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Abstract. We propose a new method to describe electron dynamics in
molecules on the scale of femtoseconds. It is based on factorizing the elec-
tronic wave function into a matrix product state and using this factorization to
solve the time dependent Schrödinger equation.

1 Introduction

Electronic correlations are the main source for numerous interesting effects in solid-state
physics and quantum chemistry. With experimental facilities like the Linear Coherent Light
Source [1] in Stanford, US and the European X-Ray Free-Electron Laser [2] in Hamburg,
Germany we are now able to observe effects caused by these correlations on the atto- to fem-
tosecond timescale. Efficient methods to describe ultrafast dynamics of correlated electron
systems will be therefore essential for the future correspondence of theory and experiment.

Here, we present benchmark calculations comparing a time dependent method based on
matrix product states to calculations including all configurations. As a first step we focus on
electron dynamics, however, moving nuclei will be included in a later work.

2 Matrix Product States

The electronic wave function of a molecule may be written in orbital basis as

|ψ(t)〉 =
∑
σ1···σL

cσ1···σL (t) |σ1 · · ·σL〉 , (1)

where σi ∈ {·, ↑, ↓, ↑↓} are the occupation numbers of orbital i, cσ1···σL (t) are the expansion
coefficients and |σ1 · · ·σN〉 are the many-body basis states representing the electronic con-
figurations. The orbital basis may be molecular orbitals, atomic orbitals, or any other set of
orthogonal orbitals. This form of the electronic state includes the full configurational space
(FCI). The exponentially growing number of possible configurations makes working with
|ψ(t)〉 so challenging, as it requires too many coefficients to store and handle for medium to
large sets of orbitals.

Today there are many approximations to reduce the number of configurations included in
Eq. 1, for example, the configurational interaction [3] and complete active space [4] meth-
ods. An approach that just recently got adapted to quantum chemical problems and which is
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Figure 1: Occupation number of the HOMO-3 or-
bital (solid line, left axis) and relative error of the
two electron reduced density matrix (dashed line,
right axis) of H10.

Figure 2: Occupation number of the HOMO-1 of
a water molecule with doubly ionized 1s orbital
at the oxygen atom at time t = 0.

extremely successful in calculating ground states is a factorization of the coefficient tensor
cσ1···σL (t) into a matrix product state [5] (MPS)

|ψ(t)〉MPS =
∑
σ1···σL

Aσ1 (t) · · · AσL (t) |σ1 · · ·σL〉 , (2)

with matrices Aσi (t) getting optimized to include the most import configurations only. In
most physical cases, using matrices of some limited dimension D approaches the FCI state
Aσ1 (t) · · · AσL (t) ≈ cσ1···σL (t) efficiently. We start from a small dimension (for example a
product state with D = 1) and increase until convergence.

3 Benchmark

We want to compare results using the FCI state from Eq. 1 to our MPS approach from
Eq. 2 with different matrix dimensions. To solve the time-dependent Schrödinger Equation,
we apply a Krylov space method [6] with a Krylov space size of 8 and a time evolution
step ∆t = 3as. With an equivalent implementation for MPS and FCI states, any observed
disagreements between the MPS and the FCI result are exclusively caused by the limited
dimension of the matrices in the MPS.

3.1 Hydrogen Chain

First benchmark is a well studied example in quantum chemistry density matrix renormaliza-
tion group [7, 8], the one dimensional H10 molecule with bond distance r = 1.8a0. We use
molecular orbitals derived from a Hartree-Fock + Pipek-Mezey localization calculation us-
ing the Molpro software package [9] on a STO-6G level. The initial state is the Hartree-Fock
ground state, meaning 10 electrons occupying the lowest 5 molecular orbitals.

We start by comparing the occupation number of the HOMO-3 orbital as an example.
The orbital is doubly occupied at t0 and becomes depopulated by about 5% within the first
few atto seconds. In Figure 1, we see the dynamics of the occupation number derived with
the FCI state (red) and MPS calculations with fixed dimensions D = 50 (green) and D = 100
(blue). Both MPS show an error linearly growing in time, however, the MPS with D =

100 has a lower slope. Disagreements to the FCI result remain small on this time scale,

, (201E Web of Conferences https://doi.org/10.1051/e onf /201920PJ pjc9)205 0 5030

UP 2018
3009 09

2



although a complete factorization of the FCI coefficient tensor in Eq. 1 results in significantly
larger matrices with DFCI = 462 (employing particle number and total spin symmetry as
implemented in CheMPS2 [8]). We see, only a fraction of configurations participate in the
dynamics during the first femtosecond and our MPS approach is able to find it.

As a more profound comparison between the MPS and the FCI state we also compare
the two electron reduced density matrix Γi jkl(t) =

∑
στ 〈ψ(t)| ĉ†iσĉ†jτckτclσ |ψ(t)〉. As a measure,

we compare the relative error between MPS and FCI matrices with respect to the Frobenius
matrix norm. We see in Figure 1 (dashed line, right axis) that the error remains smaller than
5% for D = 100 during the first femtosecond.

3.2 Doubly Ionized Water

As a second example we study the electron dynamics in the water molecule. The initial state is
Hartree-Fock orbitals derived from the 6-31G basis set, however with two electrons removed
from the 1s orbital at the oxygen. Due to the large charge hole at the oxygen, we expect
more complex dynamics compared to the previous example. We use conservative Krylov
parameters with a space size of 4 and a time evolution step ∆t = 0.3as. Figure 2 shows the
dynamics of the occupation number of the HOMO-1 orbital calculated using FCI and MPS
with a maximum dimension of D = 100. The MPS approach has all possible configurations
included at DFCI = 316.

The HOMO-1 orbital is almost depopulated by 50%, where one electron tries to fill the
charge hole at the oxygen atom during the first few atto seconds. Both approaches show this
behavior with the MPS approach fitting to the FCI result almost perfectly. The depopulation,
as well as the frequency of the following oscillation is well reproduced using MPS.

4 Conclusion

We compared the MPS and FCI results in a basis of molecular orbitals for the H10 and the
water molecule. In these examples, the number of necessary configurations is efficiently
reduced using MPS. They restrict the configurational space dynamically, while still showing
all main features of the electron dynamics. With their success in describing ground states and
with the benchmark presented here, MPS are an efficient approach for dynamics involving a
large active space but a reduction to a specific configurational class is not a-priori possible.
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