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ABSTRACT: 

 

In this work we test the power of prediction of deep learning for detection of buildings from aerial laser scanner point cloud information. 

Automatic extraction of built features from remote sensing data is of extreme interest for many applications. In particular latest 

paradigms of 3D mapping of buildings, such as CityGML and BIM, can benefit from an initial determination of building geometries. 

In this work we used a LiDAR dataset of urban environment from the ISPRS benchmark on urban object detection.  The dataset is 

labelled with eight classes, two were used for this investigation: roof and facades. The objective is to test how TensorFlow neural 

network for deep learning can predict these two classes. Results show that for “roof” and “facades” semantic classes respectively, 

recall is 84% and 76% and precision is 72% and 63%. The number and distribution of correct points well represent the geometry, thus 

allowing to use them as support for CityGML and BIM modelling.  Further tuning of the hidden layers of the DL model will likely 

improve results and will be tested in future investigations. 

 

 

 

1. INTRODUCTION 

In the last years 3D models and point clouds became more and 

more popular in several application fields, among the other: 

urban planning (Boyko and Funkhouser, 2011), facility 

management (Wang et al., 2015), cultural heritage (Tucci et al., 

2016), indoor navigation (Díaz Vilariño et al., 2016) just to name 

few of them. The popularity of point clouds as a primary source 

of information is connected with the recent technological 

developments that are making available more reliable, accurate 

and easy to use instruments (Adán et al., 2019). In addition, 

nowadays a set of pre-processing steps like noise reduction, data 

registration and alignment are mainly relying on automated 

procedures allowing a large accessibility to scanning technology 

also to non-expert users (Wujanz et al., 2019). Both Airborne 

laser scanning – ALS and dense image matching, especially when 

using oblique images (Rupnik et al., 2017) are the two main 

sources of massive point clouds. However, despite their broad 

availability, the further steps of 3D data analysis are mainly 

relying on manual operations; e.g. outlier removal (Pirotti et al., 

2018), segmentation, classification, semantic enrichment for 

example for modelling 3D city models (CityGML) and Building 

Infrastructure Modelling (BIM) from LiDAR (Barazzetti et al., 

2010; Yao et al., 2018).  For this reason, there is still a relevant 

need of methods, preferably automatic, to provide 3D data with 

meaningful attributes that characterize and provide significance. 

Indeed, a 3D point cloud is probably the simplest data structure 

that can be used to capture the shape, size and position of an 

object into a 3D space. By integrating different sensors, it is 

possible to associate to each point further characteristics like 

colours (combining a camera to instrument), temperature (by 

using a thermal camera) or multi-spectral information (Costanzo 

et al., 2015), etc. However, semantic and topological information 

cannot be directly integrated into a point cloud. This is the reason 

why automated analysis of 3D point clouds has become a topic 

of major interest. Two main steps are identified as crucial in this 

task: data segmentation and data classification. Segmentation 

(Rabbani et al., 2016) can be defined as the subdivision of the 

point cloud into a set of coherent elements according to a specific 

feature, e.g., geometrical, radiometric, etc. Instead, classification 

(Grilli et al., 2017) is the assignment of a specific class (label) to 

each point according to a specified criterion, e.g., functional, 

positional, etc. Solving these two problems is made more 

complex due to: (i) characteristics of the acquired data and (ii) 

inter-class variability. The first is associated with irregular 

sampling and density, noise of the data, registration errors, etc. 

The latter is associated to the large variety of objects into the 

same class (e.g., different shape and colour of objects under the 

class “building roof”). For this reason, multiple works are 

focusing on optimizing the problem for specific research studies 

considering the specific needs of an application field, e.g., 

cultural heritage (Fiorillo et al., 2013), autonomous navigation, 

urban planning (Rodríguez-Cuenca et al., 2105), etc. 

 

The two key elements of any classification are: discriminative 

features and proper classifiers. Given a 3D point and its local 

neighborhood, geometric features may be derived from the 

spatial arrangement of 3D points within its neighbourhood. 

Features may include distances, angles and angular variations, 

eigenvalues of the 3D structure tensor in the local 

neighbourhood, height and local plane characteristics, height 

characteristics and curvature properties (Weinmann et al., 2015, 

Weinmann et al., 2017). However, when deriving such features 

the proper selection of 3D neighbourhoods is of primary 

importance to obtain an appropriate description of the local 3D 

structure. In addition, typical effects in point cloud data like 
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noise, loss of sharp features and outliers worsen the problem 

since those factors may significantly affect features quality. In 

particular, we can distinguish between single scale approaches, 

where the scale for features definition is the same for each point 

in the 3D point cloud, or multi-scale features, where features are 

derived at multiple scales. Based on the derived feature vectors, 

classification is typically conducted in a supervised way.  

 

Classification can be carried out either at individual point or 

exploiting larger context. Individual point classification may be 

carried out very efficiently, but there it is more prone to be 

affected by point cloud noise and features variability, especially 

when using single scale approaches, and it may ends out in a 

noisy classification result. Contextual classification accounts for 

the fact that the class labels of neighbouring 3D points tend to be 

correlated. The exploitation of larger context is a trend of scene 

classification. For example, by plane segmentation (Xu et al., 

2014) or second or higher order Markov random field (MRF) or 

conditional random fields (CRF) (Lafarge and Mallet, 2012, 

Niemeyer et al., 2014, Niemeyer et al., 2016). 

 

Although existing methods have shown good results in ALS 

filtration and classification, they still need much human labour to 

generate fully realisable results. In this work we want to exploit 

existing Deep Learning (DL) algorithms for point cloud 

classification. The first part of the method consist in extracting 

predictors from geometric features at each point considering nn 

nearest neighbours. The cardinality of nn is not fixed, but 

determined to maximize geometric consistency. The vectors of 

predictors at each point are used for training. Labels are then 

assigned to each point in the point cloud. The classification is 

then carried out using DL a class of machine learning algorithms 

that use multi-layer neural networks 

The remaining of the paper is organized as follows: next section 

provides an overview of related work, then materials and 

methods are presented and defined, and finally results are 

discussed in light of suggestions for improvements and future 

work. 

  

 

2. RELATED WORK 

As previously anticipated classification methods can be 

categorized as single point- or contextual-based (Gerke and Xiao, 

2014). This section presents a brief review of previous works 

related to this subject. 

Point-based methods generally extract point-wise features locally 

from the neighbourhood defined by a sphere or cylinder, and then 

supervised or unsupervised classifiers are used.  

Classification is carried out by using methods such as Random 

Forests (RFs) (Breiman, 2001) and support vector machines 

(SVMs) (Mountrakis et al., 2011). Points are generally labelled 

individually in the feature space without considering 

relationships, which often leads to discontinuities in the 

classification results. To overcame this drawback object-based 

methods firstly subdivide the point cloud into segments sharing 

homogeneous properties (e.g. geometry, radiometric, curvature, 

etc.) or to partition the partition the point cloud into regular-

shaped clusters known as voxels (Aijazi et al., 2013) or 

supervoxels (Lim and Suter, 2009). Starting from this clusters 

more discriminative features are extracted and classification is 

then carried out on the identified segments using cluster features. 

 

A recent trend in the classification of point clouds is to exploit 

contextual information. For example, some point based methods 

incorporates contextual information by adopting Markov 

Random Field (MRF), Associative and non-Associative Markov 

Networks (Munoz et al., 2009) Conditional Random Fields 

(CRF) (Lafarge and Mallet, 2012, Niemeyer et al., 2014, 

Niemeyer et al., 2016), Simplified Markov Random Fields (Lu 

and Rasmussen, 2012). However, the adoption of contexture 

information only involves a small local region around the 

selected points and considers only  point-level interactions 

Niemeyer et al. (2016) consider longer interactions through 

higher order Potts model while Hackel et al. (2016) use 

multiscale representation of point clouds. Deep convolutional 

networks – ConvNets (LeCun et al., 1989) have shown a great 

success at solving recognition and classification tasks for 2D 

image dataset. However, the adoption of ConvNets to 3D models 

is not-trivial. The most straightforward way to make ConvNets 

applicable to 3D data, is to rasterize 3D models onto uniform 

voxel grids. Such approach however leads to excessively large 

memory footprints, slow processing times and low data 

resolution. A volumetric representation is associated with a 

quantization tradeoff: choosing a coarse grid leads to 

quantization artifacts and to substantial loss of information, 

whereas choosing a fine grid significantly increases the number 

of voxels, which are mostly empty but still induce a high 

computational cost. Several groups investigated application of 

ConvNets to the rasterizations of 3D models on uniform 3D 

grids. 

 

 

3. MATERIALS AND METHODS 

The data used for testing in this investigation is a dataset from the 

ISPRS benchmark on urban object detection and 3D building 

reconstruction (Rottensteiner et al., 2014). It consists, among 

other things, in a laser scanner dataset of the city of Vaihingen 

(Germany). Points are labelled with eight classes, among which 

there are two building elements: roofs and facades. 

 

The objective of this investigation is to assess how well two 

semantic classes, roofs and facades can be detected using Deep 

Learning(DL). DL is a class of machine learning algorithms that 

use multi-layer neural networks. TensorFlow, a framework 

library for DL models created by Google’s artificial intelligence 

team and released in 2015 with an open source license, will be 

used for this task. 

 

The first part of the methods consist in extracting predictors from 

geometric features at each point considering a set of nn nearest 

neighbours. The nn value is not fixed, but determined to 

maximize geometric consistency, as per indications in 

(Weinmann et al., 2015, 2017). This is done  by selecting the 

number of nn which result in the lowest Shannon entropy index 

value, calculated using normalized eigenvalues of the 3D   

covariance matrix: 

 

   
3

min lni i

i

nn  
 

  
 
    (1) 

 

where nnmin = 15 and nnmax = 100 similar to previous 

investigations. The 3D structure tensor - 3D covariance matrix - 

is calculated from the nn points.  
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Twenty-three predictors are extracted from the 3D structure 

tensors both using 3D and 2D features some of which are 

described in  (Weinmann et al., 2015, 2017). Intensity 

information was also used. training the DL model. Labels are 

then assigned to each point in the point cloud, defined as “roofs”, 

“facades” and “other”. Output values are tested for accuracy 

using K-fold validation with K=3.   

 

Deep learning is done using convolutional neural networks, that 

are currently used for image classification and are here applied 

through the TensorFlow framework for classification of 

unstructured points from LiDAR. The difference between images 

and the tested point cloud is that descriptors in images are 

reflectance values, whereas in point clouds specific descriptors 

are extracted from neighbouring geometric features, as described 

in the previous section. Extraction of descriptors from points 

using neighbours can be considered similar to convolution, as 

neighbours are considered and used to create a unique descriptive 

value.  The input layer is created with the descriptors. The 

framework consists in a convolutional layer, pooling layers and 

dense layers which perform the actual classification. The final 

result of classification is a actually a probability value between 

zero and one, which is the output of the softmax activation 

function that normalizes output node values. 

 

 

4. RESULTS AND DISCUSSION 

Results show that for “roof” and “facades” semantic classes 

respectively, accuracy is 84% and 76%. Figure 1 below shows 

additional details on a roof. It is visible that misclassified points 

are on the border of the roof and on isolated points. The number 

and distribution of correct points well represent the geometry, 

thus allowing to use them as support for CityGML and BIM 

modelling.  Further tuning of the hidden layers of the DL model 

will likely improve results. 

 

The results are shown in figure 1 where it is clear that points that 

belong to buildings (roofs and facades) are mostly regular and 

correct, but further analyses are necessary to explain the 

efficiency of the algorithm. For further modelling BIM and 

CityGML representations, the geometries of the building are, of 

course, important. Therefore the classification results should be 

analysed in terms of correctly labelled points, but in particular 

false positives are important to detect and quantify. False 

negatives are not as important if not numerous.  This is because 

false positives create wrong geometries in a scenario of automatic 

geometry creation, whereas false negatives can be interpolated 

by correct points, if there are enough in the neighbourhood. 

 

It is trivial to say that similar geometries can create false 

positives. This is particularly true in the case of the façade class. 

As can be seen from table 1 below. Roofs are obviously easier to 

detect by a trained neural network than facades. Further visual 

analysis  shows that trees and low vegetation near walls can be 

misinterpreted as facades. The low overall number of façade 

points results in a higher relative number of false positives.  

 

 

 Roof Façade 

Precision 0.72 0.63 

Recall 0.84 0.76 

Table 1. Precision and recall of roof and façade classes 

 

 
 

 
 

 
 

Figure 1.  Real and predicted classes left and middle respectively: 

blue=facades, green=rooftop, grey=others. Right: 

detail of rooftop with misclassified points in blue and 

red. 

 

 

As seen in a close-up in figure 2, there are many false positives 

also of roof class that belong to ground objects. These errors can 

be partly corrected by a pre-processing step that extracts an 

accurate ground model. There are tested methods for extracting 

ground points from a LiDAR point cloud, mostly using 

progressive iterative triangulation of lower points in a user-

defined neighbourhood. An accurate terrain model can be used to 

automatically remove points that are closer than 2 m from the 

terrain, thus removing many of the above mentioned false 

positives, and improve results.  
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Figure 2.  From top to bottom respectively detail of original 

points, real roof/façade classes and predicted roof and 

façade classes. 

 

The original benchmark dataset contains eight labelled classes, it 

is therefore possible do a more in-depth analysis of commission 

errors considering from which other classes false positives to 

roofs and facades came from. Figure 3 shows that some classes 

where wrongly attributed to the two target classes. As mentioned, 

figure 3 shows that trees are the features that mostly get assigned 

incorrectly to facades, most likely due to urban vegetation 

growing close to buildings. The number of neighbours that create 

descriptors range from twenty to one hundred and even if the 

process aims at minimizing the entropy, points belonging to 

façades get mixed with points from trees, causing a point set, 

during the training phase, that leads to inaccurate descriptors of 

the geometry of a façade.  

 

In general figure 3 shows that vegetation is cause of false 

positives, also in the case of low vegetation that gets 

misinterpreted as building elements (both roof and façade). As 

the training was done with a random subset of points from the 

two classes, an improvement can likely be seen by selecting 

manually “ideal” roof and façade examples for training. In other 

words, find buildings at a distance from vegetation, in order for 

the training step to extract “clean” predictors and avoid noise 

from vegetation.  

 

 
Figure 3.  Commission errors per each of the eight labels 

available in the benchmark dataset. 

 

 

Further work is needed to investigate on improvements from 

tuning the hyperparametres of the hidden layer in the TensorFlow 

framework.  This step can be done by iterating different 

parameters and checking accuracy metrics over independent 

subsets with respect to the training set. It is worth noting that the 

presented work has been all done with open-source software  for 

LiDAR processing  (Pirotti, 2019), R for defining descriptors and 

applying TensorFlow, CloudCompare for further visual analysis. 

 

 

5. CONCLUSIONS 

The investigation presented shows that it is possible to extract 

information regarding building geometries from a LiDAR survey 

with a trained neural network framework. Tensorflow was used 

in this case, thus applying a deep learning paradigm, i.e. using a 

convolutional neural network. Training the model requires first 

to extract descriptors from the point set. This is a convulational-

type operation, as neighbours are considered and geometric 

descriptors of point subsets are used. Once the model is trained 

and validated, accuracy metrics are extracted, showing for “roof” 

and “facades” semantic classes respectively a recall value of 84% 

and 76% and precision values of 72% and 63%. This model can 

be improved as highlighted in discussion, and then it can be 

applied to other point cloud datasets  of similar scenarios.  
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