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Diets essentially affect the ecological distribution of insects, and may contribute to or
even accelerate pest plague outbreaks. The grasshopper, Oedaleus asiaticus B-Bienko
(OA), is a persistent pest occurring in northern Asian grasslands. Migration and plague
of this grasshopper is tightly related to two specific food plants, Stipa krylovii Roshev
and Leymus chinensis (Trin.) Tzvel. However, how these diets regulate and contribute
to plague is not clearly understood. Ecological studies have shown that L. chinensis is
detrimental to OA growth due to the presence of high secondary metabolites, and that
S. krylovii is beneficial because of the low levels of secondary metabolites. Moreover, in
field habitats consisting mainly of these two grasses, OA density has negative correlation
to high secondary metabolites and a positive correlation to nutrition content for high
energy demand. These two grasses act as a ‘push-pull,’ thus enabling the grasshopper
plague. Molecular analysis showed that gene expression and protein phosphorylation
level of the IGF → FOXO cascade in the insulin-like signaling pathway (ILP) of OA
negatively correlated to dietary secondary metabolites. High secondary metabolites
in L. chinensis down-regulates the ILP pathway that generally is detrimental to insect
survival and growth, and benefits insect detoxification with high energy cost. The
changed ILP could explain the poor growth of grasshoppers and fewer distributions
in the presence of L. chinensis. Plants can substantially affect grasshopper gene
expression, protein function, growth, and ecological distribution. Down-regulation of
grasshopper ILP due to diet stress caused by high secondary metabolites containing
plants, such as L. chinensis, results in poor grasshopper growth and consequently
drives grasshopper migration to preferable diet, such as S. krylovii, thus contributing
to grasshopper plague outbreaks.
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INTRODUCTION

Nearly half of all insect species are herbivores (Gatehouse, 2002;
Wu and Baldwin, 2010), that have co-evolved with plants for
350 million years (Kessler and Baldwin, 2002). Phytophagous
insects have specific adaptability to various host plants (Howe
and Jander, 2008; Rominger et al., 2009; Unsicker et al.,
2010), which also determine their ecological distribution and
population dynamics (Whitman, 1990; Franzke et al., 2010).
Such phytophagous insect-host plant relationships are examples
of co-adaptation, co-evolution, and co-speciation (Scriber, 2002;
Powell et al., 2006; Zhang and Fielding, 2011).

Plants have evolved various defense mechanisms against
phytophagous insect (Padul et al., 2012). Such defenses can
be broadly classified into two categories: constitutive defenses,
including physiological barrier and nutritional hurdle; and
inducible defenses, including secondary metabolites and protein
inhibitors (PIs) (Zavala et al., 2004; Wu and Baldwin, 2010; Padul
et al., 2012). Both types are achieved through similar means but
differ in that constitutive defenses are present before herbivore
attacks, while induced defenses are activated only when attacks
occur (Wu and Baldwin, 2010; Padul et al., 2012). The regulatory
elements in networks that modulate herbivory induced responses
in plants mainly include jasmonic acid (JA), salicylic acid (SA),
and ethylene (ET) (Baldwin, 1998; Wu and Baldwin, 2010;
Kessler and Baldwin, 2002). Plant defense mechanisms are also
categorized into direct and indirect responses according to their
role and function (Wu and Baldwin, 2010). Indirect defenses
include volatile organic compounds produced when the plant
is subject to herbivory that attract predators and parasitoids of
the insect (Dicke and Loon, 2000; Despland and Simpson, 2005;
Despres et al., 2007). Plant chemistry, especially those associated
with secondary metabolites, is an important component of the
phenotype that mediates plant-insect interactions (Mendelsohn
and Balick, 1995; Despres et al., 2007). In general, insect
dietary stress predominantly originates from high levels of plant
secondary metabolites (Behmer, 2009; Despres et al., 2007;
Wetzel et al., 2016).

Conversely, insect herbivores also evolved various
detoxification mechanisms, mainly including avoidance,
excretion, sequestration, metabolic resistance, and target
mutation, which allow them to consume and develop on toxic
plants producing high levels of secondary metabolites (Despres
et al., 2007). Such insect feeding continues the selective pressure
on plants to develop increased or novel chemical defenses
(Musser et al., 2002; Becerra, 2003; Dussourd, 2003; Helmus
and Dussourd, 2005). Insect herbivores’ response to diet stress
are well-documented in many insects, mainly focusing on
insect behavioral, physiological, chemical, genetic, ecological,
and evolutionary mechanisms (Raubenheimer and Simpson,
2004; Giri et al., 2006; Dicke and Baldwin, 2010; Ibanez et al.,
2013). Some herbivorous species are strongly attractive or
indispensable for some specific plant species (Schutz et al.,
1997). Existence of those plants may contribute to, or even
accelerate, insect population outbreaks (Powell et al., 2006).
For example, Phragmites australis (Cav.) Trin. provides an
optimal food source (Zhu, 2004; Ji et al., 2007), which could

significantly benefit Locusta migratoria manilensis (Meyen)
population growth.

Many genes and related pathways of insects, such as the insect
insulin-like signaling pathway (ILP), play important roles in
specific insect-diet relationship, and contribute to the variation
of insect performance (Bishop and Guarente, 2007; Taguchi
and White, 2008; Ragland et al., 2015). The insect ILP is
considered to act as a sensor of the dietary status and to stimulate
the progression of anabolic events when the status is positive
(Taguchi and White, 2008; Badisco et al., 2013). It plays a crucial
role in a number of fundamental and interrelated physiological
processes, including insect growth, energy metabolism, and
detoxification (Claeys et al., 2002; Wu and Brown, 2006; Kawada
et al., 2010; Fujisawa and Hayakawa, 2012). Many studies in
different metazoan species have indeed demonstrated that not
only the insulin-related peptides are evolutionarily conserved,
but also the components of their signaling pathway, such as
IGF/INSR/IRS/PI3K/PDK/AKT/FOXO (Figure 1), which play an
important role in insulin resistance, are also conserved (Sim and
Denlinger, 2008; Badisco et al., 2013). Insulin signaling can be
delivered by phosphorylation or dephosphorization of proteins,
such as INSR/IRS/AKT/FOXO (Kramer et al., 2008; Hedrick,
2009). ILP changes associated with diet stress can influence
insect growth (Kawada et al., 2010; Fujisawa and Hayakawa,
2012; Badisco et al., 2013), which can potentially affect pest
distribution or even plague outbreaks. However, the role of the
ILP signaling pathway in regulating pest plague outbreaks is
poorly understood.

FIGURE 1 | IGF-PI3K-AKT-FOXO pathway of insulin signaling. The insulin-like
signaling system includes different well-defined ligands, such as insulin-like
growth factor (IGF), which regulate the activity of the homologous insulin
receptor INSR. Insulin receptor substrate (IRS) proteins act as messenger
molecule-activated receptors to signaling, and which is an important step in
insulin’s action. Phosphoinositide 3-kinase (PI3K),
3-phosphoinositide-dependent protein kinase (PDK), and protein kinase B
(AKT), three major nodes downstream of IRS, and have been implicated in
many of the metabolic actions of insulin. The forkhead transcription factor
(FOXO) regulates transcription of genes involved in stress resistance,
xenobiotic detoxification and DNA repair. FOXO is negatively regulated by
insulin-like signaling when the PI3K→ AKT cascade stimulates
phosphorylation of FOXO and promotes its secretion from the nucleus and
inactivation in the cytosol.
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Oedaleus asiaticus Bey-Bienko is a specialist grass-feeder,
with preference for Poaceae species, particularly Stipa krylovii
Roshev (Poaceae) (Zhang et al., 2013; Qin et al., 2017). It is a
member of the subfamily Oedipodinae (Orthoptera: Acrididae:
Oedipodinae), and a dominant grasshopper of northern Asian
grasslands, generally distributed in Inner Mongolia of north
China (Cease et al., 2012; Zhang et al., 2014). Outbreaks of
O. asiaticus have often lead to significant loss in grasses and
economic disruption (Liu et al., 2013). From routine surveys
of plant and grasshoppers composition in Stipa (S. krylovii)
and Leymus (Leymus chinensis) (Trin.) Tzvelev (Poales: Poaceae)
grasslands (Han et al., 2008), we found that O. asiaticus was
mainly confined to the former (Huang et al., 2016, 2017a). In
addition, we also found that the presence of plant secondary
metabolites in L. chinensis can have a negative impact on
O. asiaticus growth parameters (Huang et al., 2017a), while
acting as a catalyst to drive grasshopper migration and plague
outbreak. In the present study, we investigated how diet stress
influences insect growth, distribution, and the ILP, to decipher
the relationship between diet stress and pest outbreaks. We
also discuss the role of diet stress in driving pest plague
outbreaks, and how this information provides new insights into
pest management.

MATERIALS AND METHODS

Ethics Statement
Insects (O. asiaticus) were collected from the Xilin Gol grassland
from 2011 to 2017. It is a common agricultural pest and not in the
“List of Protected Animals in China.” No permits were required
for the described field studies.

Study Area
The research grassland (E115◦13′–117◦06′, N43◦02′–44◦52′) is
located in the Xilin Gol League, Inner Mongolia, northeast China.
This grassland is a region representative of the Eurasian steppe
grassland and characterized by L. chinensis- and S. krylovii -
dominated plant communities (Han et al., 2008). The above-
ground biomass of these two plants accounts for more than 80%
of the total community production (Huang et al., 2016). Plants
in this grassland cover only 30 to 40% of the ground area with
the remainder being bare ground for rapid steppe degradation in
part driven by livestock over-grazing (Chen and Wang, 2000; Han
et al., 2008). O. asiaticus is the dominante grasshopper species
(Guo et al., 2006), and generally hatches between late-May and
late-June, reaching adulthood between early to late July (Huang
et al., 2016). This grasshopper mainly feeds on Poaceae species,
particularly S. krylovii (Wu et al., 2012; Zhang et al., 2013).

Large-Scale Survey of Plant Biomass
and O. asiaticus Density on Grazed
Grassland
We examined the relationship between above-ground plant
biomass composition and O. asiaticus density in this grazed
grassland area, in mid-July for each year from 2011 to 2017. Those

areas were mainly dominated by S. krylovii and L. chinensis, with
rare distribution of other plant species. Each year, we selected
eight 1 km2 sample plots (∼10 km apart). In each plot, we
selected five 1-m2 quadrats (∼50 m apart) randomly. Grass
S. krylovii and L. chinensis plants within each quadrat were cut
to ground level and placed separately into envelopes. Those
collected grass were dried at 90◦C for 24 h, and weighed to
provide the relative mean above ground biomass (g DM/m2) of
the two plant species for each plot.

We estimated the relative density of the grasshopper
O. asiaticus in each plot in mid-July for each year 2011 to 2017,
using the same method described in our previous published paper
(Huang et al., 2016). We averaged the four samples in each plot,
to derive a relative O. asiaticus density (number of individuals per
100 sweep-nets) for each of the eight plots in each year.

Sampling produced eight means (one for each of the eight
1 km2 plots) for both grass species and O. asiaticus relative
densities for each year from 2011 to 2017.

Cage Study of O. asiaticus Growth in
Grassland
To study O. asiaticus growth for different host plant species, a
field cage study was carried out on S. krylovii and L. chinensis
grasslands during late June of both 2016 and 2017. In each of
those two grasslands, all of the other plants were removed to
assure that only one host plant remained. We constructed 10
screen cages (1 m × 1 m × 1 m) using iron rod frames covered
with 1 mm2 cloth mesh. In each plant species, five cages were used
as the biological replicates. All of the visible spiders and other
natural enemies in the field cages were removed carefully before
adding female 4th instar O. asiaticus.

We collected 4th instar O. asiaticus nymphs by sweep net from
the grassland mainly containing these two grasses on 21 June,
2016 and 2017. Those collected individuals were then temporarily
maintained in metal-frame cages and starved for 24 h. Then,
female 4th instar O. asiaticus nymphs (total 160 individuals)
were assigned to the 10 field cages (16 individuals per cage)
randomly. Those experimental individuals were selected to be
as uniform in size as possible, with fresh body mass weighed
and verified by ANOVA to confirm there were no significant
differences in the weight of O. asiaticus nymphs amongst the four
treatments. Besides, we killed another cohort of 30 O. asiaticus
4th instar females by chloroform and dried them at 90◦C for
24 h. Those dried grasshoppers were individually weighed (mg),
and a mean dry mass determined to serve as the baseline data.
Once grasshoppers were assigned to every cage, we checked field
cages to monitor survival every day. In each cage, grasshoppers
were able to feed ad libitum on grass. The plant biomass in the
cages could provide sufficient food to allow development through
to adults. When all of the surviving individuals became female
adults, they were also killed and dried using the same method
above to get adult dry mass (mg). Adult body dry mass was used
to calculate grasshopper increased body mass (mg) by subtracting
the 4th instar body dry mass. Grasshopper survival rate (%)
was calculated by the number of adult individuals / number
of initial individuals (n = 16). Grasshopper development time
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(days) was calculated by the following formula: DT =
∑n

i=1 i
∗Ni

Nt
,

where i is the number of days from 4th instar to adult; Ni is the
number of individuals with the development time corresponding
to the value of “i”; and Nt is the number of adult individuals
(Huang et al., 2016). Grasshopper growth rate (mg/day) was
calculated by increased body dry mass / development time, and
overall performance calculated from growth rate × survival rate
(Cease et al., 2012).

Grass Chemical Traits
In 2017, we cut the remaining plants from each cage at
ground level after removing the adults. Each species were
placed in a separate plastic container and used to detect the
starch, nitrogen, and lipid content by Iodine-starch colorimetric
method, Kjeldahl method, and Soxhlet extraction method,
respectively. We then estimated crude protein content of
each plant sample by 6.25 × nitrogen content (Bawa and
Yadav, 1986). We also detected plant secondary compounds
(tannins, phenols, alkaloids, terpenoids, and flavonoids) content
in each sample by high performance liquid chromatography
(HPLC), using the same method described in previous published
papers (Ossipov et al., 1995; Griffin et al., 1999; Naczk, 2004;
Friedman et al., 2006; Guo, 2007).

Gene Expression of ILP
We investigated seven genes of O. asiaticus ILP signaling
pathway (IGF, INSR, IRS, PI3K, PDK, AKT, and FOXO) to
compare their relative expression when exposed to different plant
species. Unigene sequences were acquired from our previous
transcriptome profiles (RSA accession number SRP072969) to
design gene-specific primers (Supplementary Table S1). We
randomly collected one adult sample from each replicate of
the two treatments (10 samples). The relative expression of
these genes was analyzed by qRT-PCR, using the same method
described in our previous published paper (Huang et al., 2017b).
Then, relative gene expression was normalized by the internal
standard (actin), and calculated using the 2−11CT Method.
Expression values were adjusted by setting the expression of
O. asiaticus feeding on S. krylovii to be one for each gene. All qRT-
PCRs for each gene with 10 samples (five biological replicates for
each treatment) used 3 technical replicates per experiment.

Protein Phosphorylation Analysis
We used the rapid ELISA-Based Measurement to detect the
protein phosphorylation of IRS, INSR, AKT, and FOXO in the
insect ILP. Grasshopper samples were homogenized in 1 ml
PBS, and the resulting suspension subjected to ultrasonication to
further break the cell membranes. After that, we centrifuged the
homogenates for 15 min at 5000 rpm, collected the supernatants
and stored at−20◦C until required for further analysis.

We prepared all of the reagents (Supplementary Table S2)
and brought all of the reagents and samples to room temperature
(18◦C−25◦C). After 30 min at room temperature, we added
50 µl standard to each standard well, 50 µl sample to each
sample well and 50 µl sample diluent to each blank/control well.
Then, 100 µl of HRP-conjugate reagent was added to each well,

and covered with an adhesive strip and incubated for 60 min
at 37◦C. The Microtiter Plate was washed 4 times using Wash
Buffer (undiluted), and then 50 µl Chromogen Solution A and
50 µl Chromogen Solution B was sequentially added to each
well. This was then gently mixed and then incubated for 15 min
at 37◦C in dark, after which 50 µl Stop Solution was added
to each well. A change in the color of the solution from blue
to yellow was expected. If the color in the wells was green or
the color change did not appear uniform, the plate was gently
taped to ensure thorough mixing. The Optical Density (O.D.)
at 450 nm was read using a Microelisa Stripplate reader within
15 min of adding the Stop Solution. Then, we constructed the
standard curve of each protein, and calculated the amount of
phosphorylated protein in each sample.

Data Analysis
Student’s t test was used to compare grasshopper growth variables
(body size, survival rate, development time, growth rate, and
overall performance), protein phosphorylation level, and relative
gene expression. Linear regression was used to analyze the
growth, distribution, ILP gene expression, and phosphorylation
to grass chemical content in O. asiaticus. We used SAS version
8.0 for these analyses.

RESULTS

Chemical Traits of Stipa krylovii and
Leymus chinensis Grasses
The main nutrition and secondary metabolites were different in
the two plant species (Figures 2, 3). The highest starch content
(t = 3.805, df = 8, P = 0.005) was present in S. krylovii, and the
highest crude protein content (t = 4.085, df = 8, P = 0.004) was
present in L. chinensis (Figure 2). The sum of the three nutritive
substances (crude protein, lipid, and starch) was not significantly
different between the two species.

For the five secondary metabolites, L. chinensis had higher
levels of alkaloids (t = 9.440, df = 8, P < 0.001), tannins
(t = 8.534, df = 8, P < 0.001), and terpenoids (t = 8.149, df = 8,
P < 0.001) than S. krylovii. The total amount of all five secondary

FIGURE 2 | Percentage (±SD, %) of nutrition components (starch, lipid, and
crude protein) in the grass species L. chinensis and S. krylovii. ∗ indicates
P < 0.05 (t test).

Frontiers in Physiology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 531

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00531 May 2, 2019 Time: 17:43 # 5

Li et al. Secondary Metabolites and Grasshopper Plague

FIGURE 3 | Percentage (±SD, %) of secondary metabolites (terpenoids,
tannins, phenols, alkaloids, and flavonoids) in the grass species S. krylovii and
L. chinensis. ∗ indicates P < 0.05 (t test).

metabolites was highest in L. chinensis (t = 11.099, df = 8,
P < 0.001) (Figure 3).

Relationship Between O. asiaticus
Performance and Grass Chemical
Composition
The mean survival rate (Figure 4A) (2016: t = 7.732, df = 8,
P < 0.001; 2017: t = 6.641, df = 8, P < 0.001), developmental
time (t = 4.647, df = 8, P = 0.002; t = 5.077, df = 8, P = 0.001)
(Figure 4B), adult fresh mass (t = 10.521, df = 8, P < 0.001;
t = 13.311, df = 8, P < 0.001) (Figure 4C), growth rate (t = 7.838,
df = 8, P < 0.001; t = 13.311, df = 8, P < 0.001) (Figure 4D),
and overall performance (t = 7.732; df = 8; P < 0.001; t = 5.949;
df = 8; P < 0.001) (Figure 4E) of O. asiaticus were significantly
lower in insects that fed on L. chinensis, compared to those that

FIGURE 4 | (A) Mean survival rate of O. asiaticus from fourth instar to adult, (B) mean dry mass (mg) of adults, (C) mean developmental time (days) from fourth instar
to adult, (D) growth rate (mg/day), and (E) overall performance when fed on S. krylovii (Sk) or L. chinensis (Lc). Data are mean ± SD. ∗ indicates P < 0.05 (t test).
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fed on S. krylovi. Feeding on L. chinensis provided less benefit
for O. asiaticus growth and development. There was a significant
negative linear relationship between grasshoppers and total
plant secondary metabolites (Figure 5; R2 = 0.893, F = 76.095,
P < 0.001). Based on these results, we concluded that S. krylovi
with less secondary metabolites resulted in better grasshopper
growth. Conversely, high levels of secondary metabolites in
L. chinensis, created a higher level of dietary stress, which lowered
growth of O. asiaticus.

Relationship Between O. asiaticus
Density and Grass Chemical Traits in
Field Habitat
Survey results of 7 years showed that the relative density
of O. asiaticus exhibited a significant positive relationship to
S. krylovii above-ground biomass (Figure 6, linear correlation:
y = 0.1886x+ 0.7506, R2 = 0.365, N = 56, F = 31.006, and

FIGURE 5 | Relationship between grasshopper overall performance and plant
chemical composition. Red circles indicate total nutrition, and blue triangles
indicate total secondary metabolites.

FIGURE 6 | Relationship between the relative density of O. asiaticus (mean
number of individuals per 100 sweep-nets) and mean above-ground biomass
(g/m2) of S. krylovii (red circles) and L. chinensis (blue circles). Data combined
from measurements recorded from 2011 – 2017 (N = 8 means per year), with
2011–2014 values from our published data.

P < 0.001). In contrast, the relative density of O. asiaticus was
significant negative related to L. chinensis above-ground biomass
(Figure 6, power correlation: y = 13.393x−0.523, R2 = 0.283,
N = 56, F = 21.298, and P < 0.001).

We also used above plant chemical data to evaluate total
chemical traits of surveyed grassland. There was significant
multiple linear relationship between grasshopper density and
variable nutrition (x1) and secondary metabolites (x2) (Figure 7;
y = 1.11x1 − 49.435x2 + 6.687, R2 = 0.366, F = 15.285, and
P < 0.001). From the standardization regression coefficient
(x1 = 0.638, x2 = 0.624), we concluded that the content
of secondary metabolites had the largest effect (negative) on
grasshopper density.

Change in O. asiaticus ILP Due to Diet
Stress
Gene Expression
qRT-PCR to determine the relative expression of seven genes in
ILP signaling pathway indicated that the genes IGF (t = 8.472,
df = 8, P < 0.001), INSR (t = 17.851, df = 8, P < 0.001),
IRS (t = 14.951, df = 8, P < 0.001), PI3K (t = 14.951,
df = 8, P < 0.001), PDK (t = 8.944, df = 8, P < 0.001), AKT
(t = 10.633, df = 8, P < 0.001), and FOXO (t = 6.529, df = 8,
P < 0.001) were significantly down-regulated in O. asiaticus that
fed on L. chinensis (Figure 8). Grass secondary metabolites also
exhibited a significant negative relationship (Figure 9) to the
gene expression of IGF (R2 = 0.832, F = 39.626, P < 0.001),
INSR (R2 = 0.890, F = 65.039, P < 0.001), IRS (R2 = 0.893,
F = 76.095, P < 0.001), PI3K (R2 = 0.810, F = 34.016,
P < 0.001), PDK (R2 = 0.884, F = 60.782, P < 0.001), AKT
(R2 = 0.866, F = 60.123, P < 0.001), and FOXO (R2 = 0.720,
F = 20.565, P = 0.002). Based on this evidence, we concluded that
S. krylovi with less secondary metabolites determined the high
gene expression involved in grasshopper ILP. But, L. chinensis

FIGURE 7 | Relationship between relative density of grasshopper O. asiaticus
(mean number of individuals per 100 sweep-nets) and chemical traits (g/m2).
Red circles indicate total nutrition, and blue circles indicate total secondary
metabolites.
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FIGURE 8 | Relative expression (±SD) of seven genes of ILP in grasshopper, O. asiaticus, that fed on S. krylovii (Sk), and L. chinensis (Lc). ∗ indicates P < 0.05 (t
test). IGF (A), insulin-like growth factor; INSR (B), homologous insulin receptor; IRS (C), insulin receptor substrate; PI3K (D), phosphoinositide 3-kinase; PDK (E),
3-phosphoinositide-dependent protein kinase; AKT (F), protein kinase B; and FOXO (G), forkhead transcription factor.

with high secondary metabolites, induced dietary stress and
down-regulated gene expression in the grasshopper.

Protein P- Level of ILP
ELISA to determine the phosphorylation level of four proteins in
ILP signaling pathway indicated that INSR (t = 3.0269, df = 8,
P = 0.016), IRS (t = 3.247, df = 8, P = 0.012), AKT (t = 7.237,
df = 8, P < 0.001), and FOXO (t = 7.498, df = 8, P < 0.001)
were phosphorylated at the lowest levels in O. asiaticus fed on
L. chinensis (Figure 10). Grass secondary metabolites exhibited
a significant negative relationship to phosphorylation levels of
INSR (R2 = 0.462, F = 6.811, P = 0.03), IRS (R2 = 0.509,
F = 8.212, P = 0.021), AKT (R2 = 0.925, F = 98.120, P < 0.001),

and FOXO (R2 = 0.901, F = 72.656, P < 0.001) (Figure 11).
Based on these results, we concluded that low levels of secondary
metabolites produced by S. krylovi determined the high protein
phosphorylation level of proteins involved in ILP. But high levels
of secondary metabolites found in L. chinensis, acted as a dietary
stress, and down-regulated protein phosphorylation level.

DISCUSSION

Migration or plague of grasshoppers generally can cause
massive agricultural damage, and lead to tremendous economic
losses (Stige et al., 2007; Liu et al., 2013). To achieve
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FIGURE 9 | Relationship between relative gene expression in grasshopper and chemical traits in plants (%). Red circles indicate total nutrition, and blue circles
indicate total secondary metabolites. IGF (A), insulin-like growth factor; INSR (B), homologous insulin receptor; IRS (C), insulin receptor substrate; PI3K (D),
phosphoinositide 3-kinase; PDK (E), 3-phosphoinositide-dependent protein kinase; AKT (F), protein kinase B; and FOXO (G), forkhead transcription factor.

the control of pest species, it is essential to understand
the factors that lead to migration and plague outbreaks.
Plant species in the grassland could significantly influence
population dynamics and spatial distribution of grasshoppers
(Unsicker et al., 2010; Masloski et al., 2014). Some plant
species are strong attractive or indispensable to some specific
herbivore species, and may contribute to or even accelerate

pest plague outbreaks or migration (Schutz et al., 1997; Scriber,
2002; Powell et al., 2006). Understanding the relationship of
grasshoppers with their host plant species has great significance
for improving management strategies (Cease et al., 2012;
Huang et al., 2016).

Interactions between plants and insects are among the closest
and most dynamic ecological relationships in nature, with both
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FIGURE 10 | Phosphorylation level (pg/g) of four proteins of ILP in O. asiaticus
that fed on S. krylovii (Sk) and L. chinensis (Lc). ∗ indicates P < 0.05 (t test).
P-INSR (A), Phosphorylated homologous insulin receptor; P-IRS (B),
Phosphorylated insulin receptor substrate; P-AKT (C), Phosphorylated protein
kinase B; and P-FOXO (D), Phosphorylated forkhead transcription factor.

taxa exerting mutual effects on one another. Such relationships
can vary from beneficial to detrimental, as observed in both
S. krylovii and L. chinensis in our present and previous studies

(Huang et al., 2016, 2017a). Both S. krylovii and L. chinensis are
dominant and widely distributed grasses across Inner Mongolia
grasslands, with their above-ground biomass accounting for
the most of the total community production (Huang et al.,
2016). Interestingly, these two grasses had opposite roles in
grasshopper migration and plague. Grasshoppers that fed on
L. chinensis had reduced growth variables (size, growth rate,
development, and survival) compared to those fed on S. krylovii,
which indicated that L. chinensis was unsuitable for O. asiaticus
compared to S. krylovii. These results are consistent with
previous studies (Wu et al., 2012; Zhang et al., 2013), which
also indicated that S. krylovii was the best food resource and
a preferred plant host for O. asiaticus grasshopper. In the
field, we also found that dry matter consumption and loss
was highest for S. krylovii and that grasshoppers generally
avoided L. chinensis.

In the present study, 7 years of extensive monitoring also
showed that O. asiaticus density positively correlated with the
above-ground biomass of S. krylovii, and negatively correlated
with L. chinensis above-ground biomass. GrasshopperO. asiaticus
mainly distributed in S. krylovii dominated grassland, with a
lower distribution in Leymus-dominated grassland, a relationship
also reported by other researchers, who found that grasshopper
plague outbreaks usually occurred in Stipa-dominated grasslands
(Cease et al., 2012). Wu et al. (2012) used redundancy analysis
and Huang et al. (2015) used the projection pursuit model
and showed that the existence of S. krylovii positively affected

FIGURE 11 | Relationships between protein phosphorylation level (pg/g) of ILP and grass chemical traits in plants (%). Red dots indicate total nutrition; blue dots
indicate total secondary metabolites. P-INSR (A), Phosphorylated homologous insulin receptor; P-IRS (B), Phosphorylated insulin receptor substrate; P-AKT (C),
Phosphorylated protein kinase B; and P-FOXO (D), Phosphorylated forkhead transcription factor.
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FIGURE 12 | Illustration of the ‘push-pull’ roles of L. chinensis and S. krylovii
to O. asiaticus migration and plague.

O.asiaticus density in Inner Mongolia grassland, while
L. chinensis had a negative effect on O. asiaticus density.
Based on the perspective of grasshopper biology, S. krylovii is the
favorable host plant while L. chinensis is a detrimental host plant.

Based on those researches that focused on plant associations
and grasshopper performance or distribution, we hypothesized
that S. krylovii, acts as the ‘pull,’ and the L. chinensis, as a ‘push,’
which contributes to grasshopper migration and consequently
aggravates plague outbreaks in S. krylovii-dominated grassland
(Figure 12). Particularly under the background of climate change
(Stige et al., 2007), those areas of Stipa-dominated grasslands
are the potential regions of O. asiaticus expansion or plague,
such as the northern China, Siberia, Mongolia, Kazakhstan (Chen
and Wang, 2000; Han et al., 2008). So, the monitoring and
control of grasshopper O. asiaticus should be strengthened in
those areas. Besides, the opposite function and role of these
two grasses implied that the ‘push-pull’ strategy (Cook et al.,
2007) would be a potential management tool to control future
grasshopper outbreak.

The reasons underpinning the buildup of insect populations
can be related to chemical traits of plants, such as the
presence of important nutrients and plant secondary metabolites
(Mendelsohn and Balick, 1995; Raymond et al., 2004). Available
protein, carbohydrate and lipid content are important for insect
herbivores growth (Simpson et al., 2004). They have well-defined
nutritional requirements (Behmer, 2009), and generally prefer
plants with suitable nutritional qualities, as the optimal food
(Bernays et al., 1994; Powell et al., 2006). The availability of
such plants may increase the probability of pest population
outbreaks. Plant secondary metabolites, such as tannins, phenols,
flavonoids, alkaloids, terpenoids, and glucosinolates, generally
function as toxins or repellents (Despres et al., 2007). Those
metabolites are detrimental to insect growth (Bernays and
Chapman, 1994; Pérez et al., 2003; Unsicker et al., 2008). So,
reducing access to key nutrients or increased levels of secondary
compounds may decrease the probability of pest population
outbreaks (Simpson et al., 2004; Cease et al., 2012). In the
present study, we found that grasshopper density was positively
related to nutrition content, but negatively related to secondary
metabolites, which suggested that grasshopper plague events were
confined to habitats providing high nutrition and low toxin
levels whereby growth and development is optimal. These results
are also supported by the general hypothesis that nutritious
habitats benefit insect growth, but plant secondary compounds
have detrimental effects on growth (Behmer, 2009; Despres et al.,
2007; Wetzel et al., 2016). Dietary stress resulting from feeding
on plants containing high levels of secondary metabolites could
well explain the poor growth performance and low distribution
of grasshopper, O. asiaticus, when confronted with L. chinensis,
consequently resulting in the push role of L. chinensis. In
contrast, S. krylovii, a preferred host species containing few
secondary metabolites, benefited grasshopper growth and plague,
and consequently acting as the pull.

Gene expression and related enzyme function were the
underpinning mechanism of insect performance variations
(Bishop and Guarente, 2007; Taguchi and White, 2008;

FIGURE 13 | Regulation of gene expression (A) and protein phosphorylation level (B) of ILP (IGF→ FOXO cascade) during different diet stress. IGF, insulin-like
growth factor; INSR, homologous insulin receptor; IRS, insulin receptor substrate; PI3K, phosphoinositide 3-kinase; PDK, 3-phosphoinositide-dependent protein
kinase; AKT, protein kinase B; and FOXO, forkhead transcription factor.
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Roy et al., 2016). Diet stress from plant chemical exposure can
also result in different gene expression of insect herbivores
(Badisco et al., 2013; Roy et al., 2016; Huang et al., 2017b).
For example, the gene expression patterns of digestive and
detoxifying enzymes, immunity, transporters, and peritrophic
membrane associated transcripts varied significantly in
Spodoptera spp when confronted with different diet stress (Janz
and Nylin, 2008; Ragland et al., 2015; Roy et al., 2016). Those
changed genes were the basis of genetic adaptation, and allowed
the rapid induction of arrays of broader or more robustly
active digestive or detoxifying enzymes in herbivores after
the consumption of toxic plants (Bishop and Guarente, 2007;
Despres et al., 2007). Such as, the gene expression and activity
of CYP450s, glutathione-S-transferase, and carboxylesterase
were generally positively correlated to levels of secondary plant
metabolites (Despres et al., 2007; Roy et al., 2016). These
rapid biochemical responses to diet stress from changing plant
chemical traits are vital for insect survival and growth. From
our previous study (Huang et al., 2017b), we also found that
grasshoppers feeding on L. chinensis had high gene expression
and enzyme activity associated with detoxification, which
implies that grasshopper survival requires greater consumption
to detoxify these compounds and consequently resulting in
reduced phenotypic parameters (Karban and Agrawal, 2002;
Castañeda et al., 2010), such as size and growth rate compared
to grasshoppers feeding on a suitable host species. For example,
S. krylovii has lower levels of secondary metabolites, grasshoppers
feeding on this plant produce fewer detoxifying enzymes, and was
required to expend less excess energy to survive. Consequently,
the higher survival and growth rates contributed to plague
outbreaks in S. krylovii-dominated grassland.

Gene expression of detoxification was mainly regulated by the
ILP signaling pathway IGF→ FOXO (Wolkow et al., 2002; Wu
and Brown, 2006; Badisco et al., 2013). The high phosphorylation
level of FOXO generally down-regulated the expression of
detoxification-related genes, with dephosphorylated FOXO (low
phosphorylation level) having the opposite effect (Bishop and
Guarente, 2007; Kramer et al., 2008; Taguchi and White, 2008;
Hedrick, 2009; Ragland et al., 2015). We found that high
levels of secondary metabolites in L. chinensis significantly
down-regulated gene expression and phosphorylation of the
IGF → FOXO cascade (Figure 13), which could promote
gene expression of detoxification enzymes in O. asiaticus
that fed on L. chinensis. In addition, the significantly down-
regulated genes, IGF/INSR/IRS/PI3K/PDK/AKT, could also
down-regulate growth-related gene expression, which is also
generally detrimental to insect growth. The down-regulated ILP
indicated poor adaptation of grasshopper to L. chinensis. These

important gene variations revealed why grasshoppers prefer
S. krylovii, and avoid L. chinensis.

CONCLUSION

In conclusion, the grass L. chinensis contains high levels of
secondary metabolites that down-regulated the ILP signaling
pathway, resulting in the poor growth of O. asiaticus grasshopper,
consequently driving migration to S. krylovii-dominated
grassland. Therefore, we conclude that grasshoppers have an
intelligent compromise to energy demand and detoxification
cost, and propose a hypothesis that dietary stress from secondary
metabolites contributes to grasshopper, O. asiaticus, migration,
and plague outbreaks by regulating insect ILP.
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