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Abstract. In this article, two formulations of multiphase compositional Darcy flows taking into account phase
transitions are compared. The first formulation is the so-called natural variable formulation commonly used in
reservoir simulation, the second has been introduced by Lauser et al. and uses the phase pressures, saturations
and component fugacities as main unknowns. We will discuss how the Coats and the Lauser approaches can be
used to solve a compositional multiphase flow problem with cubic equations of state of Peng and Robinson.
Then, we will study the results of several synthetic cases that are representative of petroleum reservoir engineer-
ing problems and we will compare their numerical behavior.

1 Introduction

In reservoir simulations, compositional multiphase flow cou-
pled with detailed physical laws based on equations of state
[1–4] remains an important and challenging problem. This
issue consists in solving a large system of nonlinear equa-
tions coupling the conservation of the components with
the thermodynamical equilibrium constraints. Many formu-
lations have been proposed; we refer to, for example [5–9].
The difficulty lies in handling the appearance and disap-
pearance of phases assumed to be at thermodynamical
equilibrium.

The traditional dynamic approach [10], called “variable
switching”, considers only the unknowns of the present
phases and the equations for them. It is heavy to implement
and costly in CPU time, because the “switching” occurs con-
stantly, even from a Newton iteration to another. An alter-
native approach, called “unified formulation”, enables one to
keep a fixed set of unknowns and equations regardless of the
context using nonlinear complementarity conditions
[11, 12]. These constraints provide elegant models for com-
plex problems and lead to efficient methods to solve them
numerically. Interesting results have already been obtained
in several fields like solid or fluid mechanics and economics
[12, 13]. Thus, this paper will concentrate on the physical
validation of this new approach in reservoir simulation
industry comparing two formulations for compositional
multiphase flow with cubic equations of state.

The first formulation we study is from the variable
switching approach, called Natural Variables Formulation
(NVF) and introduced by Coats [5, 10]. It is based on the

natural unknowns (pressures, saturations, molar fractions)
and on phase apparition detection through a flash calcula-
tion [14]. This model is stable in regard to phase transitions
but can quickly become complex to manage the set of pre-
sent phases and the associated unknowns/equations at each
point of the time-space domain.

For the second formulation, we examine a recent unified
formulation introduced by Lauser et al. [15], which uses the
phase pressures, saturations and component fugacities as
main unknowns with complementarity conditions for han-
dling phase transitions. These complementarity constraints
can be equivalently reformulated as Karush–Kuhn–Tucker
(KKT) conditions of Gibbs free energy minimization prob-
lem and this is known as the Gibbs tangent plane. The
resulting system leads to a fixed set of unknowns and a fixed
set of equations whatever the present phases, and it allows
to avoid the flash calculation. On the other hand, it requires
to compute molar fractions and their derivatives as a func-
tion of pressures, temperature and fugacities. From the
practical viewpoint, as the new formalism involves several
nonsmooth “complementarity” equations, it is necessary
after discretization to resort to “semismooth” Newton
methods, called Newton-min algorithm [16–18]. This
Complementarity Condition Formulation will be denoted
by CCF in the following.

The paper is organized as follows. In Section 2, we
describe the system of equations for the multiphase compo-
sitional model, relevant physical properties along with their
dependencies and relations of thermodynamical equilibrium
between phases. In Sections 3 and 4, the two formulations
are detailed and their advantages and drawbacks are fur-
ther discussed. In Section 5, we present some numerical
aspects of the resolution of both systems and in particular* Corresponding author: eric.flauraud@ifpen.fr
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for the nonlinear solver. The specific treatment of aquifer
cells is presented in Section 6. Finally, in the last Section 7,
the two formulations are compared into several synthetic
cases that are representative of petroleum reservoir engi-
neering problems.

2 Multiphase compositional model

For the sake of simplicity, we assume the medium is iso-
therm with fixed temperature T, hence in the following
the dependence of the physical laws on temperature will
not be shown. We consider a compositional model for a
three-phase flow: water (w), oil (o) and gas (g). Let
A = {w, o, g} be the set of phases. We suppose that the
oil and gas phases are represented by a mixture of nc
components. Moreover, we assume that the water phase is
pure, that means that it is composed only of H2O, and
that it is immiscible with the other phases. Therefore only
the hydrocarbons oil and gas phase are mixable and
compositional.

2.1 Conservation laws

The governing partial differential equations are obtained by
enforcing the molar conservation law for each component.
In particular, the velocity of each phase is given by Darcy’s
law. For the water component, we have

otð/SwqwÞ þ divðqw~vwÞ ¼ qwd; ð1Þ
and, for each hydrocarbon component i = 1,. . .,nc, we
have

otð/ðSoqwC
o
i þ SgqgC

g
i ÞÞ þ divðqoC

o
i ~voþqgC

g
i ~vgÞ ¼ qid;

ð2Þ
where:
– /: porosity of the medium [–],
– Sa: saturation of phase a 2 A [–],
– qa: molar density of phase a 2 A mol

m3

� �
,

– C a
i : molar fraction of component i in phase

a 2 A=fwg [–],
– ~va: Darcy’s velocity of phase a 2 A m

s

� �
,

– d: the Dirac delta function 1
m3

� �
,

– qw, qi are the molar flow rates of each component
produced or injected at the well mol

s

� �
.

The molar flow rates have the following form

qw ¼ qwQw;

qi ¼ qoC
o
i Qo þ qgC

g
i Qg;

where Qa
m3

s

� �
represents the flow rate of phase a and

depends on the nature of the associated well. The veloci-
ties of the phases are computed through Darcy’s law

~va ¼ �K kra Sað Þ
la

rP a � qm
a ~g

� �
;

where
– K: permeability of the medium [m2],
– Sa: saturation of phase a 2 A [–],
– kra : relative permeability of phase a 2 A [–],
– la: viscosity of phase a 2 A [Pa s],
– Pa: pressure of phase a 2 A [Pa],
– qm

a : volumetric mass density of phase a 2 A kg
m3

� �
,

– ~g: gravity m
s2

� �
.

The units of the physical quantities defined above are
given in the international unit system.

The thermodynamical aspect is constantly present in
the simulations of flows in a porous medium. It is necessary,
for example, to be able to describe the physical evolution of
the mixtures present in the reservoir. This is important not
only for being able to simulate flows as well as possible but
also for determining which recovery process is best suited.
In this section, we will introduce some notions to better
understand the thermodynamical aspect involved.

2.2 Equilibrium equations

In addition to the molar conservation equations, we have to
consider the relations of thermodynamical equilibrium
between different phases. For every component, it can be
expressed as the equality of the fugacity of oil and gas
phase, that is:

f o
i ¼ f g

i ; i ¼ 1; . . . ; nc : ð3Þ
LetCa ¼ ðCa

j Þj¼1;...;nc be the vector of components molar
fractions in phase a, then the fugacities can be computed
through

f o
i ¼ Uo

i ðP ;CoÞPCo
i ; i ¼ 1; . . . ; nc ;

f g
i ¼ Ug

i ðP ;CgÞPCg
i ; i ¼ 1; . . . ; nc;

where P is a reference pressure and corresponds to the
pressure of a given phase a and Ua

i is the fugacity coeffi-
cient of the component i in the phase a 2 fo; gg. The
fugacity coefficient is computed using an equation of state
[19]. We can rewrite equation (3) as

Cg
i ¼ KiC

o
i ; i ¼ 1; . . . ; nc ;

where Ki ¼ KiðP;Co;C gÞ is the equilibrium constant, it
is defined as the ratio between the fugacity coefficients
of oil and gas phase

Ki ¼ Uo
i ðP ;CoÞ

Ug
i ðP ;CgÞ ;

and it represents the distribution of component i between
these two phases.
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2.2.1 Negative flash calculation

The solution of the thermodynamical equilibrium (3) is
computed using a negative flash calculation [14]. We define
Z ¼ ðziÞi¼1;: : :; nc the total molar fraction of the components
in the hydrocarbon mixture such asXnc

i¼1
zi ¼ 1:

For a given reference pressure P and a fixed total molar
fraction Z, the negative flash is to find V 2 R the molar
fraction of the gas phase and �Co 2 ½0; 1�, �Cg 2 ½0; 1� the
molar fractions of the components in the oil and gas phase
at equilibrium, which are the solutions of the nonlinear
system

zi ¼ 1� Vð Þ�Co
i þ V �Cg

i ; i ¼ 1; . . . ; nc;

f o
i P ; �Coð Þ ¼ f g

i P ; �Cgð Þ; i ¼ 1; . . . ; nc;Pnc
i¼1

�Co
i ¼

Pnc
i¼1

�Cg
i ¼ 1:

8>>><
>>>:

The solutions V � 1 and V � 0 correspond to a
stable single phase system. In the following, we denote
by Flash (P, Z) the negative flash calculation.

2.2.2 From phase stability test to complementarity
condition

The necessary and sufficient condition for a phase of a nc
component mixture with composition Z ¼ ðz1; z2; . . . ; zncÞ
to be stable at some given pressure and temperature
[19, 20] is given by following inequality

D Cð Þ ¼
Xnc
i¼1

ciðli Cð Þ � li Zð ÞÞ � 0; ð4Þ

where the value of the vector C ¼ ðc1; c2; . . . ; cncÞ contain-
ing the molar fractions of an incipient phase that would
separate from the phase with composition Z in case of
instability. The function D(C) is called the tangent plane
distance function. Hence, the problem of the thermody-
namical stability analysis consists in resolving the follow-
ing constrained minimization problem

minimize
C

D Cð Þ subject to
Pnc
i¼1

ci ¼ 1: ð5Þ

The chemical potential li [J mol�1] of a component i is
given by

li Cð Þ ¼ l#
i þ RT ln

fi Cð Þ
P

� �
; ð6Þ

where
– fi: fugacity of the component i [Pa],
– P: reference pressure [Pa],
– T: temperature [K],
– R: universal gas constant [J mol�1 K�1],
– l#

i : chemical potential of pure component i in the state
of perfect gas at the same pressure P and tempera-
ture T [J mol�1].
Using the fugacity coefficients

Ui Cð Þ ¼ fi Cð Þ
Pci

; Ui Zð Þ ¼ fi Zð Þ
Pzi

;

and the relation (6), the function (4) can be rewritten as
follow

D Cð Þ ¼ RT
Xnc
i¼1

ciðln Ui Cð Þ þ ln ci � ln Ui Zð Þ � ln ziÞ:

ð7Þ
We define the Lagrangian for the constrained problem (5)
as

L C; kð Þ ¼ D Cð Þ � k
Xnc
i¼1

ci � 1

 !
; ð8Þ

where k is the Lagrange multiplier. It is easy to write the
optimality conditions from (8)

ln Ui Cð Þ þ ln ci � ln Ui Zð Þ � ln zi ¼ k
RT ; i ¼ 1; . . . ; nc;Pnc

i¼1
ci ¼ 1:

8<
:
Replacing these optimality conditions in the equation (7),
one can show that k is nonnegative. Introducing a variable
transformation ~Ci ¼ ci expð� k

RTÞ, we can proof that the
stationary points ~C ¼ ð~C 1; ~C 2; . . . ; ~CncÞ indicate stability
when

1�
Xnc
i¼1

~Ci � 0:

Consequently, this inequality will be used in the follow-
ing as a term of the complementarity conditions (11) to rep-
resent the equilibrium of the oil and gas phases.

2.3 Closure equations

To solve any system of equations, we have to make sure
that it is mathematically well-defined. This means that
the equations are independent, i.e., that no equation can
be expressed in term of the others, that a unique solution
exists and that the number of unknowns is equal to the
number of equations. In order to close the system, we need
to add other equations. Firstly we can consider the relations
between capillary pressure

Po � Pw ¼ Pcw Swð Þ;

Pg � Po ¼ PcgðSgÞ:

Moreover, since there must be conservation of volume,
we have X

a2A
Sa ¼ 1:

At last, if the oil phase (resp. gas phase) is present, the
following relation holds
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Xnc
i¼1

Co
i ¼ 1 resp:

Xnc
i¼1

Cg
i ¼ 1

 !
:

In the next section, two formulations are detailed and
their advantages/drawbacks are discussed.

3 Natural variable formulation

The reservoir simulation industry commonly uses the for-
mulation introduced by K.H. Coats [10] based on natural
variables that are: pressures, saturations and components
molar fractions and on the phase apparition detection by
a flash calculation. The main advantage of this formulation
is the use of the natural set of unknowns for the hydrody-
namical and thermodynamical laws. On the other hand,
its biggest disadvantage is that the set of unknowns and
equations depends on the present phases. For this reason,
we have to compute the set of present phases at each point
of the space-time domain and then switch unknowns and
equation according to which phases are present. We use a
negative flash calculation [14] and the saturation sign to
determine phases appearances and disappearances respec-
tively. Let Ap be the set of present phases, thus, depending
on the point in the time-space domain we are considering,
we can have

Ap ¼ fwg; Ap ¼ fw; gg; Ap ¼ fw; og; Ap ¼ fw; o; gg:

We summarize below the principle of the treatment of
the phase appearance and disappearance:

– The test of phase appearance is done only for the
contexts where saturated oil or gas phase is present
(i.e., Ap = {w,o} or Ap = {w, g}). A negative flash cal-
culation for the current reference pressure P and overall
composition z returns the gas molar fraction V, then
– if Ap = {w, o} and V > 0 the oil phase becomes sat-

urated and the gas phase appears. Ap becomes
Ap = {w, o, g},

– if Ap = {w, g} and V < 1 the gas phase becomes
saturated and oil phase appears. Ap becomes
Ap = {w, o, g}.

– The test of phase disappearance is done only for the
context where both oil and gas phases are present
(i.e. Ap = {w, o, g}). We use the saturation’s sign:
– if Ap = {w, o, g} and So � 0, the oil phase disappears

and then Ap becomes Ap = {w, g},
– if Ap = {w, o, g} and Sg � 0, the gas phase disappears

and then Ap becomes Ap = {w, o}.

As in this model, we suppose that the water phase is
immiscible with the other phases the context Ap = {w}
needs a particular treatment (see Sect. 6).

Hence, in the case of no aquifer cells and if we choose oil
pressure as the reference pressure, the problem we have to
solve is to find for every a 2 Ap, P, Sa, C

a satisfying the fol-
lowing system of equations

otð/SwqwÞ þ divðqw~vwÞ ¼ qwd;

ot
P
a2Ap

/SaqaC
a
i Þ þ divðP

a2Ap

qaC
a
i ~va

 !
¼ qid; i ¼ 1; . . . ; nc;

~va ¼ �K kra ðSaÞ
la
ðrP a � qm

a ~gÞ;Pnc
i¼1

Ca
i ¼ 1;P

a2Ap

Sa ¼ 1;

Sa ¼ 0; if a 62 Ap;

Pw ¼ P � PcwðSwÞ;
Pg ¼ P þ Pcg Sg

� 	
; if g 2 Ap;

f o
i ¼ f g

i ; if o; g 2 Ap; i ¼ 1; . . . nc:

ð9Þ
The following table shows the number of equations we

have to solve depending on the context.

Similarly, the unknowns of the system are given by the
following table.

We can notice that in all the cases the number of equa-
tions corresponds to the number of unknowns. In the next
section, we present a new formulation introduced in [15],
which is based on nonlinear complementarity conditions
[12, 16, 21].

4 Complementarity condition formulation

Recently, new formulations have been introduced for mod-
eling systems which have to switch continuously between
different states. A new way of incorporating phase transi-
tions into the simulation of multiphase, multicomponent
processes in porous media have been developed. The idea
is that a fluid phase appears or vanishes if a physical quan-
tity exceeds a given threshold. Based on this observation we
formulate the conditions for the local presence of fluid
phases as a set of so-called complementarity conditions.
This approach uses the fact that these constraints can be
reformulated equivalently as a non-differentiable but semis-
mooth equation, called nonlinear complementarity equa-
tion. The complementarity problems were first manifested

Context Ap {w, o, g} {w, o} {w, g}
Conservation equations nc + 1 nc + 1 nc + 1

Closure equations 3 2 2
Thermodynamical equilibrium nc 0 0
Total number of equations 2nc + 4 nc + 3 nc + 3

Context Ap {w, o, g} {w, o} {w, g}
Pressure 1 1 1

Saturations 3 2 2
Molar fractions 2nc nc nc

Total number of unknowns 2nc + 4 nc + 3 nc + 3
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in optimality conditions for optimization problems [12].
The methods for the resolution of complementarity prob-
lems have spread in the last years following the work of
the numerics [9, 16–18, 21, 22]. We focus on the formulation
introduced by Lauser et al. [15] which uses the pressures,
the phase saturations and the components fugacities as
main unknowns. The biggest advantage of this formula-
tion with respect to the previous one is the use of a fixed
set of equations and unknowns independent on the present
phases and, therefore, the flash calculation is avoided. The
molar fractions Ca of the components are computed
starting from the fugacities and the reference pressure.
They are defined as the solution ~Ca ¼ ð~Ca

i Þi¼1;...; nc of the
nonlinear system

fi ¼ Ua
i P ; ~Ca
� 	

P ~Ca
i ; i ¼ 1; . . . ; nc: ð10Þ

If the phase a is present, the quantity ~Ca coincides with
the molar fraction C a. On the contrary, if a is absent, ~Ca

represents the molar fraction that is at thermodynamical
equilibrium with the ones of the present phase. In this case
~Ca doesn’t have a physical meaning but it is still included in
the system of equations. For this reason the quantities
ð~Ca

i Þi¼1;...;nc are called extended molar fractions. Thanks to
the thermodynamical equilibrium, we have

fi ¼ f o
i ¼ f g

i ; i ¼ 1; . . . ; nc;

and then the molar fractions of a component i can be com-
puted from the same fugacity fi for both the phases. With
this formulation, phase transitions are managed using
complementarity conditions. The idea is that a phase
a 2 fo; gg is not present if its saturation is zero and the
sum of its extended molar fraction is less than one. On
the other hand, the phase is present if its saturation is
greater than zero and the sum of its extended molar frac-
tions is equal to one. Therefore for one phase a 2 fo; gg we
have the following relations:

– If phase a is present Sa > 0 and 1�Pnc
i¼1 ~C

a
i ¼ 0.

– If phase a is absent Sa = 0 and 1�Pnc
i¼1 ~C

a
i � 0.

These constraints are equivalent to the following com-
plementarity conditions

Sa � 0; 1�Pnc
i¼1

~Ca
i � 0 ; Sa 1�Pnc

i¼1
~Ca
i

� �
¼ 0 : ð11Þ

As said before, they can be reformulated using a comple-
mentarity function. In this work, we use the minimum func-
tion as complementarity function. Therefore the conditions
(11) can be rewritten in the following way

min Sa; 1�
Xnc
i¼1

~Ca
i

 !
¼ 0: ð12Þ

Let A = {w, o, g} be the set of phases. Then, the prob-
lem we have to solve with this formulation is as follows.
Find P ; Sa; ðfiÞi¼1; ...;nc satisfying the following system of
equations

otð/SwqwÞ þ divðqw~vwÞ ¼ qwd;

otð/ðSoqo
~Co
i þ Sgqg

~Cg
i ÞÞ þ divðqo

~Co
i ~voþqg

~Cg
i ~vgÞ ¼ qid;

~va ¼ �K kraðSaÞ
la

ðrP a � qm
a ~gÞ;

Pw ¼ P � PcwðSwÞ;
Pg ¼ P þ Pcg Sg

� 	
; if g 2 Ap;X

a2A
Sa ¼ 1;

min
�
So; 1�

Xnc
i¼1

~Co
i

�
¼ 0;

min
�
Sg; 1�

Xnc
i¼1

~Cg
i

�
¼ 0;

~Ca
i ¼ ~Ca

i ðP ; f1; . . . ; fncÞ; i ¼ 1; . . . ; nc;

where a 2 A:
In the following tables, we can find the number of

unknowns and of equations of this formulation.

We can notice that, in all the cases, the number of equa-
tions corresponds to the number of unknowns. Hence, the
resulting system of mass conservation equations and equi-
librium conditions is fully free of inequalities (pure set of
equations).

5 Discretization and numerical resolution

LetMh be an admissible finite volume mesh of the reservoir
given by a family of control volumes noted K. We also
introduce an increasing sequence of discret times
ftng0�n�N such that t0 = 0 and tN = T and we denote by
Dtn the time step such as Dtn = tn�tn�1 for n = 1,. . ., N.
The systems (9) and (4) are discretized using fully implicit
Euler integration in time and a cell-centered finite volume
scheme with a two-point flux discretization. The mobility
terms are up-winded with respect to the sign of the phase
Darcy flux [1]. The vectors of the discrete unknowns in each
finite volume K and on the whole mesh are denoted respec-
tively by Xn

K and Xn
h ¼ fXn

KgK2Mh
.

Conservation equations nc + 1
Closure equation 1

Complementarity conditions 2
Total number of equations nc + 4

Pressure 1
Saturations 3
Fugacities nc

Total number of unknowns nc + 4
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5.1 Natural variable formulation

For NVF, the set of discrete unknowns is depending on the
context An

p;K in each finite volume K and is given at each
time tn by:

– if An
p;K ¼ fw; o; gg

Xn
K ¼ Pn

K ; S
n
w;K ; S

n
o;K ; S

n
g;K ;C

o;n
K ;Cg;n

K

� �
;

– if An
p;K ¼ fw; og

Xn
K ¼ Pn

K ; S
n
w;K ; S

n
o;K ;C

o;n
K

� �
;

– if An
p;K ¼ fw; gg

Xn
K ¼ Pn

K ; S
n
w;K ; S

n
g;K ;C

g;n
K

� �
:

We obtain at each time step n = 1, 2, . . ., N a nonlinear
system denoted by

RK X n
h

� 	
F K X n

K

� 	
 !

K2Mh

¼ 0; ð13Þ

where RK Xn
h

� 	
is the set of discrete conservation equa-

tions and FK Xn
K

� 	
is the set of discrete closure equations

and thermodynamical equilibrium equations depending in
the context in each cell K 2Mh. In the following, we omit
the subscript n for the sake of clarity. The nonlinear sys-
tem (13) is solved at each time step by a Newton algo-
rithm. At each Newton iteration (l), we have to solve
the following linear system.

oRðlÞK
oXh

oF ðlÞK
oXK

0
BBB@

1
CCCA

K2Mh

dX ðlÞh ¼ �
RK X ðlÞh
� �

F K X ðlÞK
� �

0
B@

1
CA

K2Mh

; ð14Þ

where
oRðlÞK
oXh

�
resp.

oF ðlÞK
oXK

�
is the Jacobian of the vector RK

(resp. FK) and dX ðlÞh ¼ X ðlþ1Þh �X ðlÞh .
In order to reduce the size of the system (14) in a system

of only nc + 1 equations per cell, we split the set of
unknowns XK into nc + 1 primary unknowns Xp

K and a
set of remaining secondary unknowns X s

K . This splitting is
done cell by cell depending on the set of present phases:

– if Ap,K = {w, o, g}

Xp
K ¼ PK ; Sw;K ; Sg;K ;C

g
3;K ; � � � ;Cg

nc ;K

� 	
;

X s
K ¼ So;K ;C

o
K ;C

g
1;K ;C

g
2;K

� 	
:

– if Ap,K = {w, o}

Xp
K ¼ PK ; Sw;K ;C

o
2;K ; � � � ;Co

nc ;K

� �
;

X s
K ¼ So;K ;C

o
1;K

� �
:

– if Ap,K = {w, g}

Xp
K ¼ PK ; Sw;K ;C

g
2;K ; � � � ;Cg

nc ;K

� 	
;

X s
K ¼ Sg;K ;C

o
1;K

� �
:

The linear system (14) can be rewritten in each cell
K 2Mh as follows

oRðlÞK
oXh

 !
dX ðlÞh ¼

X
L2V ðKÞ

oRðlÞK
oX p

L

dXp;ðlÞ
L þ oRðlÞK

oX s
L

dX s;ðlÞ
L

 !
¼ �RðlÞK ;

and

oF ðlÞK
oXK

dX ðlÞK ¼
oF ðlÞK
oXp

K

dXp;ðlÞ
K þ oF ðlÞK

oX s
K

dX s;ðlÞ
K ¼ �F ðlÞK ;

where RðlÞK ¼ RK X ðlÞh
� �

, F ðlÞK ¼ FK X ðlÞK
� �

and V(K) is the

set of cells which are involved in the calculation of the flux
through the edges of the cell K.

The secondary unknowns X s
K are eliminated using the

closure equations

dX s; lð Þ
K ¼ � oF lð Þ

K

oX s
K

 !�1
oF lð Þ

K

oXp
K

 !
dXp; lð Þ

K � oF lð Þ
K

oX s
K

 !�1
F lð Þ

K ;

where
oF ðlÞK
oXs

K

 !
is assumed to be non singular.

Finally, the linear system we have to solve at each
Newton’s iteration (l) consists of the following equations

P
L2V ðKÞ

oRðlÞK
oXp

L

� oRðlÞK
oX s

L

oF ðlÞL
oX s

L

 !�1
oF ðlÞL
oXp

L

 ! !
dXp;ðlÞ

L

¼ �RðlÞK þ
X

L2V ðKÞ

oRðlÞK
oX s

L

oF ðlÞL
oX s

L

 !�1
F ðlÞL

 !
;

for all K 2Mh.
The solution of this system is used to update the next iter-
ates as follow

Xp;ðlþ1Þ
K ¼ Xp;ðlÞ

K þ dXp;ðlÞ
K ;

X s;ðlþ1Þ
K ¼ X s;ðlÞ

K � oF ðlÞK
oX s

K

 !�1
oF ðlÞK
oXp

K

 !
dXp;ðlÞ

K � oF ðlÞK
oX s

K

 !�1
F ðlÞK :

Then, we update the context in each cell K 2Mh using the
algorithm presented at the beginning of this section:

– if AðlÞp;K ¼ fw; o; gg
– if S ðlþ1Þo;K � 0 then Aðlþ1Þp;K ¼ fw; gg and S ðlþ1Þo;K ¼ 0,

– if S ðlþ1Þg;K � 0 then Aðlþ1Þp;K ¼ fw; og and S ðlþ1Þg;K ¼ 0.

– if AðlÞp;K ¼ fw; og

– Flash Pðlþ1ÞK ;Z ðlþ1ÞK ¼ Co;ðlþ1Þ
K

� �
! V ðlþ1Þk ; �Co;ðlþ1Þ

k ; �Cg;ðlþ1Þ
k
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– if V ðlþ1ÞK > 0 then Aðlþ1Þp;K ¼ fw; o; gg, S ðlþ1Þg;K ¼ 0 and

Cg;ðlþ1Þ
k ¼ �Cg;ðlþ1Þ

k ,
– else Aðlþ1Þp;K ¼ AðlÞp;K and Cg;ðlþ1Þ

k ¼ �Cg;ðlþ1Þ
k .

– if AðlÞp;K ¼ fw; gg
– Flash Pðlþ1ÞK ;Z ðlþ1ÞK ¼ Cg;ðlþ1Þ

K

� �
! V ðlþ1Þk ; �Co;ðlþ1Þ

k ; �Cg;ðlþ1Þ
k

– if V ðlþ1ÞK < 1 then Aðlþ1Þp;K ¼ fw; o; gg, S ðlþ1Þo;K ¼ 0 and

Co;ðlþ1Þ
k ¼ �Co;ðlþ1Þ

k ,

– else Aðlþ1Þp;K ¼ AðlÞp;K and Co;ðlþ1Þ
k ¼ �Co;ðlþ1Þ

k .

The stopping criteria of the Newton algorithm is given by

RK X ðlÞh
� �

F K X ðlÞK
� �

0
B@

1
CA

K2Mh
















 � e

RK X ð0Þh

� �
F K X ð0ÞK

� �
0
B@

1
CA

K2Mh

































;


















where ||�|| is a given norm, ɛ a specified tolerance and X ð0Þh
is an initial guess for the Newton algorithm. In general,
the initial guess corresponds to the values of the
unknowns at the previous time step X ð0Þh ¼ Xn�1

h . If the
Newton algorithm does not converge, the time step is
restarted with a value divided by two �tn  �tn

2

� 	
.

5.2 Complementarity condition formulation

One of the advantages of this formulation is that the set of
discret unknowns is fixed and it is not depending of the
phase state in each finite volume K. It is given by

Xn
K ¼ Pn

K ; S
n
w;K ; S

n
o;K ; S

n
g;K ; f

n
1;K ; . . . ; f

n
nc;K

� �
:

After discretization, we obtain at each time step
n = 1, 2,. . ., N a nonlinear system denoted by

HK X n
h

� 	
/K X n

K

� 	
 !

K2Mh

¼ 0; ð15Þ

where HK Xn
h

� 	
is the set of discret conservation equations

with closure equations and /K Xn
K

� 	
is the set of discret

complementarity equations in each cell K 2Mh. The only
drawback of the introduction of the minimum function is
that the problem (15) is no longer C1 but we can solve it
using the semismooth Newton’s method, called the
Newton-min method [9, 11]. At each Newton-min itera-
tion (l), we have to solve the following linear system

oHðlÞK
oXh

J
ðlÞ
K;X

0
@

1
A

K2Mh

dX ðlÞh ¼ �
HK X ðlÞh
� �

/K X ðlÞK
� �

0
B@

1
CA

K2Mh

; ð16Þ

where J
ðlÞ
K ;X 2 o/K X ðlÞK

� �
and o/K X ðlÞK

� �
denotes the

generalized Jacobian of /K at a point X ðlÞK . This method
has locally a superlinear convergence. Globally, when

the starting point is not close enough to a solution, the
algorithm may diverge, even when the functions are
linear, as shown and discussed in [16–18]. The size of
the linear system may also be reduced by using a similar
splitting strategy as in the Coats formulation for primary
and secondary variables but this has not been imple-
mented yet in our prototype. For the stopping criteria
and the time step control, we use the same strategy as
the one presented for NVF.

The advantage of this formulation is to lead to a fixed
set of unknowns and equations, which is easier to deal with
the phase appearance and disappearance than the Coats
formulation. Nevertheless, we have to resolve a local non-
linear system (10) for oil and gas phases and in each finite
volume K to obtain the component molar fractions and
propagate its derivatives in the density and viscosity laws
by using the chain rule lemma. When the fugacity coeffi-
cients do not depend on concentrations, typically with
Ki(T, P) equilibrium models, it only occurs a linear scaling
of phase concentrations which is easy to follow. In our case,
where the fugacity coefficients are computed by an
Equation of State (EoS), it results in a nonlinear scaling
and artificial coupling between the concentrations which
is more challenging. This is the price to pay for the elimina-
tion of fugacity equality constraints from the system.

As regards the initial conditions, we have to set the
values of pressure, saturation, and composition of each
phase at the initial state. In addition, for the complementar-
ity formulation, we have to compute the initial fugacity
starting from the reference pressure and compositions of
the phases. If in a cell K 2Mh, the gas phase is present
and the oil phase is absent, we have

f 0
i;K ¼ P 0

KC
g;0
i;KU

g;0
i;K : ð17Þ

On the other hand, if the oil phase is present and the gas
phase is absent, we have

f 0
i;K ¼ P 0

KC
o;0
i;KU

o;0
i;K : ð18Þ

At last, if both oil and gas phases are present we can
compute the fugacities using indifferently (17) or (18)
because the two phases are supposed to be at thermody-
namical equilibrium and then

f 0
i;K ¼ P 0

KC
g;0
i;KU

g;0
i;K ¼ P 0

KC
o;0
i;KU

o;0
i;K ; 8i ¼ 1; . . . ; nc :

It is important to remark that also with this formula-
tion, the case of aquifer cells needs a particular treatment
(see Sect. 6).

6 Aquifer cells

The case of cells where only the water phase and only the
water component are present requires major consideration
because the water phase is immiscible with other phases.
In fact, in this case, for both the formulations, using the
equations introduced in the previous sections the system
diverges. Therefore we have to change the system of equa-
tions to solve. We define a new set of independent
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unknowns which are pressure and number of moles per unit
volume of each component denoted by ni for all i = 1,. . ., nc
and introduced in [23]. In these cells we still consider the
conservation equation for the water component, however,
the conservation equations for the hydrocarbon components
become

otni ¼ qid; i ¼ 1; . . . ; nc ;

where qid represents the source term. Therefore in the case
of aquifer cells, for both the formulations, the system we
have to solve is the following. If Ap = {w}, find
P; n1; . . . ; nnc such that

otð/SwqwÞ þ divðqw~vwÞ ¼ qwd;

otni ¼ qid i ¼ 1; . . . ; nc;

Pw ¼ P � PcwðSwÞ;
Sw ¼ 1:

ð19Þ

In the following tables, we can find the number of
unknowns and of equations of this particular case.

For the aquifer cells, if at least one ni becomes greater
than zero, we must test the appearance of the oil phase
and/or the gas phase as follows. We first compute the total
molar fraction of each component

zi ¼ niPnc
j¼1

nj

; i ¼ 1; . . . ; nc:

Knowing the overall composition and the pressure, we
can perform a negative flash calculation to obtain the molar
fraction of the gas phase V.

– if V � 1 the gas phase appears and then Ap becomes
Ap = {w, g},

– if V � 0 the oil phase appears and then Ap becomes
Ap = {w, o}.

– if 0 < V < 1 the oil and gas phases appear and then Ap
becomes Ap = {w, o, g}.

7 Numerical results

In this section, we compare the behavior of the natural
variable formulation and the complementarity condition
formulation by means of selected test settings. In order to
model the different physical phenomena present in the
study of flows in porous media, more choices are possible.
The models chosen in our cases are the following.

7.1 Triphasic fluid flow model

The relative permeabilities are modeled using the Brooks
and Corey’s correlation:

krw Swð Þ ¼ krw;max

Sw � Swi

1� Sorw � Swi

� �nw

;

krow 1� Swð Þ ¼ krow;max

1� Swð Þ � Sorw

1� Swið Þ � Sorw

� �now

;

krg Sg

� 	 ¼ krg;max

Sg � Sgc

1� Swi � Sorg

� 	� Sgc

 !ng

;

krog 1� Sg

� 	 ¼ krog;max

1� Sg

� 	� Swi þ Sorg

� 	
1� Sgc

� 	� Swi þ Sorg

� 	
 !nog

;

where:
– Sw: water saturation,
– Swi: irreducible water saturation,
– Sorw: residual saturation of oil in the oil–water flow,
– Sorg: residual saturation of oil in the oil–gas flow,
– Sw: gas saturation,
– Sgc: saturation of critical gas,
– krw;max ; krwo;max ; krg;max ; krog;max : maximum values of the rela-

tive permeabilities,
– nw, now, ng, nog parameters related to the size of the

pores.

In our simulation we choose for the parameters the
values presented in Table 1, Table 2 and Table 3.

The relative permeability of the oil is computed from
the previous functions and from the Stone II model [24]

kroðSw; SgÞ ¼ kro;max

krow
kro;max

þ krw

� �
krog
kro;max

þ krg

� �
� krw � krg

� �
:

ð20Þ
The other physical properties of oil and gas such as the

fugacities and the densities are computed using the Peng–
Robinson equation of state and for the computation of
the viscosities the Lohrenz-Bray-Clark model [25] is used.
The properties of water (density and viscosity) are com-
puted using data from [26].

7.2 Peng–Robinson equation of state

For each phase a 2 fo; gg, we write the Peng–Robinson
equation of state [27] as follows

P ¼ RT
va � ba

� aaðT Þ
v2a þ 2vab� b2a

; ð21Þ

where
– P: the reference pressure,
– R: universal gas constant,
– T: temperature,
– va: molar volume of phase a,
– aa: Van der Waals potential of phase a,
– ba: covolume parameter of phase a.

In a mixture, the factors aa and ba are defined by

aa ¼
Pnc
i¼1

Pnc
j¼1

Ca
i C

a
j aij; a ¼ o; g;

Equations nc + 1
Unknowns nc + 1
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ba ¼
Pnc
i¼1

xiabi; a ¼ o; g ;

where C a
i is the molar fraction of component i in phase a,

aij ¼ ð1� dijÞ ffiffiffiffiffiffiffiffiaiaj
p

;

and dij is a binary interaction parameter between compo-
nents i and j, and ai and bi are empirical factors for pure
component i. The interaction parameters account for
molecular interactions between two unlike molecules. By
definition, dij is zero when i and j represent the same com-
ponent, small when i and j represent components that do
not differ much (e.g., when components i and j are both
alkanes), and large when i and j represent components
that are substantially different. Ideally, dij depends on
pressure, temperature and on the identities of components
i and j [28]. The factors ai and bi can be computed from

ai ¼ Xiaai
R2T 2

ci
P ci

; bi ¼ Xib
RT ci
P ci

;

where Tci and Pci are the critical temperature and the cri-
tical pressure of component i, the EOS parameters Xia and
Xib are given by

Xia ¼ 0:45724; Xib ¼ 0:07880;

ai ¼ 1þ bi 1�
ffiffiffiffiffiffi
T
T ci

r� �� 2
;

bi ¼ 0:37þ 1:54xi � 0:27x2
i ;

and xi is the acentric factor of component i. Let

Aa ¼ aaP
R2T 2 ; Ba ¼ baP

RT ; a ¼ o; g :

Introducing the compressibility factor

Za ¼ Pva
RT ; a ¼ o; g;

equation (21) can be expressed as a cubic equation in Za:

Z3
a � ð1� BaÞZ2

a þ ðAa � 2Ba � 3B2
aÞZa � ðAaBa � B2

a � B3
aÞ ¼ 0:

This equation has three roots. When only one root is
real, it is selected. If there are three real roots, the selection
of the right one depends on the dominance of the liquid
phase or the vapor phase. Now, for i = 1,. . .,nc and
a= o, g, the fugacity coefficient of component i in a mixture
can be obtained from

lnUa
i ¼

bi
ba
ðZa � 1Þ � lnðZa � BaÞ

� Aa

2
ffiffiffi
2
p

Ba

2
aa

Xnc
j¼1

Ca
j ð1� dijÞ ffiffiffiffiffiffiffiffiaiaj

p � bi
ba

 !

ln
Za þ ð1þ

ffiffiffi
2
p

BaÞ
Za � ð1�

ffiffiffi
2
p

BaÞ

 !
:

At last, the fugacity of component i is

f a
i ¼ PCa

iU
a
i ; i ¼ 1; . . . ; nc; a ¼ o; g:

7.3 Test of CO2 injection in a three-component system

The first case is a miscible gas (CO2) injection in a quarter
of five-spot saturated with oil. The domain has a size of
100 m in both x and y-direction and it is discretized using
a 20 � 20 regular grid blocks. The reservoir model is
homogeneous: the permeability is equal to 500 mD and
the porosity is 0.3. The gas, composed only of CO2, is
injected with a constant rate that is equal to 80 m3/day
and the pressure at the producer is fixed to 55 bar. The
temperature is assumed to be constant at 80 �C and the
initial pressure is equal to 55 bar.

The total simulation time is 300 days, the initial time
step is 0.05 day and the minimum and maximum time step
are respectively 10�5 day and 20 days. The initial water
saturation is given by Sw = Swi = 0.25 (Swi is the irreducible
water saturation) and the oil saturation is equal to 1 � Swi.
The oil and gas phases are a mixture of three components
C1, C6 and CO2 and the initial oil composition is given by
C1 (20%), C6 (80%) and CO2 (0%).

Figures 1a and 1b show the distribution of the gas
saturation in the domain for NVF formulation (Fig. 1a)
and CCF formulation (Fig. 1b) at 300 days. Figures 1c
and 1d show the distribution of the CO2 molar fraction in
the gas phase for NVF formulation (Fig. 1c) and CCF
formulation at 300 days (Fig. 1d). In Figures 1e and 1f,
we report respectively the cumulative oil and gas produc-
tion. The results are similar for the two formulations.

In Figures 2a–2d, we can see the oil and gas saturation
and composition in the middle cell of the domain. The
results are the same except for the gas composition when
it is missing in the cell. Indeed, for the NVF, the composi-
tion of the absent phase is given by the negative flash solu-
tion and the sum of the molar fraction in this phase is equal
to one, whereas for the complementarity condition formula-
tion, it is obtained by solving the local nonlinear system
(10) and the sum is less than one. It is also important to
note that the gas phase appears exactly at the same time
for both formulations (Fig. 2b).

Table 2. End point of relative permeability.

Parameter krw;max krow;max krg;max krog;max

Value 0.3 0.8 1 0.8

Table 3. Exponent of relative permeability.

Parameter nw now ng nog

Value 2 1 1.5 3

Table 1. Residual saturation.

Parameter Swi Sorw Sorg Sgc
Value 0.25 0.2 0.1 0
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Fig. 1. Gas saturation and CO2 molar fraction in gas phase after 300 days for Natural Variables Formulation (NVF) (a) and (c) and
for Complementarity Condition Formulation (CCF) (b) and (d). Oil and gas cumulative production (e) and (f).
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Table 4 summarizes the numerical results in terms of
number of time steps, number of Newton iterations and
number of restarted time steps. For this simulation, the
NVF and the complementarity condition formulation
performed with the same behavior.

7.4 Test of CO2 injection in a seven-component
system

The second case study still simulates a CO2 injection in a
three-dimensional quarter five spot saturated with oil.
The reservoir size is 100 � 100 � 20 m and we use a
20 � 20 � 4 grid blocks to discretize the reservoir model.
The fluid is a seven components model (C1N2, C23, CO2,
C46, C712, C1319 and Cþ20), with the following initial compo-
sition: C1N2 (38.8209%), C23 (14.5821%), CO2 (2.2685%),
C46 (11.9334%), C712 (19.4598%), C1319 (8.7079%) and
Cþ20 (4.2274%). The initial pressure and temperature are
respectively 200 bar and 132.77 �C (above the bubble
point). The CO2 is injected with a fixed rate of
300 m3/day and the production pressure is 150 bar (below
the bubble point). The other model’s properties are the
same as in the first test.

The results given in Figures 3a–3f show that the
agreement between the two formulations is quite good.

Nevertheless, we observe slight differences for the oil and
gas cumulative production.

In Figures 4a–4d, we plot the oil and gas saturation and
composition (only for the first four components) in the cell
at the middle and at the top of the reservoir. Once again, we
observe that the results are identical for both formulations
except for the gas composition at the very beginning of the
simulation when this phase is absent in the cell.

Table 5 indicates that the NVF ran with a lower
number of Newton’s iterations than the complementarity
condition formulation.

7.5 Test of condensate gas problem

The third case study is a condensate gas reservoir with a
unique producer well in the center. The geometry of the

Table 4. Numerical results for both formula-
tions NVF and CCF.

Time steps Newton its Restarts

NVF 64 340 0
CCF 64 340 0

Fig. 2. Oil and gas saturation and composition versus time in the middle cell.
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reservoir is the same than in the first test and the mesh used
is composed of 21 � 21 grid blocks. The initial gas satura-
tion is 1� Swi with Swi equals to 0.25. The fluid model is the
seven components mixture used in the second test but with
a different initial global composition: C1N2 (66.8503%), C23
(14.6099%), CO2 (3.075%), C46 (6.8369%), C712 (6.0289%),
C1319 (1.814%) and Cþ20 (0.785%).

We study two different initial points: the first one corre-
sponds to an initial pressure and temperature equal to
290 bar and 196.85 �C (470 K), and the second point is near
the critical point with an initial pressure and temperature

equal to 310 bar and 132.78 �C (405.93 K) (Fig. 5). The
production pressure is 240 bar (below the dew point).

The total simulation time is 1000 days, the initial time
step is 10�4 day and the minimum and maximum time step
are respectively 10�6 day and 20 days.

The results are the same for both formulations and we
report in Tables 6 and 7 only the numerical behavior of
these formulations (the total number of time steps and
the number of Newton’s iterations). In this test case, the
complementarity formulation has better behavior than
the NVF and especially when starting near the critical point

Fig. 3. Gas saturation and CO2 molar fraction in gas phase after 300 days for Natural Variables Formulation (NVF) (a) and (c) and
for Complementarity Condition Formulation (CCF) (b) and (d). Oil and gas cumulative production (e) and (f).
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for which the complementarity formulation requires fewer
time steps and less Newton’s iterations than the NVF.

7.6 Test of gas injection in aquifer cells

For the last test, we model an injection of gas in an aquifer.
This is a well-known case in the reservoir industry and it is
interesting because we suppose that the water phase is pure
and immiscible with the other phases. We consider a two-
dimensional domain initially saturated only by water
(Sw = 1). The reservoir model and the fluid model are the
same as in the first test.

Gas is injected, with a constant rate 30 m3/day, in the
aquifer through an injection well located at the lower left
corner of the domain. The injected gas is composed by C1
(20%), C6 (5%) and CO2 (75%). A production well is

located in the upper right corner of the domain and it works
with an imposed pressure equal to 50 bar. The temperature
is set at 80 �C and the initial pressure is 50 bar.

Fig. 4. Oil and gas saturation and composition versus time in the top middle cell.

Table 5. Numerical results for both formula-
tions NVF and CCF.

Time steps Newton its Restarts

NVF 65 279 0
CCF 65 286 0

Fig. 5. Phase diagram of the fluid.
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Once again, the two formulations lead to similar physi-
cal results. Regarding the numerical behavior, as we can see
in Table 8 they perform the simulation with the same num-
ber of time steps and without restart. However, we can
notice that the CCF formulation effectuates slightly more
Newton’s iterations than the NVF formulation.

8 Summary and conclusions

In this work, we develop two isothermal compositional for-
mulations in the same framework and compare them for
four different synthetic problems. The first formulation is
the well known NVF which is commonly used in reservoir
simulator, and the second one is the more recent comple-
mentarity condition formulation. The main advantages of
this second formulation are to lead to a fixed set of
unknowns and equations whatever the present phases and
it allows to avoid the flash calculation. Nevertheless, the
use of pressures, saturations, and fugacities as main
unknowns induces more non-linearities in the system, and
we have to solve two local nonlinear systems in each cell
and at each Newton’s iteration to obtain the component
molar fractions in the oil and gas phases in function of
the main unknowns.

Our first numerical tests indicate that the two formula-
tions lead to similar physical results with quite similar
behavior except for the condensate gas test cases and near
the critical point for which the complementarity formula-
tion outperform the NVF in terms of the number of time
step and the number of Newton iterations.

Then in order to compare fairly the CPU times, we have
to reduce the size of the linearized system at each Newton
iteration by adding a splitting strategy (eliminating the
closure equations and the complementarity constraints as
it is done in the NVF formulation). But the choice of the
primary unknowns and remaining secondary unknowns
depends on the context in each cell. This work is under
investigation.

A study of the semi-implicit time scheme for the comple-
mentarity condition formulation is a work in progress. This
scheme consists in calculating the flux terms implicitly with
respect to the pressure and the saturations, and explicitly
with respect to the fugacities. More complex and realistic
test cases will also be treated to compare the two
formulations.
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