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Backgrounds and Aims: Recently, a growing number of hepatotoxicity cases aroused
by Traditional Chinese Medicine (TCM) have been reported, causing increasing concern.
To date, the reported predictive models for drug induced liver injury show low prediction
accuracy and there are still no related reports for hepatotoxicity evaluation of TCM
systematically. Additionally, the mechanism of herb induced liver injury (HILI) still remains
unknown. The aim of the study was to identify potential hepatotoxic ingredients in TCM
and explore the molecular mechanism of TCM against HILI.

Materials and Methods: In this study, we developed consensus models for HILI
prediction by integrating the best single classifiers. The consensus model with best
performance was applied to identify the potential hepatotoxic ingredients from the
Traditional Chinese Medicine Systems Pharmacology database (TCMSP). Systems
pharmacology analyses, including multiple network construction and KEGG pathway
enrichment, were performed to further explore the hepatotoxicity mechanism of TCM.

Results: 16 single classifiers were built by combining four machine learning methods
with four different sets of fingerprints. After systematic evaluation, the best four single
classifiers were selected, which achieved a Matthews correlation coefficient (MCC) value
of 0.702, 0.691, 0.659, and 0.717, respectively. To improve the predictive capacity of
single models, consensus prediction method was used to integrate the best four single
classifiers. Results showed that the consensus model C-3 (MCC = 0.78) outperformed
the four single classifiers and other consensus models. Subsequently, 5,666 potential
hepatotoxic compounds were identified by C-3 model. We integrated the top
10 hepatotoxic herbs and discussed the hepatotoxicity mechanism of TCM via systems
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pharmacology approach. Finally, Chaihu was selected as the case study for exploring
the molecular mechanism of hepatotoxicity.

Conclusion: Overall, this study provides a high accurate approach to predict HILI and
an in silico perspective into understanding the hepatotoxicity mechanism of TCM, which
might facilitate the discovery and development of new drugs.

Keywords: herb induced liver injury, consensus model, traditional chinese medicine, hepatotoxicity mechanism,
in silico

INTRODUCTION

Liver injury induced by drug, novel foods or phytotherapy,
also known as hepatotoxicity, is still a major clinical and
pharmaceutical concern (Amadi and Orisakwe, 2018; Hammann
et al., 2018; Kyawzaw et al., 2018; Real et al., 2018). According
to the data from United States National Institute of Diabetes
and Digestive and Kidney Diseases (NIDDK), hepatotoxicity
accounts for 50% of all liver failure cases in the United States
(Tujios and Fontana, 2011). Additionally, it is one of the leading
causes of drug failure in trials and withdrawal from the market
(Segall and Barber, 2014).

Over the last decades, Traditional Chinese Medicine (TCM),
regarded as safe and natural, has received growing attention
(Vikas and Singh, 2012). Dating back to 2,500 years ago, TCM
has played an irreplaceable role in Chinese health care system to
fight against various diseases and keep health for Chinese people
(Cheung, 2011). Moreover, TCM is a gorgeous cradle of new
active compounds in the course of drug discovery. For example,
artemisinin (Qinghaosu) (Tu, 2011) is an effective anti-malaria
drug, which is extracted from Chinese herb Artemisia annua L.
(Qinghao). Despite its long clinical success, the most annoying
problem in the herbal TCM area is the lack of proven efficacy
in large-scale clinical studies and the unknown adverse reactions
(ADRs). Side effects (SE) aroused by TCM, especially herb
induced liver injury (HILI), have been reported widely (Teschke
et al., 2015; Amadi and Orisakwe, 2018; Jing and Teschke, 2018),
which also severely restricts the application of TCM (Lee et al.,
2015; Kaplowitz, 2018). Thus, there is an urgent need to identify
the potential hepatotoxic ingredients in TCM and explore the
molecular mechanism of these compounds against HILI.

Generally, it is difficult to detect hepatotoxicity in the early
phase of drug development due to its complex mechanism
and lacking of scientific basis (Chatila, 1999; Williams, 2006).
The traditional approach with experimental validation of drug
induced hepatotoxicity on animals is costly, time-consuming
and labor-intensive (Merz et al., 2014). Nowadays, due to the
increasing number of hepatotoxic drugs identified in clinical
or experimental studies, in silico prediction, such as machine
learning (ML) approach based on ligand characteristic, provides
the possibility of making predictions for HILI without knowing
their underlying mechanisms. In this study, we try to identify
hepatotoxic ingredients of TCM from a ligand-based ML
perspective, and explore the hepatotoxicity mechanism via
system pharmacology approach.

Quantitative structure-activity relationship (QSAR) are the
most widely used in silico approach in absorption, distribution,
metabolism, excretion and toxicity (ADMET) prediction (Cheng
et al., 2013). Thus far, multiples of QSAR models have been
generated for hepatotoxicity study of chemicals (Rodgers et al.,
2010; Xu et al., 2015; Zhang et al., 2016; Cronin et al., 2017).
For instance, Rodgers et al. (2010) reported a QSAR model with
approximately 200 compounds by using the k-nearest neighbor
(kNN) method, which achieved the sensitivity and specificity
values of more than 73.7% and 94.4% for the prediction of liver
adverse effects of drugs. Xu et al. (2015) developed hepatotoxicity
prediction models by utilizing deep learning architectures, and
the best model trained on 475 drugs predicted an external
validation set of 198 drugs with an accuracy of 86.9%, sensitivity
of 82.5%, specificity of 92.9%, and the area under the receiver
operating characteristic (ROC) curve (AUC) of 0.955. Besides,
Zhang et al. (2016) developed classification models using five
machine learning methods based on MACCS Keys fingerprint
and FingerPrint4 (FP4). However, the AUC values for the best
model are only 0.656, 0.552, and 0.607 for training set, test
set and external validation set, respectively. Notably, Cronin
et al. (2017) proposed a new paradigm for in silico modeling by
incorporating adverse outcome pathways, providing new insights
into the QSAR models. Taken together, the predictive accuracies
of current published QSAR models for hepatotoxicity remains to
be improved due to incomplete data source. In addition, there
are few consensus models reported to integrate single classifier
for hepatotoxicity prediction. Furthermore, the hepatotoxicity
models generated have not been applied to predict herb
ingredients from TCM database yet.

In this work, we constructed a high-quality data set involving
619 hepatotoxic and 1,857 non-hepatotoxic compounds. All the
hepatotoxic compounds were collected by integrating available
adverse reactions databases (e.g., SIDER). Consensus models
were generated to screen the Traditional Chinese Medicine
systems pharmacology database and analysis platform (TCMSP)
database. After identifying hepatotoxic ingredients in TCM, the
molecular mechanisms of hepatotoxicity were explored. The
detailed workflow could be seen in Figure 1. Firstly, data set
containing hepatotoxic and non-hepatotoxic compounds were
randomly assigned into training set and test set. Subsequently,
four machine learning methods including artificial neural
network (ANN), support vector machine (SVM), random forest
(RF) and k-nearest neighbors (kNN) together with four different
sets of fingerprints (EState, MACCS, PubChem, and SubFP) were
utilized to develop 16 classifiers. Moreover, the consensus models
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FIGURE 1 | Schematic diagram of models building, identification of potential hepatotoxic ingredients and unraveling the hepatotoxicity mechanisms based on
systems pharmacology approaches. CTD, Comparative Toxicogenomics Database; kNN, k-nearest neighbor; ANN, artificial neural network; RF, random forest;
SVM, support vector machine; SubFP, Substructure fingerprint; EState, EState fingerprint; MACCS, MACCS Keys fingerprint; Pubchem, PubChem fingerprint;
TCMSP, the Traditional Chinese Medicine systems pharmacology database and analysis platform.

by integrating the best four single classifiers were applied to
screen the TCMSP database after systematic evaluation. Finally,
to decipher the hepatotoxicity mechanism of TCM, systems
pharmacology analyses of top 10 herbs with the largest number of
potential hepatotoxic ingredients were carried out via integrating
known and predicted targets.

MATERIALS AND METHODS

Data Preparation
In this study, all the liver toxic compounds were collected
from three public databases, including side effect resource
(SIDER) (Kuhn et al., 2010), OFFSIDES (Tatonetti et al., 2012)
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and Comparative Toxicogenomics Database (CTD) (Davis et al.,
2019). Specifically, we firstly collected all the adverse SE of
liver according to the criteria on “Common Terminology
Criteria for Adverse Events” (CTCAE, version 4.03, 2010)
released by the United States Department of Health and Human
Services. Then all the liver related SE terms were annotated
using Medical Subject Headings (MeSH) or Unified Medical
Language System (UMLS) vocabularies (Bodenreider, 2004).
Compounds that corresponded with these MeSH or UMLS
IDs were extracted from the three databases. Only side effect
information labeled with “frequent” or “direct evidence” were
preserved. Additionally, the proteins, organic metals, compounds
with molecular weight larger than 800 or smaller than 100, and
duplicate structures were removed for avoiding potential noise
(Wang et al., 1995). Finally, 619 liver toxic compounds were
obtained for model construction.

After that, triple corresponding decoys were generated in
RApid DEcoy Retriever (RADER) online database with a
similarity threshold value of 0.75 between liver toxic compounds
and decoys (Ling et al., 2016). Only molecules with molecular
weight between 100 and 800 were preserved. All the compounds
were randomly separated into training set and test set with
ratio of 3:1. We considered the liver toxic compounds as
hepatotoxic (labeled as “1”) during the calculation. Since
decoys were randomly selected from a massive “decoy pool”
containing 70,030,298 compounds (Ling et al., 2016) after
eliminating hepatotoxic compounds, decoys were supposed as
non-hepatotoxic (labeled as “0”) in this study. Eventually, the
training set contained 453 hepatotoxic compounds and 1,359
non-hepatotoxic compounds, while the test set was consisted
of 166 hepatotoxic compounds and 498 non-hepatotoxic
compounds. Detailed information about the two data sets can
be found in Supplementary Tables S1, S2. Meanwhile, herb
ingredients covering 499 traditional Chinese herbs registered
in the Chinese pharmacopeia were downloaded from TCMSP
(Ru et al., 2014). Then 13,139 unique compounds were finally
collected after removing duplicates.

All the data sets above were processed as the following
three steps: Firstly, inorganic compounds were removed and
hydrogen atoms were added. Secondly, strong acids were
deprotonated and strong bases were protonated. Thirdly, three-
dimensional (3D) conformers were generated by using washing
and energy minimizing in Molecular Operating Environment
(MOE) software (MOE, version 2010.10, Chemical Computing
Group Inc., Montreal, QC, Canada, 2010).

As the chemical diversity of the datasets plays a vital role in
the application domain of predictive model, we further employed
the chemical space analysis to evaluate the chemical diversity
within the data sets. As shown in Supplementary Figure S1,
diverse chemical space distributions for all compounds as well
as overlaps among the compounds within these data sets can
be observed. In addition, we also proposed the chemical space
analysis for TCMSP since the predictive models were applied
to identify the potential hepatotoxic compounds in TCMSP.
As presented in Supplementary Figure S2, the applicability
domain of the predictive models covers 90.6% (11,902/13,139)
chemicals of TCMSP.

Molecular Representation
Molecular fingerprints are often utilized for describing chemical
structures. The main idea of fingerprints is to describe molecules
based on molecular fragment. Through the segmentation
of the molecular structure, a series of fragments as the
characterization of the molecular structure can be obtained,
and suitable fingerprints can enhance the performance of
models (Fang et al., 2015a). Here, four common types of
molecular fingerprints were calculated with PaDEL-Descriptor
software (Yap, 2011) to represent molecular substructures and
fragments information for each molecule. The four types
of fingerprints are EState fingerprint (EState), MACCS Keys
fingerprint (MACCS), PubChem fingerprint (PubChem) and
Substructure fingerprint (SubFP).

Machine Learning Methods and
Consensus Prediction for Model Building
In this part, four different machine learning methods including
ANN, SVM, RF and kNN, were applied to develop predictive
models and then consensus prediction was adopted to generate
combined models. All the algorithms except SVM were
performed using Orange Canvas (version, 2.7).

Artificial Neural Network (ANN)
Artificial Neural Network is a powerful computational algorithm
with sufficient accuracy which mimics the complex networks
of neural connections in the neural brain (Dan, 1996). The
network was made up of three layers: one input layer, one
hidden layer and one output layer. ANN could identify
complex non-linear relationship between input and output sets
(Basheer and Hajmeer, 2000).

Support Vector Machine (SVM)
The purpose of SVM is to find a hyperplane which could
discriminate molecules from different categories. Kernel function
makes SVM deal with high-dimensional data effectively. The
SVM algorithm was provided by the LibSVM package (Chang
and Lin, 2011). And the commonly used kernel function
radial bias function (RBF) was utilized to develop models
after seeking the penalty parameter “C” and different kernel
parameter “γ” with grid search strategy based on a 5-fold cross-
validation in LibSVM.

Random Forest (RF)
Random Forest is also a widely used machine learning method
(Biau et al., 2008). The core idea of this classification algorithm is
to train the input sample vectors through constructing multitudes
of decision trees in the forest. Each tree gives a classification,
which means the tree “vector” for the class. Finally, the forest
can select the classification which has the most vectors in all the
trees of the forest.

k-Nearest Neighbors (kNN)
k-Nearest Neighbors is a non-parametric method to categorize
objects based on closest training examples in the feature space
(Larose, 2004). The distance or similarity between each training
sample was calculated by the algorithm to choose the list of
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its nearest neighbor, which can be classified according to the
majority of the nearest neighbors (Cover and Hart, 1967). In this
study, k (the number of nearest neighbors value) was set to
the default (k = 5) and Hamming distance was selected for
distance metric.

Consensus Models and Prediction
The main purpose of the consensus model is to combine the
predicted results from various single classifiers for improving the
predictive accuracy. It is generally considered that the consensus
model is in a position to optimize the performance of the single
classifier by improving predictive reliability (Cheng et al., 2011;
Mansouri et al., 2013). Various kinds of noise from a single
model can be reduced by consensus modeling (Fang et al., 2016b).
In this study, four consensus models based on the best four
single classifiers were generated through a “consensus prediction”
procedure (Fang et al., 2015b). First, the training set and test set
were screened with four single classifiers, and the compounds
were considered as “hepatotoxicity” if predicted as “+1” by one of
the four single classifiers. The procedure is defined as consensus
prediction C1. Similarly, we obtained consensus prediction C2
(predicted as “+1” by two of the four single classifiers), C3
(predicted as “+1” by three of the four single classifiers), and
C4 (predicted as “+1” by all the four single classifiers).

Performance Evaluation of Models
All classification models were evaluated by counting the numbers
of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) compounds. Additionally,
sensitivity (SE), specificity (SP), overall predictive accuracy (Q)
and Matthews correlation coefficient (MCC) were calculated
with equations (1)–(4). Among them, SE and SP represent
predictive accuracy of hepatotoxic and non-hepatotoxic
compounds, respectively. Q represents predictive accuracy of
total compounds, while MCC is the most significant indicator to
measure the prediction performance of all the models. Usually,
the higher the MCC value is, the better the model is.

SE =
TP

TP+ FN
(1)

SP =
TN

TN+ FP
(2)

Q =
TP+ TN

TP+ FN+ FP+ TN
(3)

MCC =
TP× TN− FN× FP

√
(TP+ FN) (TP+ FP) (TN+ FN) (TN+ FP)

(4)

Furthermore, the area under the receiver operating
characteristic curve (AUC) value was also calculated. A perfect
classifier can be found as AUC = 1.0 while the classifier has no
discriminative power as AUC = 0.5.

Collection of Hepatotoxicity-Related
Genes
The genes associated with liver diseases were collected from
the previous public reference (Lu et al., 2015), which integrated

the data from four public databases, including the Online
Mendelian Inheritance in Man (OMIM) database (Hamosh
et al., 2005), HuGE Navigator (Yu et al., 2008), PharmGKB
(Hernandezboussard et al., 2008) and CTD (Davis et al., 2019).
In this study, all collected genes were annotated using gene Entrez
ID and official gene symbols based on the NCBI database1 and
then mapped to corresponding Uniprot ID2. After removing
duplicates, 627 unique genes related with liver disease were
finally obtained.

Integration of Known and Predicted
Hepatotoxic Target Proteins
The known hepatotoxic targets for compounds were acquired
by two steps: (1) collecting known targets of compounds from
our previous integrated natural products database (Fang et al.,
2017a); (2) overlapping known targets and hepatotoxicity- related
genes. The putative targets of compounds were predicted via
a balanced substructure-drug-target network-based inference
(bSDTNBI) (Wu et al., 2016; Fang et al., 2017c) approach,
which prioritizes potential targets utilizing resource-diffusion
processes for both known drugs and new chemical entities
(NCEs) via substructure-drug-target network (Wu et al., 2016).
In this study, the top 20 putative targets for each compound with
known targets were selected. Similarly, the predicted hepatotoxic
targets were acquired through overlapping predicted targets
and hepatotoxicity-related genes. All the target names were
subsequently normalized to the official gene name using the
UniProt database (see text footnote 2).

Network Construction and Analysis
To decipher the complex hepatotoxicity mechanisms of TCM,
two types of network including herb-herb network (H-H
network) and compound-target network (C-T network) were
generated by Cytoscape (version 3.2.1). In the graphical network,
the compounds or targets were presented by nodes, and edges
encoded the interactions. The degree of nodes was calculated
to measure its topological property as it characterizes the most
important nodes in a network.

RESULTS AND DISCUSSION

Model Building and Evaluation
Single Model Building and Evaluation
In this study, 16 single models were developed by four different
algorithms (ANN, SVM, RF, and kNN) using four common
types of fingerprints (EState, MACCS, PubChem and SubFP).
The performance of each model was measured with the internal
5-fold cross validation in training set. Then, in order to further
validate the predictive capability of our models, they were
applied to predict the test set consisting of 664 compounds.
The comprehensive performances of all the 16 classifiers are
provided in Table 1.

1http://www.ncbi.nlm.nih.gov/
2https://www.uniprot.org
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TABLE 1 | Performance of 16 single classifiers using four sets of fingerprints and four modeling methods on 5-fold cross validation and test set.

Model name Training set (5-fold cross validation) Test set

Q SE SP MCC AUC Q SE SP MCC AUC

EState-ANN 0.848 0.755 0.888 0.609 0.902 0.859 0.680 0.911 0.607 0.899

EState-RF 0.820 0.789 0.824 0.460 0.882 0.821 0.737 0.835 0.471 0.861

EState-SVM 0.837 0.751 0.855 0.528 0.878 0.839 0.627 0.910 0.556 0.867

EState-kNN 0.834 0.713 0.864 0.532 0.855 0.839 0.602 0.918 0.551 0.854

MACCS-ANN 0.898 0.829 0.919 0.722 0.943 0.887 0.789 0.920 0.702 0.925

MACCS-RF 0.866 0.769 0.892 0.628 0.926 0.851 0.729 0.892 0.610 0.900

MACCS-SVM 0.902 0.861 0.913 0.730 0.944 0.886 0.753 0.930 0.691 0.920

MACCS-kNN 0.884 0.801 0.908 0.681 0.915 0.875 0.711 0.930 0.659 0.886

PubChem-ANN 0.876 0.779 0.904 0.659 0.915 0.852 0.681 0.910 0.600 0.877

PubChem-RF 0.848 0.714 0.888 0.585 0.915 0.816 0.639 0.876 0.512 0.843

PubChem-SVM 0.876 0.799 0.897 0.656 0.932 0.852 0.669 0.914 0.597 0.881

PubChem-kNN 0.870 0.772 0.897 0.641 0.888 0.827 0.657 0.884 0.539 0.830

SubFP-ANN 0.896 0.822 0.917 0.714 0.935 0.893 0.795 0.926 0.717 0.911

SubFP-RF 0.847 0.747 0.872 0.568 0.904 0.813 0.663 0.863 0.514 0.873

SubFP-SVM 0.869 0.802 0.886 0.632 0.929 0.857 0.753 0.892 0.629 0.904

SubFP-kNN 0.877 0.795 0.900 0.661 0.898 0.852 0.705 0.902 0.606 0.885

Q: overall predictive accuracy; SE: sensitivity; SP: specificity; MCC: Matthews correlation coefficient; AUC: the area under the receiver operating characteristic curve;
ANN: artificial neural network; SVM: support vector machine; RF: random forest; kNN: k-nearest neighbors; EState: EState fingerprint; MACCS: MACCS keys fingerprint;
PubChem: PubChem fingerprint; SubFP: Substructure fingerprint.

FIGURE 2 | Performance comparisons of four consensus models (A) and four best single models with consensus model 3 (C-3) (B) on test set validation. SE,
sensitivity; SP, specificity; Q, accuracy; MCC, Matthews correlation coefficient.

As illustrated in Table 1, the overall predictive accuracies for
16 classifiers are acceptable. The Q-values of all single models
are higher than 0.8 and the highest one is MACCS-SVM model
reaching up to 0.902. The AUC value for each model is greater
than 0.8, ranging from 0.855 to 0.944 on 5-fold cross validation
as well as 0.830 to 0.920 on test set validation. MCC values, the
most significant index to evaluate models, also have acceptable
performances. The highest one (MACCS-ANN) reaches up to
0.722 on 5-fold cross validation and 0.702 on test set validation.
Given the balance between SE and SP, we consider MACCS-ANN,
MACCS-SVM, MACCS-kNN, and SubFP-ANN as the best four
single models, which satisfy the condition that all of the MCC,
SE as well as SP values are greater than 0.65 on the test set.

Performance of the Consensus Models
Consensus predictions were adopted to integrate the best four
single classifiers discussed above, then four consensus models
named C-1, C-2, C-3, C-4 were generated. The SE, SP, Q, and
MCC values for consensus models on test set are presented in
Figure 2A. The SE values of C-1 and C-2 are 0.89 and 0.83, which
are higher than that of C-3 (SE = 0.77) and C-4 (SE = 0.57).
Nevertheless, the SP values were opposite. The SP values for C-3
and C-4 are 0.97 and 0.99, greater than C-1 (SP = 0.81) and
C-2 (SP = 0.93). The possible reason is that strict criterion for
hepatotoxic prediction leads to higher SP and lower SE, and vice
versa. Overall, C-3 model performs best among the four models,
which keeps an equilibrium between specificity (SP = 0.97) and
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sensitivity (SE = 0.77), and has the highest MCC (MCC = 0.78)
and Q (Q = 0.92) values.

Moreover, the performance between the best four single
models and C-3 model was compared on test set. As shown in
Figure 2B, the C-3 model has a MCC value of 0.78, which is much
greater than that of any other single models. This suggests that the
C-3 model does enhance the predictive capabilities.

The Comparison of Performance Between
C-3 Model and the Hepatotoxic Prediction
by Discovery Studio (DS)
The ADME/T Descriptors is a mature protocol of commercial
software Discovery Studio (version 4.0, Accelrys Inc., San Diego,

CA, 2013) to estimate various pharmacokinetics features of
ligands, including aqueous solubility, blood brain barrier
penetration, CYP2D6 binding, intestinal absorption and
hepatotoxicity. In order to further validate the predictive
capability of C-3 model in practice, we compared the accuracy
between C-3 model and the hepatotoxic prediction in DS
software. First, 184 withdrawn drugs were downloaded from
DrugBank database (Wishart et al., 2006). After browsing the
detailed information about the withdrawal causes, we found
that 11 of these drugs were withdrawn from the market due to
clearly labeled hepatotoxicity. To evaluate if both of C-3 and DS
can recognize these hepatotoxic drugs, C-3 model and DS were
applied to predict these 11 drugs.

TABLE 2 | Comparison of the hepatotoxic prediction results between consensus model 3 (C-3) and Discovery Studio (DS) for 11 withdrawn drugs due to hepatotoxicity.

Drugbank ID Name Probability ( p ) Prediction p = 0.8

M1 M2 M3 M4 DS C-3 DS C-3 DS

DB00197 Troglitazone 0.999 0.997 0.792 0.999 0.768 1 1 1 0

DB00323 Tolcapone 1 0.986 1 1 0.96 1 1 1 1

DB01149 Nefazodone 0.992 0.947 0.866 0.795 0.198 1 0 1 0

DB04743 Nimesulide 1 0.943 0.756 0.951 0.827 1 1 1 1

DB04831 Ticrynafen 1 0.978 0 0.822 0.973 1 1 1 1

DB04898 Ximelagatran 1 1 0.848 0.297 0.172 1 0 1 0

DB06268 Sitaxentan 0.986 0.945 0.997 0.986 0.9 1 1 1 1

DB00685 Trovafloxacin 0.98 0.945 1 0.981 0.536 1 1 1 0

DB08986 Etifoxine 0.001 0.005 0 0.024 0.92 0 1 0 1

DB09247 Iproclozide 0.313 0.3 0.281 0.019 0.205 0 0 0 0

DB09251 Phenoxypropazine 0.974 0.362 0.528 0.583 0.072 1 0 0 0

M1: SUB-ANN model; M2: MACCS-kNN model; M3: MACCS-ANN model; M4: MACCS-SVM model; C-3: consensus model 3.

FIGURE 3 | The top 10 herbs with the highest number of hepatotoxic compounds as well as the corresponding proportions of hepatotoxic ingredient numbers to
the number of compounds in each herb (A) and the corresponding proportions of the predicted hepatotoxic compounds for each herb to the total 1,042 hepatotoxic
compounds of top 10 herbs (B).
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Table 2 shows that 9 out of 11 hepatotoxic compounds are
predicted correctly by C-3 model, while only 7 compounds
are considered hepatotoxic by DS software. However, once
the positive threshold value is improved by means of setting
the probability to 0.8, the correct number of DS descends to
only 5, while the number of consensus model is 8. This also
demonstrates that our model has higher accuracy to recognize
hepatotoxic compounds.

Identification of Potential Hepatotoxic
Ingredients Based on TCMSP
The TCMSP database was built based on the framework
of systems pharmacology which is aimed at accelerating
the development of herbal medicines and drug discovery.
It is a widely recognized database with comprehensive and
authoritative data sources about the TCM (Ru et al., 2014).
Therefore, the TCMSP database was selected to screen the
potential hepatotoxic ingredients of TCM.

As discussed above, the C-3 model, which performed best,
was finally chosen to identify the hepatotoxic ingredients among
13,139 unique compounds from TCMSP. Eventually, 5,666
out of them were predicted as hepatotoxic (Supplementary
Table S3). To further explore the distribution of hepatotoxic
compounds in herbs, the total number of compounds in each
herb were obtained from TCMSP, while the number of predicted
hepatotoxic compounds in each herb were also calculated. After
that, each herb with specific number of hepatotoxic compounds
was sorted in a descending order. Figure 3A shows the top 10
herbs possessing the highest number of hepatotoxic compounds,
as well as the corresponding proportions of hepatotoxic
ingredients numbers to the number of compounds in each herb.
They are Bupleurum L. (Chaihu), Lonicera japonica (Jinyinhua),
G. folium (the leaves of Ginkgo, Yinxingye), Commiphora myrrha
(Moyao), Ligusticum chuanxiong (Chuanxiong), Ephedra sinica
(Mahuang), Panax ginseng (Renshen), Micromeria biflora

(Lingzhi), Capsicum annuum (Lajiao), Salvia miltiorrhiza
(Danshen), respectively. The top 10 herbs contain 1,042 unique
hepatotoxic compounds predicted (Supplementary Table S4).
Figure 3B gives the corresponding proportions of the predicted
hepatotoxic compounds for each herb to the total 1,042
hepatotoxic compounds of top 10 herbs.

Among the top 10 herbs, Bupleurum L. (Chaihu) has the
largest number (141) of potential hepatotoxic compounds, and
52% (141/269) of compounds in Chaihu were predicted to have
hepatotoxicity. Interestingly, Lee et al. (2011) reported the risk of
hospitalization for liver injury by using radix bupleuri (Chaihu),
referring to 61 hepatotoxicity cases in 639,779 patients with
chronic hepatitis B virus infection. Besides, both of Ephedra
sinica (Mahuang) and Micromeria biflora (Lingzhi) also have been
emphasized to be alerted for their hepatotoxicity. Estes et al.
(2003) reported two cases of Ephedra sinica (Mahuang) linked
acute liver failure resulting in orthotopic liver transplantation.
And Yuen et al. (2004) referred to a case that in taking a
formulation of Ganoderma lucidum (lingzhi) caused a significant
hepatotoxicity in 2004. Collectively, these clinical reports are
consistent with our predictions. It is worth noting that the
hepatotoxicity level of herb are not only related to the number of
potential hepatotoxic compounds in each herb, but also depended
on the doses of the hepatotoxic compounds contained.

Systems Pharmacology Analysis of
Hepatotoxic Compounds in Top 10 Herbs
In recent years, systems pharmacology as an emerging new field,
has made great contribution to unravel the nature of TCM and
the actions of prescriptions (Fang et al., 2016a, 2017b; Cai et al.,
2018). In our study, the systems pharmacology approach was
applied to explore the hepatotoxicity mechanism of TCM.

Herb-Herb Network
To examine whether the top 10 herbs discussed above have
similar compounds in terms of chemical structures, we explored

FIGURE 4 | A herb-herb (H-H) network of the top 10 herbs (A) and the structures of 1,042 hepatotoxic compounds with frequency greater than 6 (B). The width of
lines was based on the number of duplicate compounds between two herbs, which was proportional to degree.
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the relationships among the top 10 herbs and constructed a
herb-herb (H-H) network (Figure 4A). This network represents
the relationship of different herbs based on the number of
duplicate compounds between two herbs. The width of connected
lines between two herbs is proportional to degree. As seen in
Figure 4A, the top 10 herbs share lots of duplicate molecules in
terms of structures. For example, network analysis indicates that
Lonicera japonica (Jinyinhua) and Commiphora myrrha (Moyao)
have the largest number of duplicate compounds (n = 29),
followed by Lonicera japonica (Jinyinhua) and Panax ginseng

(Renshen) (n = 27), Commiphora myrrha (Moyao) and Panax
ginseng (Renshen) (n = 25). Ligusticum chuanxiong (Chuanxiong)
and Salvia miltiorrhiza (Danshen), with the least number of
common structures, also have 8 duplicate compounds.

Meanwhile, to reveal the most common hepatotoxic
ingredients in top 10 herbs, frequency analysis of 1,042 potential
hepatotoxic compounds was performed. Figure 4B displays the
structures of compounds which have frequency greater than
6. Among them, CID5460332 (Linoleic acid), CID54691412
(trans-caffeic acid) and CID619166 (Oleanoic acid) show the

FIGURE 5 | A compound-target (C-T) network consists of 1,056 known interactions as well as 1,245 predicted interactions, including 91 compounds, 211
hepatotoxic targets and 464 non-hepatotoxic targets. The label font size and node size are proportional to degree.
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highest frequency (n = 8), which indicates these compounds
should be highly alerted for hepatotoxicity.

Compound-Target (C-T) Network and KEGG Analysis
To further decipher the hepatotoxicity mechanism of action
between herb ingredients and targets, a compound-target
(C-T) network of the top 10 herbs was constructed, which
contains 1,056 known compound-target interactions (CTIs) and
1,245 predicted CTIs. This network connects 91 hepatotoxic
compounds to 675 target nodes (211 hepatotoxic targets and
464 non-hepatotoxic proteins). Figure 5 suggests that most
compounds are connected to multiple targets with the average
degree of 7.4 for each compound. Among the 91 compounds,
quercetin (CID5280343, D = 240) has the highest number
of target connections (D), followed by apigenin (CID5280443,
D = 134) and genistein (CID5280961, D = 131). For the 675
targets, 211 out of them are associated with liver toxicity.
Network analysis shows 9 targets with the degree (K) larger than
40, including LMNA, CYP3A4, MAPT, ALDH1A1, HSD17B10,
TP53, ALOX15, HPGD, and CYP2C19. Among them, LMNA
(K = 59) exhibits the largest number of connected compounds,
followed by CYP3A4 (K = 56) and MAPT (K = 55). According
to in vitro studies, CYP3A4 may play an important role in liver
toxicity (Kostrubsky et al., 1995, 1997a,b; Zhang et al., 2010; Zhou
et al., 2017, Li et al., 2018). For instance, Dictamnine (DTN), the
main alkaloid from a herb called Dictamni Cortex (DC), has been
reported to induce liver injury through the regulation of CYP3A4
(Li et al., 2018). The inhibition of CYP3A4 could alleviate the
toxicity both in vitro and in vivo while induction of CYP3A4 was
able to aggravate the toxicity effects. Accordingly, it is likely that
the hepatotoxic compounds take effects through the regulation of
these targets with higher degree, which deserves to be validated by
in vivo or in vitro experiments. The detailed information for the
C-T network is provided in Supplementary Table S5.

In addition, KEGG pathway enrichment analysis by utilizing
Cluego (a plugin in Cytoscape) was proposed. Here, we choose
the top 20 targets (D ≥ 28) in the C-T network. As shown in
Table 3, the top 20 targets are enriched in 7 pathways. Among
them, 5 out of 7 pathways have been experimentally validated
involved with liver injury, including arachidonic acid metabolism
pathway (Holownia et al., 2014) (P = 4.5 × 10−4), linoleic

TABLE 3 | Enriched KEGG pathways of the top 20 targets.

GOID Pathway P-value Nr. Genes

GO:0005230 Central carbon metabolism in
cancer

0.00052147 3.00

GO:0000590 Arachidonic acid metabolism 0.000453637 3.00

GO:0000591 Linoleic acid metabolism 6.26843E-07 4.00

GO:0000830 Retinol metabolism 0.00052147 3.00

GO:0000980 Metabolism of xenobiotics by
cytochrome P450

0.000763064 3.00

GO:0000982 Drug metabolism-cytochrome
P450 pathway

2.26974E-05 4.00

GO:0004726 Serotonergic synapse 6.36867E-06 5.00

Nr. denotes the number of associated genes found in specific pathway.

acid metabolism pathway (Lu et al., 2014) (P = 6.3 × 10−7),
retinol metabolism pathway (Freund and Gotthardt, 2017)
(P = 5.2 × 10−4), metabolism of xenobiotics by cytochrome
P450 pathway (Gonzalez, 2005) (P = 7.6 × 10−4), and drug
metabolism-cytochrome P450 pathway (Gabbia et al., 2017)
(P = 2.3 × 10−7). Taking retinol metabolism pathway as
an example, the pathway has been demonstrated to regulate
hepatic immunological response to cholestatic injury and
alleviate hepatic fibrosis in different rodent models (Freund
and Gotthardt, 2017). Interestingly, there are two pathways
(metabolism of xenobiotics by cytochrome P450 pathway and
drug metabolism-cytochrome P450 pathway) both relevant with
cytochrome P450 (CYP450), which indicates CYP450 may play
a key role in HILI. According to experimental studies, lots of
CYP450 related enzymes have been validated to involve with the
hepatotoxicity of TCM, such as the CYP2E1 enzyme (Gonzalez,
2005), CYP2A6 enzyme (Yamaguchi et al., 2013) and CYP2A8
enzyme (Albassam et al., 2015). Therefore, these pathways are
more likely to be regulated by hepatotoxic ingredients of TCM
and thus induce liver injury, which merits further investigation
by experimental assays.

Case Study:Exploring the Molecular Mechanism of
Bupleurum L. (Chaihu) Against HILI
Bupleurum L. (Chaihu) was selected as the case study for
exploring the molecular mechanism of hepatotoxicity. Through
integration of the known and putative targets of the potential
hepatotoxic compounds, we found that 23 compounds of
Bupleurum L. possessed compound-target interactions and
selected them to construct the compound-target (C-T) network
of Bupleurum L. Figure 6 shows a specific compound-target
(C-T) network of Bupleurum L., which contains 133 known and
380 predicted C-T interactions connecting 23 compounds and
172 targets. Among the 23 compounds, the average number of
non-hepatotoxic and hepatotoxic targets for each compound is
4.6 and 2.8, respectively. The network indicates that CID5280442
(Acacetin, D = 44) has the largest number of target connections,
followed by CID5280378 (Formononetin, D = 36) and CID11092
(Paeonol, D = 35).

Further literature analyses suggested that 6 out of 23
compounds, including Linoleic acid, Vanillin, Oleic acid,
2,6-Di-tert-butyl-4-methylphenol, Pyrene and Choline, had
been reported with confirmed hepatotoxicity (Supplementary
Table S6). For instance, Linoleic acid (CID5460332), a poly-
unsaturated omega-6 fatty acid, could significantly increase
the protein levels of hepatic ALOX15 in Hepa-1c1c7 cells,
which contributed to the pathogenesis of alcohol-induced liver
injury (Zhang et al., 2017). Additionally, Linoleic acid has
been reported to cause oxidative damage (Tong et al., 2016; Li
et al., 2019; Qu et al., 2019; Zhang et al., 2019) and mediate
selective loss of intrahepatic CD4(+) T lymphocytes, which leads
to accelerated hepatocarcinogenesis (Ma et al., 2016). Several
clinical case reports also indicate that linoleic acid may induce
hepatic disease, such as acute hepatitis (Ramos et al., 2009;
Rita and José, 2012; Mohammad et al., 2015). These results
were also consistent with its highest frequency (n = 8) in top
10 herbs aforementioned. Another study showed high choline
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FIGURE 6 | A compound-target (C-T) network of Bupleurum L. (Chaihu) contains 133 known and 380 predicted C-T interactions connecting 23 compounds and
172 targets (including 66 hepatotoxic targets and 106 non-hepatotoxic targets). The yellow triangles represent the predicted hepatotoxic compounds validated by
literatures, while the orange triangles stand for the predicted hepatotoxic compounds without literature evidences.

(CID305) caused oxidative damage, significant dyslipidemia and
liver injury in mice (Ren et al., 2016). Additionally, 2,6-Di-tert-
butyl-4-methylphenol (Butylated hydroxytoluene, CID31404),
a lung toxicant, was reported to produce liver injury in

mice with depressed hepatic GSH levels (Mizutani et al.,
1987) and a report indicated that a single dose of BHT
(1000 mg/kg) to rats could induce a hepatic injury accompanying
centrilobular necrosis (Nakagawa et al., 1984). Taken together,
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FIGURE 7 | A biqartite compound-target (C-T) network for 6 hepatotoxic compounds including 33 known and 97 predicted CTIs connecting 6 hepatotoxic
compounds and 89 targets (including 32 hepatotoxic targets and 57 non-hepatotoxic targets).

these investigations demonstrate the high prediction accuracy of
our consensus model C-3, showing promise for the identification
of hepatotoxic compounds.

To further clarify the detailed molecular mechanism of 6
validated hepatotoxic compounds against HILI, we constructed
a specific C-T network for these 6 compounds. As illustrated in
Figure 7, the specific C-T network is composed of 33 known
CTIs and 97 predicted CTIs connecting 6 compounds and 89
targets (including 32 hepatotoxic targets and 57 non-hepatotoxic

targets). For instance, Linoleic acid (LA) interacts with 1 known
targets and 20 computationally predicted targets. Among the 21
targets, 5 out of them (TLR2, PPARD, PPARA, PPARG, HMGCR)
are hepatotoxic targets, providing potential hepatotoxicity
mechanism of LA. Similarly, Pyrene binds with 27 targets,
including 7 known targets and 20 predicted targets. Among the 27
targets, 19 out of them are associated with liver toxicity, including
13 hepatotoxic targets predicted as well as 6 known hepatotoxic
targets. For example, CYP2C19, one of the 13 hepatotoxic targets
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predicted, has been reported to mediate the hepatotoxicity of
rhein as well as be implicated in the mechanism of clopidogrel-
induced hepatotoxicity (He et al., 2015; Zhai et al., 2016). It
is likely that Pyrene induces liver injury through regulation of
these targets that deserves to be validated by experiments, which
indicates new liver toxicity mechanism of Pyrene.

Overall, aforementioned examples indicate that systems
pharmacology-based network analyses provide a new perspective
for exploring the hepatotoxicity mechanisms of TCM. In the
future, experimental validation combined with epidemiologic
studies will be introduced to further validate our discovery of
HILI and its underlining mechanisms.

CONCLUSION

In this study, consensus models were developed by integrating
the best four single classifiers to improve the predictive capability
of HILI. Based on the evaluated results of withdrawn drugs,
we found that C-3 exhibited excellent performance in contrast
to the hepatotoxic prediction of ADME/T Descriptor module
in DS. Subsequently, C-3 model was utilized to identify
potential hepatotoxic ingredients from TCMSP. Furthermore,
systems pharmacology analyses and KEGG pathway enrichment
were proposed to decipher the hepatotoxicity mechanisms
of hepatotoxic ingredients among the top 10 herbs. Finally,
we exemplified molecular mechanism of HILI by a case study of
Bupleurum L. (Chaihu).

However, several shortcomings should be recognized in the
presented study. First, due to lacking of sufficient quantitative
data from clinical and non-clinical (in vitro and in vivo)
studies, the current predictive models are qualitative rather
than quantitative models and mainly aimed at the prediction
of intrinsic HILI type. As the increasing number of hepatotoxic
compounds with quantitative pharmacological data are reported,
we intend to develop the quantitative predictive models in
the future. Second, as the intrinsic interactions on different
ingredients are complicated and unobtainable from public
resources, thus it is difficult to explore the specific mixture
activity and toxicity of plant ingredients just through this
research. Moreover, integration of biological descriptors from
drug-target networks (Cheng and Zhao, 2014) and clinical

data from multiple sources, such as Drug Induced Liver
Injury Rank (DILIrank) dataset (Chen et al., 2016) and
Roussel Uclaf Causality Assessment Method (RUCAM) (Danan
and Teschke, 2015), will be utilized to further analyze the
causal relationship of HILI and improve the application
domain of current study. Last, current study have not
considered antagonistic or agonistic effects of compound–
targets pairs. In the future, specific biological functions
(upregulation or downregulation) will be integrated into
current network by fetching specific information (upregulation
or downregulation) from Connectivity Map (CMap) and
LINCs databases.

In summary, this study provides a high accurate approach to
predict the herb-induced liver toxicity and systematically explore
the hepatotoxicity mechanism of TCM, which facilitates the
discovery and development of new drugs.
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