
ORIGINAL RESEARCH
published: 03 May 2019

doi: 10.3389/fgene.2019.00418

Frontiers in Genetics | www.frontiersin.org 1 May 2019 | Volume 10 | Article 418

Edited by:

Luis Varona,

University of Zaragoza, Spain

Reviewed by:

Zulma G. Vitezica,

National Polytechnic Institute of

Toulouse, France

Scott Newman,

Genus, United Kingdom

*Correspondence:

Claudia A. Sevillano

claudia.sevillanodelaguila@wur.nl

Specialty section:

This article was submitted to

Livestock Genomics,

a section of the journal

Frontiers in Genetics

Received: 11 October 2018

Accepted: 16 April 2019

Published: 03 May 2019

Citation:

Sevillano CA, Bovenhuis H and

Calus MPL (2019) Genomic Evaluation

for a Crossbreeding System

Implementing Breed-of-Origin for

Targeted Markers.

Front. Genet. 10:418.

doi: 10.3389/fgene.2019.00418

Genomic Evaluation for a
Crossbreeding System Implementing
Breed-of-Origin for Targeted Markers

Claudia A. Sevillano 1,2*, Henk Bovenhuis 1 and Mario P. L. Calus 1

1Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands, 2 Topigs Norsvin Research

Center, Beuningen, Netherlands

The genome in crossbred animals is a mosaic of genomic regions inherited from the

different parental breeds. We previously showed that effects of haplotypes strongly

associated with crossbred performance are different depending upon from which

parental breed they are inherited, however, the majority of the genomic regions are not

or only weakly associated with crossbred performance. Therefore, our objective was to

develop a model that distinguishes between selected single nucleotide polymorphisms

(SNP) strongly associated with crossbred performance and all remaining SNP. For

the selected SNP, breed-specific allele effects were fitted whereas for the remaining

SNP it was assumed that effects are the same across breeds (SEL-BOA model). We

used data from three purebred populations; S, LR, and LW, and the corresponding

crossbred population. We selected SNP that explained together either 5 or 10% of

the total crossbred genetic variance for average daily gain in each breed of origin. The

model was compared to a model where all SNP-alleles were allowed to have different

effects for crossbred performance depending upon the breed of origin (BOA model)

and to a model where all SNP-alleles had the same effect for crossbred performance

across breeds (G model). Across the models, the heritability for crossbred performance

was very similar with values of 0.29–0.30. With the SEL-BOA models, in general, the

purebred-crossbred genetic correlation (rpc) for the selected SNP was larger than for

the non-selected SNP. For breed LR, the rpc for selected SNP and non-selected SNP

estimated with the SEL-BOA 5% and SEL-BOA 10% were very different compared to

the rpc estimated with the G or BOA model. For breeds S and LW, there was not a big

discrepancy for the rpc estimated with the SEL-BOA models and with the G or BOA

model. The BOA model calculates more accurate breeding values of purebred animals

for crossbred performance than the G model when rpc differs (≈10%) between the G

and the BOA model. Superiority of the SEL-BOA model compared to the BOA model

was only observed for SEL-BOA 10% and when rpc for the selected and non-selected

SNP differed both (≈20%) from the rpc estimated by the G or BOA model.
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INTRODUCTION

The breeding goal of pig breeding programs is commonly
to select purebred animals for improved performance of
their crossbred descendants. It has been shown that using
crossbred information, in addition to commonly used purebred
information, improves the accuracy of selection. The benefit
was observed using crossbred phenotypes either with pedigree
(Wei and Van der Steen, 1991) and even more pronounced
with crossbred genomic information (Xiang et al., 2017; Sewell
et al., 2018). The most common genetic markers used for
genomic selection are single nucleotide polymorphisms (SNP),
i.e., bi-allelic markers. For crossbred animals, as their genome
is a mosaic of genomic regions inherited from the different
parental breeds, depending from which breed a SNP-allele was
inherited, it might have different effects. These different allele
effects can arise because: (1) quantitative trait loci (QTL) may
be in linkage disequilibrium with different single nucleotide
polymorphisms (SNP) depending from which parental breed the
QTL was inherited (Lopes, 2016), (2) partly different quantitative
trait nucleotides (QTN) could be underlying a QTL in different
parental breeds, while the commonQTNmay have different allele
frequencies in the different parental breeds, with the extreme case
where it is not segregating in one or more breeds (Wientjes et al.,
2015), and (3) epistatic interactions may differ between parental
breeds (Mackay, 2014). In most previous studies using crossbred
genomic information potential differences in SNP-allele effects
due to the breed of origin were ignored (e.g., Hidalgo et al., 2015;
Veroneze et al., 2015; Sewell et al., 2018). A model that accounts
for breed of origin of alleles (BOA model), has been proposed by
Dekkers (2007), Ibánez-Escriche et al. (2009), and Christensen
et al. (2014). The BOA model was expected to be beneficial when
using commercial crossbred genomic information for estimation
of breeding values of purebred pigs for crossbred performance.
The observed benefits of the BOA model, however, were limited
to traits with low genetic correlation between purebred and
crossbred performance (rpc) and to crossbred populations that
originated from distantly-related breeds, as was shown in studies
with simulated two-way (Ibánez-Escriche et al., 2009; Esfandyari
et al., 2015) and three-way crossbred data (Ibánez-Escriche et al.,
2009) and in studies with real two-way (Xiang et al., 2016) and
three-way crossbred data (Sevillano et al., 2017).

The BOA model allows all SNP-alleles to have a different
estimated effect for crossbred performance depending upon
the breed of origin. In a recent study, Sevillano et al. (2018)
confirmed that the effect of haplotypes strongly associated with
crossbred performance are different depending upon from which
population they originate. It was also shown, however, that the
majority of the genomic regions are not or only weakly associated
with crossbred performance. We hypothesized that targeting
genomic regions strongly associated with crossbred performance
and differentiating their SNP-allele effects according to their
breed of origin, might improve prediction models for crossbred
performance. Therefore, the objective of this study was to develop
a model that accounts for breed-specific allele effects only for
SNP strongly associated with crossbred performance, and for the
rest of the SNP assumes that effects are the same across breeds.

Thus, the model had one across-breed component, and a breed-
specific component for each breed of origin. The performance
of this model, in terms of estimated variances for the different
model components and overall prediction accuracy, was tested
using combined information from both purebred and three-way
commercial crossbred pigs for average daily gain. The model was
compared to the BOA model (allowing all SNP-alleles to have a
different effect for crossbred performance depending upon the
breed of origin) and a G model (all SNP-alleles having the same
effect for crossbred performance across breeds).

MATERIALS AND METHODS

Ethics Approval
The data used for this study was collected as part of routine data
recording in a commercial breeding program. Samples collected
for DNA extraction were only used for routine diagnostic
purposes of the breeding program. Data recording and sample
collection were conducted strictly in line with the Dutch law
on the protection of animals (Gezondheids- en welzijnswet
voor dieren).

Data
The data consisted of three purebred pig populations; Synthetic
boar (S), Landrace (LR), and Large White (LW), and one
commercial crossbred population [S × (LR × LW) or S ×
(LW × LR)]. All pigs were genotyped using one of the three
following SNP panels: Illumina PorcineSNP60.v2 BeadChip
(60K.v2), Illumina PorcineSNP60 BeadChip (60K), or Illumina
PorcineSNP10 BeadChip (10K). Pigs genotyped with the 60
or 10K chips were imputed to the 60K.v2 panel using
FImpute Version 2.2 software (Sargolzaei et al., 2014) with
default parameter settings and using pedigree information. The
imputation strategy was similar to Sevillano et al. (2016), where
each of the three purebred populations, LR, LW, and S, were
imputed in two steps: (1) pigs genotyped with the 10K chip
were imputed to 60K, and (2) all pigs with 60K data (imputed
or genotyped) were imputed to 60K.v2. For the commercial
crossbred population, imputation was done in a single step,
commercial crossbred pigs genotyped with the 10K chip were
directly imputed to 60K.v2, because all ancestors were genotyped
or already imputed to 60 K.v2.

Purebred pigs were located in nucleus farms while crossbred
pigs were located in experimental farms representative of
commercial production conditions. Phenotypes for average
daily gain (ADG) were measured in purebred and commercial
crossbred pigs. ADG for purebred pigs was calculated as the
difference of on-test body weight at an average age of 60 days
and off-test body weight at an average age of 173 days divided
by the number of days. ADG for commercial crossbred pigs was
calculated as the difference of on-test body weight at an average
age of 70 days of age and body weight at the end of the finishing
period, which was on average 120 kg, divided by the number
of days.

The numbers of available genotypes and phenotypes were
7,575, 3,288 and 12,794 for purebred population S, LR, and LW,
respectively, and 2,816 for the commercial crossbred population.
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For all pigs, four generations of pedigree information were
included for analysis.

Proposed Model
The proposed model considers breed-specific effects only for
SNP strongly associated with crossbred performance, and for the
remaining SNP assumes that effects are the same across breeds.
To build this model, we first needed to determine the breed
of origin of alleles in crossbred pigs and secondly, determine
which SNP are strongly associated with crossbred ADG. In this
section, we will firstly introduce the proposed model, followed by
a subsection “Inference of the breed of origin of alleles” where
we explain how we determined the breed of origin of alleles in
crossbred pigs, and we finish with a subsection “Targeting SNP”
where we explain how we determine which are the SNP strongly
associated with ADG performance in crossbred pigs. Hereafter,
we will refer to the SNP strongly associated with crossbred
performance as “selected SNP” and to the remaining SNP as
“non-selected SNP.”

The Model
To model breed-specific effects for SNP strongly associated with
crossbred performance and across-breed effects for all other
SNP, the following four-trait animal model was fitted (SEL-
BOA model):

yS = XSbS +WSuS + ZSa
sel
S + ZSa

non−sel
S + eS,

yLR = XLRbLR +WLRuLR + ZLRa
sel
LR + ZLRa

non−sel
LR

+ eLR,

yLW = XLWbLW +WLWuLW + ZLWaselLW + ZLWanon−sel
LW

+ eLW,

yCB = XCBbCB +WCBuCB + ZCBg
sel
CB(S)

+ZCBg
sel
CB(LR) + ZCBg

sel
CB(LW) + ZCBa

non−sel
CB + eCB,

where yS, yLR, yLW, and yCB are the vectors of the phenotypes
for S, LR, LW, and commercial crossbred pigs, respectively;
bS, bLR, bLW, bCB represent the vectors of fixed effects for
farm∗breed∗sex and birth weight as covariable andXS,XLR,XLW,
XCB are the respective incidencematrices relating pig phenotypes
to fixed effects; uS, uLR, uLW, uCB represent the vectors of
random common litter effects, and WS, WLR, WLW, WCB are
the respective incidence matrices relating pig phenotypes to litter
effects; aselS , aselLR, a

sel
LW, are the vectors of additive genetic effects in

purebred pigs due to the selected SNP, gsel
CB(S)

, gsel
CB(LR)

, gsel
CB(LW)

are the vectors of the additive genetic effect of purebred gametes
in commercial crossbreds due to the selected SNP, anon−sel

S ,

anon−sel
LR , anon−sel

LW , are the vectors of additive genetic effects in

purebred pigs considering only the non-selected SNP, anon−sel
CB

is the vector of additive genetic effect in commercials crossbred
considering only the non-selected SNP, and ZS, ZLR, ZLW, ZCB

are the respective incidence matrices. Finally, eS, eLR, eLW, eCB

represent the vectors of random residual effects. The variance-
covariance of the common litter effect was:

Var
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and for the residual effect was:
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The variance-covariance of additive genetic effect for breed S
origin based on selected SNP was:

Var
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gsel
CB(S)
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Gsel
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Gsel
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,

where purebred S pigs have additive effects based on selected
SNP, aselS for purebred performance, and asel

CB(S)
for crossbred

performance. The commercial crossbred pigs have additive
effects based on selected SNP and based on gametes coming from
breed S, gsel

CB(S)
for crossbred performance, and gselS for purebred

performance. This last effect, gselS , is an artificial random vector
that is added to be able to define the variance-covariance of
additive genetic effects with the above Kronecker product, but
does not have practical relevance (Christensen et al., 2015). The
matrix Gsel

(S)
is a breed-specific partial relationship matrix for

breed S which contains four blocks, one within S pigs (Gsel
S,S), two

between S and commercial crossbred pigs (Gsel
S,CB(S)

andGsel
CB(S),S),

and one within commercial crossbred pigs (Gsel
CB(S ),CB(S)

).

The variance-covariance structures for breeds LR and LW
are defined similarly. Therefore, the total additive genetic
effect, based on selected SNP, in commercial crossbred pigs
for crossbred performance is made up of gsel

CB(S)
, gsel

CB(LR)
,

and gsel
CB(LW)

. There are six selected SNP genetic variance

components, one for purebred and one for crossbred
performance for each breed of origin, and three covariance
components, one for each breed of origin. The three
variance-covariance structures are assumed independent,
i.e., no covariances are considered between S, LR, and
LW effects (Christensen et al., 2015). The degree of allelic
differentiation estimated with Weir and Cockerham’s FST
(Weir and Cockerham, 1984), was previously estimated among
the three purebred populations by Sevillano et al. (2017) and
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were equal to 0.17 between S and LR, 0.12 between S and
LW, and 0.14 between LW and LR, which indicates that they
are distantly-related breeds, therefore it seems appropriate to
assume no relationships between these purebred populations.
Moreover, results from Xiang et al. (2017) using a H−1

relationship matrix with metafounders, and Sevillano et al.
(2017) using a G relationship matrix, demonstrated that
considering genomic relationships and covariances between
purebred lines hardly affects the results of models for predicting
crossbred performance.

To construct the three breed-specific partial relationship
matrices, Gsel

(S)
, Gsel

(LR)
, and Gsel

(LW)
, we used the breed of origin

of phased alleles in commercial crossbred pigs. Then, the breed-
specific partial relationship submatrices are defined as, e.g., breed
S origin:

Gsel
S,S =

(

Msel
S − 21p′S

) (

Msel
S − 21p′S

)′

(FS)
−1,

Gsel
S,CB(S) =

(

Msel
S − 21p′S

) (

Msel
CB(S) − 1pS

′) ′(FS)
−1, and

Gsel
CB(S),CB(S) =

(

Msel
CB(S) − 1p′S

) (

Msel
CB(S) − 1p′S

)

′(FS)
− 1,

whereMsel
S is a matrix containing breed-specific allele content of

selected SNP for purebred S pigs (coded as 0, 1, or 2). Msel
CB(S)

is a matrix containing breed S allele content of selected SNP
for commercial crossbred pigs (coded as 0, or 1), so that alleles
not assigned to breed S as breed of origin were set to missing,
meaning that they had an entry of zero in the centered matrix

represented by
(

Msel
CB(S)

− 1p′S

)

and therefore effectively did not

contribute to the computed breed S partial relationship; pS is
the vector of breed S specific frequencies of the counted allele
(psj ), where p

s
j was calculated across S and commercial crossbred

pigs by counting the occurrences of alleles originating from the
S breed and coded as 1, divided by the total number of S alleles
in the S and commercial crossbred pigs on locus j. Finally, the
scaling factor was defined as FS =

∑

j 2p
S
j (1− pSj ), such that

diagonal elements of an individual reflected its breed proportion
for e.g., the S line, with expected values of 0.5 for the crossbreds
and 1.0 for the purebred animals. The breed-specific partial
relationship submatricesGsel

(LR)
andGsel

(LW)
are defined similarly to

Gsel
(S)
. However, the entries of the Msel

CB(LR)
matrix containing the

breed LR allele content for commercial crossbred pigs are set to
a missing value if the origin of the allele corresponds to the other
maternal line, and effectively does not contribute to the breed-
specific partial relationship matrix for LR. The same applies for
theMsel

CB(LW)
matrix.

For additive genetic effects in commercial crossbred pigs based
on non-selected SNP we did not model breed-specific allele

effects and therefore this was defined by one vector, anon−sel
CB .

The variance-covariance matrix of genetic effects based on non-
selected SNP was:

Var









anon−sel
S

anon−sel
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anon−sel
LW

anon−sel
CB
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σ 2
aS

σaS ,aLR σaS ,aLW σaS ,aCB
σaS ,aLR σ 2

aLR
σaLR ,aLW σaLR ,aCB

σaS ,aLW σaLR ,aLW σ 2
aLW

σaLW ,aCB

σaS ,aCB σaLR ,aCB σaLW ,aCB σ 2
aCB









⊗ Gnon−sel.

The genomic relationship matrix (Gnon−sel) was constructed
using the first method in VanRaden (2008):

Gnon−sel =
(

Mnon−sel − 21p
′) (

Mnon−sel − 21p
′)

′

F− 1,

where Mnon−sel is a matrix containing non-selected SNP
genotypes for each pig (coded as 0, 1, or 2), p is the vector of
the frequencies of the counted allele (pj) calculated across the
entire genotyped population, and the scaling factor was defined
as F =

∑

j 2pj(1− pj).

The SEL-BOA model was implemented in the MiXBLUP
software (Ten Napel et al., 2016). To estimate the variance
components we used the same SEL-BOA model in the MTG2
software (Lee and Van der Werf, 2016).

Inference of the Breed of Origin of Alleles
To infer the breed of origin of alleles in crossbred pigs we
used the BOA approach developed by Vandenplas et al. (2016)
using the parameter settings recommended by Sevillano et al.
(2016). The BOA approach consists of three steps: (1) Phasing
the haplotypes of both purebred and commercial crossbred pigs
with AlphaPhase1.1 software (Hickey et al., 2011). Phasing was
performed using pedigree because it was available, however,
phasing with AlphaPhase 1.1 software can be performed without
using pedigree while obtaining similar results but demanding
more computation time (Sevillano et al., 2016). Phasing was
performed 18 times using nine different combinations of
haplotype length and each combination was run both considering
“Offset” and “NotOffset” modes, the “Offset” mode shifts the start
of the cores to halfway along the first core, creating 50% overlap
between cores. These settings allowed each allele to be considered
18 times through different haplotypes of variable length. (2)
Determining the unique haplotypes among the purebred pigs.
For assigning a breed of origin to a haplotype, at least 80%
of its copies were required to be observed in a specific breed.
(3) Assigning the breed of origin for each allele carried on the
haplotypes of commercial crossbred pigs based on the knowledge
of the breed of origin of the haplotypes, on the zygosity (i.e.,
homozygosity or heterozygosity) of the locus, and on the breed
composition of the crossbred. Alleles that were not assigned a
breed of origin were set to missing. SNP for which the paternal
or maternal allele was assigned a breed of origin in <90% of the
cases were removed. Commercial crossbred pigs with assigned
breed of origin for <90% of their genome were removed. If an
allele was observed <5 times in one of the three breed of origin
in the purebred populations or in the commercial crossbred
population, the corresponding SNP was also removed from the
final set of SNP. The final SNP set for subsequent analyses
consisted of 41,529 SNP. All populations were analyzed with the
same set of SNP.

Targeting SNP
Estimates for breed-specific SNP allele substitution effects were
obtained from Sevillano et al. (2018) where they used a genomic
BLUP with breed-specific partial relationship matrices (BOA
model) (Sevillano et al., 2017). With this approach, genomic
estimated breeding values (GEBV) for crossbred performance
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were calculated, and afterwards converted to SNP-allele effects by
breed of origin. The BOA model allows all SNP to have breed-
specific alleles. Therefore, it is similar to the SEL-BOA, however,
for each breed the BOA-model only has the breed-specific
component. GEBV of purebred pigs for crossbred performance
(âCB) were then converted to SNP-allele effects (α̂CB(S)), e.g., for
breed S using:

âCB(S) = VSα̂CB(S),

where VS contains centered genotypes for purebred S pigs and
α̂CB(S) are allele substitution effects, which can be obtained,
respectively, by:

VS =
(

MS − 21pS
′)
and

α̂CB(S) = VS
′(VSV

′
S)

−1
âCB(S) = (FS)

−1
V′
S(GS,S)

− 1âCB(S).

SNP-allele effects for crossbred performance of the other
purebred populations were calculated similarly.

Afterwards, Sevillano et al. (2018) calculated the proportion of
variance explained by a group of SNP in non-random association,
called LD blocks [see Sevillano et al. (2018) for details on how LD
blocks were built]. In a GBLUP model, all SNP are considered
simultaneously in the model, therefore, the effect of a QTL
is likely distributed across all SNP that have a non-random
association with the QTL. For this reason, it is recommended to
calculate the proportion of variance explained by a group of SNP
in non-random association instead of reporting effects of single
SNP (Lopes, 2016). LD blocks were built per breed of origin,
therefore, non-random association between alleles at two loci
was tested in the commercial crossbred population between all
pair of loci coming from the same breed of origin. Percentage of
genetic variance for crossbred performance explained by the i-th
LD block was calculated as in Wang et al. (2014):

Var(ai)

σ 2
a

× xn

n
× 100% =

Var(
∑n

j=1 zjα̂j)

σ 2
a

× xn

n
× 100%,

where ai is the genetic value of the i-th LD block, σ 2
a is the total

genetic variance for crossbred performance, zj is a vector of gene
content of the j-th SNP for all purebred individuals of the same
breed, α̂j is the estimated effect for crossbred performance of
the j-th SNP within the i-th LD block that contains n SNP, and
xn is the mean number of SNP across LD blocks. The factor xn

n
adjusts explained variances for the number of SNP included in
the LD block.

For selecting SNP to be considered to have breed-specific allele
effects, we took the top LD blocks that explained together at
the most either 5 or 10% of the total additive genetic variance
for crossbred performance in each breed of origin. Selected LD
blocks per breed of origin were merged in one group and all the
SNP in each of the selected LD blocks were then classified as
selected SNP so their effects would be estimated in the SEL-BOA
model as breed-specific. The non-selected SNP were assumed
to have the same effect across the three breeds of origin, as
outlined before. The SEL-BOA model was then ran two times,
considering 5 and 10% of all SNP as selected SNP (SEL-BOA 5%
and SEL-BOA 10% models).

Cross-Validation
Comparison of Models
For comparison to the SEL-BOAmodel, we also calculated GEBV
of purebred pigs for crossbred performance using two other four-
trait animal models: the BOA model and the G model. The
BOA model allowed all SNP-alleles to have a different effect
for crossbred performance depending upon the breed of origin;
to achieve this, the vectors of the additive genetic effect of
purebred gametes in commercial crossbreds, i.e., gCB(S), gCB(LR),
and gCB(LW), considered all SNP. The G model considered all
SNP-alleles having the same effect for crossbred performance
across breeds, such that only one set of additive genetic effect in
commercials crossbred was estimated (e.g., vector aCB).

Training Set
The accuracy of GEBV of purebred pigs for crossbred
performance from all models was evaluated as the average
accuracy obtained from 4-fold cross-validation. Because
of different degrees of relationship between purebreds and
commercial crossbred pigs, each of the four populations were
first divided into four mutually exclusive clusters, using the
K-means clustering method applied to a dissimilarity matrix
computed from elements of the G matrix (Saatchi et al., 2011).
The commercial crossbred pigs were not evenly distributed
across the four clusters, therefore the clusters were reorganized
to contain each more or less ¼ of the commercial crossbred pigs
with the closest relationship (i.e., highest average relationship)
based on the G matrix. Then, within each breed, each of the
four crossbred clusters was assigned to one of the four purebred
clusters with the closest relationship (i.e., highest average
relationship) based on the G matrix to form a fold. Therefore,
each fold contains one purebred cluster and one crossbred
cluster. This way, for each breed, we obtained 4-folds to be
included in the cross-validation.

In each training analysis, the data excluded phenotypes
of purebred and commercial crossbred pigs from 1-fold to
train on the remaining 3-folds to predict GEBV for crossbred
performance of the excluded purebred pigs (validation set).
This resulted in every purebred pig having GEBV for crossbred
performance that were obtained without using performance of
the most closely-related commercial crossbred pigs for training.
Thus, the information coming from the most closely-related
commercial crossbred pigs could be used for validation. The
number of pigs in the validation and training sets for each of the
folds of the cross-validation are in Table 1.

Validation Set
For the purebred pigs used for the validation, some sort of
phenotype is needed to be able to compute the prediction
accuracy. Purebred pigs cannot have an own performance
for crossbred performance. In our data they did not have
large offspring groups, needed to compute average offspring
performance as an accurate phenotype. Therefore, we calculated
deregressed proofs (DRP) for purebred pigs within the validation
sets to validate the predictions of our models. For this, first we
obtained estimated breeding values (EBV) from the four-trait
model with a pedigree-based relationship matrix. This resulted
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TABLE 1 | Cross-validation strategy for performance of average daily gain in

crossbreds.

Fold Training Validation

S LR LW CB S LR LW CB

1 5,365 2,624 9,061 2,112 2,183 665 3,738 704

2 5,771 2,329 8,194 2,117 1,777 960 4,605 699

3 6,017 2,188 10,327 2,109 1,531 1,101 2,471 707

4 5,491 2,726 10,815 2,110 2,057 562 1,980 706

Numbers of individuals for Synthetic boar (S), Landrace (LR), Large White (LW), and

three-way crossbred (CB) pigs.

in an EBV for crossbred performance for each purebred pig. The
EBV were estimated based on performance of the commercial
crossbred pigs assigned to each of the validation folds (Table 1).
Within each validation fold, the EBV of purebred pigs for
crossbred performance were then deregressed according to Calus
et al. (2016). The deregression involved removal of all effects of
relatives in the same validation set, and correction for regression
to the mean, to obtain a more accurate estimate of the expected
phenotype. In addition, a weighting factor (w) was estimated for
each DRP value based on the reliability of the calculated DRP.
Thesew are the effective record contributions (Pribyl et al., 2013),
and reflect the amount of information in the DRP contributed by
the animal’s crossbred relatives, correcting for any information of
the crossbred relatives of other purebred animals that contributed
to its EBV before deregression.

Predictive Ability
Accuracies of all models were calculated as the weighted
correlation between the DRP and the GEBV of purebred pigs for
crossbred performance, where the weighting factor w was used to
account for differences in the amount of available information
on relatives to estimate DRP. The standard error (SE) of the

correlations were approximated as 1−r2√
N
, were r is the estimated

correlation of the model, and N is the number of validation
animals (Stuart and Ord, 1994).

RESULTS

Targeted SNP
We selected the top LD blocks that explained together either 5 or
10% of the total crossbred genetic variance for ADG in each breed
of origin using the BOA model that treats all SNP in the same
way. For the 5% scenario, for breed S origin there were 18 LD
blocks which included in total 428 SNP; for breed LR origin there
were 41 LD blocks which included in total 661 SNP, and for breed
LW origin there were 26 LD blocks which included in total 524
SNP. These three groups of selected LD blocks per breed of origin
were merged in one group, and after excluding duplicated SNP,
resulted in 1,498 SNP classified as selected SNP. These selected
SNP represent 3.6% of the whole SNP panel. The numbers of
selected SNP by breed of origin and the overlap between them are
illustrated in Figure 1A. For the 10% scenario, for breed S origin,
there were 66 LD blocks which included in total 1,554 SNP; for

breed LR origin, there were 109 LD blocks which included in
total 1,512 SNP, and for breed LW origin, there were 73 LD
blocks which included in total 1,131 SNP. These three groups of
selected LD blocks per breed of origin were merged in one group,
and after excluding the duplicated SNP, resulted in 3,809 SNP
classified as selected SNP. These selected SNP represent 9.2% of
the whole SNP panel. The numbers of selected SNP by breed of
origin and the overlap between them are illustrated in Figure 1B.

Variance Components, Heritabilities, and
Genetic Correlations
Estimated variance components for ADG using the G, BOA,
SEL-BOA 5%, and SEL-BOA 10% models are in Table 2. The
standard errors of the estimated variance components in Table 2

are provided in Table S1. In the SEL-BOA 5%model, the selected
SNP explained 39, 43, and 40% of the total crossbred genetic
variance for S, LR, and LW, respectively. And for the SEL-BOA
10% model, the selected SNP explained 77, 75, and 79% of the
total crossbred genetic variance for S, LR, and LW, respectively.

Comparing purebred variance components across models,
additive genetic variances were larger when estimated with the
G model and smaller when estimated with the BOA model,
while with the SEL-BOA models they were in between, but
in general, estimates were similar across models. Likewise,
heritability estimates were similar across models, around 0.17,
0.23, and 0.22 for S, LR, and LW, respectively. For the SEL-
BOA, in this comparison the considered additive variance was
obtained as the sum of the variance explained by the selected and
non-selected SNP.

Comparing crossbred variance components across models,
additive genetic variances were very similar across G (2284),
BOA (2285), and SEL-BOA 5% (2,280) models, while the SEL-
BOA 10% model had a slightly larger additive variance (2,349).
For the BOA and SEL-BOA models, in this comparison the
considered additive variance was obtained as the weighted sum
of the variance explained by the selected and non-selected SNP,
using weights of 0.50 for the paternal breed, and 0.25 for each of
the maternal breeds. Crossbred heritabilities were similar across
models (0.29–0.30).

Comparing crossbred genetic variance components by breed
of origin, we observed similar estimates independent of the
model used for breed S origin, however, for breed LR and LW
origin, the estimates differed largely according to the model.
The genetic correlations between performance of purebred and
crossbred pigs (rpc) estimated with the G model did not differ
largely from the rpc estimated with the BOA model for breed S
origin. A larger difference was observed for the maternal breeds
LR and LW, however, differences in rpc between the models
were within the range of the standard errors. With the SEL-BOA
models, the rpc for the selected SNP was larger than for the non-
selected SNP, except for breed S origin when calculated with the
SEL-BOA 5% where the rpc for the selected SNP was zero. For
breed LR origin, the estimate of the rpc for the selected SNP was
larger than unity with both, the SEL-BOA 5% and the SEL-BOA
10%, for further analysis we fixed the value to 0.99. For breed
LR origin, the rpc for the non-selected SNP calculated with the
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FIGURE 1 | Numbers of selected SNP by breed of origin and the overlap between them. (A) For scenario 5% and (B) for scenario 10%.

TABLE 2 | Additive genetic variance (σ2a), litter variance (σ2u), residual variance (σ2e), and heritabilities for each breed for purebred (PB) and crossbred (CB) performance,

and genetic correlation between PB and CB performance (rPC), estimated using Ga, BOAb, and SEL-BOAc models.

Model Breed σ
2
aPB

* σ
2
uPB

σ
2
ePB

h2
PB

* σ
2
aCB

* σ
2
uCB

σ
2
eCB

h2
CB

* rpc*

G S 2,686 3,205 9,271 0.18 2,284 1,404 4,168 0.29 0.66

LR 2,005 2,501 4,085 0.23 0.44

LW 2,320 2,278 5,664 0.23 0.49

BOA S 2,212 3,204 9,282 0.15 2,22 1,304 4,118 0.30+ 0.73

LR 1,912 2,503 4,076 0.23 1,806 0.56

LW 2,135 2,276 5,669 0.21 2,883 0.62

Model Breed σ
2
aPB

* σ
2
uPB

σ2
ePB

h2
PB

* σ
2
aCB

* σ
2
uCB

σ
2
eCB

h2
CB

* rpc*

Non-sel Sel Non-sel Sel Non-sel Sel Non-sel Sel Non-sel Sel

SEL-BOA 5% S 2,064 410 3,230 9,310 0.14 0.03 1,357 866 1,363 4,154 0.17 0.12+ 0.73 0.00

LR 1,301 583 2,529 4,134 0.15 0.07 1,041 0.08 1.10

LW 1,904 325 2,306 5,676 0.19 0.03 920 0.51 0.75

SEL-BOA 10% S 1,596 798 3,200 9,349 0.11 0.05 543 1,777 1,370 4,088 0.07 0.23+ 0.59 0.85

LR 897 1,003 2,513 4,142 0.10 0.12 1,631 −0.25 1.14

LW 1,648 592 2,307 5,674 0.16 0.06 2,039 0.61 0.81

S, Synthetic boar, LR, Landrace (LR), LW, Large White (LW).
aG model, model for across-breed effects for all SNP.
bBOA model, model for breed-specific effects for all SNP.
cSEL-BOA model, model with breed-specific effects for SNP strongly associated with crossbred performance and across-breed effects for all other SNP. SEL-BOA (5%) and SEL-BOA

(10%) considering top 5% or top 10% of the SNP associated with crossbred performance as strongly associated with crossbred performance, respectively.
*SEL-BOA model has two estimates for σ 2

aPB
, σ 2

aPB
, and rpc, one for the across-breed component (Non-sel) and the other for breed-specific component (Sel).

+(0.5σ 2
aS

+0.25σ 2
aLR

+ 0.25σ 2
aLW

)/(0.5σ 2
aS

+0.25σ 2
aLR

+ 0.25σ 2
aLW

+ σ 2
uCB

+ σ 2
eCB

).

SEL-BOA 10%, had a value lower than zero and large SE (±0.31).
Although this value is theoretically possible, for further analysis
we fixed it to zero. For LR breed, the rpc for non-selected SNP
and selected SNP estimated with the SEL-BOA 5% and SEL-BOA
10% were very different compared to the rpc estimated with the
G or BOA model. For S and LW breeds, there was not a big
discrepancy for the rpc estimates across models, except for the rpc
of zero estimated for the selected SNP with SEL-BOA 5% model.
In general, SE of rpc increased as the models gained complexity

(see Table S1). When SNP were split between selected SNP and
non-selected SNP, as the number of SNP increased in one of the
groups the SE decreased, or the other way around, as the number
of SNP decreased in one of the groups the SE increased. Estimates
for the rpc of the LR line, being lower than 0 for the non-selected
and >1 for the selected SNPs, suggest that the size of the dataset
was limiting the accuracy of the estimated variance components.
Crossbred heritability estimates for the SEL-BOA 5%were higher
for the non-selected SNP (0.17) than for the selected SNP (0.12).
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TABLE 3 | Accuracies* of Ga, BOAb, and SEL-BOAc models calculated for

estimating breeding values of purebred pigs for crossbred performance for each

of the 4-folds of cross-validation and average weighting factor (w) of the

calculated DRP per validation fold.

Folds w G BOA SEL-BOA 5% SEL-BOA 10%

S

1 0.15 0.132 0.118 0.116 0.129

2 0.18 0.024 0.030 0.026 0.038

3 0.23 0.119 0.119 0.112 0.145

4 0.09 0.092 0.092 0.092 0.100

Mean 0.092 0.090 0.086 0.103

LR

1 0.26 0.140 0.177 0.110 0.152

2 0.25 0.166 0.167 0.153 0.204

3 0.21 0.111 0.105 0.183 0.175

4 0.24 0.172 0.163 0.173 0.202

Mean 0.147 0.153 0.155 0.183

LW

1 0.20 0.150 0.163 0.158 0.149

2 0.16 0.138 0.133 0.133 0.135

3 0.11 0.123 0.135 0.118 0.114

4 0.21 0.149 0.160 0.154 0.155

Mean 0.140 0.148 0.141 0.134

*Accuracies measured as weighted correlation between DRP and EBVs.

S, Synthetic boar; LR, Landrace (LR); LW, Large White (LW).
aG model, model for across-breed effects for all SNP.
bBOA model, model for breed-specific effects for all SNP.
cSEL-BOA model, model with breed-specific effects for SNP strongly associated with

crossbred performance and across-breed effects for all other SNP. SEL-BOA 5% and

SEL-BOA 10% considered top 5% or top 10% of the SNP associated with crossbred

performance as strongly associated with crossbred performance, respectively.

Approximate standard errors SE, computed as 1−r2√
N
, were equal to 0.035–0.036 for the

mean accuracies across the folds, for all methods.

Conversely, crossbred heritability estimates for SEL-BOA 10%
were lower for the non-selected SNP (0.07) than for the selected
SNP (0.23).

Predictive Ability for Breeding Values
Accuracies of the four models for GEBV of purebred pigs
for crossbred performance for ADG are in Table 3. DRP for
purebred pigs were used as purebred phenotypes for crossbred
performance in the validation. On average, DRP calculated for
LR animals were more reliable (i.e., they had a higher w) than the
DRP calculated for S and LW animals. This is considered when
computing the accuracies as we usedw to weight the correlations.
In general the differences in accuracies between the models were
small, but there was a tendency that the SEL-BOA 10% model
performed better than the other models, at least for the paternal
breed S and maternal breed LR. For the maternal breed LW,
similar accuracies were obtained with the four models.

DISCUSSION

The objective of this study was to develop a model that accounts
for breed-specific allele effects only for SNP strongly associated

with crossbred performance, and for the rest of the SNP assumes
that effects are the same across breeds.

To construct the relationship matrices for the SEL-BOA
model, we selected SNP that explained together at the most either
5 or 10% of the total genetic variance in each breed of origin
using the BOA model. Dominance was not considered in the
BOA model, neither in the G model nor the SEL-BOA model.
However, breed-specific allele substitution effects were estimated
based on commercial crossbred performance allowing the effects
to be estimated under the genetic background in which they
are expressed. Thus, if dominance effects are present, estimated
breed-specific allele substitution effects incorporate the heritable
component of dominance, even if dominance effects are not
modeled explicitly.

Moreover, when estimating SNP allele effects with the BOA
model, the effect of alleles based on breed of origin was
confounded with parental origin. For ADG, there is evidence
of QTL that exhibit parental-origin-specific effects (de Koning
et al., 2001) and it has been shown that genomic imprinting
significantly contributes to the genetic variance (Neugebauer
et al., 2010). The evidence for QTL exhibiting parental-origin-
specific effects, suggests that having one instead of both reciprocal
female crosses would likely affect the list of selected SNP.
For the F1 females, in practice both reciprocal crosses are
used, and therefore also both were included in our data.
Effectively, this means that SNP were likely selected even if
their effect was limited to the allele inherited from a parent of
a specific sex, unless the absence of an effect when inherited
from the other parent diluted the association to the trait
too much.

In the SEL-BOA 10% model the selected SNP actually
explained 77, 75, and 79% of the total additive genetic variance
for S, LR, and LW, respectively. This shows that the SEL-
BOA model was really able to attribute much more genetic
variance to the selected SNP than the original BOA model,
where all SNP were treated similarly in the model. These
high percentages of explained variance left little crossbred
additive genetic variance to be explained by the non-selected
SNP, so we did not pursue any scenarios that selected even
more SNP.

Across the models, the heritability for crossbred performance
was very similar. However, the models using breed of origin of
alleles (BOA, SEL-BOA 5%, and SEL-BOA 10%) showed that
estimates of crossbred additive genetic variance differed between
the three breeds. This suggests that the G model, on average,
obtains the correct heritability, even if the contribution to the
crossbred variance of the different breeds varies. In theory,
the crossbred additive variance components estimated with the
BOA model comprises the variance observed in crossbred pigs
due only to the alleles coming from the analyzed breed. This
implies that the breed-specific rpc values estimated with the
BOA model are effectively correlations of effects on purebred
and crossbred performance of alleles originating from the same
breed, while the G model estimates rpc values considering effects
of alleles originating from all breeds involved in the crossbred.
Therefore, rpc are expected to be higher when calculated with
the BOA model rather than the G model, and this is also what
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we observed in our estimates. For breed S, estimated crossbred
genetic variance and rpc were very similar between the G and
BOA model, and no benefit for calculating GEBV of S purebred
animals for crossbred performance was observed using the BOA
model. However, a benefit was observed for breeds LR and LW
that showed larger differences in their estimates of crossbred
genetic variance and rpc between the G and BOA model. Similar
results were found by Sevillano et al. (2017) who used similar but
smaller data sets.

With the SEL-BOA models, the rpc for non-selected SNP are
calculated as in the G model, while the rpc for selected SNP are
calculated by breed of origin as in the BOA model, therefore,
as explained in the previous paragraph, we could also expect
that the rpc for selected SNP is higher than the rpc for non-
selected SNP. However, in the SEL-BOA models, the selected
SNP are chosen to be SNP strongly associated with crossbred
performance, but if those SNP have a different estimated effect
for purebred performance the rpc for selected SNP may actually
be smaller. Overall, we observed a tendency of rpc being greater
for selected than non-selected SNP.

The SEL-BOAmodels have potentially two advantages, arising
from having separate variance components for the selected and
non-selected SNP. Firstly, SEL-BOA models are able to assign
more variance to SNP with a strong association to the trait
than the G and BOA models, and less to the non-selected
SNP. Secondly, they can differentiate the rpc values for the two
categories of SNP. Differences in variance estimates alone are
not sufficient to cause a difference in accuracy, the benefit of the
SEL-BOAmodel comes when rpc estimates are also different. For
instance, for breeds LR and LW, the crossbred genetic variance
estimated for non-selected and selected SNP estimated with the
SEL-BOA 5% and SEL-BOA 10% were very different compared
to the crossbred genetic variance estimated with the G or BOA
model. However, for LW, there were not large differences across
the estimates of rpc, subsequently, no benefit of the SEL-BOA
models were observed. Conversely, for LR, the rpc for non-
selected and selected SNP estimated with the SEL-BOA 5% and
SEL-BOA 10% were very different compared to the rpc estimated
with the G or BOA model. The estimated rpc for the selected
SNP was >1, and we assumed a value of 0.99 in the subsequent
analyses, meaning that their estimated effects are similar for
purebred and crossbred performance. On the other hand, the
rpc for the non-selected SNP was below zero, and we assumed
a value of zero in the subsequent analyses. This means that
their estimated effects for purebred and crossbred performance
are totally different, and using crossbred information is needed
for estimating effects for crossbred performance as it cannot
be derived from purebred information. As a result, SEL-
BOA models were more accurate for calculating GEBV of LR
purebred animals for crossbred performance than the BOA or
G models.

For breed S, similar to breed LW, accuracies for calculating
GEBV of S purebred animals for crossbred performance were
similar between the SEL-BOA models and the other models.
For these breeds, there was not a big discrepancy for the rpc
estimates, except for the rpc estimated for the selected SNP with
SEL-BOA 5% model. In this case, however, the impact might

not be so high because the selected SNP only represented 39%
of the crossbred genetic variance, therefore the main genetic
variance was due to the non-selected SNP that had an rpc
that was close to the estimates of the BOA and G models.
In general, the differences were small, which may in part be
because the SEL-BOA models actually had lower power than
the G model because of the larger number of effects fitted. In
general this is a problem that is faced by all models using the
concept of breed of origin of alleles (Ibánez-Escriche et al., 2009,
Vandenplas et al., 2017).

Although with the SEL-BOA 5% the selected SNP explained
39, 43, and 40% of the total crossbred genetic variance for S,
LR, and LW, respectively, this model performed similar to the
G model for S and LW. For LR, allowing the 1,498 selected SNP
to have a different effect rather than effects estimated combining
the other breeds S and LW, improved accuracy. An important
question is why LR did seem to benefit from using the SEL-
BOA model, while S and LW did not. It is good to note that
the S breed was created as a combination of Large White and
Pietrain, which suggests that the S and LW breed, a Large White
based dam line, are somehow more related than the other breed
pairs. On the other hand LR is a Landrace based dam line
and LR pigs have undergone a different selection pressure that
may have shaped their genomic architecture differently, possibly
resulting partly in different haplotypes, and different haplotypes
frequencies for the haplotypes that are in common with the other
breeds (Egbert Knol, personal communication). In a previous
study, Sevillano et al. (2018) observed that the explained genetic
variance of haplotypes associated to the MC4R gene, which has
a missense mutation with a known effect on ADG (Kim et al.,
2000), was considerably lower for the LR and also this breed
showed the lowest allele frequency of the mutation compared
to breed S and LW. This seems to confirm that the LR breed
indeed is quite different from the S and LW breeds. Similar
to the MC4R, other regions coming from the LR breed might
also show different genetic variance compared to S and LW,
providing a possible explanation why this breed shows some
benefit when some SNP are allowed to be estimated separately
by breed of origin in the SEL-BOA 5%. With the SEL-BOA 10%,
the benefit for LR breed is even larger. With the SEL-BOA 10%
model the benefit of the BOA model is obtained while reducing
possible disadvantages due to calculating three times as many
effects, because breed of origin specific effects are estimated for
fewer SNP.

The implementation of the SEL-BOA model for routine
genetic evaluations faces the challenge of multi-trait analysis.
In a multi-trait analysis, many traits are included in the model,
and they are analyzed with the same relationship matrix or with
the same partial relationship matrices. Therefore, in the SEL-
BOA model, the partial relationship matrices with SNP selected
to have breed-specific allele effects will not be trait-specific, but
this can be overcome by defining one group of selected SNP for
all traits, which includes all SNP associated with at least one of
the traits. This means that per trait more SNP, including some
SNP not associated with the target trait, will be used to estimate
breed-specific variance components and effects. As more SNP
are allowed to have breed-specific allele effects, the benefit of
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making a distinction between non-selected SNP and selected SNP
will be diluted, and the accuracy of the SEL-BOA model will
decay. To minimize this disadvantage, SEL-BOA depends on the
advancement of association studies to select SNP only highly
associated with one or more traits of interest.

CONCLUSIONS

The BOA model was more accurate for calculating GEBV of
purebred animals for crossbred performance than the G model
when estimated crossbred genetic variances and rpc differed
largely between the G model and the BOA model. Superiority
of the SEL-BOA model compared to the BOA model was only
observed for the SEL-BOA model 10% when rpc for the non-
selected SNP and selected SNP differed strongly from the rpc
estimated by the BOA model.
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