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Abstract. The correlated exciton-vibrational dynamics of the Fenna-
Matthews-Olson (FMO) complex is studied using Multi-layer Multi-
configuration Time-dependent Hartree (ML-MCTDH) wavepacket 
propagation. Exciton populations and coherences are shown to be sensitive 
to the details of the spectral density.  

1 Introduction 
The FMO pigment-protein complex has taken a prominent role for our understanding of 
dynamics and spectroscopy of electronic energy transfer in photosynthesis. In particular, 
two-dimensional (2D) electronic spectroscopy has gathered evidence for long-lived 
coherences up to physiological temperatures [1], although this result has been challenged 
recently [2]. Different experimental results are paralleled by a variety of theoretical 
predictions (e.g. [2-4]). This holds true despite the fact that the underlying model is 
identical, i.e. the Frenkel exciton Hamiltonian with linear coupling of the local electronic 
excitations to a bath of harmonic modes of the bacteriochlorophyll monomer as well as of 
the protein environment. The exciton-vibrational coupling is represented by the spectral 
density (SD), i.e. the distribution of Huang-Rhys factors with respect to the modes’ 
frequencies [5]. The SD can be extracted from fluorescence excitation spectra [6], but also 
a number of (different) theoretical SDs yielding different dynamics have been reported (e.g. 
[7]).  

Exciton dynamics in photosynthesis is commonly described using a reduced density 
matrix system-bath approach [5]. Although the equations of motion can be solved 
numerically exactly [4], explicit information with respect to the dynamics of vibrational 
degrees of freedom is not available. Thus, the possible roles of particular modes can be 
assessed indirectly only. Recently, we have used high-dimensional exciton-vibrational 
wavepacket propagation to gain detailed insight into the exciton transfer in FMO [8,9]. 
Solving the time-dependent Schrödinger equation in hundreds of dimensions becomes 
possible by the ML-MCTDH approach (for a review, see [11]). Here, the state vector 
Ψ "; $ = &'("; $) *'   is expanded with respect to the local exciton states, !  , and 
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the different wavepackets, !" #; % ,   are expressed in terms of Hartree product 
configurations of time-dependent basis functions.  

Using this approach, two different mechanism have been identified, which lead to 
mode-specific effects [9]. First, there is a competition between local vibrational motion and 
exciton transfer, triggering electronic ground state vibrational motion if the vibrational 
frequency exceeds the transfer coupling. Second, energetic downhill transfer is vibronically 
assisted, leading to vibronic excitation in a narrow frequency range. Here, we explore this 
model further, focusing on the effect of the SD model on the population and coherence 
dynamics. 
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Fig. 1. Population dynamics using the Wendling and Coker SDs ((a) diabatic basis, (b) adiabatic 
basis, decomposition of adiabatic into diabatic states is given in panel (d)). Panel (c) shows the 
coherence evolution between adiabatic states 2 and 3 (corresponding to an off-diagonal peak in the 
2D spectra) for both SDs. Numbers in circles label the respective states.  

2 Results and Discussion  

Simulation results are shown for the three-site (! = 1 − 3  ) FMO model as described in 
[10] using the Heidelberg MCTDH package [11]. Two different SDs will be compared, i.e. 
the discretized experimental Wendling SD [6], which is uniform for all sites, and the 
calculated site-specific Coker SD [7]. In the following we will discuss the one-exciton 
reduced density matrix in diabatic (site) representation, !"# $ = Ψ($) ) * Ψ($)   , as 
well as in the adiabatic (eigenstate), !"# $   ,  representation. The eigenstates are defined as 
! = #$ ! %$   , the squared coefficients for the used excitonic model Hamiltonian are 

shown in Fig. 1(d). Apparently, sites 1 and 2 are strongly coupled, whereas site 3 is only 
weakly mixed with site 2. 
The diabatic population dynamics upon initial excitation of site 1 is shown in Fig. 1(a) for 
the Wendling and Coker SDs. First, we notice that the overall behavior is rather similar to 
previous reduced density matrix calculations [3,4], i.e. there is a beating between sites 1 
and 2, which is damped on the time scale of about 1 ps, along with a decay into site 3 
whose dynamics doesn’t show any oscillations. We emphasize, however, that the decay is 
solely an effect of the high-dimensional vibrational space and not the result of 
phenomenologically introduced rates. The adiabatic population dynamics in Fig. 1(b) 
doesn’t show the rapid oscillations and merely reflects the decay of the initial exciton 
eigenstate populations. The Wendling and Coker SDs differ in shape as well as in the 
integrated Huang-Rhys factor (Wendling: 0.42, Coker: (0.64,0.96,0.58) for sites (1,2,3)). In 
[10], it was argued that the total Huang-Rhys factor determines the effective decays rates, 
whereas vibrational and vibronic excitation are sensitive towards the actual shape of the 
SD. The dependence of the population and also the coherence decay on the SD model is 
confirmed by Fig. 1(a-c). 
A more global view on the dynamics is provided by the time-averaged exciton density 
matrix in diabatic representation, !"# $ = &'( )* !"#(*)$

-   . In Figs. 2(b) and (c), 
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Wendling and Coker SD results are compared.  Obviously, population trapping at site 3 is 
more pronounced for the Coker SD, whereas for the Wendling SD, populations stays longer 
at site 2. Inspecting coherences, one notices that those between sites 1 and 2 have a larger 
average for the Wendling SD, whereas the coherence between sites 2 and 3 is essentially 
not affected by the choice of the SD. Finally, both results can be compared to a bare 
excitonic model, where excitation is essentially trapped at sites 1 and 2 (Fig. 2(a)). 
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Fig. 2. Time-averaged exciton density matrix elements for the pure excitonic (a), the Wendling SD 
(b), and the Coker SD (c) models. 

3 Conclusions 
ML-MCTHD high-dimensional exciton-vibrational wavepacket dynamics, combined with 
well-established model Hamiltonians, provide the means to study excitation energy transfer 
in photosynthetic systems such as the FMO complex. Compared to reduced density matrix 
approaches, this provides the advantage of having explicit information with respect to the 
vibrational degrees of freedom. Further, phase and energy relaxation occur not due to 
respective rates, but as a consequence of the high dimensionality of the configuration space. 
Applying this method to the specific case of the FMO complex, we have shown that the 
actual model for the SD, in fact, matters leading to different dynamics of excitonic 
populations and coherences. 
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