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Abstract. This article reports the first application of the Quasi-Monte Carlo (QMC) method for estimation of
the pseudo relative permeability curves. In this regards, the performance of several meta-heuristics algorithms
have also been compared versus QMC, including the Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and the Artificial Bee Colony (ABC). The mechanism of minimizing the objective-function has been
studied, for each method. The QMC has outperformed its counterparts in terms of accuracy and efficiently
sweeping the entire search domain. Nevertheless, its computational time requirement is obtained in excess to
the meta-heuristics algorithms.

1 Introduction

As an integral part of the economics of a field, the selection
of an optimum development plan is greatly reliant on the
accuracy of relative permeability information. Such infor-
mation is practically provided by laboratory measurements
on rock samples – to be later used as model inputs capable
of capturing detailed geological heterogeneities. In practice,
usage of models with length scales comparable to rock
samples is hurdled; due to the computational time require-
ment. Consequently, effort is made to construct and use
coarser models, with essentially larger block sizes, based
on the information in the fine models. In this regards, the
laboratory-measured relative permeabilities (rock curves)
need to be adjusted, prior to applying to the coarser
models. In other words, the relative permeability curves
should be upscaled for the coarser models; otherwise possi-
ble errors may arouse because of disregarding the reservoir
heterogeneity.

The earliest attempts on upscaling rock curves, used the
concept of pseudo-functions (Coats et al., 1971; Hearn, 1971;
Jacks et al., 1973; Kyte and Berry, 1975). Nevertheless, their
further development was hindered because of two reasons.
First, the dependency of pseudo-functions to the boundary
conditions and the position of blocks in the coarse grid
provide inevitable errors, when using them for largermodels.
Second, the difficulty faced in generating new pseudo-func-
tions for each new scenario shall be practically insurmount-
able (Artus and Noetinger, 2004). As an alternative to the
pseudo-function method, the History-Matching (HM)

technique was later proposed for estimation of the pseudo
relative permeability curves, for coarse models (Fayazi
et al., 2016; Johnson et al., 1982; Tan, 1995; Wang et al.,
2009).

On a trial basis, the history-matching method seeks
relative permeability curves (for a coarse model) that can
reproduce data obtained from a corresponding model with
a fine structure. Since its inception, machine search
algorithms have been extensively used in the HM process,
to reduce the time requirements for its implementation.
In a sense, HM is a mathematical minimization problem that
invokes optimization algorithms to find the appropriate
pseudo relative permeability curves. For this sake, usage of
optimization algorithms is rampant within the HM
implementation.

The literature reports on usage of several optimization
schemes for HM purposes, such as gradient-based and
stochastic (Hajizadeh et al., 2010; Zhang and Reynolds,
2002). In gradient-based algorithms, the search direction
is determined by calculating the Hessian matrix or gradient
of the objective function with respect to model parameters.
Some of gradient-based algorithms include conjugate gradi-
ent, Gauss-Newton, Quasi-Newton and steepest descent. In
spite of their favorable convergence, the gradient-based
algorithms may be bounded to a local optimum in vicinity
of the initial guess (Landa et al., 2005). Moreover, these
methods may not be appropriate for large-scale reservoirs,
with complex objective functions (Hou et al., 2012).

In comparison, stochastic methods are suitable for prob-
lems, with essentially complex objective functions. The well-
known stochastic algorithms include the Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Ant Colony* Corresponding author: fazelb@ripi.ir
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Optimization (ACO) and Neighborhood Algorithm (NA).
Finding global optimum through stochastic methods,
however may require a large number of runs to reach an
appropriate convergence – a potential drawback for field-
scale purposes (Hou et al., 2012). The application of numer-
ical techniques, such as Ensemble Kalman Filter (EnKF)
and Ensemble-based Optimization (EnOpt) have also
been introduced to HM, to speed up on its convergence
(Aanonsen and Naeval, 2009; Chen et al., 2008).

The present article contributes to the existing literature
in this field, in two venues. First, it reports on the first
application of the Quasi-Monte Carlo (QMC) technique,
for handling the optimization problem encountered in the
HM process. Second, it provides a benchmark comparison
between the QMC method and several meta-heuristics
techniques.

The rest of the article is organized, as follows. The next
sectionwill mention themathematical foundations as well as
the algorithm details for the several optimization methods
used. A description of our results is provided in the third
section of the article, ensued by our concluding remarks.

2 Methods

The obtained pseudo-Kr value may alter significantly from
the experimental counterparts, when applied to field. This
is due to confluent effects of different phenomena – fine-grid
heterogeneity, numerical dispersion, capillary pressure –

(Fouda, 2016; Zarifi et al., 2012). As such, the conventional
Kr estimation technique, such as Corey method, may be
ineffective in yielding accurate pseudo Kr values – deriving
the need to adopt correlation-free methods with flexibility
in prediction pseudo Kr values on a point-based framework.
The method proposed herein possesses this feature and
hence can be quite effective in capturing any complexity
that arises due to field effects. The matter of finding the
optimal relative permeability curves can be handled within
an optimization context. In this sense, the problem can be
equivalently expressed as finding the optimal value to an
objective function, f, in an s-dimensional domain. In prac-
tice, the number of dimensions (to be considered) is the
number of saturation points, at which data is sought for
the corresponding relative permeability curves, Kro and
Krw. In the present work, a domain of 18 dimensions was
considered (s = 18) – a number of nine dimensions for each
curve. The choice was rendered as we were interested in
computing the relative permeability values at water satura-
tions of Sw = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], for
each curve. Consequently, a point may be conceived in an
s-dimensional space, x, with entries of the relative perme-
ability curves at the considered water saturations (Eq. (1)):

x ¼ x1; :::; xsð Þ; ð1Þ
with xi ¼ K rojSwi

for (1 � i � 9) and xi ¼ K rwjSwi
for

(10 � i � s). As the point represents two curves simulta-
neously, it can be input into a reservoir simulator. Gener-
ally, the entire field production behavior including oil and
water flow rates and pressure data versus time is used to
achieve an acceptable match between the fine and coarse

model during history matching (Lee and Seinfeld, 1987;
Kulkarni and Datta-Gupta, 2000). Hence, output results
for the Field-Oil-Production Rate (FOPR), Field-
Pressure (FPR) and Field-Water-Cut-Total (FWCT),
corresponding to the point being considered. The objec-
tive function incorporates these outputs, and sums the
differences against a benchmark case (Eq. (2)),

f ðxÞ ¼
X

ð FOPRx � FOPRbenchmarkj j
þ
X

ð FPRx � FPRbenchmarkj j
þ
X

ð FWCTx � FWCTbenchmarkj j: ð2Þ

Presumably, the relative permeability curves will be of
true values, if the results of the benchmark case can be
reproduced, out of the simulator. This, however, should cor-
respond to the exact moment, when the value of the objec-
tive function reaches its global minimum. The original issue
is therefore shrunk down to a minimization problem, in an
s-dimensional space.

A plethora of optimization techniques were used to
minimize f, as encountered in the prediction of relative
permeability curves. We adopted meta-heuristics as well
as QMC techniques. A description of the mathematical
principle behind each method is given in the following lines.

2.1 Quasi-Monte Carlo

Let X be a separable topological space in an s-dimensional
space. Clearly, any point in X can be described by a set of s
values, x = (x1, x2,. . ., xs) for xi 2 R1�i�s. Let f be a real-
valued function on X, for which a global minimum is
sought. Since f is assumed to hold a global minimum in
the region of interest, it is bounded from below and we
define its global minimum as:

m fð Þ ¼ minx2Xf xð Þ: ð3Þ
Let k be a probability measure on X. Furthermore,

consider S as a sequence of N independent k-distributed
random samples x1, x2,. . ., xN 2 X. We define,

mN f ; Sð Þ ¼ min1�i�N f xið Þ: ð4Þ
The QMC method of quasirandom search makes use of

a deterministic sequence of points x1, x2,. . ., xN in X,
in order to find the global infimum. It is proved that
mN (f; S) converges to the global minimum of f with unit
probability, if f is continuous and if a positive probability
measure (k > 0) is taken for every nonempty subset of
X (Niederreiter, 1994),

limN!1mN f ; Sð Þ ¼ m fð Þ: ð5Þ
Consider a point set P = (x1, x2,. . ., xN). The disper-

sion of point P in X is defined by:

dispN P;Xð Þ ¼ max min1�i�N disp x;xið Þ; ð6Þ
where,

disp f; cð Þ ¼ max1�i�s fi � cij j for
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fi ¼ y1; y2; :::; ysð Þ; ci ¼ z1; z2; :::; zsð Þ: ð7Þ
The dispersion can be viewed as a measure of deviation

from denseness of S in X (Niederreiter, 1994). Let
Wðf ; tÞ ¼ maxf; c2X; dispðf;cÞ�t f ðfÞ � f ðcÞj j t � 0, be the
modulus of continuity of f. It is proved (Niederreiter,
1994) that for any point set P of N points in X, with disper-
sion dispN = dispN (P; X), we have:

m fð Þ �mN fð Þ � W f ; dispNð Þ; ð8Þ
if the metric space (X, disp) is bounded (i.e.,
maxf; c2X dispðf; cÞ < 1). Thus, the theorem shows
point sets with small dispersion as being considered suit-
able for quasirandom search purposes (Niederreiter, 1994).

The fate of a quasirandom search largely depends on the
condition dispN < e, in which e is a positive number less
than 1/2 (Lei, 2002). Taking Is = [0, 1]s, an absolute low
bound for dispersion of any N points in Is is (1/2)N�1/s

(Niederreiter, 1984). It later follows that N must at least
be of an order of magnitude e�s (Lei, 2002).

A typical point set used for the quasirandom search
should also possess nice properties on its discrepancy –

interpreted as the difference between the empirical distribu-
tion of the QMC point set and the uniform distribution
(Drew and Homem-de-Mello, 2006). For a given point set
P ¼ ðx1;x2; :::;xN Þxi2I s and a subset G � I s, we take SN
(G) as the number of points xi 2 G, and define discrepancy
as (Lei, 2002):

disp x1;x2; . . . ; xNð Þ ¼ maxs2I s
SN Gsð Þ

N
� s1s2; . . . ; ss

����
����;
ð9Þ

where

Gs = [0, s1)�,. . ., �[0, ss) is a rectangular region with an
s-dimensional volume equal to s1, s2,. . ., ss.

QMC deals with infinite Low Discrepancy Sequences
(LDS) – possessing the additional property that for
arbitrary N the initial segments have relatively small
discrepancy (Lei, 2002). The merits of LDS are twofold;
they provide uniform sample points avoiding large gaps or
clusters. In addition, they know about their predecessors
and fill the gaps left from the previous iterations
(Kucherenko, 2006) – eliminating empty areas in which
no information on the behavior of the underlying problem
can be deducted.

The choice of LDS is therefore central to the QMC
methodology. Different principles have been put to generate
LDS sets (Bratley et al., 1992; Niederreiter, 1984, 1987,
1994; Sobol, 1976). We adopted the methodology developed
by Sobol (1976). While other theories, such as Niederreiter’s
(1994) result in the better asymptotic properties
(Kucherenko, 2006), Sobol’s LDS sets provide enhanced
reliability in terms of rapid convergence in high dimension-
ality situations (Jäckel, 2002). A description of the Sobol’s
methodology for generating low-discrepancy sequences is,
however, deferred to the Appendix A; to keep this text
within a reasonable length.

Once an LDS set is available, the multistart QMC
algorithm implements an inexpensive local search (such as

the steepest descent) on the quasirandom points to concen-
trate the sample, which will subsequently be reduced by
replacing the worse points (with higher function values)
with the new quasirandom points. A completely new local
search will then be applied to any point retained for a
certain number of iterations. Two types of stopping criteria
may be conceived for this algorithm. First, if no new value
for the local minimum is found after several iterations
(Glover and Kochenberger, 2003). Second, if the Number
of Worse Stationary Points (NWSP) exceeds the Number
of Stationary Points (NSP), usually by a fraction of three
(Hickernell and Yuan, 1997). The reader is referred to the
Appendix B of the article, for a more detailed description
of the QMC algorithm.

2.2 Artificial Bee Colony

Originally inspired by the foraging behavior of a honeybee
colony, the Artificial Bee Colony (ABC) algorithm consists
of three fundamental components: food source, employed
bees, and unemployed bees. For an explanation of the
ABC method, however, we stick to the original terminology
proposed by Karaboga and Akay (2009), so as to conform.

Then employed bees are those employed at, and
currently exploiting, a certain food source. They carry infor-
mation about the (distance, direction and the profitability)
of the food source and communicate the information with
other bees waiting at the hive. The unemployed bees are
classified as being either a scout bee, or an onlooker one.
The former randomly searches the environment to find a
new (better) food source; while the latter seeks a food source
by means of the information passed by an employed bee.
An employed bee whose food source is depleted becomes a
scout bee, and starts to search for a new food source. The
method further assumes the number of employed bees in
the colony, to be equal to the number of food sources
(Karaboga and Akay, 2009). In practice, the position of a
food source represents a possible solution to the optimiza-
tion problem; whereas the amount of a food source corre-
sponds to the quality (fitness) of the associated solution.

Once a sample of N (trial) solution points is generated
within the search domain, xi;1�i�N , its entries (food source
positions) are subject to repeated ABC cycles, unless a ter-
mination criterion is not satisfied. Each ABC cycle entails
tasks performed by each of the bee types, in which both
global and local searches and selections are implemented.
Since the tasks performed by each bee type is naturally
different, they can be explained separately, as follows.

An employed bee generates a candidate solution point
for the ith food source to which it has been assigned,
xiter

perturb;i for 1 � i � N, by perturbing the (old) solution
point, xiter

i .

xiter
perturb;i ¼ xiter

i þ rand½�1;þ1�ðxiter
i � xiterr

i Þ ð10Þ

where, iterr 2 {1,. . ., iter} (iter 6¼ iterr), is a randomly-
selected index, and rand [�1, +1] is a random number
between [�1, +1], which acts as a scaling factor. The
employed bee later makes a selection between xiter

perturb;i,
and xiter

i , by the one which holds a lower function value,
and refreshes its memory of the best solution point.
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An onlooker bee assigns itself to a solution point (food
source), with a probabilistic selection scheme. The scheme
requires the probability values associated with food sources,
as the input. The probability measure associated to the ith
food source, probi, is obtained by:

probi ¼
fiti

Piter
j¼1

fitj

; ð11Þ

with,

fiti ¼
1

1þ f ðxiter
i Þ ðfi � 0Þ

1þ f ðxiter
i Þ�� �� ðfi < 0Þ

8<
: : ð12Þ

Assignment of an onlooker bee to a given food source
(solution point) is sanctioned, provided that the probability
of that solution point becomes greater than a randomly-
selected number in the range [0, 1]. Once assigned, an onloo-
ker bee should perturb its solution point (Eq. (10)), in
search for an improved local minimum. Needless to mention
that the perturbations are damped, as the point converges.

A scout bee should probe the s-dimensional space
randomly, in search for a global solution point. A scout
bee is unrestricted in the sense that it can adopt any loca-
tion (point), as long as it remains inside the search space
boundaries. This is opposed to the strategy taken by the
employed or onlooker bees, because they are only allowed
to select points generated around a previous solution point.
On the condition that a local solution point cannot be
improved further after a given number of iterates, it will
be abandoned, and the functionality of the employed bees
assigned to that point will be converted to a scout-type.
In practice, the limit for this conversion is taken as half of
the number of unemployed bees, in each dimension.

The possibility of being trapped in a local minimum
shall be minimal in ABC, as scout bees independently
search the entire search space; while other bee types
simultaneously probe their local candidates for the global
minimum point. The algorithm to perform an ABC
optimization is listed in Appendix C. For the sake of
ABC optimization, we considered N = 18 solution points,
at each iterate.

2.3 Particle Swarm Optimization

Discovered through simulation of a social model by
Kennedy and Eberhart (1995), the PSO is a population-
based stochastic optimization procedure. The algorithm
deals with repeated operations on a swarm – sample of N
(trial) solution points within the search domain, xi;1�i�N .
The points (or particles as named in the PSO) are continu-
ously perturbed, in each dimension, using a velocity term,
xvelocity. The velocity term for a dimension in a given point,
is updated, during each iteration, by combining the infor-
mation of the (previous) velocity of that point, with the
values of its current distance measured against its best-
recorded location, as well as the location of the global
minimum point discovered thus far (Eq. (13)):

xiterþ1
velocityi;j

¼ coef1 � xiter
velocityi;j

þ coef2 � rand1

� xbesti;j � xiter
i;j

� �
þ coef3 � rand2

� xFBESTi;j � xiter
i;j

� �
; ð13Þ

where coefi;1<i�3 are some input parameters to PSO,
randi;1�i�2 are random coefficients derived from a uniform
probability distribution in the range [0,1], xbest is the
best-recorded location for the point (particle), and
xFBEST represents the point with the global minimum
value, recorded up to the iterate. In equation (13), the
first and second indices, i and j, refer to the point and
dimension numbers, respectively. Having perturbed the
solution points, the information of the best performances
in the swarm is renewed, after each cycle. The algorithm
stops upon satisfaction of a stopping criterion. The
algorithm is explained in Appendix D. Implementation
of the PSO in this article was carried out, using parame-
ters N = 40, coef1 = 0.72134, coef2 = 1.1931,
coef3 = 1.1931.

2.4 Genetic Algorithm

Perhaps the mostly-used amongst the meta-heuristics
methods, the Genetic Algorithm (GA) is based on two basic
operations – crossover and mutation. The former feeds in
two solution points (or individuals as named in GA) and
creates a single point by mixing their features together.
The latter assigns a random value to one of the features.
As a result, the main parameters consist of two probability
measures for each of the operations. We shall refer the
reader to the available literature (Coley, 1999; Haupt and
Haupt, 2004; Simon, 2013; Sivanandam and Deepa, 2007;
Yu and Gen, 2010), to gain in-depth knowledge on the
method. Our optimization results for the GA, were
produced using a probability measure of 0.8 (for crossover),
and 0.1 (for mutation). In this sake, N = 50 points were
used.

3 Results and discussions

3.1 Model description

The fine model considered herein, is a three-dimensional,
heterogeneous and anisotropic reservoir model with a total
number of 9000 (30 � 30 � 10) grid blocks. Two distinct
zones with different petrophysical properties have been
considered in the fine grid model. The porosity and perme-
ability are distributed randomly on the fine grid using a
truncated normal distribution based on the parameters
presented in Table 1. No-flow condition is assumed at the
boundaries of the model. The reservoir is initially at an oil
saturation of 0.75. A water flooding process in one quarter
of a five spot pattern is simulated. An injection well and a
production well are placed in the opposite corners of the
reservoir model. Both wells are completed through all the
reservoir thickness, with no mechanical skin. The black oil
reservoir simulator ECLIPSE 100TM was used, for the all
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simulations conducted. The fine model properties used in
the simulator are enlisted in Table 2. The set of relative
permeability curves used in the fine model is also shown
in Figure 1 – assuming only one rock type in the model.
The coarse model considered comprised of 200 grid blocks
(10 � 10 � 2). The porosity of the coarse grid was esti-
mated through the volume weighted average (Eq. (14)) –

dividing the total void volume of all the fine grid blocks
building the coarse grid block, by the total bulk volume
of these fine grid blocks,

�u ¼

P
k

P
j

P
i

Vuð Þ
P
k

P
j

P
i

Vð Þ ; ð14Þ

where V and u are fine grid block volume and porosity,
respectively.

As for the permeability estimation, a combination of the
harmonic and arithmetic averages was used. For instance,
the permeability in the x-direction was estimated by
equation (15):

�kx ¼
P
i

�Xð Þ
P
i

�XP
k

P
j

kxAð Þ
P
k

P
j

Að Þ

0
@

1
A

; ð15Þ

where DX is size of fine grid block in x-direction, kx is fine
grid block permeability in x-direction and A is cross
section of fine grid block perpendicular to x direction.

Figures 2a and b represent the permeability map for the
fine and the coarse grid models, respectively. The porosity
map for the fine and the coarse grid models are presented
in Figure 3.

The stability of a water flooding depends on the total
mobility ratio evaluated across the front (Mf) which is
calculated by equation (16). According to Buckley Leverett

calculation, Mf = 0.876 which means a stable displacement
in the considered fine grid model. Figure 4 depicts some
snapshots of saturation map given at breakthrough time
at two views for the fine and coarse grid models. First one
is the horizontal displacement in bottom zone. Second
snapshot is vertical displacement from injection well to
production well. It seems that horizontal displacement is
uniform and stable which is in agreement with above-
mentioned conclusion; however, vertical displacement
shows some kind of instability because of contrast in top
and bottom zones petrophysical properties as well as
density of water.

Table 1. The porosity and permeability distribution parameters in the fine-grid model.

Zones Layers Property Min. Max. Mean Standard deviation

Top zone (1) 1–5 Porosity 0.2 0.3 0.25 0.01
Permeability 30 80 50 5

Bottom zone (2) 6–10 Porosity 0.15 0.25 0.20 0.01
Permeability 5 50 20 5

Table 2. The fine-grid model characteristics.

Property Value Property Value

Dx (ft) 50 Psaturation (psi) 3000
Dy (ft) 50 qoil @ std. cond. (lb/ft3) 49.1
Dz (ft) 10 qwater @ std. cond. (lb/ft3) 64.79
Pinitial (psi) 5000 loil @ 5000 psi (cp) 1.15

lwater @ 5000 psi (cp) 0.4

Fig. 1. The relative permeability curves used in the fine model.
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Mf ¼
k Sf

� �
k Sminð Þ ¼

lokrw Sf

� �þ lwkro Sf

� �
lokrw Sminð Þ þ lwkro Sminð Þ : ð16Þ

3.2 Results

The results obtained from simulations of the fine-grid
system are compared against the results obtained from
the corresponding coarse-grid system, using different
numerical algorithms adopted (GA, PSO, ABC, QMC).
The results for the oil production rate, reservoir pressure/
water-cut versus time are used for comparison. Figure 5
shows the computed oil production rate in both systems,
over a period of 15 years. Clearly, all the methods tested,
have been capable of accurately reproducing the field’s oil
production rate, as compared with the fine-grid case. The
situation is somewhat different for the reservoir pressure
estimations (Fig. 6). As it can be noticed, the PSO outputs
are the closest to the fine-grid reservoir pressures; while the
ABC results show the most deviations. With an exemption
of ABC, all the methods have estimated satisfactory results
for the water-cut, over the time span considered (Fig. 7).

The pseudo relative permeability curves estimated by
each technique are presented in Figure 8. The deviation
of the pseudo relative permeability curves from the rock
curves is expected, owing to the altered heterogeneities
and numerical dispersion in the coarse-grid system. On
the other hand, the pseudo relative permeability curves
estimated by methods adopted are seemingly identical –
pinpointing the uniqueness of the relative permeability
curves for the coarse-grid system considered. This finding

should be logical, as the underlying physics related to the
problem, should be independent of the type of the numeri-
cal algorithm being employed. The uniqueness of the gener-
ated pseudo relative permeability curves can also be
interpreted in terms of the algorithms having successfully
reached the global minimum in their entities.

In this work, the choice of a (new) trial relative perme-
ability curve was made directly, by randomly selecting an
entry from a pool of plausible choices. This pool consisted
of nearly 500 ECLIPSE-acceptable curves generated in
vicinity of the last optimum curve detected, during each
iterate. This renders model representation of relative per-
meability curves rather unnecessary. Our methodology also
makes no use of the transformation of the control points, in
the B-spline process (Chen et al., 2008) – obviating the need
to solve a system of linear equations.

As the size of the system (to be simulated) may increase
in the field situation, the time requirement on the simula-
tions may become an issue. Therefore, one may wish to find
out the order of proximity towards the global optimum
within each iterate. For this sake, understanding the mech-
anism of target approach is essential. To complement this
work, we have also reported this mechanism for the numer-
ical methods adopted (GA, PSO, ABC, QMC) in Figure 9.
As evident from the figure, the QMC outputs have plum-
meted to the global optimum within few iterates, followed
by the GA. On the other hand, the approaching mechanism
of the PSO/ABC has been rather steadily decreasing. This
behavior of the QMC method stems from its capability of
efficiently searching the entire search space. The only draw-
back to QMC, however, remains in its time requirement

Fig. 2. The permeability map for the (a) fine-grid and (b)
coarse-grid models.

Fig. 3. The porosity map for the (a) fine-grid and (b) coarse-
grid models.
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(Fig. 10). For a given number of iterates, our results indi-
cate that the QMC has taken more time to implement,
compared to the meta-heuristics algorithms. We have also
measured the maximum error encountered in each method,
against the corresponding fine-grid results (Fig. 11). Since
the computed reservoir pressure curve looks to have the

most deviation – in all methods considered – this maximum
error was practically taken as the percentage change in
result in the worst situation, when compared with the cor-
responding pressure value from the fine-grid model. The
QMC has again gained supremacy over the meta-heuristics
methods used, in this regards.

(a) (b)

(c) (d)

Fig. 4. The snapshots of saturation map for (a) horizontal displacement in fine grid, (b) horizontal displacement in coarse grid,
(c) vertical displacement from injection to production well in fine grid and (d) vertical displacement from injection to production well
in coarse grid.
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Fig. 5. The estimated oil production rates versus time.

Fig. 6. The estimated reservoir pressures versus time.

Fig. 7. The estimated water-cuts versus time.

Fig. 8. The estimated pseudo relative permeability curves
versus the rock curves.

Fig. 9. The mechanism of objective-function minimization in
the numerical methods adopted.

Fig. 10. The run-time of the numerical methods adopted.
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4 Conclusion

The application and performance of several meta-heuristics
methods (GA, PSO, ABC) were investigated versus the
QMC technique, for forecasting the pseudo relative perme-
ability curves in a synthetic model. The QMC method out-
performs in the meta-heuristics counterparts in the accuracy
and the efficient search strategy of visiting the entire prob-
lem domain. Our methodology to randomly select the new
trial relative permeability curve from a pool of simulator-
acceptable curves in vicinity of the last optimum curve
detected, has rendered the model representation of curves
rather unnecessary. In addition, this strategy has obviated
the need to solve a system of linear equations – commonly
encountered in the method of transformation of the control
points, in the B-spline scenario. The mechanism of the QMC
approaching the global minimum – dropping suddenly to
the proximity of the solution – should be taken as its other
advantage. The only drawback to QMC though, resides in
its computational time requirement, being higher than the
meta-heuristics methods, as our results indicate.
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Appendix A

The construction of Sobol’s low-discrepancy
sequences

The initial stage in generating a Sobol LDS set deals with
operation on a set of integers in the interval [1, 2b�1], where
b represents the number of bits in an unsigned integer on
the operating computer (typically b = 32). Let xnk be the
nth draw of one of Sobol’s integers in dimension k.

Generation of numbers in the Sobol’s method, is based
on a set of direction integers. A distinct direction integer
is considered for each of the b bits in the binary integer
representation. Let vkl denote the lth direction integer for
dimension k. In order to construct Sobol’s numbers, one
needs to evaluate the direction integers, first. This pro-
cess involves the binary coefficients of a selected primitive
modulo two for each dimension (Jäckel, 2002). Take pk as

the primitive polynomial modulo two for dimension k with
the degree gk (defined by equation (A-1)). We assume
ak0. . .akg representing the coefficients of pk, with ak0 being
the coefficient of the highest monomial term.

pk zð Þ ¼
Xgk
j¼0

akjzgk�j ðA-1Þ

In each dimension, the first gk direction integers vkl
for l = 1. . .gk are allowed to be freely chosen for the associ-
ated pk of the dimension, provided that two conditions are
met. First, the lth leftmost bit of the direction integer vkl
must be set. Second, only the l leftmost bits can be non-
zero, where the leftmost bit refers to the most significant
one in a bit field representation. All subsequent direction
integers are calculated from a recurrence relation (A-2)
(Jäckel, 2002):

vkl ¼ vk l�gkð Þ
2gk �2

Pgk
j¼1

�2akjvkð1�jÞ for l > gk : ðA-2Þ

Hereby, �2 represents the binary addition of integers
modulo two (often referred to in the computer science liter-

ature as the XOR gate), and
. . .P
. . .

�2 stands for a set of XOR

operations. The procedure is to right-shift the direction
integer vk (l�gk) by gk bits, and then performing the XOR
operation with a selection of the un-shifted direction inte-
gers vk (l�j) for j = 1,. . .,gk. The summation is performed
analogous to the conventional

P
summation operator.

The only remaining requirement for the algorithm is the
generating integer of the nth draw. For this sake, the
natural choice appears to be the draw number itself, n.
Nevertheless, any other sequence with a unique integer for
each new draw is equally useful (Jäckel, 2002). Once all
the preliminaries are set, the Sobol’s integers, for the s
dimensions of interest, are generated by (Jäckel, 2002);

xnk ¼
Xs

j¼1

�2vkj 1: ðA-3Þ

In which the jth bit of the generating integer is set
(counting from the right).

Jäckel (2002) has provided tabulated initialization
numbers for generating Sobol’s integers, up to a dimension
of 32 (Table A-1). The generated sequence, using these
initialization numbers, possesses the property; such that
for any binary segment of the s-dimensional sequence of
length 2s there is exactly one draw in each of the 2s

hypercubes which result from subdividing the unit hyper-
cube along each of its unit length extensions into half
(Jäckel, 2002).

Once generated, conversion of Sobol’s integers to
other scales is fairly straightforward. For example, they
can be converted to the [0, 1] scale by dividing the integers
by 2b.
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Appendix B

The algorithm to perform Quasi-Monte Carlo
minimization

Assume xiter
i to represent the best solution for ith point at

the iterth iteration, also consider FBEST as the best
(minimum) value of f, recorded up to the iterth iteration.
A detailed description of the QMC procedure is then ensued
as follows (Hickernell and Yuan, 1997):

Step-0 Initialize
Input the number of initial points, N, the number of

points with best (lowest) objective function values to retain
in each iteration, Nbest, and the desired number of itera-
tions to be done for local search on each of the points,
Niterlocal.search.

Set the number of iterations, iter = 0
SetNSP= 0; NSWP= 0; NTIX(j) = 0 for (i� j� N)

Step-1 Concentrate
Obtain a new point set, by applying Niterlocal.search

iteration(s) of an inexpensive local search to each of xiter
i

points (1 �i � N)

Step-2 Reduce
Find N iterð Þ � f1; . . . ;Ng such that N iterð Þ has Nbest

elements and that f ðxiter
i Þ � f ðxiter

j Þ 8i 2 NðiterÞ and
8j 62 NðiterÞ

If j 2 NðiterÞ, set NTIX (j) = NTIX (j) + 1
If j 62 NðiterÞ, set NTIX (j) = 0

Step-3 Find local minimum
For j = 1,. . ., N such that NTIX (j) � 2

Table A-1. An instance of the initialisation numbers for generating Sobol’s LDS, up to a dimension of 32 (Jäckel, 2002).

k gk vkl for l = 1,. . .,10

1 0 1 1.231 1.230 1.229 1.228 1.227 1.226 1.225 1.224 1.223 1.222

2 1 11 1.231 3.230 5.229 15.228 17.227 51.226 85.225 255.224 257.223 771.222

3 2 111 1.231 1.230 7.229 11.228 13.227 61.226 67.225 79.224 465.223 721.222

4 3 1011 1.231 3.230 7.229 5.228 7.227 43.226 49.225 147.224 439.223 1013.222

5 3 1101 1.231 1.230 5.229 3.228 15.227 51.226 125.225 141.224 177.223 759.222

6 4 10011 1.231 3.230 1.229 1.228 9.227 59.226 25.225 89.224 321.223 835.222

7 4 11001 1.231 1.230 3.229 7.228 31.227 47.226 109.225 173.224 181.223 949.222

8 5 100101 1.231 3.230 3.229 9.228 9.227 57.226 43.225 43.224 225.223 113.222

9 5 101001 1.231 3.230 7.229 7.228 21.227 61.226 55.225 19.224 59.223 761.222

10 5 101111 1.231 1.230 5.229 11.228 27.227 53.226 69.225 25.224 103.223 615.222

11 5 110111 1.231 1.230 7.229 3.228 29.227 51.226 47.225 97.224 233.223 39.222

12 5 111011 1.231 3.230 7.229 13.228 3.227 35.226 89.225 9.224 235.223 929.222

13 5 111101 1.231 3.230 5.229 1.228 15.227 19.226 113.225 115.224 411.223 157.222

14 6 1000011 1.231 1.230 1.229 9.228 23.227 37.226 97.225 97.224 353.223 169.222

15 6 1011011 1.231 1.230 3.229 13.228 11.227 7.226 37.225 101.224 463.223 657.222

16 6 1100001 1.231 3.230 3.229 5.228 19.227 33.226 3.225 197.224 329.223 983.222

17 6 1100111 1.231 1.230 7.229 13.228 25.227 5.226 27.225 71.224 377.223 719.222

18 6 1101101 1.231 1.230 1.229 3.228 13.227 39.226 7.225 23.224 391.223 389.222

19 6 1110011 1.231 3.230 5.229 11.228 7.227 11.226 43.225 25.224 187.223 825.222

20 7 10000011 1.231 3.230 1.229 7.228 3.227 23.226 79.225 65.224 451.223 321.222

21 7 10001001 1.231 3.230 1.229 15.228 17.227 63.226 13.225 113.224 147.223 881.222

22 7 10001111 1.231 3.230 3.229 3.228 25.227 17.226 115.225 17.224 179.223 883.222

23 7 10010001 1.231 3.230 7.229 9.228 31.227 29.226 17.225 121.224 363.223 783.222

24 7 10011101 1.231 1.230 3.229 15.228 29.227 15.226 41.225 249.224 201.223 923.222

25 7 10100111 1.231 3.230 1.229 9.228 5.227 21.226 119.225 53.224 319.223 693.222

26 7 10101011 1.231 1.230 5.229 5.228 1.227 27.226 33.225 253.224 341.223 385.222

27 7 10111001 1.231 1.230 3.229 1.228 23.227 13.226 75.225 29.224 181.223 895.222

28 7 10111111 1.231 1.230 7.229 7.228 19.227 25.226 105.225 173.224 509.223 75.222

29 7 11000001 1.231 3.230 5.229 5.228 21.227 9.226 7.225 143.224 157.223 959.222

30 7 11001011 1.231 1.230 1.229 15.228 5.227 49.226 59.225 71.224 31.223 111.222

31 7 11010011 1.231 3.230 5.229 15.228 17.227 19.226 21.225 227.224 413.223 727.222

32 7 11010101 1.231 1.230 6.229 11.228 13.227 29.226 3.225 15.224 279.223 17.222
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Set NTIX (j) = 0
If NSP = 0 or f ðxiter

j Þ � FBEST þ 10�4 then

Starting from xiter
j , perform a local optimization

search, to obtain the local minimize of the point, xiter
j;local:min.

If f xiter
j;local:min

� �
< FBEST then

Set NSP = NSP + 1; NSWP = 0;

FBEST = f xiter
j;local:min

� �

Else
Set NSWP = NSWP + 1

End
Else

If NSWP
NSP � 3 then stop (success)

Step-4 Sample additional points
For j = 1, 2, . . ., N
If NTIX (j) = 0 then

Generate xiterþ1
j by the Sobol’s LDS technique

Else
Set xiterþ1

j ¼ xiter
j

End
Set iter = iter + 1

If the total number of function calls reached then stop
(failure).

Go to Step-1.

Appendix C

The algorithm to perform the Artificial Bee Colony
(ABC) minimization

Assume xiter
i to represent the best solution for ith point at

the iterth iteration, also consider FBEST as the best
(minimum) value of the function, f, recorded up to the
iterth iteration. The ABC optimization algorithm then
works in the following steps:

Step-0 Initialize
Input the number of initial points, N, the required

relative tolerance of solution as a stopping criteria, e, and
the maximum number of cycles to be performed, Nitermax.

Step-1 Find initial minimum
Set iter = 1
Generate N solution points, xiter

i 1�i�N , by (uniform)
random selection within the s-dimensional domain.

Set FBEST = min (f (xiter
i )) for 1 � i � N.

Step-2 Repeat
Employed bees
Perturb each solution point, based on its latest

solution history (Eq. (10)), obtain xiter
perturb;i;1�i�N solutions

set.
For i = 1, . . ., N

If f xiter
perturb;i

� �
< f ðxiter

i Þ then

xiter
i ¼ xiter

perturb;i

End
Abandon the ith employed bee, if its solution can-

not be improved, and convert it to a scout-type bee.

Onlooker bees
Compute the probability of each solution point,

based on its corresponding solution history (eq.), obtain
probi1�i�N

.

For i = 1,. . ., N
If rand[0, 1]� probi then

Assign the ith onlooker bee to the ith solution
set.

Else
Assign the ith onlooker bee to a different solution

set, if the probabilistic measure is met.
End

Perturb each solution point of an onlooker bee, based
on its latest history (Eq. (10)), obtain x0iter

perturb;i1�i�N
solutions

set.
For i = 1, . . .,N

If f x0iter
perturb;i

� �
< f ðx0iter

i Þ then
x0iter

i ¼ x0iter
i

End

Scout bees
Randomly select Nscout.bees solution points within

the s-dimensional domain, obtain x00iter
i 1�i�N .

If minðx00iter
i Þ1�iN < FBEST then

FBEST = min (x00iter
i Þ1�i�N

End
Set FBEST = min (x, x0, x00)
If (iter > Nitermax) then stop.
If FBESTiter � FBESTiter�1

�� �� < e
� �

then stop.
Set iter = iter + 1

Go to Step-2.

Appendix D

The algorithm to perform the Particle Swarm
Optimization (PSO) minimization

Assume xiter
i to represent the solution for ith point at the

iterth iteration. Take xbesti as the best solution for ith point
recorded up to the iterth iteration, and xvelocityi;j as the
velocity of the ith point in the jth dimension, with the
length Dj. Also, consider FBEST as the best (minimum)
value of the function, f (recorded up to the iterth iteration),
and U as the random uniform distribution. The PSO
optimization algorithm is mentioned below.

Step-0 Initialize
Input the number of initial points, N, the required

relative tolerance of solution as a stopping criteria, the
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maximum number of cycles to be performed, Nitermax, and
the three coefficients in the velocity equation (Eq. (1)),
coef1, coef2, coef3.

Step-1 Find initial minimum
Set iter = 1
Generate N solution points, xiter

i 1�i�N , by (uniform)
random selection within the s-dimensional domain.

Set FBEST = min (f (xiter
i Þ for i = 1, . . ., N.

For i = 1, . . ., N
xbesti ¼ xiter

i
For j = 1, . . ., s

xvelocityi;j¼Uð��j ;þ�j Þ

Step-2 Repeat
For i = 1, . . ., N

For j = 1,. . ., s
rand1 = U(0,1); rand2 = U(0,1)

xiter
velocityi;j

¼ coef 1 � xiter
velocityi;j

þ coef 2 � rand1 � ðxbesti;j

¼ xiter
i;j Þ þ coef 3 � rand2 � ðxFBESTi;j ¼ xiter

i;j Þ

xiter
i ¼ xiter

i þ xiter
velocityi

If f ðxiter
i Þ < f ðxbesti Þ then

xbesti ¼ xiter
i

If f ðxbesti Þ < FBEST then

FBEST = f ðxbestiÞ
xFBEST ¼ xiter

i

If (iter > Nitermax) then stop.

If FBESTiter � FBESTiter�1
�� �� < e
� �

then stop.

Set iter = iter + 1
xiter = xiter�1

xiter
velocity ¼ xiter�1

velocity

Go to Step-2.
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