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Yield prediction is a key factor to optimize vineyard management and achieve the desired
grape quality. Classical yield estimation methods, which consist of manual sampling
within the field on a limited number of plants before harvest, are time-consuming and
frequently insufficient to obtain representative yield data. Non-invasive machine vision
methods are therefore being investigated to assess and implement a rapid grape yield
estimate tool. This study aimed at an automated estimation of yield in terms of cluster
number and size from high resolution RGB images (20 MP) taken with a low-cost UAV
platform in representative zones of the vigor variability within an experimental vineyard.
The flight campaigns were conducted in different light conditions and canopy cover
levels for 2017 and 2018 crop seasons. An unsupervised recognition algorithm was
applied to derive cluster number and size, which was used for estimating yield per
vine. The results related to the number of clusters detected in different conditions, and
the weight estimation for each vigor zone are presented. The segmentation results in
cluster detection showed a performance of over 85% in partially leaf removal and full ripe
condition, and allowed grapevine yield to be estimated with more than 84% of accuracy
several weeks before harvest. The application of innovative technologies in field-
phenotyping such as UAV, high-resolution cameras and visual computing algorithms
enabled a new methodology to assess yield, which can save time and provide an
accurate estimate compared to the manual method.

Keywords: UAV, computer vision, high throughput field-phenotyping, yield estimation, unsupervised detection

INTRODUCTION

Grapes are one of the most widely grown fruit crops in the world: vineyards cover a total area of 7.5
million hectares and produce a total yield of 75.8 million metric tons, of which 36% are fresh grapes,
8% raisins and 48% wine grapes (International Organisation of Vine and Wine [OIV], 2017).

Monitoring and grading in-field grape ripeness and health status is extremely important for
valuable production, for both the table grape and premium wine markets (Bindon et al., 2014;
Ivorra et al., 2015; Portales and Ribes-Gomez, 2015; Pothen and Nuske, 2016). As for other
crops, the yield monitoring in terms of cluster number and size is key information in viticulture
(Fanizza et al., 2005; Cabezas et al., 2006; Costantini et al., 2008). Traditionally, the yield prediction
is conducted manually and routinely evaluated by visual or destructive methods, like those
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proposed by the International Organisation of Vine and Wine
[OIV] (2007), which may involve problems such as low efficiency
in terms of time and sampling representativeness (Pothen and
Nuske, 2016). Moreover, yield evaluation with visual inspection
by means of cluster counting and size estimation is subjective
resulting in error variations between the results of different
people (Roscher et al., 2014).

Field conditions, frequently on a slope and plowed soil,
cause measurement difficulties, especially in the summer due
to extremely high temperature. In that respect, advances in
technology are key to the future of agriculture. Computer
vision is a powerful tool for measuring dimensions and size
distribution of shaped particles. Specific user-coded computer
vision applications of particle size may require advanced
programming using a proprietary programming language
environment such as Visual C or MATLAB with specialized
image processing toolboxes (Igathinathane et al., 2008). ImageJ
is a Java-based, multithreaded, freely available, open source
platform, independent and public domain image processing
and analysis program developed at the National Institutes of
Health (NIH), United States (Schneider et al., 2012). ImageJ
has a built-in option for analyzing particles, which produces
output parameters such as number of particles, areas, perimeters,
and major and minor axes. In our study, the shaped particles
are vine clusters. This software provides many image analysis
tools, including algorithms based on threshold detection value
to generate the binary image used for segmentation. Otsu’s
threshold is one of the most widely used threshold techniques for
the vegetation segmentation process (Ling and Ruzhitsky, 1996;
Shrestha et al., 2004). Gebhardt et al. (2006) converted the RGB
images into grayscale generating local homogeneity images to
detect a homogeneity threshold.

The main limitation of threshold techniques is stability of the
binarization accuracy of the system, as any mis-segmentation is
generally caused by an error in the detected threshold. So, if the
detected threshold is not appropriately estimated, the generated
segmentation process will be strongly affected. Another issue
is related to the effect of light conditions on the vegetation
segmentation results obtained, particularly in sunny and overcast
conditions. The use of different color spaces instead of RGB
can overcome the unwanted light effects. A widely used color
model is the LAB color model, whose coordinates represent the
lightness of the color (L∗), its position between magenta and
green (a∗) and between yellow and blue (b∗). The LABFVC
algorithm proposed by Liu et al. (2012) is an automatic Fractional
Vegetation Cover (FVC) extracting algorithm for digital images
and is based on the premise that the representations of
vegetation and soil in the LAB color spaces approximately follow
Gaussian distributions. Song et al. (2015) proposed a modified
methodology based on LABFVC algorithm as automatic shadow-
resistant algorithm in the LAB color space (SHAR–LABFVC).
Yang et al. (2015) suggested an HSV (hue, saturation, value)
color space method for greenness identification of maize seedling
images acquired outdoors.

Computer vision has also been widely applied for size and
weight evaluation because it is non-destructive and highly
efficient (Costa et al., 2011; Cubero et al., 2011; Hao et al., 2016).

In agriculture and the food industries, due to recent advances
in computing and robotics, most computer vision applications
are related to the measurement of external properties, such as
color, size, shape and defects of fruits, vegetables, fish and eggs
(Zhang et al., 2014; Soltani et al., 2015; Moallem et al., 2017;
Su et al., 2017).

The literature reports several attempts, with the use of
computer vision, to characterize morphological attributes of
grapes (Wycislo et al., 2008; Miao et al., 2012), to evaluate
different cluster and berry traits (Kicherer et al., 2013; Cubero
et al., 2014; Diago et al., 2014; Roscher et al., 2014; Tello and
Ibanez, 2014; Aquino et al., 2017) and to assess the number
of grapevine flowers per inflorescence (Diago et al., 2014;
Aquino et al., 2015).

Recently, research has focused on estimating grape yield
components using stereo vision (Ivorra et al., 2015) and
comparing 2D imaging technology with direct 3D laser scanning
system (Tello et al., 2016). The latter successfully achieved a
geometric reconstruction of the morphological volume of the
cluster from 2D features, which also proved to work better
than the direct 3D laser scanning system. All these studies were
conducted in the lab on grape samples collected manually, while
image processing has been used successfully in the field with
prototype rovers or tractors to assess key canopy features, such
as yield (Dunn and Martin, 2004; Nuske et al., 2011; Diago
et al., 2012; Nuske et al., 2014; Aquino et al., 2018) and leaf
area (Tardaguila et al., 2012). Moreover, recent papers (Herzog
et al., 2014; Roscher et al., 2014; Kicherer et al., 2015) have
reported some initial results on the application of image analysis
for high-throughput phenotyping in vineyards. Those solutions
demonstrated high performance and weak points such as the long
monitoring time due to slow forward speed and problems related
to soil trafficability. Furthermore, those solutions enhanced
image quality using artificial light in the night time condition,
with all the related risks for operators in a sloping vineyard or
in narrow vineyard rows.

The above papers proved that this new framework, based on
computing-robotics-machine vision, can be applied successfully
for the evaluation of cluster attributes and components. In
addition, precision viticulture is experiencing substantial growth
due to the availability of improved and cost-effective instruments
such as UAVs (Unmanned Aerial Vehicles; Matese et al., 2015).
It has been demonstrated that rapid technological advances in
unmanned aerial systems foster the use of these systems for a
plethora of applications (Gago et al., 2015; Pôças et al., 2015;
Bellvert et al., 2016; Di Gennaro et al., 2016; Poblete-Echeverría
et al., 2017; Romboli et al., 2017; Santesteban et al., 2017;
Matese and Di Gennaro, 2018), opening also new perspectives to
traditional remote sensing (Sun and Du, 2018).

The aim of this study was to develop a fast and automated
methodology to provide an early yield evaluation (pre-harvest) in
support of vineyard management. The UAV approach described
allows a fast monitoring taking into account a few images
acquired in representative points of vineyard variability, which
is fundamental to export this application to a large vineyard
with moderate times for monitoring and image processing. This
method aims to provide useful information, overcoming the
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limits of ground observations (soil trafficability and forward
speed). To our knowledge, this is the first study to apply
these technologies in a partially defoliated vineyard with vertical
pruning system (VPS), while a first attempt was successfully
applied to detect melons in pre-harvest (Zhao et al., 2017).
The proposed methodology was evaluated with high resolution
RGB images acquired by UAV in a vineyard located in Tuscany
(Italy), with a commercial digital camera and without the help of
artificial light.

MATERIALS AND METHODS

Case Study and Experimental Design
The research was undertaken during 2017 and 2018 seasons in a
1.4 ha vineyard (43◦25′45.30′′N, 11◦17′17.92′′E) planted in 2008
and located in Castellina in Chianti (Chianti domain, central
Italy; Figure 1A). Sangiovese cv. (Vitis vinifera) vines were
trained to a vertical shoot-positioned trellis and spur-pruned
single cordon with four two-bud spurs per vine. Vine spacing
was 2.2 m × 0.75 m (inter-row and intra-row), rows were NW-
SE oriented, and the vineyard was on a slight southern slope at
355 m above sea level. Pest, soil and canopy management were
performed following the farm practices.

A preliminary flight campaign on the vineyard was performed
with a UAV platform on June 27th 2017, which is a key period
in this winemaking area for estimation of vine vigor variability
(Romboli et al., 2017). Remote sensing multispectral images
were collected in order to characterize vigor spatial variability
and identify representative vigor zones for the grape detection
analysis. Within the representative zones of high and low vigor,
five vines were selected in each zone. On August 9th those vines
were monitored by a UAV equipped with an RGB camera to
assess tool performance in cluster detection in two different light
conditions combined with two different leaves management: (i)
target shaded by leaves and shadow, (ii) target partially free of
leaves and directly illuminated by the sun. Those conditions were
evaluated performing a flight before (i) and after (ii) a partial
defoliation, which was done by removing the leaves in the fruiting
zone from just one side of the row, to maintain partial cluster
protection and not excessively alter the vegetative-productive

balance of plants. This is a widespread agronomic practice in
order to favor grape ripening and health, limiting the risk of
summer heat stress. Two datasets were acquired, the first in the
morning (10:00 AM) in worst condition (W), with cluster covered
by leaves and in shadow; and the second in the afternoon (14:00)
in best condition (B), with leaves partially removed and cluster
directly illuminated by the sun. On the same day, a third UAV
survey was conducted with the aim of confirming the distribution
variability detected during the first flight in June. The same
flight campaigns as 2017 were repeated on June 26th and August
8th 2018. The experimental design was modified according the
preliminary results obtained in 2017. So, the acquisition was
conducted by choosing the best performing method of the two
tested, expanding the number of experimental parcels. In detail,
two blocks per vigor area of eight plants each were identified, for
a total of 32 sample plants.

Ground-Truth Measurements
In 2017 season, the characterization of vigor variability within
the vineyard was performed taking into account 18 vines in each
vigor zone: five sample vines monitored in detail by UAV and 13
chosen randomly around sample vines. In 2018 season, ground
truth measurements were taken on 16 sample vines monitored
in detail by UAV for each vigor zone. For each vine, vegetative
and yield-related data were monitored. As indicator of vine vigor,
total shoot fresh mass was determined in the field for each vine
in the dormant period, prior to pruning. In both years, the
production of each sample vine was characterized in the field in
terms of cluster number (ripe and unripe) and yield.

UAV Platform and Sensors
Flight campaigns were performed using an open-source UAV
platform consisting of a modified multi-rotor Mikrokopter
(HiSystems GmbH, Moomerland, Germany; Figure 1B).

Autonomous flight is managed by an on-board navigation
system, which consists of a GPS module (U-blox LEA-6S)
connected to a navigation board (Navy-Ctrl 2.0) and a flight
control unit (Mikrokopter Flight Controller ME V2.1) that
controls six brushless motors. Two communication systems
consist of a duplex transmitter at 2.4 GHz (Graupner) and a WiFi
module (Mikrokopter) at 2.4 GHz to control the UAV navigation

FIGURE 1 | Field location map (A) and UAV platform (B).
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and monitor flight parameters, while a WiFi module provides
video data transmission at 5.8 GHz ensuring real-time image
acquisition control by the ground operator. The flight planning
was managed through Mikrokopter Tool software, which allows
a route of waypoints to be generated as a function of the sensor
Field Of View, overlap between images and ground resolution
needed. Maximum payload is approximately 1 kg, ensuring
15 min of operating time with one 4S battery @11000 mAh.
A universal camera mount equipped with three servomotors
allows an accurate image acquisition through compensation of
tilt and rolling effects.

The UAV was equipped with multispectral and RGB cameras,
to monitor vegetative status and perform image detection,
respectively. The multispectral camera ADC-Snap (Tetracam
Inc., CA, United States) mounts a global shutter CMOS sensor
that acquires 1280 × 1024 pixel images (1.3 MP) in the green
(520–600 nm), red (630–690 nm), and near-infrared (760–
900 nm) bands. Multispectral image acquisition was performed
at 50 m above the ground, yielding a ground resolution of
0.025 m/pixel and 70% of overlap in both directions. The RGB
camera is a Sony Cyber-shot DSC-QX100 RGB camera (Sony
Corporation, Tokyo, Japan), which mounts a 20.2 megapixel
CMOS Exmor R sensor and a Carl Zeiss Vario–Sonnar T lens.
The RGB camera acquired high resolution data of sample plants
selected within representative zones of the vineyard variability.
The flight altitude was set at 10 m above the ground and the
sensor was placed at 45◦ with respect to the vertical at the ground
and 90◦ with respect to the direction of advancement, providing
a ground resolution of 0.002 m/pixel on the fruit zone. Flight
planning was made by choosing a route of waypoints following
the direction of the rows, which allows images of the area of
interest on adjacent rows to be acquired.

Multispectral Data Processing
PixelWrench21 software provides color processing of Tetracam
RAW files and then radiometric correction, thanks to a
calibration target acquired before each remote-sensing campaign.
The images were subsequently processed in a series of steps with
Agisoft Photoscan Professional (v.1.4.1),2 a commercial computer
vision software package, and Quantum GIS,3 an open source
GIS software, to provide a vigor map (Matese et al., 2015).
The filtering procedure of the pure canopy pixels was assessed
with a digital elevation model output produced from Agisoft
Photoscan software. The basis of the procedure was that vine
rows have a greater height from the ground and can easily
be discriminated by Otsu’s global thresholding, an algorithm
that allows discrimination of two different zones: vine rows
and ground (Matese et al., 2016). Assuming the correspondence
between NDVI and vigor (Costa-Ferreira et al., 2007; Fiorillo
et al., 2012), the first step is derivation of the NDVI computed
by the following equation:

NDVI = (Rnir− Rred)/(Rnir+ Rred)

1www.tetracam.com
2www.agisoft.ru
3www.qgis.org

where Rnir and Rred are the reflectance in near infrared and red
bands (Rouse et al., 1973). Matlab software (v.7.11.0.584, 2010)4

was used to interpolate pure canopy pixel values with a moving
average window and elaborate a NDVI map.

Computer Vision and Machine Learning:
From RGB to Cluster Yield Workflow
Digital images acquired by UAV camera are stored in three
dimensions using RGB color space and for color pattern
extraction like vegetation, background or other components;
color images offer more dimensions for image segmentation.
Analyzing the distribution curve for different components
permits the classification by determining a threshold in one-
dimensional space. Our methodology is completely unsupervised
using ImageJ software and a threshold function with Otsu’s
method. Image processing essentially involves the creation of
binary images of the particles from RGB images before being
processed by the application algorithm. Figure 2 shows the
methodology flowchart.

Selection of RGB Images
The first step of RGB images analysis workflow was the
“supervised” selection of images centered on the sample plants
in different conditions for each vigor zone (Figure 3A).

Lab Stack Conversion
Initially RGB was converted to Lab Stack using ImageJ standard
commands. The Lab color space mathematically describes all
perceivable colors in the three dimensions: L for lightness, a∗
and b∗ for the color opponents green–red and blue–yellow. The
yellow/blue opponent colors are represented along the b∗ axis,
with blue at negative b∗ values and yellow at positive b∗ values.
The component b∗ was found to be strictly correlated with
cluster color (Figure 3B). A Gaussian filter with radius equal
to 2 was applied in order to enhance the distribution function
(histogram; Figure 3C).

Thresholding
The thresholding step was tried with different images and Otsu’s
method was chosen to locate a threshold value automatically
based on each image’s condition. Otsu’s threshold clustering
algorithm searches for the threshold that minimizes the intra-
class variance, defined as a weighted sum of variances of the
two classes. The algorithm assumes that the image contains two
classes of pixels following a bi-modal histogram (foreground and
background pixels), it then calculates the optimum threshold
separating the two classes so that their combined spread (intra-
class variance) is minimal, or equivalent (because the sum of
pairwise squared distances is constant), so that their inter-class
variance is maximal.

Two threshold routines were applied sequentially to b∗
filtered images. The first routine applying the automatic Otsu’s
threshold in order to identify the pixels considered as vegetation
(Figure 3D). Those pixels were removed from the images
(Figure 3E) and a new histogram of the image was obtained.

4www.mathworks.com
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FIGURE 2 | Process flowchart.

The second routine with a second Otsu’s threshold automatically
detected only the clusters (Figure 3F); the cluster values were
then converted into a mask (Figure 3G).

Analyze Particles
The next step was to set the scale by drawing a line on a
known length target, so as to enable the tool in the pixel count
along the drawn line on spatially calibrated images. ImageJ
“Analyze Particles” routine was then invoked, which generates
the number and dimensions of the particles (clusters). In the
“Analyze Particles” dialog, particle areas to be considered were
set at 200 to infinity pixel units, covering only cluster dimension,
circularity was set at 0.25–1.00 and Overlay mask to display the
number of shapes.

Statistical Analysis
The classification performance of the unsupervised methodology
described was evaluated through a sensitivity index or true
positive rate (TPR):

TPR = (true cluster automatically classified

/total clusters observed)/100.

The TPR identifies the percentage ratio of the true cluster
automatically classified and the number of total clusters observed.
Instead, the accuracy of the UAV approach was assessed by the
value of a Percent accuracy index:

Percent Accuracy = [(measured value− estimated value)

/measured value] × 100.

The Percent Accuracy is calculated by subtracting the estimated
value from the measured one, dividing that number by the
measured value and multiplying the quotient by 100.

Yield Estimation
Yield estimation was performed by using the clusters surface
derived from image analysis and the yield per vine weighted by
traditional ground sampling. As a first step, for 2017 season, a
linear regression was obtained between clusters surface (cm2)

and grapes sampled (g) on representative vines in both high
and low vigor areas. Following 2017 results, the linear regression
parameters were applied on 2018 dataset to calculate yield from
remote sensing data, which was finally validated against ground
truth measurements.

Cost-Benefit Analysis
The cost analysis was applied to three ideal vineyard sizes:
5, 10 and 50 ha, according with the last European Farm
structure survey (Farm indicators by agricultural area, farm
type, standard output, legal form and NUTS 2 regions; Eurostat,
2018). The approach was adopted to account for all the expenses
associated to data acquisition and processing, for both the
proposed methodology and the traditional survey, grouped into
four broad categories, plus the cost for equipment (UAV and
RGB camera) purchase:

- Survey timing, i.e., the time needed to make a survey in
two zones per hectare. For the traditional ground survey, it was
calculated as about 25 min/ha to move within the vineyard, count
and measure the average yield (10 vines). For the UAV 3 min/ha
was estimated: 1 min for take-off and landing and 2 min for
image acquisition.

- Survey costs include the man-hour costs to monitor the
vineyard in a traditional way and to perform a UAV data
acquisition flight. The cost for a single man-hour was considered
at $16/h for a skilled worker who undertakes the traditional
survey and at $24/h for a trained UAV pilot.

- Elaboration timing takes into account the digitization
of the observed and measured data in the field (2 min/ha),
while for the proposed UAV methodology it is the time to
select the single images of interest and perform the automatic
recognition (10 min/ha).

- Elaboration costs include the man-hour costs to digitalize the
data acquired by the skilled worker with a related cost of $16/h for
ground data and $20/h for image analysis.

- Cost of UAV+RGB camera, based on a DJI Phantom
3 platform + 4K 12 Megapixel camera purchase with a
3 years depreciation cycle ($620 total cost, $17.2 per month in
depreciation costs) and assuming only one survey per year.
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FIGURE 3 | Detailed image processing workflow: (A) RGB supervised image selection, (B) component b∗ from RGB to LAB conversion, (C) Gaussian filter, (D) first
Otsu’s threshold for leaves detection, (E) vegetation pixels removal, (F) second Otsu’s threshold for clusters detection, (G) mask conversion.

All the reported costs are provided by Payscale, a website that
provides information about salary, benefits and compensation,5

while the costs of UAV+RGB are readily available on the internet
(Google Shopping, accessed September 30, 2018).

RESULTS

Representative Zones
Calculation of the NDVI values allowed the identification of
two representative zones of the vigor heterogeneity within the

5www.payscale.com (accessed September 09, 2018)

vineyard (Figure 4): one representative of the HV zone (high
vigor) and the other of the LV zone (low vigor). The vigor within
the vineyard detected during the preliminary flight in June 2017
(Figure 4A) was confirmed by the vigor map produced by the
flight campaign in August 2017 (Figure 4B).

Remote sensing data related to vigor variability within the
vineyard were confirmed by ground measurements for vegetative
data acquired through the sampling of 18 vines in each zone
identified by UAV survey (Table 1).

Cluster Characteristics Results
The results of cluster detection in Worst condition (W) – target
partially covered by leaves and shaded, Best condition (B) – target
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FIGURE 4 | Vigor maps of June (A) and August (B) flight campaigns in 2017 season with representative high vigor (HV) and low vigor (LV) zones.

partially free of leaves and directly illuminated by the sun are
shown in Figure 5, which depicts the workflow of the image
processing steps in HV (left) and LV (right) zones performed
with ImageJ software. Figure 5 shows the visual results of 2017
season related to cluster characteristics detection from raw RGB
images acquired by UAV (Figure 5A), LAB images processing
(Figure 5B), automatic cluster detection (Figure 5C) and lastly
RGB images with a cluster overlay mask (Figure 5D). In 2017,
the one side defoliation left very little number of leaves in low
vigor zone as a consequence of the minimum leaf coverage due to
extremely dry season.

The results provided by image analysis algorithm performed
with the ImageJ software in B and W conditions within the two
vigor zones are summarized in Table 2. Regarding the results of
the 2018 season, only the best condition was taken into account
on a larger sampling number of plants.

For each vigor × condition, Table 2 reports the mean and
standard deviation of number of clusters per vine monitored
by ground observation (Clusters per vine), presence of green

TABLE 1 | Remote sensing and ground truth vine vegetative assessments
extracted in representative high (HV) and low vigor (LV) zones.

HV LV Student’s t-test

NDVI June 2017 0.54 ± 0.05 0.49 ± 0.04 ∗∗∗

NDVI August 2017 0.43 ± 0.08 0.36 ± 0.09 ∗∗∗

Shoot fresh mass 2017 (kg) 0.39 ± 0.10 0.16 ± 0.04 ∗∗∗

NDVI June 2018 0.58 ± 0.02 0.54 ± 0.04 ∗∗

NDVI August 2018 0.60 ± 0.03 0.53 ± 0.05 ∗∗∗

Shoot fresh mass 2018 (kg) 0.50 ± 0.13 0.31 ± 0.08 ∗∗∗

Values are the mean ± SD. Statistical difference was assessed by Student’s t-test:
∗∗∗P < 0.001; ∗∗P < 0.01.

clusters (Green Clusters per vine), clusters detected by UAV
(Clusters per vine UAV), number of clusters detected by UAV
adjusted taking into account the presence of oversized clusters
assessed as double clusters (Clusters per vine UAV ADJ). This
was performed applying a threshold on the cluster dimension
monitored by UAV, which allowed the presence of two very close
clusters to be detected, first identified as one oversized cluster.
The UAV methodology performance in different conditions of
vigor and image quality was calculated through a TPR index.
The UAV methodology applied in HV_B and LV_B identified
100.0% of ripe grapes in 2017 season, while poorer performances
were found with HV_W (54.9%) and LV_W (26.4%). The
image analysis of 2018 season provided a lower performance in
single cluster segmentation on ripe grapes with HV_B (84.8%)
and LV_B (97.7%).

Yield Estimation
Following these results, the data obtained from the best
performing method (_B) were used to calculate the production
values per plant in each vigor zone in both seasons.

The zonal statistics calculated with ImageJ allowed the clusters
to be counted and sized, processing the surface area exposed
by the 2D image acquired by UAV. The total values of cluster
area per vine extracted on high (168.6 ± 84.0 cm2) and low
(69.2 ± 35.6 cm2) vigor plants on 2017 season were converted
by cluster weight through a linear regression with the ground
truth measurements.

The yield per vine was computed from the 2018 season
dataset, according to the correlation parameters provided by 2017
preliminary results (R2 = 0.90) obtained taking the best condition
dataset into account. The estimated yield was validated with
ground sample data; the results are shown in Figure 6.
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FIGURE 5 | Image analysis output for cluster detection within high (HV) and low (LV) vigor zones in best (_B) and worst (_W) conditions of image acquisition in 2017
season: (A) extraction of sampling vines from raw RGB image, (B) LAB image processing, (C) automatic cluster detection, (D) RGB image with cluster overlay mask.

TABLE 2 | Cluster detection performance methods on sample vines in high (HV) and low vigor (LV) zones in best (_B) and worst (_W) conditions.

2017 2018

HV_B LV_B HV_W LV_W HV_B LV_B

Observed

Clusters per vine 6.0 ± 2.0 4.8 ± 1.5 6.0 ± 2.0 4.8 ± 1.5 7.1 ± 3.2 5.6 ± 3.2

Green Clusters per vine 0.8 ± 0.8 0.6 ± 0.6 0.8 ± 0.8 0.6 ± 0.6 1.9 ± 1.2 1.8 ± 1.3

UAV

Clusters per vine UAV 4.0 ± 1.0 3.6 ± 1.5 2.2 ± 0.8 1.2 ± 1.3 2.6 ± 1.5 2.9 ± 1.9

Clusters per vine UAV ADJ 5.2 ± 1.8 4.2 ± 1.8 3.0 ± 1.9 1.4 ± 1.7 4.7 ± 2.4 4.1 ± 2.7

TPR (%) 79.6 87.1 43.5 23.6 65.7 81.0

TPR_Ripe (%) 100.0 100.0 54.9 26.4 84.8 97.7

The mean ± standard deviation values of: Clusters per vine - number of clusters per vine monitored by ground observation; Green Clusters per vine - unripe clusters;
Clusters per vine UAV - clusters detected by UAV; Clusters per vine UAV ADJ - number of clusters detected by UAV adjusted taking into account the presence of double
clusters. TPR and TPR_Ripe is the true positive rate related to total and ripe clusters.

Table 3 reports yield values recorded and estimated during
the 2 years trial. In the 2017 season, the average production
per plant in different vigor zones was calculated both with
traditional ground measurements (HV = 803.7 ± 356.9,
LV = 371.9 ± 202.0) and total cluster weight per vine detected
by UAV (HV = 682.7 ± 279.6, LV = 323.0 ± 165.1). The
yield estimation in the 2018 season confirmed the results of the
previous year with a higher value both in ground measurements
(HV = 2838.1 ± 1346.4, LV = 1559.2 ± 1066.4) and UAV
estimation (HV = 2602.8 ± 1339.4, LV = 1315.7 ± 605.0).
The results related to yield data estimation in worst condition

evaluated during 2017 season confirm the need of line of sight
to apply this methodology.

DISCUSSION

Remote sensing images acquired during June by a UAV platform
equipped with a multispectral camera allowed the assessment of
spatial variation in terms of vigor in the experimental vineyard
in both seasons. As reported by Romboli et al. (2017), the
end of June is a good time to characterize vineyard vigor
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FIGURE 6 | Correlation between yield measurements in the field and yield
estimation from UAV image analysis approach related to 2018 season.

variability, and the map produced by the flight campaign in
August confirmed the variability within the vineyard detected
during the preliminary flight in June (Figure 4).

The results of the experimentation showed that the proposed
methodology has difficulty discriminating green clusters within
the canopy. As reported in Grocholsky et al. (2011), the clusters
detected with minimal number of false negatives were due
to unripe grapes and small clusters related to lateral shoot
production. However, the exclusion of unripe clusters during the
evaluation of vineyard yield potential gives added value to the
effectiveness of the methodology. Unripe clusters cause a product
quality loss by conferring a series of sensory characteristics
and often producing astringent, bitter and low-alcohol wines
(Peyrot des Gachons and Kennedy, 2003; Canals et al., 2005;
Kontoudakis et al., 2011).

The cluster detection approach showed a poor performance
in the worst condition dataset, substantially due to the leaf
cover that blocked line of sight of the cluster, so the yield
analysis was only performed on the best dataset. However, fruit
zone defoliation is a widely used canopy management practice
to improve light exposure for grape quality (Reynolds et al.,
1986; Bergqvist et al., 2001; Downey et al., 2006; Cohen et al.,
2012; Romboli et al., 2017). Defoliation at the beginning of
veraison could cause higher incidence of sunburn damage, but
2–3 weeks before harvest is a diffuse practice also in warm
winemaking areas, providing a risk reduction of fungal attack
on grape clusters due to improved air circulation, decreased
humidity and better penetration of fungicide sprays (Pieri and
Fermaud, 2005; Sabbatini and Howell, 2010, Noyce et al., 2016).
In that sense, our study takes into account a partial defoliation

treatment only on the morning side (north-east) of the canopy,
aiming to prevent sunburn and obtain the positive effects of this
canopy management.

For the UAV yield estimation results, we combined clusters
detected with cluster weight calculated on the basis of cluster
dimensions extracted by pixel counts from high resolution
images and cluster weight observed by ground measurements
in a commercial vineyard in Italy. At the end of 2017 season,
the UAV yield prediction approach was evaluated through the
comparison of yield ground measurements on a large sample
of vines in each vigor zone and data extrapolated from UAV
images on a restricted number of vines in each zone. Correlation
between the cluster segmentation approach and ground truth
measurements, on 2017 data, was used to estimate yield from
2018 images analysis and then compared with traditional field
measurements. The yield calculated from UAV images provided
high accuracy (over 84.4% in both years) following the strong
variability within the vineyard and identifying almost double
yield in HV than LV zone, as clearly shown in biomass sampling
data for both years. The yield data showed a great inter-annual
variability due to the 2 years being completely different. The
2017 season was extremely hot and dry compared to 2018, and
grape production in terms of cluster number and weight, resulted
exceptionally lower. A direct consequence was less leaf coverage
and a greater cluster separation in the 2017 season, which favored
the method performance compared to the survey in 2018.

An accurate estimation of the yield several weeks before
harvesting by a fast and non-destructive method, such as the one
described in this paper, can provide very valuable information
for the farmer for canopy management decisions, such as grape
trimming, as well as for harvest planning (Diago et al., 2012).
The proposed methodology is a good alternative to traditional
measurement, due to its accuracy and relative speed and would
provide the farmer with a promising tool for yield prediction in
a fast and precise way. In recent years, innovative solutions have
been proposed for grape image analysis based on lab (Diago et al.,
2015; Tello et al., 2016) or on-the-go measurements (Aquino
et al., 2018). Those methods are precise as the result of a proximal
sensing approach, but are weak in terms of timing, which
plays a key role in agriculture management. Diago et al. (2015)
found that the best results (R2 between 69 and 95% in berry
detection and between 65 and 97% in cluster weight estimation)
were achieved using four images and the Canny algorithm. The
model’s capacity based on image analysis to predict berry weight
was 84%. Tello et al. (2016) studied cluster length, width and
elongation by 2D image analysis and found significant and strong
correlations with the manual methods with r = 0.959, 0.861, and
0.852, respectively. Aquino et al. (2018) applied mathematical
morphology and a pixel classification method, which yielded

TABLE 3 | Yield values measured by ground sampling and estimated from UAV in 2017 (W and B conditions) and 2018 (B condition).

HV_2017 W LV_2017 W HV_2017 B LV_2017 B HV_2018 B LV_2018 B

Measured yield (g/vine) 803.7 ± 356.9 371.9 ± 202.0 803.7 ± 356.9 371.9 ± 202.0 2838.1 ± 1346.4 1559.2 ± 1066.4

Estimated yield (g/vine) 324.4 ± 189.8 80.8 ± 102.5 682.7 ± 279.6 323.0 ± 165.1 2602.8 ± 1339.4 1315.7 ± 605.0

Accuracy (%) 40.1 22.2 84.9 86.9 91.7 84.4
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TABLE 4 | Category costs for traditional ground and UAV in field yield monitoring.

Area (ha) Survey time (h) Survey cost ($) Elaboration
time (h)

Elaboration
cost ($)

Time (h) UAV ($) Total Cost ($) Cost excluding
UAV ($)

Ground 5 2.1 33.6 0.2 2.7 2.3 36.3 36.3

10 4.2 67.2 0.3 5.3 4.6 72.4 72.4

50 20.8 332.8 1.7 26.7 22.4 359.6 359.6

UAV 5 0.2 4.8 0.8 16.0 1.0 206.7 227.5 20.8

10 0.4 9.6 1.7 34.0 2.1 206.7 250.3 43.6

50 1.7 40.8 8.3 166.0 10.0 206.7 413.5 206.8

overall average Recall and Precision values of 0.876 and 0.958,
respectively. The lab approach is very time-consuming due to the
need for destructive grape sampling in the field and transport to
the lab, followed by image acquisition and analysis. Regarding
on-the-go monitoring methods, the camera moving along the
inter-row must be very close to the side of the canopy, providing
an image with high resolution but related to very low canopy area.
Consequently, in order to monitor a reasonable number of vines
it is necessary acquire a large number of images, which causes
a massive time increase for data elaboration. The advantage of
the UAV approach is that working at a greater distance from the
target vines it can acquire up to 10 plants in one image, at the
same time providing enough resolution to correctly discriminate
the clusters within the canopy. Moreover, the ground solution is
dependent on terrain conditions; in fact, wet, sloping, ploughed
or uneven soil could affect linear advancement of the platform
and therefore image quality. Our methodology works well with
vertical shoot position, which is a common and widely used
trellis system due to its many good points: compatibility with
vineyard mechanization, suitability for many grape varieties,
fungal disease risk reduction by allowing good air circulation
and light exposure.

The best results obtained depended on flight planning for
correct image acquisition (flight altitude, gimbal angle, speed,
image frequency acquisition, etc.) and sunlight condition (solar
angle, light and shadows). This could be expected given
differences in grape hue, color, size and cluster compactness,
and because these differences were accentuated by the level of
ripeness at the time of image acquisition. All these features greatly
influenced the algorithms for contour detection.

A cost-benefit analysis was conducted for three ideal vineyard
sizes and two scenarios: (i) accounting for a contractor service,
thus not including the cost of purchasing a UAV and related
maintenance costs or hiring an agronomist, (ii) assuming the cost
of UAV+camera (Table 4).

Overall, on all three solutions (5, 10, and 50 ha) the use
of UAV for implementing the proposed methodology appears
to be the most time saving but is detrimental in terms of
total cost due to the UAV and RGB camera purchase. This
methodology requires a minimum farm size of 60 ha (data
not shown) in order to depreciate the fixed-cost investments.
However, where the field size is smaller than 60 ha, specialist
UAV service providers, sharing of farming equipment and
cooperative approaches may be suitable for use of the platform
by different farmers (Zarco-Tejada et al., 2014). In fact, excluding

platform and camera purchase, the final cost is in favor of using
UAV. For the three spatial scales analyzed, savings are always
slightly less than 50% compared to the cost of the traditional
methodology. Although the error of the proposed methodology
cannot be assessed in the cost analysis, nor the error relating
to manual pre-harvest inspection, it should be noted that this
methodology is able to capture the variability, in terms of
production, within the vineyard and between the 2 years of
analysis, with a certain tendency to underestimate the yield. It
should also be considered that traditional survey methods are
labor intensive and subject to observer bias (Zhou et al., 2018),
while the automated methodology could reduce the bias and
help breeders in crop yield phenotyping and farmers to be more
efficient in crop planning, reducing labor costs and optimizing
the available resources.

For our case study, a first flight was needed to identify zones
with different vigor and recommend partial defoliation. It must
be taken into account that the latter is a common technique that
it is usually performed by the farmer some weeks before harvest,
so there would be no additional cost. For the identification of
the zones with different vigor the cost of a further flight could
be avoided based on the direct experience of the farmer or
consulting the freely available NDVI maps that are provided by
satellite platforms such as Sentinel 2 or Landsat 8.

CONCLUSION

The application of innovative technologies in field phenotyping
such as UAV, digital image analysis tools and image interpretation
techniques promises a methodology for yield and quality
traits estimation in a vineyard in order to rapidly monitor
representative zones in a large acreage, improve the quality of
recording and minimize error variation between samples.

The methodology for cluster detection and image analysis
described in this paper has proven to be a useful and reliable
tool for yield assessment in a vineyard. The approach for image-
acquisition and data elaboration is simple and low-cost as it only
needs a commercial RGB camera, a base level UAV platform and
free image analysis software.

This study analyses the potential of UAV technology to
estimate yield in a vineyard with high resolution RGB images
in partially leaf removal and full ripe conditions several weeks
before harvest. First, an unsupervised cluster detection approach
was tested on two different datasets in worst (leaves cover,
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shaded fruit) and best condition (partially defoliated and directly
illuminated fruit) in both high and low vigor zones during
the 2017 season. A linear correlation between yield per vine
and ground truth measurements in different vigor zones was
then performed. The correlation parameters were applied to the
2018 dataset, providing interesting yield prediction performance
with about 12% under-estimation. Further tests are necessary
to extend and confirm the preliminary results obtained from
this study, in terms of camera setting (exposure, etc.), optimal
environmental conditions (time of day, angle of incidence of the
sun, etc.), setting of the gimbal (camera angle of inclination),
flight parameters (speed, flight quote, overlap, etc.) and crop
features (more varieties and different crops, training system,
phenological stage, crop management, plant spacing, etc.).
However, the data are decidedly encouraging. Indeed, given
the continuous technological development in image analysis
tools, cameras and UAV performances, it will be possible to
improve the methodology efficacy in terms of accuracy, times
for data acquisition and analysis, and costs. This optimized tool

could be a useful support for both phenotyping research and
agronomic management.
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