ
1 ỹ2x

δ
1ȳ2x

η
1

obtained from the two modules Mλ and Mµ, from remark after Lemma 2, it follows that
these polynomials are identities of the variety V. Let substitute y3 with z1z2 and we are
done.

Proposition 5. Let λ = (n− 2, 2) ⊢ n then mλ ≤ C̄ where C̄ = max{4m+ 3,m2}.

Proof. We shall construct polynomials corresponding to essential idempotents of the group
algebra of Sn. Let eTλ

∈ FSn be the essential idempotent corresponding to the tableau Tλ,
we shall identify eTλ

with the polynomial eTλ
(xn, . . . , x1) = eTλ

xn · · ·x1 obtained by act-
ing with eTλ

on the left normed monomial xn · · ·x1. We shall then identify all variables
corresponding to each row of the tableau. Let consider the standard Young tableaux corre-
sponding to λ = (n− 2, 2). This tableaux are of different types.

14



Type 1. Let consider first tableaux of the following types

T i
λ =

1 2 3 · · · n− 1 n
i j

where 4 ≤ i < j ≤ n− 2 or

T i
λ =

1 2 · · · n− 1 n
3 i

where 4 ≤ i ≤ n− 2 or

T i
λ =

1 3 · · · n− 1 n
2 i

where 4 ≤ i ≤ n− 2.
For this tableaux we obtain, by Lemma 6, that eT i

λ
≡ 0.

Type 2. Let now consider tableaux of the following type

T i
λ =

1 3 · · · n− 2 n− 1
2 n

or

T i
λ =

1 3 · · · n− 2 n
2 n− 1

In the first case we obtain

eT i
λ
= x̃2x

n−4
1 x̃1x̄2x̄1

and in the second case

eT i
λ
= x1x̃2x

n−3
1 x̃1x̄2x̄1.

Type 3. If

T i
λ =

1 2 · · · n− 2
n− 1 n

then we obtain the polynomial

eT i
λ
= x̃2x̄2x

n−4
1 x̃1x̄1

Type 4. Let now

T i
λ =

1 2 · · · n
i n− 1

where 2 < i < n− 1 then eT i
λ
are polynomials of the following type

x1x̃2x
n−i−2
1 x̄2x

i−3
1 x̃1x̄1.

By Lemma 3 and Remark 2, it follows that they are linear combination of polynomials of
the same type with n − i − 2 < m or i − 3 < m. So, in this case the linearly independent
polynomials are less than 2m.
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Type 5. Let now consider the tableaux

T i
λ =

1 2 · · · n− 1
i n

where 2 < i < n− 1 then we obtain the polynomials

eT i
λ
= x̃2x

n−i−1
1 x̄2x

i−3
1 x̃1x̄1

By Remark 2, these polynomials are linear combinations of polynomials of the same type
with n − i − 2 < m or i − 3 < m. So, also in this case the polynomials that are linearly
independent are less than 2m.

It follows that, for n ≥ m, mλ ≤ 4m+ 3.
If n < m then mλ ≤ dλ < m2. Hence for any n, mλ ≤ C̄ where C̄ = max{4m+ 3,m2}.

Now we shall prove that the multiplicity for the partition λ = (2, 2, 1n−4) ⊢ n is bounded
by some constant.

Lemma 7. For any α, β, γ, δ, η with α+ β + γ + δ + η ≥ m− 5 we have

z1z2x̄1x̄2 . . . x̄α¯̄y1xα+1xα+2 . . . xα+β ¯̄y2xα+β+1 . . . xα+β+γ ỹ1xα+β+γ+1xα+β+γ+2 . . . (11)

. . . xα+β+γ+δ ỹ2xα+β+γ+δ+1 . . . xα+β+γ+δ+η ≡ 0 (mod. Id(V)).

Proof. Let λ = (3, 2) ⊢ 5 and µ = (1n−5) ⊢ n− 5 and let Mλ⊗̂Mµ be the Sn module outer
tensor product of the S5-module Mλ and of the Sn−5-module Mµ.

Consider the polynomials

y1x̄1x̄2 . . . x̄α¯̄y1xα+1xα+2 . . . xα+β ¯̄y2xα+β+1 . . . xα+β+γ ỹ1xα+β+γ+1xα+β+γ+2 . . .

. . . xα+β+γ+δ ỹ2xα+β+γ+δ+1 . . . xα+β+γ+δ+η

obtained from the two modulesMλ andMµ. From remark after Lemma 2 these polynomials
are identities of the variety V. Let substitute y1 with y1 + z1z2 and we are done.

Let’s now examine some consequences of the previous Lemma.

In (11) let substitute y1 with y1 + z3, y2 with y2 + z4, and multilinearize. For simplicity
we will not write the x′is, then, modulo Id(V), we obtain

z1z2 . . . ¯̄y1 . . . ¯̄y2 . . . z̃3 . . . z̃4 . . .+ z1z2 . . . ¯̄z3 . . . ¯̄z4 . . . ỹ1 . . . ỹ2 . . .+

z1z2 . . . ¯̄z3 . . . ¯̄y2 . . . ỹ1 . . . z̃4 . . .+ z1z2 . . . ¯̄y1 . . . ¯̄z4 . . . z̃3 . . . ỹ2 . . . ≡ 0.

In particular we have that

z1z2 . . . ¯̄y1 . . . ¯̄y2 . . . z̃3 . . . z̃4 . . .+ z1z2 . . . ¯̄z3 . . . ¯̄z4 . . . ỹ1 . . . ỹ2 . . .+

z1z2 . . . z3 . . . y2 . . . y1 . . . z4 . . .− z1z2 . . . y2 . . . z3 . . . y1 . . . z4 . . .−

z1z2 . . . z3 . . . y2 . . . z4 . . . y1 . . .+ z1z2 . . . y2 . . . z3 . . . z4 . . . y1 . . .+

z1z2 . . . y1 . . . z4 . . . z3 . . . y2 . . .− z1z2 . . . z4 . . . y1 . . . z3 . . . y2 . . .−

z1z2 . . . y1 . . . z4 . . . y2 . . . z3 . . .+ z1z2 . . . z4 . . . y1 . . . y2 . . . z3 . . . ≡ 0.
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If we alternate on y1, y2 and on z3, z4, we obtain that, modulo Id(V),

2z1z2 . . . ¯̄y1 . . . ¯̄y2 . . . z̃3 . . . z̃4 . . . ≡ −2z1z2 . . . ¯̄z3 . . . ¯̄z4 . . . ỹ1 . . . ỹ2 . . .+

2z1z2 . . . z̃3 . . . ¯̄y1 . . . ¯̄y2 . . . z̃4 . . .− 2z1z2 . . . ¯̄y1 . . . z̃3 . . . ¯̄y2 . . . z̃4 . . .−

2z1z2 . . . z̃3 . . . ¯̄y1 . . . z̃4 . . . ¯̄y2 . . .+ 2z1z2 . . . ¯̄y1 . . . z̃3 . . . z̃4 . . . ¯̄y2 . . .

Let now consider the following substitutions zi = xα+β+γ+δ+η+i, for i = 1, 2, 3, 4, and let
alternate on the variables x1, x2, . . . , xα+β+γ+δ+η+4, then it follows that, modulo Id(V),

x̄1x̄2 . . . x̄α+2ỹ1x̄α+3 . . . x̄α+β+2ỹ2x̄α+β+3 . . . x̄α+β+γ+δ+η+4 ≡

a · x̄1x̄2 . . . x̄α+2ỹ1x̄α+3 . . . x̄α+β+γ+3ỹ2x̄α+β+γ+4 . . . x̄α+β+γ+δ+η+4+

b · x̄1x̄2 . . . x̄α+2ỹ1x̄α+3 . . . x̄α+β+γ+δ+4ỹ2x̄α+β+γ+δ+5 . . . x̄α+β+γ+δ+η+4+

c · x̄1x̄2 . . . x̄α+β+3ỹ1x̄α+β+4 . . . x̄α+β+γ+3ỹ2x̄α+β+γ+4 . . . x̄α+β+γ+δ+η+4+

d · x̄1x̄2 . . . x̄α+β+3ỹ1x̄α+β+4 . . . x̄α+β+γ+δ+4ỹ2x̄α+β+γ+δ+5 . . . x̄α+β+γ+δ+η+4+

e · x̄1x̄2 . . . x̄α+β+γ+4ỹ1x̄α+β+γ+5 . . . x̄α+β+γ+δ+4ỹ2x̄α+β+γ+δ+5 . . . x̄α+β+γ+δ+η+4

where a, b, c, d, e are equals to 1 or −1 according to the parity of the numbers α, β, γ, δ, η.

Let remark that from these identities it follows that it is possible to change the number
of alternating variables between different alternating pair and we shall use this observation
in the next proposition.

Proposition 6. If λ = (2, 2, 1n−4) then mλ ≤ 3m2.

Proof. Let eTλ
∈ FSn be the essential idempotent corresponding to the tableau Tλ, we

shall identify eTλ
with the polynomial eTλ

(x1, . . . , xn) = eTλ
x1 · · ·xn obtained by acting

with eTλ
on the left normed monomial x1 · · ·xn.

The polynomials corresponding to standard tableaux are of the following type

x̄1x̄2 . . . x̄αx̃1xα+1xα+2 . . . xα+β x̃2xα+β+1 . . . xα+β+γ .

If α ≥ m, β ≥ m and γ ≥ m or α ≥ m, β ≥ m but γ < m then, by Remark 4, we rewrite
such polynomials as a linear combination of polynomials of the same type with β < m and
γ < m, then we have less than m2 linearly independent polynomials.

If β < m but γ ≥ m by the consequences of Lemma 7, we rewrite such polynomials as a
linear combinations of polynomials of the same type with β ≥ m or β < m, γ < m.
So, any polynomial is a linear combination of polynomials with α < m and β < m or β < m
and γ < m or α < m and γ < m.

It follows that, for n ≥ m, mλ ≤ 3m2.
If n < m then mλ ≤ dλ < m2. Then, for any n, mλ ≤ 3m2 and we are done.

Now we are able to prove the following

Theorem 2. Let V be a variety of algebras satisfying the identity

x(yz) = 0.

If cn(V) ≤ Cnα for some constant C > 0 and 2 < α < 3, then cn(V) ≤ C1n
2 for some

constant C1 > 0.
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Proof. By Lemma 2, it follows that

χn(V) = m(n)χ(n) +m(1n)χ(1n) +m(n−1,1)χ(n−1,1) +m(2,1n−2)χ(2,1n−2)+

m(n−2,1,1)χ(n−2,1,1) +m(3,1n−3)χ(3,1n−3) +m(n−2,2)χ(n−2,2) +m(2,2,1n−4χ(2,2,1n−4).

Since degχ(n) = degχ(1n) = 1,degχ(n−1,1) = degχ(2,1n−2) = n−1, degχ(3,1n−3) =
(n−1)(n−2)

2

and degχ(n−2,2) = degχ(2,2,1n−4) =
n(n−3)

2 , by recalling Proposition 3, Proposition 4, Propo-
sition 5 and Proposition 6 we get

cn(V) ≤ 2 + 2(n− 1)2 +
(n− 1)(n− 2)

2
(5m2) +

(n− 1)(n− 2)

2
(5m2)+

n(n− 3)

2
C̄ +

n(n− 3)

2
3m2 ≤ n2(2 + 6.5m2 + C̄).

So there exists a costant C1 such that cn(V) ≤ C1n
2.
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