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Abstract. We demonstrate the capability of ultrafast low-energy electron 
diffraction to resolve phase-ordering kinetics and structural phase 
transitions on their intrinsic time scales with ultimate surface sensitivity. 

1 Introduction  

Solid state surface systems are particularly attractive because of their strongly altered 
physical and chemical properties compared with the bulk [1]. The lower dimensionality and 
broken symmetry of a surface gives rise to a variety of phenomena associated with 
modified electronic, lattice and spin structures, which in many cases are correlated with 
each other. We have recently developed ultrafast low-energy electron diffraction (ULEED) 
to explore optically-induced structural dynamics in the time-domain, exploiting the superior 
surface sensitivity and momentum resolution of LEED to resolve structural phase 
transitions and phase-ordering processes at surfaces [2,3]. Here, we present the observation 
of phase-ordering mechanisms and phason dynamics in the incommensurate charge density 
wave (CDW) phase of 1T-TaS2, enabled by time-resolved spot-profile analysis [3]. 
Furthermore, we report on the first time-resolved LEED studies of the structural phase 
transition associated with the insulator-metal transition in atomic Indium chains on a 
Si(111) surface. 

2 Experiment  

To realize ultrafast low-energy electron diffraction (ULEED), we employ low-energy 
electron pulses in a laser-pump/electron-probe scheme (Fig. 1a). Within this approach, a 
nanoscopic needle emitter triggered by 400 nm laser pulses (40 fs duration) via two-photon 
photoemission (2PPE) is utilized in a miniaturized electrostatic lens geometry as a high-
brightness source. The resulting electron pulses exhibit a minimal duration down to 1.3 ps 
at the sample for electron energies of 20-200 eV [3,4]. The strongly confined emission area 
leads to a high transversal coherence length of the pulsed electron beam, resulting in a 
momentum resolution of Δks =0.03 Å−1, which corresponds to a transfer width of 2π/Δks = 
21 nm, at a spot size on the sample below 100 µm (FWHM). 
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Fig. 1. a, Sketch of the optical-pump electron-probe scheme of the ULEED experiment. b, Difference 
image of the NC (blue) and IC (red) diffraction patterns (adapted from Ref. [3]). 

3 Results and Discussion  

We investigate the structural dynamics induced by the transformation of charge density 
waves at the surface of the quasi two-dimensional material 1T-TaS2 [3]. Specifically, we 
map the laser-driven transition from the room-temperature nearly-commensurate (NC) to 
the high temperature incommensurate (IC) CDW phase (Fig. 1b). Utilizing the high 
momentum resolution of the ULEED setup, we perform a thorough spot profile analysis of 
the appearing IC CDW diffraction peaks and observe a coarsening behaviour in the newly 
created IC phase (Fig. 1c). This growth of the IC CDW coherence length is attributed to the 
annihilation of dislocation-type topological defects. To corroborate our experimental 
observations, we perform numerical simulations of the IC CDW phase-ordering process in 
a time-dependent Ginzburg-Landau approach. 

In a second set of experiments, we study collective phase-excitations, so-called phasons, 
in the IC phase [5]. After exciting the sample with an intense light pulse, we monitor the 
subsequent energy redistribution from the electron- into the phason-/phonon-subsystems. 
To this end, we determine the time-dependent temperature changes in the respective 
subsystems by a comparison of the pump-induced intensity suppressions of Bragg- and 
CDW-satellite-reflections. Our results indicate a strong initial energy transfer to the phason 
system, followed by slower phason-phonon equilibration, which suggests an inhibited 
electron-phason relaxation channel. We attribute this observation to a gap-induced 
decoupling of electron and phason systems, resulting in the pronounced generation of hot 
phasons. 
 

 

Fig. 2. a, Integrated CDW diffraction peak intensities recorded using the µm-sized gun. b, Time-
dependent contribution to the width (FWHM) of the ICP diffraction peaks and width of lattice 
diffraction peaks for a range of optical-pump fluences. Red circles: data recorded with µm-sized gun. 
Inset: A double-logarithmic plot of the correlation length corrected for the instrument response 
function, indicating a power-law scaling for the phase-ordering kinetics (adapted from Ref. [3]). 
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Fig. 3. Diffraction images and structure models of the low-temperature (8×2) and the high-
temperature (4×1) phase of Indium atomic wires on a Si(111) surface recorded with 130eV electron 
pulses in our ULEED setup. The twofold streaks in the diffraction pattern of the (8×2) phase are the 
result of the missing correlation between adjacent atomic rows. 

We further use the high surface sensitivity of our ULEED setup to study the surface-
specific transition between two CDW states of self-assembled Indium wires on Silicon. The 
sample is prepared by in situ evaporation of about one monolayer of Indium on a clean 
Si(111) surface followed by subsequent annealing and cooling down to 60 K. Following 
optical excitation, the system undergoes a Peierls-type transition from a low-symmetry 
insulating to a high-symmetry metallic phase, accompanied by a structural phase transition 
between an (8×2) and a (4×1) superstructure [6]. We report on the first findings regarding 
the underlying structural dynamics probed by Ultrafast LEED. 

4 Summary and Conclusion  

In conclusion, using the example of 1T-TaS2, we reported the first systematic observation 
of ultrafast phase-ordering kinetics and phason dynamics enabled by the development of 
ultrafast low-energy electron diffraction (ULEED). We further explore the potential of this 
new technique by studying surface-specific structural phase transitions, such as Indium 
atomic chains on Si(111). Serving as an ideal complement to ultrafast angle-resolved 
photoelectron spectroscopy (ARPES), we believe that ULEED will pave the way for a 
greater understanding of a multitude of surface phenomena and consequently the optical 
control of complex surface dynamics, including phase transitions and chemical reactions. 
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