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Accumulation of circulating CCR7
+
 natural killer cells marks melanoma 

evolution and reveals a CCL19-dependent metastatic pathway.  
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Abstract 

Immune checkpoint blockade therapy has changed prognoses for many melanoma patients. 

However, immune responses that correlate with clinical progression of the disease are still poorly 

understood. To identify immune responses correlating with melanoma clinical evolution, we 

analyzed serum cytokines as well as circulating NK and T cell subpopulations from melanoma 

patients. The patients’ immune profiles suggested that melanoma progression leads to changes in 

peripheral blood NK and T cell subsets. Stage IV melanoma was characterized by an increased 

frequency of CCR7
+
CD56

bright
 NK cells as well as high serum concentrations of the CCR7-ligand 

CCL19. CCR7 expression and CCL19 secretion were also observed in melanoma cell lines. The 

CCR7
+
 melanoma cell subpopulation co-expressed PD-L1 and Galectin-9 and had stemness 

properties. Analysis  of melanoma-derived cancer stem cells (CSCs) showed high CCR7 

expression; these CSCs were efficiently recognized and killed by NK cells. An accumulation of 

CCR7
+
, PD-L1

+
 and Galectin-9

+
 melanoma cells in melanoma metastases was demonstrated ex 

vivo. Altogether, our data identify biomarkers that may mark a CCR7-driven metastatic melanoma 

pathway. 
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Introduction 

Immune checkpoint therapy has changed prognoses for many melanoma patients, increasing their 

overall survival (1,2). These successes in melanoma therapy have emphasized the role of the 

immune response in controlling tumor burden. Temporal cascades of gene mutations characterize 

the natural history of melanoma from the appearance of the early malignant nevus to its metastatic 

systemic spread (3). However, less is known regarding changes in the immune response as the 

disease progresses. Analysis of circulating T and NK cells during melanoma progression may 

identify prognostic biomarkers that could be assayed through patient liquid biopsies and mark 

disease progression. 

Most melanoma patients at diagnosis have already developed local or disseminated lymph node 

(LN) metastases, but do not have visceral metastases. Prognoses for melanoma patients with early 

stage disease (II, III) are more favorable than prognoses for patients with stage IV disease.   

Self-renewing cancer stem cells (CSCs) are thought to be responsible for metastatic spread (4-6). 

CSCs express chemokine receptors that are involved in CSC phenotype promotion and/or 

maintenance (7). 

NK cells, members of the Innate Lymphoid Cell group 1 (ILC1) family (8), are the most abundant 

ILC population found in circulating blood. NK cells are cytotoxic lymphocytes that have little 

effect on primary tumor lesions (9-11) but can control solid tumor metastatic spread (12). NK cell 

recognition of melanoma cells has been reported both in vitro and in vivo (13-15). Human NK 

cells are regulated by activating and inhibitory receptors. Activating receptors include NCRs 

(NKp30, NKp44 and NKp46), NKG2D and DNAM-1 that recognize stress inducible molecules 

expressed on the tumor cell surface. Inhibitory receptors are mainly HLA-class I recognizing 

KIRs that induce NK cell tolerance (16). In humans, circulating NK cells fall into two subsets, 

CD56
bright 

and CD56
dim 

NK cells (17). The proportions of the two subsets varies with anatomical 

localization (16). CD56
bright

 NK cells prevail in secondary lymphoid organs and uterus, produce 

cytokines and have low cytotoxic potential. CD56
dim

 NK cells are effector cells that lyse cancer 

and virus-infected cells. Moreover, CD56
dim

 NK cells derived from individuals previously 

exposed to pathogens, such as human cytomegalovirus (HCMV), may include “memory-like” NK 

cells (18). Unknown cofactors associated with HCMV infection may induce the onset of a fully 

mature NK cell subset that is characterized by expression of the inhibitory checkpoint protein PD-

1 (19). 

Much is known about the regulation of NK cell-mediated cytotoxicity (20). NK cells selectively 

recognize melanoma metastatic cell lines (14) derived from tumor infiltrated lymph nodes. We 

showed that the presence of CD57
+
KIR

+
CCR7

+
CD3

- 
NK cells in melanoma-infiltrated lymph 

on April 8, 2019. © 2019 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on April 2, 2019; DOI: 10.1158/2326-6066.CIR-18-0651 

http://cancerimmunolres.aacrjournals.org/


4 
 

nodes exerts an autologous anti-melanoma cytotoxicity the frequency of such cells may predict 

patient survival (21). The NK cell subset repertoire provides a number of variables that are associated 

with melanoma patients’ response to anti immune checkpoint treatment with ipilimumab (22). We and 

others demonstrated that NK cells are able to control CSC mediated lung metastasis (23-25). To 

better elucidate the immune pathogenesis of melanoma, we here analyze circulating NK and T 

cells subpopulations, as defined by receptor expression, in the context of melanoma. We focused 

particularly on cell subsets expressing chemokine receptors that control cell migration and the 

cyto-chemokine serum environment. Our objective was to understand changes in the immune 

response associated with melanoma clinical evolution. Our investigations led to insights 

concerning the chemokine biology of melanoma cells, particularly a subpopulation of melanoma 

cells that are cancer stem cells. Altogether, our results suggest a role for the CCR7-CCL19 

pathway during melanoma progression, in that a subpopulation of tumor cells may exploit the 

immune system through chemokine signaling. 
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Materials and Methods 

Melanoma patients 

For the characterization of changes happening in T and NK cell compartments in melanoma patients 

during disease progression, 166 melanoma patients (42 stage III and 124 stage IV melanoma 

patients) were enrolled in Italy at the NCI Fondazione “G. Pascale” of Naples and 24 stage IV 

melanoma patients were recruited at the Oncology clinic Karolinska University Hospital, 

Stockholm, Sweden. For each patient cohort, Ethical Committees associated with NCI of Naples, 

and Karolinska University Hospital, Stockholm granted ethical permission. Written informed 

consent was obtained from all patients in accordance with the Declaration of Helsinki for the use of 

human biological samples for research purposes. Stage III melanoma patients did not receive any 

treatment at the time of the enrollment, whereas stage IV were naïve or had been subjected to 

different types of chemotherapy. For lymphocyte compartment analysis and functional assays, 

peripheral blood mononuclear cells (PBMCs) were isolated from 80 and 29 patients, respectively. 

Cytokine quantification was performed on 88 patients. 

PMBCs from 42 persons and sera from 9 persons, all sex- and age-matched healthy donors, were 

also isolated as controls at the Pugliese-Ciaccio Hospital and University Magna Graecia of 

Catanzaro, Catanzaro, Italy. The experiments were performed once per patient. 

 

Isolation of peripheral blood lymphocytes and NK cell tumor cell lines 

PBMCs from 80 melanoma patients and 42 healthy donors were isolated by Biocoll separating 

solution (Biochrom AG, Berlin, Germany) density gradient centrifugation. For functional 

experiments requiring NK cells, these cells were isolated from healthy donor PBMCs using human 

NK Cell Isolation Kit (Miltenyi Biotech, San Diego, CA, USA) according to manufacturer’s 

instructions. The purity of isolated NK cells was > 95%, as assayed by flow cytometry. 

 

Cell lines 

K562, Huh7, a2780, RKO and HDFa cell lines were obtained from ATCC in 2013 (RKO and 

K562), 2014 (Huh7), 2015 (HDFa) and 2016 (a2780). Melanoma cell lines were obtained, based on 

informed consent, from surgical melanoma specimens of patients admitted at the Fondazione 

IRCCS Istituto Nazionale dei Tumori, Milan (2009), Istituto Nazionale Tumori - IRCCS 

“Fondazione G. Pascale”, Naples (2018), and San Raffaele University Hospital, Milan (2013) 

(Supplementary Table S1). K562, a2780 and all the melanoma cell lines were cultured in RPMI 

1640 medium (Life Technology, Milan, Italy) supplemented with penicillin (100 IU/mL) and 

streptomycin (100mg/mL) and 10% FBS. Huh7 and RKO cell lines were cultured in DMEM 
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medium (Life Technology, Milan, Italy) supplemented with penicillin (100 IU/mL) and 

streptomycin (100mg/mL) and 10% FBS. HDFa cell line was cultured DMEM medium (Life 

Technology, Milan, Italy) supplemented with penicillin (100 IU/mL) and streptomycin (100mg/mL) 

and 20% FBS. For all experiments, cells were used within two weeks after thawing. 

Melanoma stem cell isolation from metastatic melanoma specimens and propagation was performed 

as previously described (26), in accordance with the ethical standards on human experimentation. 

Melanoma stem cells were constantly authenticated by using the short tandem repeat (STR) system 

(GlobalFilter STR Kit, Applied Biosystems, Foster City, CA, USA) followed by DNA sequencing 

(ABIPRISM 3130 genetic analyzer, Applied Biosystem). Cells, growing as multicellular spheres, 

were cultured in serum-free medium supplemented with epidermal growth factor (EGF, 20 ng/ml, 

PeproTech) and basic fibroblast growth factor (bFGF, 10 ng/ml, PeproTech), using ultra-low 

attachment flasks (Corning Incorporated, Corning, NY, USA). Melanoma stem cells were washed 

twice with PBS and cultured in attachment conditions in 10% FBS DMEM for at least 21 days to 

obtain sphere-derived adherent cells (SDAC).  

To exclude mycoplasma infection, cells were routinely analyzed by the MycoAlert PLUS 

Mycoplasma Detection Kit (Lonza, Basel, Switzerland). In order to assess the sphere-forming 

capacity of CSCs, 1,000 cells/ml were plated in ultra-low attachment flasks. After 10 days, spheres 

that reached ≥ 50 µm of diameter were counted. In order to assess the tumorigenic capacity of 

CSCs, a total of 25 x 10
3
 CSCs were suspended in serum-free medium 1:1 matrigel (BD 

Biosciences Pharmingen, San Diego, CA, USA) and subcutaneously injected into NOD/SCID mice. 

All the used cell lines were maintained in culture for no longer than 3 weeks and were not 

authenticated in the past year. 

 

Immunofluorescence staining 

Thawed PBMCs from metastatic melanoma patients and healthy donors, as well as fresh melanoma 

cells and CSCs, were subjected to immunofluorescence staining (Supplementary Table S2). The 

isotype-specific goat anti-mouse was from Southern Biotechnology (Birmingham, AL, USA). For 

NCR ligand detection, NKp30-Fc NKp46-Fc were obtained as previously described (27). After 

incubation, cells were washed twice with PBS 1X, resuspended in FACS Flow and acquired by 

FACS CANTO II, FACS ARIA I, Accuri C6 or a FACS Verse flow cytometer (BD Biosciences). 7 

AAD Staining Solution (BD Biosciences) was added before each acquisition to distinguish between 

dead and live cells. In all the experiments, isotype-matched controls were used to set up the 

negative values. Data were analyzed using Flow-Jo version 10, version 9.3.1 software analysis 

(Treestar US, Ashland, OR, USA) or FacsSuite software (BD Biosciences).  
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CD107a mobilization assay after K562 pulsing 

To quantify cell surface expression of CD107a, degranulation assays were performed. Thawed 

lymphocytes derived from 27 melanoma patients (4 stage III and 25 stage IV) and 18 healthy 

donors were cultured at 37°C in 5% CO2 in the presence of 8μL of PE-conjugated CD107a/IgG1 

antibody (BD Biosciences) in U-bottom 96-well plates. After 1 h, Brefeldin A (10μg/mL) (Sigma 

Aldrich, Saint Louis, MO, USA) was added for 3 hours of incubation. Cells were then collected, 

washed with PBS 1X and stained with anti-CD56APC and anti-CD3FITC (Miltenyi Biotec) and 

acquired as described above. 

 

NK and melanoma cell co-culture 

Resting NK cells were cocultured at 37 °C in 5% CO2 with melanoma cells at 5:1 ratio in flat 

bottom 12-well plates (Corning Incorporated, Midland, NY, USA) supplied with 1640 RPMI (Life 

Technology, Milan, Italy) supplemented with penicillin (100 IU/mL) and streptomycin (100mg/mL) 

and 10% FBS. After 4 hours, cells were collected, stained and acquired as described above.  

 

Cytotoxicity assays 

Based on a protocol described elsewhere (28), cytotoxic assays were performed using fluorescent 

5,6-carboxy-fluorescein-diacetate (CFDA). In brief, target cells were labeled with 150 μg/ml of 

CFDA-mixed isomers (Invitrogen) for 30 minutes and then incubated in 96-well U-bottom plates at 

37°C in a humidified 5% CO2 incubator for 4h with freshly purified allogenic NK effector cells at 

different effector:target (E:T) ratios. Target cell specific lysis was analyzed by flow cytometry 

(FACS CANTO II and FACS ARIA I, BD Biosciences) and calculated as: % of specific lysis = 

(CT-TE)/CT*100, where CT indicates target cells’ mean fluorescence in control tubes and TE 

indicates target cells’ mean fluorescence in tubes containing effector cells. Data were collected and 

analyzed as described above. 

 

Immunohistochemistry and Immunofluorescence staining 

Hematoxylin & eosin staining was performed on paraffin-embedded sections of patient-derived 

primary melanoma, relative metastasis and xenograft tumor tissues, according to manufacturer’s 

instructions. 

Immunofluorescence staining was performed on 5-μm-thick embedded sections of human 

melanoma tissues and on melanoma CSCs cytospinned on glass slides. Cells were fixed in 2% 
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paraformaldehyde for 20 minutes at 37°C. Slides were exposed overnight at 4°C to CD44 (BU75, 

mouse IgG2a,k Ancell), CD271 (C40-1457, mouse IgG1a,k BD), ABCB5 (N13, goat IgG, 

SantaCruz), CD166 (MOG/07, mouse IgG2a,k, Novocastra), CCR7 (goat, Abcam), PD-L1 (mouse 

IgG1, R&D System), Gal-9 (rabbit IgG1, Thermo Scientific) or isotype matched controls IgG2a 

(mouse monoclonal Ancell), IgG1k (mouse BD), IgG (goat ThermoFischer Sceintific). Primary 

antibodies were revealed using Alexa Fluor-488 anti-rabbit, mouse or goat secondary antibodies. 

Nuclei were counterstained with Toto-3 iodide (Molecular Probes). In patient-derived primary 

melanoma and metastasis tissues, melanoma cells were distinguished from lymphocytes on the 

basis of cell morphology and size. Hematoxylin and eosin staining was performed by incubating 

sections with hematoxylin for 2 min and eosin for 1 min. 

 

Microarray cytokine assay 

To quantify serum cytokines, samples of thawed sera from 112 patients and 9 healthy donors were 

analyzed using the biochip analyzer Evidence Investigator (Randox Labs, Crumlin, UK) and the 

“Cytokine Array I” kit (Randox, Crumlin, UK), for the simultaneous quantification of the following 

cytokines: interleukin-2 (IL2), IL4, IL6, IL8, IL10, IL1a, IL1b, vascular endothelial growth factor 

(VEGF), interferon-g (IFNg), monocyte chemotactic protein-1 (MCP1), tumor necrosis factor-a 

(TNF-a), Epidermal Growth Factor (EGF). ELISA kits following manufacturer’s instructions 

evaluated the concentrations of IL15, IL21, CCL19 and CCL21, in patients’ serum and supernatants 

obtained from melanoma cell lines and melanoma CSC cultures; R&D Systems, Minneapolis, MN, 

USA for IL15, BioVendor, Brno, Czech Republic for IL21 and Aviva Systems Biology, San Diego, 

CA, USA for CCL19 and CCL21. Chemokine secretion from melanoma cells was assessed by 

measuring CCL19 and CCL21 concentration in 10 different melanoma cell lines and 7 melanoma 

CSCs using ELISA kits following manufacturer’s instructions (Aviva Systems Biology). 

 

Statistical analysis 

Data obtained from multiple experiments were analyzed for statistical significance. Data from two 

related groups were analyzed using the paired Student’s t-test or Wilcoxon signed rank test for 

samples that were or were not normally distributed, respectively. Data from two unrelated groups 

were analyzed using unpaired Student’s t-test or Mann–Whitney test for samples that were or were 

not normally distributed, respectively. Data from three related groups were analyzed using a two-

way analysis of variance (ANOVA) followed by Bonferroni’s correction. Data from three unrelated 

groups were analyzed using one-way ANOVA followed by Bonferroni’s correction or Kruskal-

Wallis test followed by Dunn’s correction for samples that were or were not normally distributed, 
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respectively. p-values < 0.05 were considered statistically significant. Kaplan–Meier (KM) curves 

were used to compare the survival of patients below or above median CCL19 serum concentration. 

The log-rank test was used to compare the KM curves and calculate the p-value. Statistical 

computations were performed using the GraphPad Prism 5.0 software.  

 

Multivariate analysis 

SIMCA, version 14 (MKS Data Analytics Solutions, Umeå, Sweden) was applied for multivariate 

analysis (29). A total of 85 variables, including immune profile and biographical variables, was 

applied in the analysis. 

Orthogonal Projections to Latent Structures and Discriminant Analysis (OPLS-DA) was used to 

distinguish groups and identify parameters characterizing each group. As a development of classical 

principal component analysis, in OPLS-DA the systematic variation in the data is summarized into 

scores (T) that represent the systematic variation in the N-dimensional variable space related to a Y-

variable outcome. In this projection method, all the variations related to the separation between 

groups are present in the predictive component(s) t[x], while the variation unrelated to separation 

between groups is visualized as “orthogonal components” to [x]. The contribution of each variable 

to the phenotype of each group of samples is indicated by the regression coefficient, that ranges 

from -1 (perfect negative correlation) to +1 (perfect positive correlation). OPLS-DA model quality 

is assessed by internal cross-validation, and presented as the percentage of data explained and 

predicted by the models. A good biological model is defined as having > 40% predictive capacity. 

The model was built on the basis of excluding biologically irrelevant and/or redundant variables 

(i.e. subsets with no signal) and screening for outliers (samples deviating significantly both from 

their own group and the global OPLS-DA model).  
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Results 

Immune profiles of melanoma patients during disease progression 

To investigate the correlation between immune variables and melanoma progression, the immune 

profile of PBLs from 42 healthy donors and 80 melanoma patients, grouped according to TNM 

classification of the American Joint Committee on Cancer (AJCC) (30) (stage III, n = 15; stage IV, 

n = 65) was analyzed by flow cytometry. Patients at stage IV were analyzed in a previous study 

(22); those profiles were used here to compare with immune profiles obtained from patients at stage 

III. 

Data from the immune profiles, together with biographical variables (Supplementary Table S3), 

were used to create a multivariate model. Based on the Principal Component Analysis, Orthogonal 

Projections to Latent Structures Discriminant Analysis (OPLS-DA) evaluates all the variables 

simultaneously, giving them the same importance independent of the value range. This approach 

allows assessment and display of both the co-variation between variables and the correlation to a 

specific group of samples. Since the components are orthogonal, the difference between groups is 

represented by the first principal component (horizontal axis), whereas orthogonal components 

(vertical axis) stand for unrelated variation. Compared to traditional methods for statistical analysis, 

the advantage of using OPLS-DA models for biomarker identification is that a smaller cohort of 

patients is needed for the analysis. 

The OPLS-DA model was built including only samples characterized for at least 50% of the 

variables considered. Thus, 37 healthy donors, 11 stage III and 42 stage IV melanoma patients were 

included. The OPLS-DA model gave a good separation between healthy donors and the two groups 

of patients (Fig. 1A), explaining 79% of the difference between them with a cross-validated 

predictive capacity of 69%. Overall, 66 variables contributed to distinguishing the groups. The ten 

most significant variables characterizing each group as well as the relative contribution of each 

characterizing variable are reported in Figures 1B-D. 

The immune profile characteristic of healthy donor featured high frequency and expression of 

NKp46 on the CD56
dim

 NK cell compartment. The stage III immune profile was characterized by 

high frequencies of chemokine receptors (CXCR2, CCR2) and NK activating receptors (NKG2D, 

NKp30, NKG2C). Stage IV melanoma patients were characterized by elevated percentages of 

CCR7 and CXCR2 on NK cells and high expression of inhibitory receptors (Tim-3, PD-1) on both 

NK and T cells. 

Overall, the immune variables applied in the multivariate analysis identified separate groups and 

identified the variables best correlating with disease staging. Since the OPLS-DA identifies even 

those variables that are significant only when taken together with other parameters, variables 
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reported by the model were analyzed also in univariate mode to select biomarkers that remain 

significant even when considered on their own. The complete list of variables characterizing the 

immune profile of each group, together with the univariate validation, is reported in the 

Supplementary Table S4. 

 

Functional analysis of T and NK cells from melanoma patients 

The functional features of circulating NK and T cells at different disease stages were analyzed to 

understand their possible role in the pathophysiology of melanoma. Lymphocyte activation was 

investigated in a subset of patients. Representative plots for NK and T cells degranulation are 

showed in Figure 2A, B. NK cells from melanoma patients showed higher spontaneous 

degranulation compared to healthy donors (Fig. 2C). On the other hand, T cell degranulation was 

higher in stage IV melanoma patients compared to healthy donors (Fig. 2D). 

 

Changes in CCR7
+ 

CD56
bright

 NK cells and CCL19 mark disease evolution 

To characterize cytokine profiles, sera from stage III and stage IV melanoma patients were analyzed 

and compared. Most of the stage IV melanoma patients had been previously characterized (22). The 

univariate analysis showed significant differences between stage III and IV for 5 out of 15 

cytokines: CCL2, IL6, CXCL8, IL15 and CCL19. All the cytokines showed a steady longitudinal 

serum concentration increase paralleling melanoma disease clinical evolution. Since CCL2, CXCL8 

and CCL19 reached the highest concentration at stage IV, we analyzed expression of their cognate 

receptors on both NK and T cell subpopulations (Supplementary Table S4). Among them, only the 

percentage of CCR7 on the CD56
bright

 NK cell subset displayed a pattern similar to the respective 

chemokine (Fig. 3A-B). Indeed, the frequency of CCR7
+
CD56

bright
 NK cells reached its peak in 

stage IV melanoma patients, as did CCL19 concentration, suggesting an ectopic recruitment of this 

NK subset in the blood. Thus, this pathway may feature in melanoma progression. 

The increased of CCL19 in sera may depend on its production by melanoma cells. Indeed, 

melanoma can produce IL8 and MCP-1 (31-33). Thus, we speculated that the high CCL19 observed 

in stage IV melanoma patients could be due to ectopic production from melanoma cells. To test this 

hypothesis, we measured CCL19 concentrations in supernatants from primary and metastatic 

melanoma cells, melanoma cancer stem cells (CSCs), fibroblasts and other solid tumors (hepatic, 

ovarian and colon carcinoma) cells. We observed CCL19 secretion by melanoma cells (Fig. 3C).  

Patient serum concentrations of the other four cytokines are listed in Supplementary Table S5. 

Serum concentrations of CCL2 exceeded the physiological range in all melanoma stages, whereas 

concentrations of the other three cytokines (IL6, CXCL8, IL15) reached pathological levels only in 
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stage IV melanoma. We previously demonstrated that melanoma cells produced CCL2, IL6 and 

CXCL8 (21). These soluble factors were found in culture supernatants of infiltrated lymph nodes 

from melanoma patients and were able to induce CCR7 expression on CD56
bright

 NK cells (21). The 

IL15 cytokine induced phenotypic changes in NK cells from melanoma patients (22). 

 

Melanoma cells susceptible to NK cell cytotoxicity express CCR7 

CCR7 is a receptor involved in lymph node homing, and lymph nodes are the first anatomical sites 

vulnerable to melanoma metastatic spread. Therefore, we hypothesized that CCR7 could be 

ectopically expressed in melanoma metastatic cell lines, driving their lymph node metastatic 

colonization. Thus, we analyzed a panel of patient-derived melanoma cell lines for CCR7 

expression. We also analyzed other surface molecules key to NK-melanoma cell cytotoxic synapse 

formation, such as MICA/B, PVR, HLA-class I, PD-L1, and Galectin-9. We analyzed ten 

melanoma cell lines of different anatomical origins. CCR7 was always expressed by a small 

fraction (1-5%) of melanoma cells (Fig. 4A) that appears to be a specific subpopulation. Indeed, 

such CCR7
+
 melanoma cells co-expressed CCR7 with two immune checkpoints ligands, PD-L1 and 

Galectin-9 (Fig. 4A-B), recognized by PD-1 and Tim-3 on lymphocytes, respectively. 

Thus, in each of ten different melanoma lines, a small fraction of cells expresses a chemokine 

receptor known for lymph node homing and also expresses PD-L1 and Galectin-9 that could protect 

from T and NK cell cytotoxic attack. Other molecules involved in NK cell cytotoxic synapses were 

measured. We found that CCR7
+
 melanoma cells displayed low expression of MHC class I 

molecules and PVR, but high expression of NCR ligands (Fig. 4C). On the other hand, the 

activating ligands MICA/B and ULBP2, recognized by NKG2D, showed variable expression, being 

expressed on only four and six of the ten cell lines analyzed, respectively (Supplementary Fig. S1A-

B). The low MHC class I and the high NCR ligands expression on CCR7
+
 melanoma cell surface 

suggested an increased susceptibility to NK cell cytotoxicity. 

To test whether NK cells could target CCR7
+
 melanoma cells, we performed cell co-cultures using 

melanoma cells lines and NK cells. After co-culture with fresh NK cells, a reduction in the 

frequency of CCR7
+
PD-L1

+
Galectin-9

+ 
(referred as CCR7

+
 cells) subpopulation was observed (Fig. 

4D, left panel), whereas the CCR7
- 
PD-L1

-
 Gal-9

-
 (referred as CCR7

-
 cells) melanoma cell 

population was not affected by NK cell exposure (Fig. 4D, right panel). Furthermore, CCR7
+
 

melanoma cells that survived after the NK cells co-culture were found to express higher HLA-class 

I molecules levels (Supplementary Fig. S1C). PD-L1 expression was not affected by NK cells 

exposure, thus, ruling out the possible effect of IFNγ produced by NK cells (34) in the induction of 

MHC-class I molecules on the resistant CCR7
+
 melanoma cells (Supplementary Fig. S1D). 
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CCR7 expression identifies melanoma CSCs susceptible to NK cell cytotoxicity 

CCR7
+
 melanoma cells are characterized by potentially higher migration capability, lower 

expression of membrane-associated MHC-class I molecules, low frequency within the bulk 

melanoma cell population, and increased susceptibility to NK cell-mediated killing. These features 

resemble those of CSCs (24, 35). To test the hypothesis that CCR7
+
 melanoma cells are CSCs, we 

compared CCR7
+
 cells to CSCs derived from melanoma generated with previously established 

methods (Table 1 and Fig. 5). First, we checked melanoma patient-derived CSCs for their ability to 

grow as spheres and to generate highly proliferating differentiated cells. We also tested for their 

aptitude to initiate tumor growth in immunocompromised mice (Fig. 5A-B). We showed that 

melanoma CSCs generated xenografts with histology typical of human melanomas (Fig. 5B). CSC 

stemness was confirmed by the expression of known stemness markers such as CD44, CD271, 

ABCB5 and CD166 (Fig. 5C and Supplementary Fig. S2A) (36-38). Finally, we measured the 

percentage of CSCs expressing CCR7 and observed that, in the four lines tested, CSCs 

homogenously expressed CCR7 (Fig 5D).  PD-L1 and Galectin-9 were also expressed on CSCs but 

to a different extent (Supplementary Fig. S2B). Thus, CCR7 expression seems to identify CSCs. 

Since we have previously demonstrated that human colon adenocarcinoma derived CSCs (25) and 

human and mouse breast adenocarcinoma CSCs (20) are susceptible to NK cell cytotoxic 

recognition, we evaluated melanoma CSC susceptibility to NK cell mediated lysis. Indeed, freshly 

purified NK cells showed an enhanced capability to recognize and kill melanoma-derived CSCs 

(Fig. 5E-G). 

To summarize, well-defined melanoma cancer stem cells share a number of characteristics with the 

melanoma subpopulations explored in this paper: expression of CCR7, PD-L1 and Gal-9 as well as 

high susceptibility to NK cells. Thus, we hypothesize that this melanoma cell population plays a 

role in metastasis. 

 

CCR7 is highly expressed in metastasis of melanoma patients 

We then evaluated the clinical relevance of CCR7, Gal-9 and PD-L1 in the process of metastasis 

dissemination and outgrowth. Immunohistochemical analysis on tissues derived from patients who 

have melanoma metastases revealed the enrichment of CCR7
+
 cells in melanoma metastatic lesions 

of the lymph node and parotid gland as compared to primary melanoma (Fig. 6A-C). Gal-9 and PD-

L1
+
 cells concomitantly expressed CCR7, suggesting that CCR7 is required for the metastatic 

outgrowth of aggressive melanoma cells (Fig. 6D). 
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We also analyzed the potential correlation between CCL19 serum concentrations and survival in a 

small cohort of patients. Our preliminary data (Supplementary Fig. S3) showed a tendency for a 

better overall survival in those patients who had less CCL19 in their blood; this observation needs 

to be validated in a larger patient cohort. 
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Discussion 

Immune profile analysis of melanoma patients at different stages of disease progression suggests 

that melanoma progression leads to changes in peripheral blood NK and T cell subsets. In stage III 

melanoma, the NK cell compartment is dominated by subpopulations expressing CXCR2 and 

CCR2, both of which are receptors for the melanoma-produced chemokines IL8 and CCL2 (MCP-

1), possibly indicating a more robust migration of NK cells in early-stage melanoma disease. 

Indeed, both IL8 and CCL2 act as a tumor autocrine growth factors increasing melanoma cell 

migration in metastatic lesions (39, 40). Thus, it is conceivable to speculate that these NK cell 

subsets may be able to migrate to the early melanoma metastatic foci. At this stage, circulating NK 

cell subsets expressing activating receptors (NKG2D, NKp30, NKG2C) prevail, whereas the T cell 

compartment is characterized by a reduced frequency of mature CD57
+
CD8

+
 cells associated with 

low levels of Tim-3 and CCR7. Circulating CD56
dim 

NK cells in stage III melanoma patients appear 

to be activated and display basal degranulation without any stimulation in vitro. Later in the 

disease’s evolution (stage IV), a similar feature is evident for T cells. This sequential activation, 

involving first the innate and then the adaptive immunity, recapitulates the physiological dynamics 

of the immune response. 

On the other hand, stage IV melanoma is characterized by an increased frequency and accumulation 

of CCR7
+ 

CD56
bright 

NK cells in patients’ blood. This phenomenon could be due to the cumulative 

effects exerted by CCL2, IL6 and IL8, as previously demonstrated (21), whose serum 

concentrations are increased in the latest stage of the disease. Serum at stage IV has higher 

concentrations of the CCR7-ligand CCL19 than serum at stage III. The ectopic presence of CCL19, 

otherwise characteristic of lymph nodes, could be part of a pathogenic mechanism interfering with 

NK cell migration in melanoma infiltrated lymph nodes. T cells expressing CCR7, in contrast with 

CD56
bright

 NK cells, did not increase in the blood of stage IV melanoma patients, suggesting that T 

cells may overcome the increased CCL19 sera concentration and redistribute to peripheral tissues. 

This could be explained by at least two, not mutually exclusive, mechanisms: (a) other lymph node 

homing receptors expressed by T cells, such as CD62L, could drive them to the lymph nodes 

independently of the CCR7-CCL19 axes, and (b) the cytokine milieu associated with stage IV 

melanoma (which includes IL6, CCL2 and IL8) does not induce CCR7 expression on T cells. 

Blood NK cells from stage III and IV melanoma patients showed increased expression of CD107a 

when explanted to in vitro culture without further stimulus. This spontaneous degranulation may 

reflect the recent in vivo activation of the cells (that the cells have been in action recently in vivo). 

CD107a expression might thus mimic a “smoking gun” following the NK cell attack on circulating 

melanoma cells. However, there are other possible explanations, such as generalized activation of 
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NK cells by cytokines and other factors associated with advanced disease. 

The scenario emerging from our study is that melanoma cells and related CSCs may produce 

CCL19, as described for cervical cancer (41). The increased serum concentration of CCL19 found 

in stage IV melanoma patients could be explained by the higher disease burden, where an increased 

number of CSCs actively secrete the chemokine. This could promote melanoma metastatic 

dissemination through at least two mechanisms: (1) CSCs migration from skin to blood circulation 

through the molecular combination between their CCR7 expression and the high patient’s CCL19 

blood concentration, (2) the high blood concentration of this chemokine, normally present only in 

the lymph nodes, retain CD56
bright

 NK cells in the blood and prevent their progression to the lymph 

nodes, reducing their frequencies in the melanoma infiltrated lymph nodes as we have previously 

demonstrated (21). However, it is also possible that CD56
bright 

NK cells resident in lymph nodes 

may be rerouted to the blood. Indeed, studies indicate that crosstalk between NK cells and DCs in 

the lymph nodes affects the CD8
+
 T cell anti-tumor immune response, as reviewed elsewhere (42, 

43). NK cells can edit the DC population (1) by physical elimination of immature DC or (2) by 

IFNγ production that induces full maturation of the DC skewing toward a Th1 immune response 

(44, 45). Thus, we speculate that the perturbation in CD56
bright 

NK cell migration in the lymph 

nodes may contribute to the failure of the anti-tumor immune response in the late stage of 

melanoma disease. Our data complement findings demonstrating that NK cell frequencies in 

melanoma tissues positively correlate with anti-PD-1 immunotherapy and overall survival (46). 

Regardless of the pathological meaning of CCL19 concetration and the accumulation of 

CCR7
+
CD56

bright
 NK cells in the blood circulation, our study demonstrates concomitant expression 

of CCR7 on melanoma CSCs and NK cells and that NK cells can recognize and eliminate 

melanoma CSCs that drive the disease’s metastatic spread. 

Ex vivo analysis showed that CCR7 is expressed more in metastatic melanoma cells than in 

melanoma cells at the primary tumor site. These data corroborate and expand previously reported 

findings (47, 48), suggesting that melanoma cells rely on CCR7 during metastasis. 

Moreover, Gal-9
+
 and PD-L1

+
 melanoma cells concurrently expressed CCR7 showing the presence 

of an aggressive subpopulation of CCR7
+
 cells endowed with immune evasion capabilities. Our 

results provide a foundation for developing melanoma therapies that could interfere with this 

metastatic pathway by the use of monoclonal antibodies targeting CCL19. 
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Sample Stage Type of melanoma 

metastasis 

Sphere forming Xenograft 

CSC#1 IV Unknown Yes Yes 

CSC#2 IV Lung Yes Yes 

CSC#3 IV Lung Yes Yes 

CSC#4 IV Lymph node Yes Yes 

Table 1. Case description and sphere forming/tumorigenic capacity of melanoma stem cells. 

 

Figure legends 

Figure 1. Discriminant analysis of healthy donors and melanoma patients. 

(A) Light grey dots = healthy donors (37), dark grey dots = stage III melanoma patients (11), black 

dots = stage IV melanoma patients (42). Horizontal axis = predictive component. Vertical axis = 

Orthogonal component not related to difference between groups. Ellipse = Hotelling’s T2 95 % 

confidence interval limit. (B-D) 10 most significant variables correlated to healthy donors, stage III 

and stage IV melanoma patients, respectively. Regression coefficient represents relative 

contribution magnitude of each variable. Error bars = 95 % confidence intervals. 

 

Figure 2. Analysis of NK and T cell function in healthy donors and melanoma patients. 

(A-B) Representative dot plots of CD107a degranulation by NK (A) and T cells (B) from healthy 

donor (left panels), stage III (middle panels) and stage IV (right panels) melanoma patients. (C-D) 

Statistical analysis of CD107a degranulation by NK (C) and T cells (D) obtained from 18 healthy 

donors (white bars), 4 stage III (grey bars) and 25 stage IV (black bars) melanoma patients. The 

assay was performed once per sample. Analyses were performed Kruskal-Wallis test followed by 

Dunn’s correction. ***p-value < 0.001; **p-value < 0.01. 

 

Figure 3. CCR7 and CCL19 in melanoma patients. 

(A-B) Circles = healthy donors; squares = stage III melanoma patients, triangles = stage IV 

melanoma patients. (A) Frequency of CCR7
+
CD56

bright
NK cells in 42 healthy donors, 15 stage III 

and 65 stage IV melanoma patients. Immunoprofile was performed once per sample. (B) Serum 

concentration of CCL19 in 9 healthy donors, 14 stage III and 22 stage IV melanoma patients. 

Measurement was performed in duplicate once per sample. (C) Mean CCL19 concentrations 

measured during the 48-120 hours timeframe in supernatants from fibroblast (circles, n = 1), solid 

tumor (squares, n = 3) primary and metastatic melanoma (diamonds, n =10; white indicate cells 
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derived from primary lesions, black diamonds indicate cells derived from metastatic lesions) and 

melanoma cancer stem cell lines (triangles, n = 7). Histological origin of melanoma cell lines is 

reported in Supplementary Table S1. For each time point, 3 independent experiments were 

performed in duplicate. Data are shown as mean ± SD. Analyses were performed by Kruskal-Wallis 

test followed by Dunn’s correction (A-C) or ANOVA followed by Bonferroni’s correction (B). 

***p-value < 0.001; # p-value ≤ 0.1  

 

Figure 4. NK-mediated targeting of CCR7
+ 

melanoma cells. 

(A) Representative plot of CCR7 frequency in melanoma cells and differential distribution of PD-

L1 and Galectin-9 in CCR7
-
 and CCR7

+
 melanoma cells. (B) Frequency of the indicated molecules 

on CCR7
-
 (white bars) and CCR7

+
 (black bars) melanoma cells. Data refer to 10 different cell lines, 

for each of which measures were repeated in three independent experiments. (C) Expression of the 

indicated molecules on CCR7
-
 (white bars) and CCR7

+
 (black bars) melanoma cells Data refer to 10 

different cell lines, for each of which measures were repeated in three independent experiments, and 

are shown as mean ± SD. The two melanoma cell subpopulations, CCR7
-
 and CCR7

+ 
cells, were 

gated as reported in panel A. For NKp30-L and NKp46-L detection, NKp30-Fc NKp46-Fc were 

used in indirect immunofluorescent stainings, whereas direct immunofluorescent staining was used 

to detect the other indicated molecules. Based on distribution, analysis was performed by Student’s 

paired t-test or Wilcoxon signed rank test. (D) Percentage of surviving CCR7
+ 

(left panel) and 

CCR7
-
 (right panel) melanoma cells before (white bars) and after (black bars) co-culture with 

circulating freshly purified allogenic NK cells. Data deriving from four independent experiments 

are shown as mean ± SD. Analysis was performed by paired Student’s t-test. ***p-value < 0.001; 

**p-value < 0.01; *p-value <0.05. 

 

Figure 5. Primary melanoma cells and CSC susceptibility to NK-mediated killing. 

(A) Sphere-derived adherent cells (SDAC) formation from melanoma stem cells. (B) Hematoxylin 

and eosin (H&E) staining, with respective magnification, of tumors generated by subcutaneous 

injection of patient-derived melanoma stem cells in NOD SCID immunocompromised mice. (C) 

Confocal microscopy analysis of the expression of stemness surface markers (CD44, CD271, 

ABCB5 and CD166) on primary melanoma-derived CSCs; the reported markers are labeled in 

green; nuclei are labeled in blue (Toto-3). (D) Frequency of CCR7
+
 cells within melanoma cells 

(white bar) and CSCs (black bar). Data deriving from 10 primary melanoma cells and 4 CSCs are 

shown. (E, F) Cytotoxicity assays performed by culturing primary melanoma cells (E) and CSCs 

(F) with circulating freshly purified allogeneic NK cells used at different E:T ratios, as reported on 
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the x-axis. (G) Statistical analysis of the data obtained from at least two independent cytotoxicity 

experiments for each tested cell line at two E:T ratios. Data are shown as mean ± SD. Analysis was 

performed by Mann-Whitney test; **p-value < 0.01, *p-value < 0.05. 

 

Figure 6. Metastatic melanoma cells express high amounts of CCR7. 

(A-C) Representative hematoxylin and eosin staining (Left panels) and immunofluorescence 

analysis of CCR7 (green color), Gal-9 (red color) and PD-L1 (red color) (Middle and Right panels) 

on paraffin-embedded sections of primary melanomas and relative metastasis. (A) Primary 

melanoma of the scalp and its micrometastasis to the mastoid lymph node, (B) frontoparietal 

melanoma and its metastasis to the parotid and (C) primary nasopharynx melanoma and its 

submandibular lymph node metastasis. Toto-3 (blue) stains the nuclei. White arrowheads indicate 

melanoma cells expressing both CCR7 and PD-L1 or CCR7 and Gal-9. Scale bar represents 40 µm. 

(D) Percentage of melanoma cells expressing CCR7, CCR7/Gal9 and CCR7/PD-L1 in primary 

melanomas and paired metastatic sites as described in (A-C). Data are shown as mean of 5 different 

fields counted for each sample ± SD. Analysis was performed by Mann–Whitney test; ***p-value < 

0.001. 
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