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We investigated whether P300-ERP and cognitive test performance differ for age, sex,
and education in two groups of healthy elderly, and verified whether any correlations
exist between P300 amplitude and latency and gray matter volume using whole brain
voxel-by-voxel-based mapping, controlling for age, education, sex and Total Intracranial
Volume (TIV). We used 32 channel electroencephalograms (EEG) to record the P300
responses and 3T Magnetic Resonance Imaging (MRI) to determine gray matter volume.
We recruited 36 native-Dutch speaking healthy older subjects, equally divided in two
sub-groups of 52–64 and 65–76 years old, administered a battery of cognitive tests
and recorded their demographics, EEGs and task performance; additionally, 16 adults
from the second sub-group underwent an MRI scan. We found significant differences
between age groups in their cognitive tests performance, P300 amplitudes for the frontal
and parietal electrodes for the most difficult task, and P300 latencies for frontal, central
and parietal electrodes for all three tasks difficulty levels. Interesting, sex and education
affected cognitive and P300 results. Higher education was related to higher accuracy,
and P300 amplitudes and shorter latencies. Moreover, females exhibited higher P300
amplitudes and shorter latencies, and better cognitive tasks performance compared
to males. Additionally, for the 16 adults underwent to MRI scan, we found positive
correlations between P300 characteristics in frontal, central and parietal areas and gray
matter volume, controlling for demographic variables and TIV, but also showing that age,
sex, and education correlate with gray matter volume. These findings provide support
that age, sex, and education affect an individual’s cognitive, neurophysiological and
structural characteristics, and therefore motivate the need to further investigate these
in relation to P300 responses and gray matter volume in healthy elderly.

Keywords: magnetic resonance imaging, N-Back task, sex, education, P300-ERP, elderly

INTRODUCTION

The increased life expectancy has led to an increase in dementia cases among older adults as age is
one of the risk factors. Despite the absence of cognitive impairment, about 20–40% of 60–90 years
old healthy individuals exhibit high levels of Aβ deposition in the brain and will develop dementia
in the coming years (Bateman et al., 2012; Villemagne et al., 2013), exhibiting impairments in

Frontiers in Aging Neuroscience | www.frontiersin.org 1 May 2019 | Volume 11 | Article 104

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2019.00104
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2019.00104
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2019.00104&domain=pdf&date_stamp=2019-05-03
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00104/full
http://loop.frontiersin.org/people/661506/overview
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00104 May 3, 2019 Time: 13:11 # 2

Pergher et al. P300 and Gray Matter Volume in Aging

several cognitive functions, such as processing, memory,
attentional control, motor, and sensory abilities (Jackson and
Owsley, 2003; Tales et al., 2004).

Cognitive tests have been used to chart normal changes in
cognitive performance over adult lifespan (Christensen, 2001)
such as attention, performance speed, recall memory, working
memory (WM), verbal fluency, reasoning, and spatial abilities
(Chao and Knight, 1997; MacPherson et al., 2002; Drag and
Bieliauskas, 2010). Besides age, also educational level and sex
have shown to affect cognitive tests performance. Wiederholt
et al. (1993) observed that male performance declines more
rapidly with age and that men and women with a higher
level of education perform better than those with a lower
educational level. Ruff and Parker (1993) showed that sex
and level of education affect performance speed. When testing
healthy older adults, they observed that women were faster
than men and higher educated individuals performed faster
than lower educated ones in Finger Tapping and Grooved
Pegboard Tests, both of which require cognitive and motor
abilities. In addition to cognitive testing, an increasing number
of studies showed that also EEG is a powerful tool to study
the effect of aging, by providing temporal information of
brain activity and related cognitive functioning. Event-related
Potentials (ERPs) are characteristic sequences of positive and
negative amplitude deflections that are time locked to the onset
of a particular stimulus such the P300 component, a positive
amplitude deflection between 250 and 500 ms, with a peak
around 300 ms, elicited in response to an infrequent stimulus
(“oddball”) to which the viewer pays attention. The P300 is
considered to reflect several cognitive functions involved during
attentional and memory tasks (Picton, 1992; Polich, 2007). It
has been shown that older subjects exhibit a smaller P300
amplitude and a larger P300 latency over the midline central and
parietal locations (Polich, 2007; Ashford et al., 2011), even when
considered healthy, indicating that normal cognitive decline
across time affects P300 responses (Polich, 2007). Furthermore,
Fabiani et al. (1998) showed maximal significance for frontal
electrodes for older adults, which they attributed to memory
decay and reduced WM capacity. Additionally, Comerchero and
Polich (1999) and Hagen et al. (2006) observed that, while
for the easier cognitive task the P300 amplitude of healthy
adults was larger over the parietal electrodes, the more difficult
task produced a larger P300 amplitude over the frontal/central
electrodes. Similar results were reported by Pietto et al. (2016)
and Gironell et al. (2005) as they observed a smaller P300
amplitude and a larger P300 latency in individuals that were in
1 year diagnosed with AD, compared to healthy controls. Age is
not the only factor that affects P300 magnitude and as well as
that of other ERPs components. It has been shown that females
are characterized by a greater P300 response than males for a
relevant stimulus during an object recognition task, indicating
that females might process visual information differently from
males, perhaps by increased allocation of attentional resources
to distracting stimuli (Steffensen et al., 2008). Furthermore, the
study of Angel et al. (2010) showed that ERPs components can
be affected by educational level. They found that the effect of age
on ERPs responses was smaller for participants that were higher

educated compared to those with a lower level of education,
during the performance of a word-stem cued-recall task. These
findings recall the concept of cognitive reserve and the protective
role it plays during aging (Christensen et al., 2008). Kramer et al.
(2004) provided support for the cognitive reserve hypothesis
by showing a greater synaptic density and more complex brain
networks in higher educated individuals. Alternatively, Park
and Reuter-Lorenz (2009) hypothesized that older adults with
a higher cognitive reserve can compensate for neurocognitive
deficits by recruiting alternative brain networks and in this way
enable them to perform a task with similar accuracy.

Besides P300 changes, brain volume decreases with age, as
shown in several MRI studies, although not homogeneously
across the brain. Changes in gray matter volume seem to
be prominent in the frontal lobes (Coffey, 1994; Raz et al.,
1997; Tisserand et al., 2002), providing support to the frontal
theory of cognitive aging (Phillips and Della Sala, 1998) that
relates changes in frontal structures and functions to cognitive
deficiencies, such as attentional and memory difficulties, and
lack of cognitive flexibility and control. In contrast, only a few
studies on aging focus on brain volume alterations in other
substructures, such as temporal and parietal structures (Grieve
et al., 2005; Hutton et al., 2009; Giorgio et al., 2010; Terribilli
et al., 2011). Additionally, several studies revealed that aging
is not the only factor in affecting gray matter volume. Raz
et al. (1997) and Good et al. (2001) showed that gray matter
volume variation might be also sex-related, with a steeper trend
in men. Also Witte et al. (2010) found similar differences in
gray matter volume between male and female in a sample of
young healthy adults. Another factor that might affect gray matter
volume is educational level. Arenaza-Urquijo et al. (2013) showed
that more educated individuals have greater gray matter volume
in the superior temporal gyrus, insula, and anterior cingulate
cortex. Also Steffener et al. (2014), using voxel-by-voxel-based
morphometry (VBM) applied to the whole brain, found that
changes in gray matter volume are related to both age and
educational level. In particular, they showed a stronger positive
relationship between larger gray matter volume and better fluid
intelligence performance in more educated older adults.

Although age-related changes in P300 and gray matter volume
have been studied, the relation with the intracerebral origin of
the P300 component is still poorly understood. No studies have
evaluated neuroanatomical correlates of P300 in healthy older
adults, despite it has been shown that P300 has multiple brain
generators in temporal, frontal and parietal lobes (McCarley
et al., 2002). Several studies have been conducted to assess the
correlations between P300 abnormalities and gray matter volume
in subjects at high risk for psychosis, schizophrenic patients
and individuals with post-traumatic stress disorder (Havermans
et al., 1999; Araki et al., 2005; Fusar-Poli et al., 2011), but
only one study examined the relationship between auditory
P300 and gray matter volume in healthy adults. Ford et al.
(1994), using a regional measure of gray matter volume, showed
significant correlations between parietally recorded P300 during
an automatically elicited attention task, where participants were
presented a series of auditory stimuli with fixed inter-stimulus
interval, and frontal lobe gray matter volume, and between P300
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recorded during both automatic and effortful attention (i.e., with
higher frequencies for target stimuli) tasks, and both frontal and
parietal lobes gray matter volume. Additionally, recently it has
been shown that a voxel-by-voxel whole brain analysis to assess
atrophy level is more sensitive compared to a ROI analysis as the
latter may not be sensitive enough to detect small changes over
time (Chetelat and Baron, 2003). Additionally, the ROI method
implies an a priori hypothesis regarding the structure to assess,
which could detect only partially gray matter volume changes
(Chetelat and Baron, 2003). Voxel-by-voxel-based morphometry
(VBM) is an automated approach, not biased to a particular
structure, that provides a comprehensive assessment of gray
matter volume across the whole brain from high-resolution MRI
scans (Ashburner and Friston, 2000) and has been applied to both
healthy older adults (Raz et al., 1997; Good et al., 2001) and to
MCI and AD patients (Frisoni et al., 2008; McDonald et al., 2009).

The study we report on is the first to evaluate visual P300-ERP
component, recorded during a WM task, and gray matter volume
correlates, measured using the VBM technique, in healthy aging
individuals. We first assessed cognitive tests performance and
P300 amplitude and latency for two age-groups, young-old and
old, by considering possible sex and education effects, and then
examined the relationship between P300 characteristics and gray
matter volume, controlling for age, education, sex, and TIV.
Based on previous evidence, we expected to see differences
in cognitive, neurophysiological and structural characteristics
between age groups, sex and educational level. Furthermore, we
hypothesized significant correlations between P300 amplitude
and latency, and gray matter volume in frontal and parietal lobes.

MATERIALS AND METHODS

We selected 36 Dutch-native speaking healthy older adults,
recruited by flyers, social network, advertisements in a local
newspaper and a general physician’s practice. We included in
our study participants between 52 and 76 years old, equally
divided in two sub-groups, ranged 52–64 years old, and 65–
76 years old, with a Mini Mental State Examination (MMSE)
score above 27, no history of neuropsychological or psychiatric
disorders, no history of traumatic brain injury, no post-traumatic
cognitive dysfunction, and with good or corrected vision. For
all participants the procedure consisted of simultaneous EEG
recording during a WM task performance, called N-Back task
(Jaeggi et al., 2010), and for 16 subjects between 65 and 76 years
old, also an anatomical MR scan. The study was conducted in KU
Leuven University (Belgium), the MR imaging in the Radiology
Department of its University Hospital Gasthuisberg and the EEG
recordings in the Laboratory of Neuro- and Psychophysiology
of the Medical School. Written informed consent was obtained
from all participants in accordance with the Declaration of
Helsinki. The study was approved by the Ethical Committee of
Gasthuisberg Hospital.

MR Imaging and Analysis
MR imaging was performed using a 3.0 T scanner
(Philips, The Netherlands). All subjects were examined

according to a standard dementia MRI protocol: axial T2-
weighted images, 3D fluid-attenuated inversion recovery
(FLAIR), coronal T2-weighted images with perpendicular
hippocampus orientation, axial diffusion weighted imaging,
T2-weighted images, and gradient-echo T1-weighted 3D
images. The imaging parameters of the 3D gradient-
echo T1 weighted images were: TR/TE 2300/3 ms,
flip angle 9◦, field of view 256 × 240, slice thickness
1 mm and 160 slices.

Voxel-based morphometry (VBM) maps gray matter volume
on a voxel-by-voxel basis after anatomical standardization
analogous to functional neuroimaging. In order to examine
possible correlates of gray matter volume, we investigated both
voxel activation, further called peak level, and the spatial location
of the peak (further called cluster). MRI scans were analyzed
with SPM12 (Statistical Parametric Mapping)1 and Matlab
version R2016a2. Processing included MRI scan segmentation
(T1 images) to identify different tissue types for each subject,
the creation of a template of the whole brain for all subjects
using Dartel toolbox (Ashburner, 2007), the modeling of the
shape of each brain using three parameters for each voxel
(to increase the accuracy of subject gray matter alignment),
normalization to Montreal Neurological Institute (MNI) Space
of the original images to the template, the generation of
smoothed (with a 5 mm isotropic Gaussian kernel), spatially
normalized, and Jacobian-scaled gray matter images in MNI
space (Mechelli et al., 2005; Ashburner, 2009; Kurth et al., 2015)
and, finally, a linear regression analysis between gray matter
correlates and frontal, central and parietal P300 component,
controlling for age, education, sex and TIV, to make inferences
about any differences in the data (Figure 1). Kernel smoothing
was applied to estimate the age-volume relation, thus a non-
parametric model as the underlying analytics is unknown and
observations are noisy (Friedman et al., 2001). Furthermore,
to estimate the TIV, we used an algorithm recently introduced
by Malone et al. (2015), using SPM12, that integrates the
probabilistic tissue class images of gray matter, white matter and
cerebral spinal fluid.

The correlations between P300 characteristics and voxel-
by-voxel whole brain gray matter volume were determined
using a linear regression analysis. Age, education, sex, TIV
and the grand-averages of P300 amplitudes and latencies were
used as covariates. We used the average of the three difficulty
levels as we are aiming for an initial general exploration of
the possible correlations between this specific WM task (N-
Back) and gray matter volume. Statistical significance was
set at Family-Wise Error (FWE) uncorrected p < 0.001 for
multiple comparison (Roiser et al., 2016) at cluster and peak
levels to avoid Type I error. Anatomical regions included
for analysis were defined using the Automated Anatomical
Labeling (AAL) toolbox3 (Tzourio-Mazoyer et al., 2002). The
peak coordinates were presented in MNI standard space and the
results visualized using SPM12.

1www.fil.ion.ucl.ac.uk/spm
2nl.mathworks.com/products/matlab/
3http://www.gin.cnrs.fr/AAL
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FIGURE 1 | N-Back task design.

EEG Acquisition and Analysis
EEG was recorded using a SynAmpsRT device (Compumedics,
Australia) operating at 2 kHz sampling rate using 32 active
Ag/AgCl electrodes: O1, Oz, O2, PO4, PO3, P8, P4, Pz, P3,
P7, TP9, CP5, CP1, CP2, CP6, TP10, T7, C3, Cz, C4, T8, FC6,
FC2, FC1, FC5, F3, Fz, F4, AF3, AF4, Fp1, Fp2. Before the
N-Back task, an EOG calibration was performed using four
additional electrodes to capture the effect of eye movements
and blinks, following the instructions given in Croft and Barry
(2000). The recorded EEG signal was re-referenced offline to the
average of the two mastoid signals (average mastoid reference,
TP9 and TP10), corrected for electro-oculogram (eye movement
and blinking artifacts), using Croft and Barry’s aligned-artifact
average (AAA) procedure (Croft and Barry, 2000), band-pass
filtered in the 0.1–30 Hz range, and cut into epochs starting from
100 ms pre- till 1500 ms post-stimulus onset. Baseline correction
was performed by subtracting the average of the 100 ms pre-
stimulus onset activity from the 1500 ms post-stimulus onset
activity. Finally, the epochs were downsampled to 100 Hz and
stored for ERP component detection. Three two-way ANOVA
(age-group × target, sex × target, and educational level ×

target) and two three-way ANOVA (age-group × sex × target,
and age/group × educational level × target) were performed
considering P300 amplitudes, calculated as the average over the

250–600 ms time window as it contains the largest positive-
going peak of the P300 waveform (Polich, 2007), for channels
Fz, Cz, and Pz, and P300 latencies, calculated as the average
from stimulus onset to the point of maximum positive P300
amplitude in the same time window. P300 scalp distribution is
defined as the amplitude change over the midline electrodes (Fz,
Cz, Pz), which increases in magnitude from frontal to parietal
electrodes (Johnson, 1993). Bonferroni correction (p < 0.05) was
used for multiple comparison. Recorded epochs with incorrect
behavioral responses (N-Back button presses, see further) were
excluded from further analysis. In addition, epochs with EEG
amplitudes greater than 50 µV were also excluded, as they could
be motion artifacts.

N-Back Task
Subjects performed a single session of a WM task in which
a sequence of stimuli was shown and the task was to decide
whether the current stimulus matched the one presented N
stimuli before (N-Back task). Stimuli were presented for 1000 ms
followed by a 2000 ms Inter-stimulus interval (ISI), with a jitter
of ± 100 ms, during which the picture was replaced by a fixation
cross (Figure 2). This was the moment where participants should
press a button on the keyboard to indicate whether this stimulus
matched the one shown N stimuli before. We had 33% of the
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FIGURE 2 | Flow diagram of the VBM procedure. The first two pictures were adapted from the study of Matsuda (2013).

pictures as targets. We started with N = 1 and, when the responses
were for more than 70% correct, participants went to the next task
difficulty level and so on until N = 3.

In the 1-Back the participant needed to maintain in memory
only one item, and this task requests a constant updating of
the new stimulus that replaces the old one. In the 2-Back task
the participant needs to maintain two stimuli in memory and
remember their order, and the task requests a greater replacement
operation. In the 3-Back the participants needed to maintain
three items in memory and uses a 3 step replacement operation.
By increasing N (1-Back, 2-Back, 3-Back), the participant needed
to put in increasingly more mental effort to perform the task
(Gevins and Smith, 2003). By varying difficulty level, the task
imposed a variable workload reflected by a change in the effort
the participant needed to put into it.

Sequences with identical difficulty levels (1-back, 2-back, 3-
back) were grouped into 2 min. blocks across four sessions. Each
session included 2 repetitions of 3 sequences, and were presented
with increasing task difficulty level (i.e., from 1- to 3-back) if
the subject responded correctly for more than 70% of the cases,
otherwise the task remained at the same difficulty level. In total,
there were 8 blocks. For each sequence, 60 stimuli were presented
in pseudorandom order.

RESULTS

Participants’ Characteristics
Demographical characteristics of 36 participants are listed in
Table 1. Our sample was divided in two equal-sized age sub-
groups: young-old adults (n = 18), between 52 and 64 years,

and old adults (n = 18), between 65 and 76 years. Furthermore,
given our subjects’ years of education, we differentiated two
sub-groups based on educational level: low (≤9 years, N = 14)
and high (>9 years, N = 22). Before N-Back task performance,
we collected additional demographic information such as sex
and educational level, and administered cognitive tests to
measure and compare the cognitive functioning between the
sub-groups. The battery of cognitive tests we used included:
MMSE (Folstein et al., 1975), Digit Span (Wechsler, 1945),
Stroop (Stroop, 1935), COWAT (Ivnik et al., 1996), VAT
(Lindeboom et al., 2002), TMT A and B (Reitan, 1958),
Raven (Raven, 1936), TOVA (Greenberg and Waldmant, 1993),
and CORSI (Corsi, 1972) tests. We used t-test analysis to
investigate differences between sub-groups for age, sex and
educational level.

Behavioral Results
Cognitive Evaluation
T-test analysis revealed significant differences between young-
old and old groups for MMSE (p < 0.05), Digit Span
Forward (p < 0.05), CORSI (p < 0.01), and N-Back task
(p < 0.01) (Figure 3). Further analyses were performed within
and between groups for sex and education, defined as high
(>9 years) and low (≤9 years) level, to see whether cognitive
performances of both groups were affected by demographic
factors. T-tests of inter-groups differences for high/low level of
education and sex showed significant differences for education
in Digit Span Forward (p < 0.05) and Backward (p < 0.01),
reporting higher accuracy for more educated individuals, and
for sex in Digit Span Backward (p < 0.05) and COWAT
(p < 0.05), showing higher accuracy for females in both tasks.
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TABLE 1 | Characteristics of healthy older subjects.

Age Sex Education

Young-old (N = 18) Old (N = 18) Female (N = 16) Male (N = 20) High (N = 22) Low (N = 14)

Variables Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Age 58.92 4.63 67.79 3.19 63.1 3.92 62.84 6.51 62.17 5.9 64.67 4.46

Education 8.67 2.66 9 4.15 8.67 2.13 9.84 3.25 11.25 2.67 6.75 4.49

Sex (9 M) – (12 M) – – – – – (12 M) – (7 M) –

MMSE 29.72∗ 0.46 29∗ 1.37 29.66 0.49 29.53 0.64 29.45 1.21 29.64 0.5

Digit Span Forward 7.78∗ 2.15 5.89∗ 2.35 7.4 2.44 6.8 2.21 7.82∗ 2.23 5.45∗ 1.86

Digit Span Backward 6.72 2.4 6.05 1.92 7.33∗ 1.91 5.73∗ 2.28 7.54 ∗∗ 2.38 5.54∗∗ 1.03

COWAT 14.53 2.95 13.27 4.1 15.26∗ 4.97 15.59∗ 9.94 15 4.9 12.96 2.58

VAT 4.94 1.43 4.83 1.38 5.13 1.24 4.87 1.36 5.18 1.25 4.54 1.63

Stroop 99.78 0.55 99.7 0.47 99.8 0.41 99.73 0.59 99.82 0.4 99.64 0.67

TMT-A and B 1.89 0.32 1.88 0.32 1.73 0.45 1.75 0.39 1.87 0.38 1.81 0.47

CORSI 8∗∗ 1.19 6.36∗∗ 1.94 6.8 1.82 7.9 1.73 7.45 1.75 6.91 2.26

Raven 46.44 12.01 41.89 10.37 44.66 11.14 45 10.97 52.45 5.37 40.18 10.79

TOVA 111.88 3.97 112.72 5.31 114.07 3.99 110.33 4.92 112.91 3.33 111.09 4.44

N-Back 2.03∗∗ 2.09 0.88∗∗ 1.35 1.52 1.86 1.57 1.88 2.09 1.75 0.96 1.59

MMSE, Mini Mental State Examination; COWAT, Controlled Oral Association Test; VAT, Visual Association Test; TMT, Trial Making Test. Significant differences for
∗p < 0.05, ∗∗p < 0.01.

FIGURE 3 | Mean accuracy during N-Back task for all healthy older adults
and the two age-groups of young-old and old adults. Error bars denote
standard error of the mean across subjects. Asterisks (∗) indicate significant
differences for p < 0.05.

For the young-old adults, t-test analysis revealed differences
between females (N = 8) and males (N = 10) for Digit Span
Backward (p < 0.01), showing higher performance accuracy
for females, and for CORSI (p < 0.05), showing in contrast
higher performance accuracy for males. Also, t-test analysis
indicated significant differences between high (N = 9)/low
(N = 11) level of education for Digit Span Forward (p < 0.05)
and for COWAT (p < 0.01), showing higher performance
accuracy for more educated individuals. For the old adults, t-test
analysis did not show any significant difference for sex and
educational level.

Additional analyses were performed for the N-Back task to
assess differences in behavioral performance between young-
old and old subjects. As we previously found that behavioral
performance by using N-Back task was higher for young-
old adults compared to old adults, we divided the responses
to the stimuli into four categories: hit (target and button
press), false alarm (non-target and button press), correct
rejection (non-target and no button press), and miss (target
and no button press). We performed a two-way ANOVA with
factors age-group and N-Back level, and found a significant
effect of interaction between the two factors (p < 0.05)
in accuracy for the 1-Back task only. No significant results
were found for 2 and 3-Back task when comparing the two
age groups.

Electrophysiological Results
ERPs Responses
We analyzed P300-ERPs component by using electrodes located
over three main scalp areas: frontal (Fz), central (Cz), and
parietal (Pz). Grand-averaged epochs (time window between
250 and 500 ms) for target trials, for each difficulty level
of the N-Back task (1, 2, and 3) are shown in Figure 4.
A two-way ANOVA (age-group × target) was used to detect
significant modulations of P300 magnitude for all three channels
(Fz, Cz, Pz). Based on our results, we observed that P300
amplitude changed significantly between young-old and old
adults in channel Fz [F(1) = 5.5881, p < 0.05] and in
channels Pz [F(1) = 14.0118, p < 0.001] for the 3-Back
task. Additionally, a comparison between age-groups revealed
significant differences in P300 latency in channel Fz for 1-
Back [F(1) = 6.2955, p < 0.05], 2-Back [F(1) = 26.0533,
p < 0.000001] and 3-Back [F(1) = 16.1679, p < 0.0001], in
channel Cz for 1-Back [F(1) = 16.8572, p < 0.0001], 2-Back
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FIGURE 4 | Grand average of P300-ERP component for young-old (black) and old adults (red), for channels Fz, Cz, and Pz. Significance was measured using
three-way ANOVA (p < 0.05). Error bars indicate SEM.

[F(1) = 16.3562, p < 0.0001], and 3-Back [F(1) = 10.8322,
p = 0.001], and in channel Pz for 1-Back [F(1) = 16.5398,
p < 0.0001], 2-Back [F(1) = 3.8854, p < 0.05], and 3-Back
[F(1) = 8.5217, p < 0.01]. In general, we observed higher P300
amplitudes and smaller latencies for young-old adults compared
to old individuals.

Furthermore, we wanted to see whether differences for sex and
educational level were present in our sample. By using a two-
way ANOVA, with factors sex and target, to detect significant
modulations of P300 magnitude for all three channels (Fz, Cz,
Pz), we found significant differences between males and females
in P300 amplitude for 1-Back in channel Cz [F(1) = 7.52,
p < 0.01] and channel Pz [F(1) = 7.43, p < 0.01], and in
P300 latency for 3-Back in channel Fz [F(1) = 9.77, p < 0.01]
and in channel Cz [F(1) = 12.01, p < 0.001], indicating higher
P300 amplitudes and smaller latencies for females compared
to males. Also, performing a two-way ANOVA, with factors
educational level and target, we found significant differences
between participants with high/low educational level in P300
amplitude for 3-Back in channel Cz [F(1) = 5.49, p < 0.05] and
in channel Pz [F(1) = 22.66, p < 0.001], and in P300 latency for
1-Back in channel Fz [F(1) = 5.36, p < 0.05] and channel Cz
[F(1) = 4.75, p < 0.05], and for 2-Back in channel Fz [F(1) = 4.39,
p < 0.05] and channel Cz [F(1) = 5.36, p < 0.05]. These

findings showed higher P300 amplitude and smaller latencies for
subjects with a higher educational level. In contrast, by using
two three-way ANOVA (sex × age-groups × target, educational
level × age-groups × target) that included the interaction of
both sex and educational level with age, we did not find any
significant difference.

MRI Results
Correlations Between Gray Matter Volume (VBM) and
P300 Amplitude and Latency
The N-Back P300 amplitudes and latencies of the 16 participants
included in the old adults group that underwent an MRI scan
were correlated with their gray matter volumes using linear
regression analysis, controlling for age, education, sex and
TIV. Significant statistical correlations for frontal, central and
parietal electrodes separately, and demographics are shown in
Table 2 and Figure 5. Our results show significant correlations
(uncorrected for FWE, p < 0.001) between P300 amplitude in the
frontal scalp area (channel Fz) and gray matter volume peak- and
cluster levels in the left post-central gyrus (MNI coordinates of
the most significant peak: −49.4 −10.3 23; cluster level k = 49;
peak level T = 43.33), in the central area (channel Cz) and
gray matter volume peak- and cluster levels in the left lingual
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TABLE 2 | Correlations between gray matter volume, grand-average of N-Back P300 amplitude and latency for channels Fz, Cz, and Pz, accuracy during N-Back task
performance, and age, education, and sex in 16 old subjects (uncorrected for FWE, ∗p < 0.01, ∗∗p < 0.001).

Variables MNI coordinates (mm) T–value
(peak level)

K–value
(cluster level)

Labels % P
uncorrected
cluster level

X Y Z

N-Back P300 amplitude Fz −49.4 −10.3 23 43.33 49 L post−central gyrus Area 3a, 21% <0.001∗∗

N−Back P300 amplitude Cz −15.2 −41.6 −1 42.06 63 L lingual gyrus Subiculum, 6% <0.001∗∗

N-Back P300 amplitude Pz −14.5 −22.3 2 28.07 242 L thalamus Motor, 38% Parietal,
34% Premotor, 29%

<0.01∗

1.7 −16.9 2 22.12 242 Thalamus Prefrontal, 25%
Temporal, 29%
Visual, 13%

<0.01∗

N-Back P300 latency Fz −50.7 −27.5 28 16.92 106 L supramarginal gyrus Area PFt (IPL), 38%
Area PFop (IPL), 29%
Area OP1, 13%

<0.001∗∗

N-Back P300 latency Cz −54.5 −9.3 19 18.61 49 L post-central gyrus Area 3b, 11% Area
3a, 9%

<0.001∗∗

−51.8 −26.4 28 14.06 33 L supramarginal gyrus Area PFt (IPL), 50%
Area PFop (IPL), 26%
Area OP1, 16%

<0.001∗∗

N-Back P300 latency Pz 13.4 −10.5 5 16.55 36 R thalamus Prefrontal, 89%
Temporal, 7%
Premotor, 5%

<0.001∗∗

8 −4.1 6 10.71 36 Thalamus Temporal, 54%
Prefrontal, 37%

<0.001∗∗

N-Back accuracy −53.7 −32.8 7 120.57 33 Middle tempral gyrus Area PFcm (IPL), 4% <0.001∗∗

Age −16.2 −16.4 23 37.83 90 L caudate nucleus Thalamus, prefrontal,
10% Visual, 8%
Premotor, 7%

<0.01∗

2.2 −6.3 13 10.61 133 Thalamus Temporal, 12% <0.01∗

Education 1.7 −16.9 2 35.16 80 Thalamus Prefrontal, 25%
Temporal, 29%
Visual, 13%

<0.001∗∗

Sex −49.4 −10.3 23 38.55 39 L post-central gyrus Area 3a, 21% <0.001∗∗

gyrus (MNI coordinates of the most significant peak: −15.2
−41.6 −1; cluster level k = 63; peak level T = 42.06), and
similarly (uncorrected for FWE, p < 0.01) between the parietal
area (channel Pz) and the left thalamus (MNI coordinates of
the most significant peak: −14.5 −22.3 2; cluster level k = 242;
peak level T = 28.07) and the thalamus (MNI coordinates of the
most significant peak: 1.7 −16.9 2; cluster level k = 242; peak
level T = 22.12). Additionally, we found significant correlations
(uncorrected for FWE, p < 0.001) between P300 latency in
the frontal scalp area (channel Fz) and peak- and cluster levels
in the left supramarginal gyrus (MNI coordinates of the most
significant peak: −50.7 −27.5 28; cluster level k = 106; peak
level T = 16.92), the central area (channel Cz) and the left post-
central gyrus (MNI coordinates of the most significant peak:
−54.5 −9.3 19; cluster level k = 49; peak level T = 18.61),
and the left supramarginal gyrus (MNI coordinates of the most
significant peak: −51.8 −26.4 28; cluster level k = 33; peak
level T = 14.06), and the parietal area (channel Pz) and the
right thalamus (MNI coordinates of the most significant peak:
13.4 −10.5 5; cluster level k = 36; peak level T = 16.55) and
between the parietal area and the temporal thalamus (MNI
coordinates of the most significant peak: 8 −4.1 6; cluster level

k = 36; peak level T = 10.71). Moreover, we found significant
correlations between N-Back accuracy and peak- and cluster
levels (uncorrected for FWE, p < 0.001) in the middle temporal
gyrus (MNI coordinates of the most significant peak: −53.7
−32.8 7; cluster level k = 33; peak level T = 120.57). Last,
we found significant correlations between age and peak- and
cluster levels (uncorrected for FWE, p < 0.01) in the left
caudate nucleus (MNI coordinates of the most significant peak:
− 16.2 −16.4 23; cluster level k = 90; peak level T = 37.83)
and in the thalamus temporal (MNI coordinates of the most
significant peak: 2.2 −6.3 13; cluster level k = 133; peak level
T = 10.61), between education and peak- and cluster levels
(uncorrected for FWE, p < 0.001) in the thalamus (MNI
coordinates of the most significant peak: 1.7 −16.9 2; cluster
level k = 80; peak level T = 51.86), and between sex and
peak− and cluster levels (uncorrected for FWE, p < 0.001)
in the left post-central gyrus (MNI coordinates of the most
significant peak: −49.4 −10.3 23; cluster level k = 39; peak level
T = 38.55). We did not find significant differences in correlations
between P300 amplitudes and latencies and gray matter volume
when we considered the three difficulty levels of the N-Back
task separately.
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FIGURE 5 | Grand-average of P300 amplitude and latency for channels Fz, Cz, and Pz (left); significant correlations between VBM gray matter and amplitude and
latency for channels Fz, Cz, and Pz (middle); significant correlations between VBM gray matter volume and age, education, sex, and accuracy (right). (All significant
correlations are shown for p < 0.05).

DISCUSSION

The main purpose of our study was to explore the effect of
aging, sex and education on cognitive test performance and
visual P300-ERP component recorded during N-Back task, and
the novelty was to correlate the P300 characteristics with gray
matter volume using the VBM technique for whole brain. We
first assessed the cognitive test performance and P300 amplitude
and latency for both age sub-groups, and second we examined
the relationship between P300 characteristics and gray matter
volume, and the correlations between age, education, sex, and
gray matter volume, for 16 healthy normal aging individuals that
underwent an MRI scan. We expected significant differences in
cognitive and neurophysiological results between age-groups, sex
and education, significant correlations between P300 amplitude
and latency and gray matter volume in frontal and parietal
lobes. In addition, motivated by Schippling et al. (2017) who
investigated atrophy level in normal aging and correlated brain
volume with age, sex, education, and TIV, we also expected to
find significant correlations between our sample’s demographics
and gray matter volume.

To demonstrate the first hypothesis, we performed a t-test
comparing young-old and old groups on their cognitive tests
performance and demographic information. We administered
a battery of cognitive tests that included MMSE, Digit Span
Forward and Backward, COWAT, VAT, Stroop, TMT-A and B,
N-Back, TOVA, CORSI, and RAVEN tests. Encouraged by the
study of Duñabeitia et al. (2018) and Wiederholt et al. (1993),

which revealed that educational level and sex can affect
cognitive tests performance, we investigated both parameters
to see whether they could explain our behavioral results.
We performed two-way ANOVA tests crossing N-Back task
performance and age-groups, sex and educational level. At
cognitive level, significant differences were found between the
two age-groups in MMSE, CORSI, and N-Back tasks. These
results are consistent with Christensen’s (2001) who showed
changes over adult lifespan in cognitive tests performance.
Furthermore, we showed that sex and education had a significant
effect on cognitive performance for both young-old and
old subjects in Digit Span Backward and COWAT for sex,
reporting higher performance accuracy for females in both
tests, and for Digit Span Forward and Backward for education,
revealing higher accuracy for more educated individuals.
Moreover, our results indicated that sex and education also
affected cognitive performance of young-old adults separately,
reporting higher performance accuracy for females in Digit
Span Backward (short-term memory) task, and for males in
CORSI (spatial memory) task, and higher performance accuracy
for more educated individuals in Digit Span Forward (short-
term memory) and COWAT (verbal fluency) tasks compared
to lower educated individuals. These findings add weight to
the hypothesized effect of education on cognitive reserve to
curb the negative effect of aging on one’s cognitive abilities
(Stern, 2009).

Additionally, we examined P300 amplitude and latency,
recorded during N-Back task performance for both healthy
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elderly groups. Although some studies promoted the P300
component as a biomarker of (the degree of) impairment in
healthy elderly at risk of developing AD (Newsome et al.,
2013), we did not follow the same direction as the topic
is still controversial. In contrast, studies that investigated
P300 amplitude and latency in normal aging are abundant
(Polich and Kok, 1995; Polich, 2007; Redmond et al., 2012;
van Dinteren et al., 2014; Lubitz et al., 2017) albeit that
for P300 latency a stronger relation to age was observed
than for P300 amplitude (Derambure et al., 1993; Barrett
et al., 1999; Reuter et al., 2013). Although latency seemed to
more promising in revealing aging effects, we explored both
P300 features − amplitude and latency − since the P300
component is the one that is most strongly modulated by
the N-Back task we administered (Watter et al., 2001), and
where the P300 amplitude is modulated by attention and
memory load, while latency by performance of matching
(Chen et al., 2008).

Our results revealed differences in P300 amplitude between
age-groups, showing a higher P300 amplitude and smaller P300
latency for young-old compared to old adults in all three
N-Back levels, providing indications about decline in memory
processes. Both analyses were consistent with the results of
Polich (2007) and Lubitz et al. (2017). Furthermore, we replicated
the same analysis for cognitive testing, including sex and
level of education, for the P300-ERP component. Higher P300
amplitudes and smaller P300 latencies were found for females
compared to males. Also, higher P300 amplitudes and smaller
P300 latencies were observed for individuals that were more
educated compared to less educated ones. We hypothesized
that females process visual information differently from males.
These results support the data shown by Steffensen et al. (2008)
where females were characterized by a greater P300 response
compared to males during an object recognition task, and are
in line with those of Angel et al.’s (2010) where the effect of
age on ERPs responses was shown to be smaller for higher
educated individuals compared to lower educated ones during
a word-stem cued-recall task. Also in this case, as for the
cognitive tests results, education level seemed to compensate
for the effect of aging, and therefore to play a protective
role as claimed by the cognitive reserve hypothesis. Higher
educational levels were shown to be associated with greater
synaptic density and more complex networks (Kramer et al.,
2004) and a higher cognitive reserve, e.g., due to a higher
educational background, could compensate for neurocognitive
deficits, by the ability to recruit alternative brain networks,
and in this way maintain a high cognitive performance
(Park and Reuter-Lorenz, 2009).

To validate our second hypothesis, we used the 16 old
participants that underwent an MRI scan, and correlated their
N-Back P300 amplitude and latency with the gray matter volume.
To the best of our knowledge, there are no studies published
on neuroanatomical correlates of P300 in healthy older adults
during a WM task, in our specific case an N-Back task. Only
one study examined the correlation between P300 amplitude
and gray matter volume of specific ROIs during attentional
tasks (Ford et al., 1994). The results we reported showed

significant correlations between gray matter volume, analyzed
for the whole brain, instead of ROIs, using VBM, and P300
amplitude and latency for frontal, central and parietal electrodes.
In particular, we found significant correlations between frontal,
central and parietal P300 amplitude and -latency and gray
matter volume in left parietal areas (left post-central gyrus and
left supramarginal gyrus), temporal (middle temporal gyrus),
and occipital (left lingual gyrus) lobes and the thalamus. Also,
we found a larger gray matter volume related to higher P300
amplitude and shorter latency. These data are consistent with
studies that showed age-related gray matter volume loss in
different substructures, such as medial, parietal and temporal
structures, in older adults (Grieve et al., 2005; Hutton et al., 2009;
Giorgio et al., 2010; Terribilli et al., 2011; Schippling et al., 2017),
and in line with the study of Ford et al. (1994) that showed
significant correlations between P300 and gray matter volume in
parietal lobe when P300 was recorded during auditory attention
tasks. The brain regions we found to be significantly correlated
with the P300 component and demographics of our elderly
individuals also have an important role in regulating cognitive
and neurophysiological functions. In particular, the thalamus
is known to be involved in the process and integration of
neocortical inputs and outputs (Fama and Sullivan, 2015) and its
connectivity shown to decrease with age and to be most strongly
reduced in MCI and AD patients causing besides personality and
mood disorders, also arousal and sleep complaints. Furthermore,
the left post-central gyrus, which is the core of the somatosensory
network (Tomasi and Volkow, 2011), has been shown to become
thinner with age (Salat et al., 2004). The middle temporal
gyrus has been associated with the recognition of faces and
access to word meaning (Acheson and Hagoort, 2013), although
its exact function is still largely unknown, and shown to be
affected by age-related volume loss (Raz et al., 2004). Also,
the left lingual gyrus, linked to processing vision and encoding
visual memories, has been found to be modulated by age
(Swierkot and Rajah, 2018). Similarly, the supramarginal gyrus
(Sussman et al., 2016), related with phonological word choices
and language perception and processing, and the caudate nucleus
(Jiji et al., 2013), related to several executive functions such
as memory, learning, inhibitory control, etc., have both been
reported to decrease with age. Last, our results showed that also
demographics such as age, education and sex, correlate with
gray matter volume, especially in the parietal lobe and thalamus,
revealing a smaller gray matter volume with increasing age
(negative correlation), but a larger gray matter volume for more
educated older individuals and females (positive correlations).
The latter supports the results of several studies (Raz et al.,
1997; Good et al., 2001; Steffener et al., 2014; Schippling et al.,
2017) that provided evidence of negative correlations between
age, and positive relationships between sex and education, and
gray matter volume.

CONCLUSION

Our study demonstrated that age, sex and educational level
affect cognitive, neurophysiological (EEG) and structural (MRI)
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responses in healthy older adults, supporting previous findings.
Among older adults, only those with a higher level of education
revealed a better cognitive performance and a larger P300
amplitude and shorter P300 latency. However, as to sex the
affect was more complicated: a larger P300 amplitude and shorter
P300 latency for females compared to males, and a higher
short-term memory task accuracy for females, but conversely a
better spatial memory task performance for males. Additionally,
exploring the relationship between anatomical and temporal
characteristics, we observed significant correlations between the
P300 component, age, sex and education, and gray matter
volume in normal aging individuals that performed an N-Back
task. These preliminary findings call for further investigation
also by using traditional biomarkers of neurodegeneration such
as amyloid PET, to control for participants that are already
in a preclinical phase, and by implicating additional cognitive
reserve factors such as bilingualism, professional attainment and
leisure activities.
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