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The critical regulatory role of leptin in the neuroendocrine system has been widely
reported. Significantly, leptin can improve learning and memory, affect hippocampal
synaptic plasticity, exert neuroprotective efficacy and reduce the risk of several
neuropsychiatric diseases. In terms of depression, leptin could modulate the levels of
neurotransmitters, neurotrophic factors and reverse the dysfunction in the hypothalamic-
pituitary-adrenal axis (HPA). At the same time, leptin affects neurological diseases during
the regulation of metabolic homeostasis. With regards to neurodegenerative diseases,
leptin can affect them via neuroprotection, mainly including Alzheimer’s disease and
Parkinson’s disease. This review will summarize the mechanisms of leptin signaling
within the neuroendocrine system with respect to these diseases and discuss the
therapeutic potential of leptin.
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INTRODUCTION

Leptin is an adipocyte-derived hormone which is encoded by the obese gene (Zhang et al.,
1994). Receptors of leptin are expressed in many brain regions, such as the arcuate nucleus
of the hypothalamus, olfactory bulb, the dorsal raphe nucleus, hippocampus, the cortex and
the nucleus of the solitary tract (Tartaglia et al., 1995). Recently, growing experimental results
indicate that leptin also plays a significant regulatory role in the central nervous system (CNS)
and is associated with several pathological and physiological mechanisms of neurological diseases,
including neurodegenerative diseases and mood disorders (Lee et al., 2015; Kurosawa et al., 2016).
It was found that neurological diseases occurred alongside leptin level alterations, indicating
that leptin might be a critical modulator of these diseases and studying the specific relationship
is of significance. In this article, we mainly discuss the role of leptin in mood disorder and
neurodegenerative diseases and try to interpret the potential mechanisms.

THE ROLE OF LEPTIN IN DEPRESSION

Depression is one of the most prevalent mental illnesses, with high morbidity and suicide rates
(Milaneschi et al., 2017). Due to the serious side-effects and long onset time of traditional
antidepressants, recent investigations focus on neuropeptides’ antidepressant effects and potential
mechanisms, such as leptin and ghrelin (Kormos and Gaszner, 2013). Clinical studies investigating
the relationship of depression and leptin levels yielded inconsistent results. Lower leptin levels
were reported in depressive patients compared to controls in earlier studies. However, there
is also research demonstrating that patients with major depression disorder have higher leptin
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levels (Milaneschi et al., 2017). The confounding factors,
including age, gender, and medication history of depressive
patients, might impact periphery leptin levels (Ge et al., 2018).
Several animal studies demonstrated lower leptin levels in
rats with chronic unpredictable stress (Ozsoy et al., 2015).
Pharmacological studies have shown that intra-hippocampus
administration of leptin could exert an antidepressant-like effect,
while no positive efficacy has been detected when leptin was
injected into the hypothalamus (Finn et al., 2001; Lu et al., 2006).
Leptin can also increase the activation of neurons in hippocampal
limbic structures which contribute to a delayed long-lasting
antidepressant-like effect in force swim test (Kurosawa et al.,
2016). Deletion of leptin receptor (LepRb) is sufficient to
induce depression-like behavioral impairments, indicating that
leptin-lepRb signaling is involved in the molecular mechanism
of leptin’s antidepressant action (Guo et al., 2013). However,
the possible molecular and cellular mechanisms of leptin’s
antidepressant actions are still obscure.

LEPTIN’S ROLE IN
NEUROTRANSMISSION

Both basic and clinical investigations demonstrate that the brains
of patients with depression are characterized by disturbances
of the neurotransmitter system, including 5-hydroxytryptamine
(5-HT), dopamine (DA) and γ-aminobutyric acid (GABA).
Traditional depression theories propose that a lack of 5-HT
leads to depression, and monoaminergic drugs can alleviate
behavior impairments (Aberg-Wistedt et al., 1998). It was
reported that leptin administration decreases the binding site
density of the selective 5-HT transporter inhibitor paroxetine
(Aberg-Wistedt et al., 1998; Charnay et al., 2000). The 5-HT
transporter mRNA levels are lower in leptin-deficient ob/ob
mice (Collin et al., 2000). These results suggest that leptin
can promote the 5-HT transporter functionally and enhance
the expression in protein levels. DA has the potential to
be an antidepressant drug (Jay et al., 2004). Double-labeling
fluorescence immunohistochemistry suggests that dopamine
neurons also express leptin receptors in the brain (Figlewicz
et al., 2003). Leptin can impact motivated behavior and reward-
seeking behavior via the midbrain DA pathway (Fulton et al.,
2006). In addition, the level of GABA in depressed patients
is lower than that in healthy subjects (Sanacora et al., 1999).
Antidepressants drugs can alleviate depressive phenotypes via
activation of the GABA transmission system (Garcia-Garcia et al.,
2009; Fuchs et al., 2017). As there is expression of LepRb on
GABAergic neurons, leptin potentially exerts regulatory effects
via the GABAergic system (Fuchs et al., 1984; Francis et al., 2004).

LEPTIN’S NEUROTROPHIC EFFECT

The current neurotrophic hypothesis of depression proposed that
a deficit of neurotrophic factors or disturbance of neurotrophic
factor signaling pathways is the primary cause of depression
(Gulyaeva, 2017). Brain-derived neurotrophic factor (BDNF) is
a member of the neurotrophin protein family and is involved in

the pathophysiological symptoms of depression (Novkovic et al.,
2015; Huang et al., 2017). BDNF could influence hippocampal
synaptic plasticity through down-regulating 5-HT3 receptors
(Hao et al., 2017).

Leptin was reported to increase the expression of BDNF
mRNA (Komori et al., 2006). Leptin can also activate BDNF-
expressing hypothalamic neurons through activating neural
circuits that stimulate dendritic BDNF synthesis (Liao et al.,
2012). BDNF plays a key role in the CNS through binding its
receptor. Administration of leptin to the hindbrain significantly
increases the level of BDNF within the dorsal vagal complex
(Sahu et al., 2016; Kim et al., 2017).

Leptin can significantly improve cAMP-response element
binding protein (CREB) phosphorylation via the MAP
kinase/extracellular signal-regulated protein kinase (ERK1/2)
pathway (Dhar et al., 2014). ERK1/2 phosphorylation (pERK1/2)
can directly activate the protein signaling cascade to regulate a
series of cellular processes, such as nerve growth, survival and
neuroplasticity. Leptin can induce ERK1/2 phosphorylation in a
time-dependent manner (Kim et al., 2017; Ghasemi et al., 2018;
Han et al., 2018). The increase in pERK1/2 can phosphorylate
CREB and alter its transcriptional activity, which is considered
a key event of cell survival and cognition (Liu et al., 2015) and
in the case of cocultured neurons and astrocytes, leptin exerts
an anti-apoptotic effect in astrocytes against glutamate toxicity
(Park et al., 2017).

The BDNF and phosphatidylinositol 3 kinase (PI3K)/protein
kinase B (AKT) pathways not only regulate the growth and
survival of neurons in the hippocampus, but also regulate
stress-induced depression and antidepressant response. Several
recent studies have found that the antidepressant effect of
antidepressants may be related to the PI3K-AKT-mammalian
target of rapamycin (mTOR) pathway. Treatment with leptin
activates the PI3K-AKT-mTOR pathway (Fazolini et al., 2015;
Gui et al., 2018). BDNF increased outgrowth of hippocampal
neurites though PI3K pathway signaling (Park et al., 2013).
Administration of exogenous leptin to SD rats induced up-
regulation of Janus Kinase 2 (JAK2)-signal transducers, and
activators of transcription 3 (STAT3) signaling (Wu et al., 2017).
To summarize, the protein levels of pSTAT3, AKT, and ERK are
all up-regulated by leptin (Kim et al., 2017).

LEPTIN AND
HYPOTHALAMIC-PITUITARY-ADRENAL
AXIS

Elevation of hypothalamic-pituitary-adrenal axis (HPA) activity
is one of the most common neurobiological abnormalities in
patients with depression. Studies have shown that the most
important factor in the increase of hypothalamic-pituitary
activity is the excessive secretion of corticotropin-releasing
hormone (CRH) (Plotsky et al., 1998; Morris et al., 2012).
CRH induces pituitary adrenal corticotropic hormone (ACTH)
secretion; in turn, ACTH causes the adrenal cortex to secrete
glucocorticoids (GC). When the concentration of GC increases
(e.g., during stress), GC binds to the glucocorticoid receptor
(GR), causing negative feedback to inhibit CRH in the
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hypothalamus. Finally, the hyperactive HPA axis is restored to the
level at baseline (Juruena, 2014). However, hypersecretion of GC
constantly stimulates GR, leading to GR desensitization (Board
et al., 1957; Cowen, 2010).

Leptin leads to the down-regulation of CRH in the
paraventricular hypothalamic nucleus (PVH), and small doses
of leptin can also down-regulate CRH mRNA expression. This
function of leptin demonstrates that it is a regulator of the HPA
axis (Arvaniti et al., 2001). In a starvation model leptin is used to
change HPA axis activity. Leptin prevents the synthesis of CRH
in PVN and inhibits the activation of the CRH neurons (Huang
et al., 1998). Plasma leptin inhibits the expression of the ACTH
receptor (ACTH-R) (Su et al., 2012). Furthermore, an injection
of leptin to the sheep fetus inhibits the rise in ACTH and cortisol
concentration (Howe et al., 2002). Besides the known effects of
leptin on ACTH, ACTH can modulate leptin secretion in plasma.
Increased plasma ACTH concentrations cause a decrease in leptin
output (Spinedi and Gaillard, 1998).

LEPTIN AND METABOLIC
ABNORMALITIES IN NEUROLOGICAL
DISEASES

Metabolic homeostasis is a complicated regulation process that
implicates regulatory signals from both CNS and peripheral
systems (Procaccini et al., 2016). As leptin is an important
peripheral signal molecule, it is necessary to take metabolic
factors into account. Leptin resistance, manifesting as feedback
elevated peripheral levels, is defined as a hallmark of metabolic
disorders (Talton et al., 2016; Szkudelski et al., 2017; Wang et al.,
2018). Recent studies gave the explanation that leptin resistance
is caused by leptin signaling disruption, which implicates
LepRb deficiency, leptin transport dysfunction through the
blood–brain barrier (BBB) and intracellular leptin signaling
pathways defects (Wang et al., 2014). Obesity is the most
prevalent side-effect of present therapeutic drugs for neurological
diseases (Maayan and Correll, 2010). Long-lasting metabolic
abnormalities lead to leptin resistance and leptin signaling
disruption (Pan et al., 2014). In turn, epidemiological studies
showed that diabetes patients have an increased risk of depression
and Alzheimer’s disease (AD) compared to people without
diabetes (Anderson et al., 2001; Arvanitakis et al., 2004; Ernst
et al., 2013). These results suggest that neurological diseases,
especially mood disorders and metabolism abnormalities, might
share overlapping brain circuitries integrating homeostatic and
mood regulatory responses and genetic susceptibility factors. As
a neuroendocrine regulator of energy metabolism, circulating
leptin levels appear to change immediately, which is correlated
with central leptin signaling disruption.

Ottaway et al. (2015) found that obese animals retain their
sensitivity to endogenous leptin; however, that does not argue
against the presence of leptin resistance, based on the most
recent reports. For instance, there are increases in plasma leptin
concentrations during the initial stage of pregnancy, down-
regulation of hypothalamic long form of the leptin receptor
in the ventro- and dorso-medial nuclei during the second

half of gestation and suppressor of cytokine signaling-3 up-
regulation in the arcuate nucleus in late-pregnant ewes (Szczesna
et al., 2019). In studying age-related obesity, celastrol, a leptin
sensitizer, can induce weight loss in aged animals but not
in young controls (Chellappa et al., 2019). In addition, gene
expression of leptin receptor in the hypothalamus was found
significantly down-regulated in a high-fat diet group (Zhao et al.,
2018). These findings support the presence of a relative “leptin
resistance” despite partial activity of endogenous leptin signaling
in obese animals.

In addition, several experiments in vivo and in vitro confirmed
that leptin itself could exert neuroprotective and neurotrophic
actions via promoting BDNF signaling and reduction of neuronal
apoptotic and loss (Spina et al., 1992; Komori et al., 2006;
Novkovic et al., 2015). These might explain why leptin can
improve cognitive and behavior impairments. Contradictory
observations exist showing that fasting and calorie restriction,
contributing to a decreased leptin level, have an anti-depressant
effect (Alzoghaibi et al., 2014; Zhang et al., 2015). Since most
animal studies use a few hours of fasting as an experimental
process, leptin’s antidepressant action is a comparably long-term
process. It can be inferred that they may exert antidepressant
actions via different molecular ways, while the clear mechanisms
are still obscure. In conclusion, leptin might be a potential
combination therapeutic target but still not sensitive enough to
be a biomarker of neurological diseases at present.

LEPTIN’S NEUROPROTECTIVE EFFECT
IN NEURODEGENERATIVE DISEASE

Leptin and Alzheimer’s Disease
Alzheimer’s disease is one of the most common chronic
neurodegenerative diseases and mainly occurs in the elderly
(Mangialasche et al., 2010). Amyloid-β, neurofibrillary tangles,
synaptic loss and reactive gliosis are the major neuropathological
hallmarks of AD (Rockenstein et al., 1995; Alpár et al., 2006).

Previous studies demonstrated that neurotrophic and
neuroprotective effects have been induced by leptin in
Alzheimer’s patients (Pérez-González et al., 2011). Amyloid-β,
the main component of amyloid plaques, is highly expressed
in the brains of AD patients. It has been observed that the
amyloid-β level is decreased in both brain extracts and the
serum of transgenic mice after treatment with leptin (Xing
et al., 2015). Immunocytochemistry analysis also revealed a
decrease in amyloid-β levels in the hippocampus (Greco et al.,
2010; Xing et al., 2015). The phosphorylation of JAK2, STAT3
and the consequent activation of adenosine 5′-monophosphate
(AMP)-activated protein kinase (AMPK) are involved, whereas
it has also been found that primary neurons exhibit increased
amyloid-β levels following leptin antagonist treatment (Liu
et al., 2017). As showed in Table 1, several animal studies
reported leptin have significant regulatory role in AD and
depression. Leptin phosphorylates PI3K/AKT/mTOR to decrease
the expression of GM1 ganglioside in the detergent-resistant
membrane microdomains (DRMs) of the neuronal surface.
Subsequently, the decrease of GM1 ganglioside (GM1) inhibits
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TABLE 1 | Role of leptin in neurological diseases.

Disease References Model Role of leptin

AD Dudek and Bear, 1992; Mulkey and
Malenka, 1992

Long-term potentiation and
high-frequency stimulation in
hippocampal synapses

Enhances NMDA receptor

AD Dicou et al., 2001 Ibotenate increase cortical lesions and
white matter cysts

Activates its receptor and JAK2

AD Yamamoto et al., 2014 GM1 ganglioside in the
detergent-resistant membrane
microdomains (DRMs) of neuronal
surface

Decreases GM1 and inhibits the
assembly of amyloid-β

Depression Kurosawa et al., 2016 Forced swim test Increases the activation of neurons in
hippocampus limbic structures

Depression Park et al., 2017 Coculture neurons and astrocytes Exerts an anti-apoptotic effect in
astrocytes, acting against glutamate

the assembly of amyloid-β (Yamamoto et al., 2014). In addition,
outgrowth of neurites in primary neuronal cultures is influenced
by leptin. Leptin can rescue the neurite from amyloid-β toxicity
(Pérez-González et al., 2014). Chronic leptin treatment is able
to recover the deficits caused by amyloid-β. Leptin rescues
deficits in spatial memory induced by amyloid-β and long-term
potentiation in vivo in the hippocampal late-phase. Chronic
intracerebroventricular injection of leptin alleviates spatial
memory impairment (Tong et al., 2015). Administration of leptin
also reverses amyloid-β-induced suppression of hippocampal
late-phase long-term potentiation in rats (Tong et al., 2015).

Leptin can affect hippocampus-dependent learning and
memory processes (Kiliaan et al., 2014). With regards to
long-term potentiation and high-frequency stimulation in
hippocampal synapses, synaptic activation of N-methyl-D-
aspartate (NMDA) receptors is important (Dudek and Bear,
1992; Mulkey and Malenka, 1992). Leptin affects hippocampal
synaptic plasticity by enhancing the expression of NMDA
receptors (Kiliaan et al., 2014). It has also been shown that
AβPP/PS1 double transgenic mice, a mouse model for AD,
display increased caspase-3 expression and a reduction in synapse
number, which can be reversed to the previous state by leptin
treatment (Pérez-González et al., 2014). At the same time, leptin
can reduce cortical lesions and white matter cysts. Results from
in vitro experiments showed that leptin might act as a potential
neuroprotective factor. Activation of the leptin receptor and
consequent JAK2 are involved in this process (Dicou et al.,
2001). In addition, leptin can stimulate neuronal proliferation.
It has been reported that chronic leptin administration increases
BrdU-positive cells in the dentate gyrus subgranular zone of the
hippocampus which indicates a neurogenesis-stimulated benefit
of leptin (Pérez-González et al., 2011).

Microglial cells are classes of immune cells that modulate
homeostasis in the brain. In the brain of patients with
AD, the level of microglia clearance tends to be insufficient
(Bacskai et al., 2001; Napoli and Neumann, 2009). On the
other hand, some studies have suggested that phagocytosis
of microglia leads to the death of neurons. Lipoteichoic acid
and lipopolysaccharide (agonists of glial TLR2 and TLR4,
respectively) also activate microglia phagocytes, leading to

inflammatory neurodegeneration (Neher et al., 2011). It has been
shown that leptin deficiency or leptin antagonists inhibit the
development of microgliosis in the brain. Thus, leptin is involved
in the proliferation of microglia (Fernández-Martos et al., 2012;
Gao et al., 2014; Chang et al., 2017). However, the association
of leptin’s effect on microglia and development of AD needs
further exploration.

Several animal studies have confirmed leptin’s effect on
AD, such as its neurotrophic and neuroprotective effects,
its decreasing amyloid-β level, its rescuing the neurites
from amyloid-βtoxicity, its influencing hippocampus-dependent
learning and memory processes and so on. However, some
results from human studies have shown that plasma leptin
level has no effect on cognitive ability. It has therefore been
suggested that plasma leptin is not an appropriate clinical
biomarker for AD at this stage (Oania and McEvoy, 2015;
Teunissen et al., 2015).

Leptin and Parkinson’s Disease
Parkinson’s disease, another common neurodegenerative disease,
is characterized by classical motor function deficits due to loss of
dopaminergic neurons in the substantia nigra and is induced by a
complicated interplay between genetic and environmental factors
(Kalia and Lang, 2015).

It was well-known that Parkinson’s disease (PD) was
mainly characterized by death of dopaminergic neurons
in substantia nigra and the accumulation of proteins into
Lewy bodies in the neurons (Cosgrove et al., 2015; Duda
et al., 2016). Studies of 6-hydroxydopamine (6-OHDA)-
induced PD animal models showed that leptin can reverse
behavioral abnormalities and reduced dopaminergic cell
death (Weng et al., 2007). In the process of leptin-induced
neuroprotection, extracellular regulated pERK1/2 plays
a key role as a survival factor of dopaminergic neurons,
which caused subsequently a MEK-dependent increase
in CREB (Weng et al., 2007). Furthermore, another
downstream product of leptin is BDNF, which can preserve
the survival of dopaminergic neurons via activation of the
ERK/CREB pathway (Spina et al., 1992). Though some human
studies showed that there’s no significant correlation of
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peripheral leptin levels and PD, it was found that circulating
leptin levels of unintended weight loss PD patients were lower
than those with stable weight (Evidente et al., 2001; Fiszer et al.,
2010). Different selection criteria for inclusion might explain the
contradictory conclusions.

Leptin can also preserve neuronal survival via increased
uncoupling protein-2 (UCP2) expression in neuronal cultures.
UCP2 could maintain the level of ATP and mitochondrial
membrane potential (MMP). At the same time, it preserves cell
survival against MPP+ toxicity, which has been widely used
in producing Parkinsonism models (Ho et al., 2010; Procaccini
et al., 2016). These results suggest that leptin might have
potential to be a therapeutic target. However, at this stage, the
research is relatively limited. More research will be needed to
address this issue.

The Therapeutic Potential of Leptin
In the context of increasing incidence of neurological diseases,
it is important to explore the pathogenesis of these diseases
and to find effective treatments. It has been shown that
leptin has an effect on the nervous system. Leptin could
modulate the levels of neurotransmitters, promote the 5-HT
transporter functionally and enhance the expression in protein
levels (Collin et al., 2000). Also, there is expression of LepRb
on GABAergic neurons and dopamine neurons in the brain
(Fuchs et al., 1984; Figlewicz et al., 2003; Francis et al., 2004).
Leptin can also increase the expression of BDNF mRNA,
activate BDNF-expressing neurons (Komori et al., 2006; Liao
et al., 2012), activate the PI3K-AKT-mTOR pathway to regulate
the growth of neurons and regulate stress-induced depression
and antidepressant response (Fazolini et al., 2015; Gui et al.,
2018) while reversing the dysfunction in the HPA axis. These
functions of leptin reflect its potential to treat depression.
In neurodegenerative disease, leptin has neurotrophic and
neuroprotective effects (Pérez-González et al., 2011), it affects
hippocampal synaptic plasticity and improves learning and
memory processes (Kiliaan et al., 2014).

However, some experiments from human studies have shown
that plasma leptin levels are not associated with these diseases.
Studies have shown that leptin levels are higher in depression
patients than in control groups (Milaneschi et al., 2017).
Moreover, leptin has no effect on human cognition and memory
ability (Oania and McEvoy, 2015; Teunissen et al., 2015).
Thus, despite the fact that leptin has the potential to be a

therapeutic drug for neurological diseases through different
molecular mechanisms and a target for combination therapy, it
is not a clinical biomarker for neurological diseases before a clear
mechanism is explored.

CONCLUSION

Since the prevalence of neurodegenerative disorders and mood
disorders has ascended in recent years, investigating the radical
cellular and molecular mechanisms of these diseases and
finding out a novel therapeutic target is important. In this
article, we discussed the effects of adipocyte-derived hormone
leptin in depression, AD, PD and its possible modulatory
role. Antidepressant effects of leptin have been observed in
recent studies. The mechanism might implicate leptin’s role
in neurotransmission, neurotrophic factors and the HPA axis.
Furthermore, an inescapable issue is that neurological diseases
and metabolism abnormalities might share overlapping brain
circuitries integrating homeostatic and regulatory responses and
genetic susceptibility factors. Still, increasing evidence indicates a
potential effect of leptin in reversing AD symptoms. The effect
of leptin might be based on the mechanism that increases the
activation of neurons in the hippocampus, reduces the levels of
amyloid-β and tau and modulates the microglia. As for PD, leptin
can preserve dopaminergic neurons via several pathways. Leptin
appears to exert neuroprotective effects on neurodegenerative
disorders. More investigation is required to understand the
association between leptin and neurological diseases.
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