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Abstract. In this article, two formulations of multiphase compositional Darcy flows taking into account phase
transitions are compared. The first formulation is the so-called natural variable formulation commonly used in
reservoir simulation, the second has been introduced by Lauser et al. and uses the phase pressures, saturations
and component fugacities as main unknowns. We will discuss how the Coats and the Lauser approaches can be
used to solve a compositional multiphase flow problem with cubic equations of state of Peng and Robinson.
Then, we will study the results of several synthetic cases that are representative of petroleum reservoir engineer-
ing problems and we will compare their numerical behavior.

1 Introduction

In reservoir simulations, compositional multiphase flow cou-
pled with detailed physical laws based on equations of state
[1-4] remains an important and challenging problem. This
issue consists in solving a large system of nonlinear equa-
tions coupling the conservation of the components with
the thermodynamical equilibrium constraints. Many formu-
lations have been proposed; we refer to, for example [5-9).
The difficulty lies in handling the appearance and disap-
pearance of phases assumed to be at thermodynamical
equilibrium.

The traditional dynamic approach [10], called “variable
switching”, considers only the unknowns of the present
phases and the equations for them. It is heavy to implement
and costly in CPU time, because the “switching” occurs con-
stantly, even from a Newton iteration to another. An alter-
native approach, called “unified formulation”, enables one to
keep a fixed set of unknowns and equations regardless of the
context using nonlinear complementarity conditions
[11, 12]. These constraints provide elegant models for com-
plex problems and lead to efficient methods to solve them
numerically. Interesting results have already been obtained
in several fields like solid or fluid mechanics and economics
[12, 13]. Thus, this paper will concentrate on the physical
validation of this new approach in reservoir simulation
industry comparing two formulations for compositional
multiphase flow with cubic equations of state.

The first formulation we study is from the variable
switching approach, called Natural Variables Formulation
(NVF) and introduced by Coats [5, 10]. It is based on the
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natural unknowns (pressures, saturations, molar fractions)
and on phase apparition detection through a flash calcula-
tion [14]. This model is stable in regard to phase transitions
but can quickly become complex to manage the set of pre-
sent phases and the associated unknowns/equations at each
point of the time-space domain.

For the second formulation, we examine a recent unified
formulation introduced by Lauser et al. [15], which uses the
phase pressures, saturations and component fugacities as
main unknowns with complementarity conditions for han-
dling phase transitions. These complementarity constraints
can be equivalently reformulated as Karush—-Kuhn—Tucker
(KKT) conditions of Gibbs free energy minimization prob-
lem and this is known as the Gibbs tangent plane. The
resulting system leads to a fixed set of unknowns and a fixed
set of equations whatever the present phases, and it allows
to avoid the flash calculation. On the other hand, it requires
to compute molar fractions and their derivatives as a func-
tion of pressures, temperature and fugacities. From the
practical viewpoint, as the new formalism involves several
nonsmooth “complementarity” equations, it is necessary
after discretization to resort to “semismooth” Newton
methods, called Newton-min algorithm [16-18]. This
Complementarity Condition Formulation will be denoted
by CCF in the following.

The paper is organized as follows. In Section 2, we
describe the system of equations for the multiphase compo-
sitional model, relevant physical properties along with their
dependencies and relations of thermodynamical equilibrium
between phases. In Sections 3 and 4, the two formulations
are detailed and their advantages and drawbacks are fur-
ther discussed. In Section 5, we present some numerical
aspects of the resolution of both systems and in particular
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for the nonlinear solver. The specific treatment of aquifer
cells is presented in Section 6. Finally, in the last Section 7,
the two formulations are compared into several synthetic
cases that are representative of petroleum reservoir engi-
neering problems.

2 Multiphase compositional model

For the sake of simplicity, we assume the medium is iso-
therm with fixed temperature 7, hence in the following
the dependence of the physical laws on temperature will
not be shown. We consider a compositional model for a
three-phase flow: water (w), oil (o) and gas (g). Let
A = {w, o, g} be the set of phases. We suppose that the
oil and gas phases are represented by a mixture of n,
components. Moreover, we assume that the water phase is
pure, that means that it is composed only of H,O, and
that it is immiscible with the other phases. Therefore only
the hydrocarbons oil and gas phase are mixable and
compositional.

2.1 Conservation laws

The governing partial differential equations are obtained by
enforcing the molar conservation law for each component.
In particular, the velocity of each phase is given by Darcy’s
law. For the water component, we have

al(¢SW:0W) + dlv(pw UW) = QW’57 (1)

and, for each hydrocarbon component i = 1,...,n., we
have

at((p(Sopr? + Sgpgcizg)) + le(pOCf D’0 +ng§ ﬁg) = qiéa
(2)

where:
— ¢: porosity of the medium [,
— S,: saturation of phase o € A [,
mol

— py: molar density of phase o € A [—],

l!l3

— (% molar fraction of component ¢ in phase
o€ A/{w} [,

— %,: Darcy’s velocity of phase o € A [%],

— &: the Dirac delta function [],

— qu, ¢; are the molar flow rates of each component
produced or injected at the well [M]

The molar flow rates have the following form

qw’ = pW’QH’?

qi = poC?Qo + pgc;g g

where @, [*] represents the flow rate of phase o and
depends on the nature of the associated well. The veloci-
ties of the phases are computed through Darcy’s law

7, = —K%f“) (VPa —pl é‘),

where

— K: permeability of the medium [m?],

— S, saturation of phase o € A [,

— k,,: relative permeability of phase o € A [,

— U, viscosity of phase o € A [Pa ],

— P,: pressure of phase o € A [Pa],

— pI': volumetric mass density of phase o € A [%],
— §: gravity L%]

The units of the physical quantities defined above are
given in the international unit system.

The thermodynamical aspect is constantly present in
the simulations of flows in a porous medium. It is necessary,
for example, to be able to describe the physical evolution of
the mixtures present in the reservoir. This is important not
only for being able to simulate flows as well as possible but
also for determining which recovery process is best suited.
In this section, we will introduce some notions to better
understand the thermodynamical aspect involved.

2.2 Equilibrium equations

In addition to the molar conservation equations, we have to
consider the relations of thermodynamical equilibrium
between different phases. For every component, it can be
expressed as the equality of the fugacity of oil and gas
phase, that is:

f;’o - iga i=1
Let C* = (C}),_, . be the vector of components molar

fractions in phase o, then the fugacities can be computed
through

R (3)

fo=®(P,C)PC, i=1,...,n,,

f¢ =P, CPCS, i=1,....n,
where P is a reference pressure and corresponds to the
pressure of a given phase o and @] is the fugacity coeffi-
cient of the component i in the phase « € {0, g}. The
fugacity coefficient is computed using an equation of state
[19]. We can rewrite equation (3) as

CG: =K, i=1,...,n.,
where K; = K,(P, C’, C?) is the equilibrium constant, it
is defined as the ratio between the fugacity coefficients
of oil and gas phase

PP, C°%)

K=t
(P, C*)

and it represents the distribution of component ¢ between
these two phases.
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2.2.1 Negative flash calculation

The solution of the thermodynamical equilibrium (3) is
computed using a negative flash calculation [14]. We define
Z = (2i),—y.. ., the total molar fraction of the components
in the hydrocarbon mixture such as

Zz,- =1.

i=1

For a given reference pressure P and a fixed total molar
fraction Z, the negative flash is to find V' € R the molar
fraction of the gas phase and C° € [0,1], C* € [0,1] the
molar fractions of the components in the oil and gas phase
at equilibrium, which are the solutions of the nonlinear
system

z; = (1 — V)Cf + VC‘?,
in(P7 C_’m) :fig(Pa Cg)’

Ne Nne
So=Sa=1
i=1 i=1

i=1,...,n.,

i=1,...,n

The solutions V' > 1 and V < 0 correspond to a
stable single phase system. In the following, we denote
by Flash (P, Z) the negative flash calculation.

2.2.2 From phase stability test to complementarity
condition

The necessary and sufficient condition for a phase of a n,
component mixture with composition Z = (z1,zs,...,2,,)
to be stable at some given pressure and temperature
[19, 20] is given by following inequality

D(C) = Zci(:ui(c) —1;(2)) = 0, (4)

i=1

where the value of the vector C = (¢y, ¢a, .. ., ¢,,) contain-
ing the molar fractions of an incipient phase that would
separate from the phase with composition Z in case of
instability. The function D(C) is called the tangent plane
distance function. Hence, the problem of the thermody-
namical stability analysis consists in resolving the follow-
ing constrained minimization problem

minicmize D(C) subject to Z =1 (5
i=1

The chemical potential g; [J mol™] of a component i is
given by
fi(C)

w©) =i+ &rin (H5)), (©)

where

— f; fugacity of the component i [Pa],

— P reference pressure [Pal,

— T temperature [K],

— R: universal gas constant [J mol ! K_l],

- ,uf#: chemical potential of pure component i in the state
of perfect gas at the same pressure P and tempera-
ture T'[J mol'].

Using the fugacity coefficients

and the relation (6), the function (4) can be rewritten as
follow

D(C) =RT> ¢(ln &,(C) +1In ¢; —In &(Z) —In z).
i=1

(7)

We define the Lagrangian for the constrained problem (5)
as

L(C, %) = D(C) — 4 (Z ¢ — 1) : (8)

where 4 is the Lagrange multiplier. It is easy to write the
optimality conditions from (8)

In &,(C) +Inc;—In &(Z) —Inz=
ZCC,' =1.
s}

A ;—
ﬁ,l—l,...,]’l“

Replacing these optimality conditions in the equation (7),
one can show that 4 is nonnegative. Introducing a variable
transformation C; = ¢;exp(— RL}), we can proof that the
stationary points C = (C1,C,,...,C,,) indicate stability
when

1— iéi > 0.
i=1

Consequently, this inequality will be used in the follow-
ing as a term of the complementarity conditions (11) to rep-
resent the equilibrium of the oil and gas phases.

2.3 Closure equations

To solve any system of equations, we have to make sure
that it is mathematically well-defined. This means that
the equations are independent, i.e., that no equation can
be expressed in term of the others, that a unique solution
exists and that the number of unknowns is equal to the
number of equations. In order to close the system, we need
to add other equations. Firstly we can consider the relations
between capillary pressure

Pa - Pw = Pc,,,(Sw);
P, — P, =P, (S,).

Moreover, since there must be conservation of volume,
we have

d s, =1
€A

At last, if the oil phase (resp. gas phase) is present, the
following relation holds
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zn[:C;’ =1 (resp.f:q" = 1).
i=1 i=1

In the next section, two formulations are detailed and
their advantages/drawbacks are discussed.

3 Natural variable formulation

The reservoir simulation industry commonly uses the for-
mulation introduced by K.H. Coats [10] based on natural
variables that are: pressures, saturations and components
molar fractions and on the phase apparition detection by
a flash calculation. The main advantage of this formulation
is the use of the natural set of unknowns for the hydrody-
namical and thermodynamical laws. On the other hand,
its biggest disadvantage is that the set of unknowns and
equations depends on the present phases. For this reason,
we have to compute the set of present phases at each point
of the space-time domain and then switch unknowns and
equation according to which phases are present. We use a
negative flash calculation [14] and the saturation sign to
determine phases appearances and disappearances respec-
tively. Let A, be the set of present phases, thus, depending
on the point in the time-space domain we are considering,
we can have

A, ={w}, 4, = {w,g}, 4, = {w,0}, 4, = {w,0,g}.

We summarize below the principle of the treatment of
the phase appearance and disappearance:

— The test of phase appearance is done only for the
contexts where saturated oil or gas phase is present
(i.e., A, = {w,0} or A, = {w, g}). A negative flash cal-
culation for the current reference pressure P and overall
composition z returns the gas molar fraction V, then
— if A, = {w, o} and V > 0 the oil phase becomes sat-
urated and the gas phase appears. A, becomes
Ap = {w» 0, g}a

—if A, = {w, g} and V < 1 the gas phase becomes
saturated and oil phase appears. A, becomes
Ap = {w» 0, g}'
— The test of phase disappearance is done only for the
context where both oil and gas phases are present
(i.e. A, = {w, o, g}). We use the saturation’s sign:
—if A = {w, o, g} and S, < 0, the oil phase disappears
and then A, becomes A, ={w, g},

— if A, = {w, o, g} and S, S 0, the gas phase disappears
and then A, becomes 4, = {w, o}.

As in this model, we suppose that the water phase is
immiscible with the other phases the context A, = {w}
needs a particular treatment (see Sect. 6).

Hence, in the case of no aquifer cells and if we choose oil
pressure as the reference pressure, the problem we have to
solve is to find for every o« € 4,,, P, S,, C” satisfying the fol-
lowing system of equations

6t ((i)Swpw) + div(pw I_;W)

) < > $S.0,CH) + div( Y p,C7 171> =gq0,i=1,...,n,
€Ay a€Ap

= qw57

l_jx = fra () Sl (VP g)y
207 =1,

i=1

Z Saz = 13

a€d,
S, =0,ifoa ¢4,
pP,=P—-P.(S,),
Py =P+ P, (S,), ifg € 4,,
fP=rFifo,ged, i=1,...n
9)

The following table shows the number of equations we
have to solve depending on the context.

Context A, {w, o, g} {w, o} {w, g}

Conservation equations ne+1|n.+1n.+1
Closure equations 3 2 2
Thermodynamical equilibrium N, 0 0

Total number of equations | 21 + 4| n. +3 n.+ 3

Similarly, the unknowns of the system are given by the
following table.

Context A, {w, 0, g} | {w, o} | {w, g}
Pressure 1 1 1
Saturations 3 2 2
Molar fractions 2n, Ne Ne
Total number of unknowns| 2n.+ 4 | n.+ 3| n.+ 3

We can notice that in all the cases the number of equa-
tions corresponds to the number of unknowns. In the next
section, we present a new formulation introduced in [15],
which is based on nonlinear complementarity conditions
[12, 16, 21].

4 Complementarity condition formulation

Recently, new formulations have been introduced for mod-
eling systems which have to switch continuously between
different states. A new way of incorporating phase transi-
tions into the simulation of multiphase, multicomponent
processes in porous media have been developed. The idea
is that a fluid phase appears or vanishes if a physical quan-
tity exceeds a given threshold. Based on this observation we
formulate the conditions for the local presence of fluid
phases as a set of so-called complementarity conditions.
This approach uses the fact that these constraints can be
reformulated equivalently as a non-differentiable but semis-
mooth equation, called nonlinear complementarity equa-
tion. The complementarity problems were first manifested
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in optimality conditions for optimization problems [12].
The methods for the resolution of complementarity prob-
lems have spread in the last years following the work of
the numerics [9, 16-18, 21, 22]. We focus on the formulation
introduced by Lauser et al. [15] which uses the pressures,
the phase saturations and the components fugacities as
main unknowns. The biggest advantage of this formula-
tion with respect to the previous one is the use of a fixed
set of equations and unknowns independent on the present
phases and, therefore, the flash calculation is avoided. The
molar fractions C” of the components are computed
starting from the fugacities and the reference pressure.
They are defined as the solution C* = (C7)._, , of the
nonlinear system
fi=®*(P,C*)PC*, i=1,...,n. (10)
If the phase « is present, the quantity C* coincides with
the molar fraction C'*. On the contrary, if a is absent, C*
represents the molar fraction that is at thermodynamical
equilibrium with the ones of the present phase. In this case
C* doesn’t have a physical meaning but it is still included in
the system of equations. For this reason the quantities
(C?)iz1...,, are called extended molar fractions. Thanks to
the thermodynamical equilibrium, we have

ﬁ:f;’[): ig’ izla"'7nc7

and then the molar fractions of a component ¢ can be com-
puted from the same fugacity f; for both the phases. With
this formulation, phase transitions are managed using
complementarity conditions. The idea is that a phase
o € {0, g} is not present if its saturation is zero and the
sum of its extended molar fraction is less than one. On
the other hand, the phase is present if its saturation is
greater than zero and the sum of its extended molar frac-
tions is equal to one. Therefore for one phase o € {0, g} we
have the following relations:

— If phase o is present S, > 0 and 1 — >, C’j‘ =0.
— If phase o is absent S, = 0 and 1 — Y7, 6’;‘ > 0.

These constraints are equivalent to the following com-
plementarity conditions

S,>0, 1-3C*>0, Sm<1—ié‘j‘):0. (11)
i=1

i=1

As said before, they can be reformulated using a comple-
mentarity function. In this work, we use the minimum func-
tion as complementarity function. Therefore the conditions
(11) can be rewritten in the following way

min (Sa, 1- Z 6:7) =0.

i=1

(12)

Let A = {w, o, g} be the set of phases. Then, the prob-
lem we have to solve with this formulation is as follows.
Find P,S,, (f}) satisfying the following system of
equations

i=1,..,ne

61(¢Swpw) + div(pw I_;W) = qw57

0(P(Sop,Cy + Sep,CT)) + div(p,C7 Ty +p,CF T) = 4,9,
kr, Soc m =

Q(VPQ — p(x g)’

o

P,=P—P.,(S,),

7, = —

Py =P+P.(S,),

oS, =1,

oaeA

min (SO, 1-— Z C‘;’) =0,
i=1

min (Sg, 1Y Cfr’) =0,
i=1

C* = CHP, fi, ...

ifg € A,

)f;l()7 iz]‘?"')”(—'?
where o € A.
In the following tables, we can find the number of

unknowns and of equations of this formulation.

Conservation equations ne + 1
Closure equation 1
Complementarity conditions 2

Total number of equations ne+ 4
Pressure 1

Saturations

Fugacities N,

Total number of unknowns n. + 4

We can notice that, in all the cases, the number of equa-
tions corresponds to the number of unknowns. Hence, the
resulting system of mass conservation equations and equi-
librium conditions is fully free of inequalities (pure set of
equations).

5 Discretization and numerical resolution

Let M), be an admissible finite volume mesh of the reservoir
given by a family of control volumes noted K. We also
introduce an increasing sequence of discret times
{t"} <<y such that £ = 0 and " = T and we denote by
At" the time step such as At" = t"—" ' for n = 1,..., N.
The systems (9) and (4) are discretized using fully implicit
Euler integration in time and a cell-centered finite volume
scheme with a two-point flux discretization. The mobility
terms are up-winded with respect to the sign of the phase
Darcy flux [1]. The vectors of the discrete unknowns in each
finite volume K and on the whole mesh are denoted respec-
tively by Xy and X} = {X% }xcny, -
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5.1 Natural variable formulation

For NVF, the set of discrete unknowns is depending on the
context A" .k in each finite volume K and is given at each
time ¢ by

— if AZ,K ={w, o, g}

Xy = (PhoSh o St Shcs CEL CF),

—if A} = {w, o}
Xy = (P St Sis &8,
—if AZ,K ={w, g}

Xy = (Pi St St CF).
We obtain at each time step n =1, 2, ..., N a nonlinear
system denoted by

AT
(Fid) o

where Ry (X ;? is the set of discrete conservation equa-
tions and Fx (XY) is the set of discrete closure equations
and thermodynamical equilibrium equations depending in
the context in each cell K € M. In the following, we omit
the subscript n for the sake of clarity. The nonlinear sys-
tem (13) is solved at each time step by a Newton algo-
rithm. At each Newton iteration (I), we have to solve
the following linear system.

orY

K R X(l)

X, ) K ( h )

oF ir=- 0 19
o n())..,

a)(K KeM, e
ORY oFYy

where —X& (res . —K) is the Jacobian of the vector R

ax, VP ax, K

(resp. F'p) and 5X§f = XLH]) — XSLZ).

In order to reduce the size of the system (14) in a system
of only n. + 1 equations per cell, we split the set of
unknowns Xy into n, + 1 primary unknowns X% and a
set of remaining secondary unknowns X.. This splitting is
done cell by cell depending on the set of present phases:

- if Ap,K - {w7 o, g}

Xy = (PxSwis Sers Cigr . € ),
Xy = (Sox; Ci, Cix, Ci)-
— if A, x = {w, o}
Xt = (PK,SW‘K, Coxro CZL.,K)’
X, = (So,K7 CTK) .

- if Ap,K - {wa g}
Xi = (PK7SW,K7C§,K’...3C§C,K)’
Xy = (Sg,Kv C;)‘K) :

The linear system (14) can be rewritten in each cell
K € M,, as follows

(0
(%IZ )5)(5,”: 3 (%]j(’j, sxp0 %f(’i ox;! ) ~RY,

LeV(K)

and

oF\) sx 0 _oFy 520 aij)

s,(1 !
X K T axk T N = Y,

where RY = Ry (X;”), P = Fy (Xg?) and V(K) is the

set of cells which are involved in the calculation of the flux
through the edges of the cell K.

The secondary unknowns X7 are eliminated using the
closure equations

oF\ ' (oFy oF\ "
X = | X Eoxp® — | 5 ) FY,
axy ) \axg Xy
()

where [ ——=- | is assumed to be non singular.
0X5

Finally, the linear system we have to solve at each
Newton’s iteration (1) consists of the following equations

-1
Z ory Ry (oF"\ (oF) 52
AT AT ox? L

-1
oRY <6F<L”> (,)>
+ s S FL ’
for all K € M,,

The solution of this system is used to update the next iter-
ates as follow

= —RY

(141 ] (1

X2 ,
0\ 0 0\
_ oy _ (%Fk OFk Y syr _ (OFk ) po
K s P K s K -
oxX;, ox?, oxX3,

Then, we update the context in each cell K € M, using the
algorithm presented at the beginning of this section:

X;(.(Prl)

— if A;Z)K ={w, o, g}
- if S,f}l < 0 then A (51 — {w, g} and Sl+1 =0,
- if S;}l < 0 then A D — fu, 0} and Sl+1 =0.
- 1prK—{w,o}

- Flash(P AR A C;U*l)) YU et gl
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—if V™ >0 then AU ={w,0,g}, SUL” =0 and

(1+1) (1+1)
CZ (121) Oé (l)’ (I+1) (+1)
+ 1+ Z1,(1+
—else Ay = Ay and O = O
e Al
—if Ay = {w, g}
B Flabh(P (1+1) /+1 Cq (1+1) ) . VEJH), CZ’(M), C,_ZA(M)
—if V7 <1 then Apl}l ={w,o,g}, SZH) =0 and

Ck,(l+1) _ ’
~ else A;{}l) = ALZ)K and 2D = oD,

Ck‘UH)

The stopping criteria of the Newton algorithm is given by
re(x) Re(x))

<e )
Fx (XE?) Fx (XE}”)
KeM,, KeM,

where || ¢ || is a given norm, ¢ a specified tolerance and X EIO)
is an initial guess for the Newton algorithm. In general,
the initial guess corresponds to the values of the
unknowns at the previous time step X =X, ! If the
Newton algorithm does not converge, the time step is
restarted with a value divided by two (At” 2’").

5.2 Complementarity condition formulation

One of the advantages of this formulation is that the set of
discret unknowns is fixed and it is not depending of the
phase state in each finite volume K. It is given by

n o __ 7 n n n
XK_(PK’SW,K7S0,K7S K’f‘lK"" nCK)'

After discretization, we obtain at each time step
n=1,2,..., N a nonlinear system denoted by

M)\
(id)o o

where H g (X Z) is the set of discret conservation equations
with closure equations and ¢ (X ’}() is the set of discret
complementarity equations in each cell K € M,. The only
drawback of the introduction of the minimum function is
that the problem (15) is no longer C' but we can solve it
using the semismooth Newton’s method, called the
Newton-min method [9, 11]. At each Newton-min itera-
tion (1), we have to solve the following linear system

om0 Hy (XE,I)>
X, 5X(1) _
7 ! ¢ (Xm)
KX k\ Ak
KeM,,

where j%{xea%(xg?) and 6¢K<X§?) denotes the

, (16)

KeM,,

generalized Jacobian of ¢ at a point X (,? This method
has locally a superlinear convergence. Globally, when

the starting point is not close enough to a solution, the
algorithm may diverge, even when the functions are
linear, as shown and discussed in [16-18]. The size of
the linear system may also be reduced by using a similar
splitting strategy as in the Coats formulation for primary
and secondary variables but this has not been imple-
mented yet in our prototype. For the stopping criteria
and the time step control, we use the same strategy as
the one presented for NVF.

The advantage of this formulation is to lead to a fixed
set of unknowns and equations, which is easier to deal with
the phase appearance and disappearance than the Coats
formulation. Nevertheless, we have to resolve a local non-
linear system (10) for oil and gas phases and in each finite
volume K to obtain the component molar fractions and
propagate its derivatives in the density and viscosity laws
by using the chain rule lemma. When the fugacity coeffi-
cients do not depend on concentrations, typically with
K{(T, P) equilibrium models, it only occurs a linear scaling
of phase concentrations which is easy to follow. In our case,
where the fugacity coefficients are computed by an
Equation of State (EoS), it results in a nonlinear scaling
and artificial coupling between the concentrations which
is more challenging. This is the price to pay for the elimina-
tion of fugacity equality constraints from the system.

As regards the initial conditions, we have to set the
values of pressure, saturation, and composition of each
phase at the initial state. In addition, for the complementar-
ity formulation, we have to compute the initial fugacity
starting from the reference pressure and compositions of
the phases. If in a cell K € M,, the gas phase is present
and the oil phase is absent, we have

fi = PLCS sy (17)

On the other hand, if the oil phase is present and the gas
phase is absent, we have

ik = PRCiRy. (18)

At last, if both oil and gas phases are present we can
compute the fugacities using indifferently (17) or (18)
because the two phases are supposed to be at thermody-
namical equilibrium and then

0 _ p0 g0 520 _ pO ~0,0 50,0 .
f;',K - PKCi,K(Di,K — PKCiiK(Di_’K7 Vi= 17. .o,

It is important to remark that also with this formula-
tion, the case of aquifer cells needs a particular treatment
(see Sect. 6).

6 Aquifer cells

The case of cells where only the water phase and only the
water component are present requires major consideration
because the water phase is immiscible with other phases.
In fact, in this case, for both the formulations, using the
equations introduced in the previous sections the system
diverges. Therefore we have to change the system of equa-
tions to solve. We define a new set of independent
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unknowns which are pressure and number of moles per unit
volume of each component denoted by n; for all i =1,..., n,
and introduced in [23]. In these cells we still consider the
conservation equation for the water component, however,
the conservation equations for the hydrocarbon components
become

atni:qiéa i:17"'7n67

where ¢;0 represents the source term. Therefore in the case
of aquifer cells, for both the formulations, the system we
have to solve is the following. If A, = {w}, find
P, ny,...,n, such that

O(¢pSwp,) + div(p, B,) = q,,0,
om; =¢q0i=1,...,n.,
P,=P—P.(S.),

S, =1

(19)

In the following tables, we can find the number of
unknowns and of equations of this particular case.

Equations | n. + 1

n, + 1

Unknowns

For the aquifer cells, if at least one n; becomes greater
than zero, we must test the appearance of the oil phase
and/or the gas phase as follows. We first compute the total
molar fraction of each component

—
Zi = T I

E ﬂ]'

=1

i=1,...,n.

Knowing the overall composition and the pressure, we
can perform a negative flash calculation to obtain the molar
fraction of the gas phase V.

— if V' > 1 the gas phase appears and then A, becomes
A, = {w, g},

— if ¥V < 0 the oil phase appears and then A, becomes
A, ={w, o}.

— if 0 < V < 1 the oil and gas phases appear and then 4,
becomes A, = {w, o, g}.

7 Numerical results

In this section, we compare the behavior of the natural
variable formulation and the complementarity condition
formulation by means of selected test settings. In order to
model the different physical phenomena present in the
study of flows in porous media, more choices are possible.
The models chosen in our cases are the following.

7.1 Triphasic fluid flow model

The relative permeabilities are modeled using the Brooks
and Corey’s correlation:

S w S wi "
ke,(Sw) = ke |\ 77— >
50 = ()

(1 N Sw) _ Sorw now
(1 - Swi) - Sorw ’

ng
B Sy — See
kr, (Sg) = Koo <(1 —Swi — Sorg) - Sg(") 7

nog
i (1= S¢) = K <(1 —5¢) = (Swi +Sorg)>

(1 Su) — (Sur + Sun)

ke, (1= 8y) = ki o (

where:

— S, water saturation,

— Sy irreducible water saturation,

— Sorw: residual saturation of oil in the oil-water flow,

— Sorg: Tesidual saturation of oil in the oil-gas flow,

- S, gas saturation,

— S saturation of critical gas,

-k k Kty s Krogma - Maximum values of the rela-
tive permeabilities,

— nw, now, ng, nog parameters related to the size of the
pores.

Twmax ? " T'wo,max ?

In our simulation we choose for the parameters the
values presented in Table 1, Table 2 and Table 3.

The relative permeability of the oil is computed from
the previous functions and from the Stone II model [24]

K, k.
bS50 = b ( (0 ) (400 ) =)

(20)

The other physical properties of oil and gas such as the
fugacities and the densities are computed using the Peng—
Robinson equation of state and for the computation of
the viscosities the Lohrenz-Bray-Clark model [25] is used.
The properties of water (density and viscosity) are com-
puted using data from [26].

7.2 Peng—Robinson equation of state

For each phase o € {0,g}, we write the Peng—Robinson
equation of state [27] as follows

p_ R a(1) ’ (1)
Uy — by V24 20,b — bz

where

— P: the reference pressure,

— R: universal gas constant,

— T temperature,

— w,: molar volume of phase «,

— a,: Van der Waals potential of phase a,

— b, covolume parameter of phase «.

In a mixture, the factors a, and b, are defined by

ay =3 > C/Clay, x=og,

i=1 j=1
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Table 1. Residual saturation.

Parameter | Sy Sorw | Sorg See

Value 0.25 | 0.2 0.1 0

Table 2. End point of relative permeability.

Parameter

T'w,max Fow,max g max Tog max

Value 0.3 0.8 1 0.8

Table 3. Exponent of relative permeability.

Parameter | nw | now | ng | nog
Value 2 1 1.5 3
ba:i:xiocbia x=o0,8,

i=1

where C? is the molar fraction of component ¢ in phase o,
=(1- 5ij)\/aiaja

and 0;; is a binary interaction parameter between compo-
nents 7 and j, and a; and b; are empirical factors for pure
component i. The interaction parameters account for
molecular interactions between two unlike molecules. By
definition, é;; is zero when 7 and j represent the same com-
ponent, small when ¢ and j represent components that do
not differ much (e.g., when components i and j are both
alkanes), and large when ¢ and j represent components
that are substantially different. Ideally, d,; depends on
pressure, temperature and on the identities of components
i and j [28]. The factors a; and b; can be computed from

R? T
a; = Qmaz Ps

P — . R_TCi
bz le Pa

where T, and P, are the critical temperature and the cri-
tical pressure of component i, the EOS parameters Q;, and
Q,, are given by

Q;, = 0.45724, Q, = 0.07880,

~[ea(-yE)]

B; = 0.37 + 154w, — 0.27w?,

and w, is the acentric factor of component i. Let

— ayP _ b
A R;TZ’ B 1{]‘7

o=o0,g.
Introducing the compressibility factor
Z = 1;]; , =08,

equation (21) can be expressed as a cubic equation in Z,:

Z3—(1-B,)Z*+ (4, — 2B, — 3B2)Z, — (4,B, — B — B}) = 0.

This equation has three roots. When only one root is
real, it is selected. If there are three real roots, the selection
of the right one depends on the dominance of the liquid
phase or the vapor phase. Now, for i = 1,....n. and
o = o0, g, the fugacity coefficient of component 7 in a mixture
can be obtained from

In @ =

@|@

(Z -1)-

2\/_B (aazca - YD,

1<Z+1+\/_B>

In(Z, — B,)

°"|?
~_—

Z,—(1—+/2B
At last, the fugacity of component i is

o oo .
f;'a:PCide i=1,...,n, o=o0,8.

7.3 Test of CO; injection in a three-component system

The first case is a miscible gas (COs) injection in a quarter
of five-spot saturated with oil. The domain has a size of
100 m in both z and y-direction and it is discretized using
a 20 x 20 regular grid blocks. The reservoir model is
homogeneous: the permeability is equal to 500 mD and
the porosity is 0.3. The gas, composed only of CO,, is
injected with a constant rate that is equal to 80 m®/day
and the pressure at the producer is fixed to 55 bar. The
temperature is assumed to be constant at 80 °C and the
initial pressure is equal to 55 bar.

The total simulation time is 300 days, the initial time
step is 0.05 day and the minimum and maximum time step
are respectively 107° day and 20 days. The initial water
saturation is given by S, = Sy; = 0.25 (Sy; is the irreducible
water saturation) and the oil saturation is equal to 1 — Sg;.
The oil and gas phases are a mixture of three components
C}, Cs and CO5 and the initial oil composition is given by

Figures 1la and 1b show the distribution of the gas
saturation in the domain for NVF formulation (Fig. la)
and CCF formulation (Fig. 1b) at 300 days. Figures lc
and 1d show the distribution of the CO, molar fraction in
the gas phase for NVF formulation (Fig. 1c¢) and CCF
formulation at 300 days (Fig. 1d). In Figures le and 1f,
we report respectively the cumulative oil and gas produc-
tion. The results are similar for the two formulations.

In Figures 2a—2d, we can see the oil and gas saturation
and composition in the middle cell of the domain. The
results are the same except for the gas composition when
it is missing in the cell. Indeed, for the NVF, the composi-
tion of the absent phase is given by the negative flash solu-
tion and the sum of the molar fraction in this phase is equal
to one, whereas for the complementarity condition formula-
tion, it is obtained by solving the local nonlinear system
(10) and the sum is less than one. It is also important to
note that the gas phase appears exactly at the same time
for both formulations (Fig. 2b).
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Fig. 1. Gas saturation and CO, molar fraction in gas phase after 300 days for Natural Variables Formulation (NVF) (a) and (c) and
for Complementarity Condition Formulation (CCF) (b) and (d). Oil and gas cumulative production (e) and (f).
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Fig. 2. Oil and gas saturation and composition versus time in the middle cell.

Table 4 summarizes the numerical results in terms of
number of time steps, number of Newton iterations and
number of restarted time steps. For this simulation, the
NVF and the complementarity condition formulation
performed with the same behavior.

7.4 Test of CO, injection in a seven-component
system

The second case study still simulates a CO, injection in a
three-dimensional quarter five spot saturated with oil.
The reservoir size is 100 x 100 x 20 m and we use a
20 x 20 x 4 grid blocks to discretize the reservoir model.
The fluid is a seven components model (CiNy, Cos, COs,
Cusy Cr12, Ciz19 and C7), with the following initial compo-
sition: C1Ny (38.8209%), Cos (14.5821%), CO, (2.2685%),
C46 (119334%), C712 (194598%), 01319 (87079%) and
Cyy (4.2274%). The initial pressure and temperature are
respectively 200 bar and 132.77 °C (above the bubble
point). The CO, is injected with a fixed rate of
300 m*/day and the production pressure is 150 bar (below
the bubble point). The other model’s properties are the
same as in the first test.

The results given in Figures 3a-3f show that the
agreement between the two formulations is quite good.

Table 4. Numerical results for both formula-

tions NVF and CCF.

Time steps | Newton its | Restarts
NVF 64 340 0
CCF 64 340 0

Nevertheless, we observe slight differences for the oil and
gas cumulative production.

In Figures 4a—4d, we plot the oil and gas saturation and
composition (only for the first four components) in the cell
at the middle and at the top of the reservoir. Once again, we
observe that the results are identical for both formulations
except for the gas composition at the very beginning of the
simulation when this phase is absent in the cell.

Table 5 indicates that the NVF ran with a lower
number of Newton’s iterations than the complementarity
condition formulation.

7.5 Test of condensate gas problem

The third case study is a condensate gas reservoir with a
unique producer well in the center. The geometry of the
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Fig. 3. Gas saturation and CO, molar fraction in gas phase after 300 days for Natural Variables Formulation (NVF) (a) and (c) and
for Complementarity Condition Formulation (CCF) (b) and (d). Oil and gas cumulative production (e) and (f).

reservoir is the same than in the first test and the mesh used
is composed of 21 x 21 grid blocks. The initial gas satura-
tion is 1 — Sy; with Sy; equals to 0.25. The fluid model is the
seven components mixture used in the second test but with
a different initial global composition: C;N, (66.8503%), Ca3
(14.6099%), CO» (3.075%), Cy6 (6.8369%), Cr12 (6.0289%),

We study two different initial points: the first one corre-
sponds to an initial pressure and temperature equal to
290 bar and 196.85 °C (470 K), and the second point is near
the critical point with an initial pressure and temperature

equal to 310 bar and 132.78 °C (405.93 K) (Fig. 5). The
production pressure is 240 bar (below the dew point).

The total simulation time is 1000 days, the initial time
step is 10~* day and the minimum and maximum time step
are respectively 10°° day and 20 days.

The results are the same for both formulations and we
report in Tables 6 and 7 only the numerical behavior of
these formulations (the total number of time steps and
the number of Newton’s iterations). In this test case, the
complementarity formulation has better behavior than
the NVF and especially when starting near the critical point
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7.6 Test of gas injection in aquifer cells
100
For the last test, we model an injection of gas in an aquifer.
This is a well-known case in the reservoir industry and it is
: . . 0 T T T T T 9400 T
interesting because we suppose that the water phase is pure 150 200 2% 300 30 400 450 500 580 600

and immiscible with the other phases. We consider a two-
dimensional domain initially saturated only by water
(S, = 1). The reservoir model and the fluid model are the
same as in the first test.

Gas is injected, with a constant rate 30 m3/ day, in the
aquifer through an injection well located at the lower left
corner of the domain. The injected gas is composed by C;
(20%), Cs (5%) and COs (75%). A production well is

Temperature [K]

Fig. 5. Phase diagram of the fluid.

located in the upper right corner of the domain and it works
with an imposed pressure equal to 50 bar. The temperature
is set at 80 °C and the initial pressure is 50 bar.
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Table 6. Numerical results for both for-
mulations NVF and CCF and for the first
initial point (290 bar-470 K).

Time steps | Newton its | Restarts
NVF 102 201 0
CCF 102 199 0

Table 7. Numerical results for both for-
mulations NVF and CCF and for the
second initial point (310 bar—405.93 K).

Time steps | Newton its | Restarts
NVF 183 425 0
CCF 169 373 0

Table 8. Numerical results for both for-
mulations NVF and CCF.

Time steps | Newton its | Restarts
NVF 414 757 0
CCF 414 766 0

Once again, the two formulations lead to similar physi-
cal results. Regarding the numerical behavior, as we can see
in Table 8 they perform the simulation with the same num-
ber of time steps and without restart. However, we can
notice that the CCF formulation effectuates slightly more
Newton’s iterations than the NVF formulation.

8 Summary and conclusions

In this work, we develop two isothermal compositional for-
mulations in the same framework and compare them for
four different synthetic problems. The first formulation is
the well known NVF which is commonly used in reservoir
simulator, and the second one is the more recent comple-
mentarity condition formulation. The main advantages of
this second formulation are to lead to a fixed set of
unknowns and equations whatever the present phases and
it allows to avoid the flash calculation. Nevertheless, the
use of pressures, saturations, and fugacities as main
unknowns induces more non-linearities in the system, and
we have to solve two local nonlinear systems in each cell
and at each Newton’s iteration to obtain the component
molar fractions in the oil and gas phases in function of
the main unknowns.

Our first numerical tests indicate that the two formula-
tions lead to similar physical results with quite similar
behavior except for the condensate gas test cases and near
the critical point for which the complementarity formula-
tion outperform the NVF in terms of the number of time
step and the number of Newton iterations.

Then in order to compare fairly the CPU times, we have
to reduce the size of the linearized system at each Newton
iteration by adding a splitting strategy (eliminating the
closure equations and the complementarity constraints as
it is done in the NVF formulation). But the choice of the
primary unknowns and remaining secondary unknowns
depends on the context in each cell. This work is under
investigation.

A study of the semi-implicit time scheme for the comple-
mentarity condition formulation is a work in progress. This
scheme consists in calculating the flux terms implicitly with
respect to the pressure and the saturations, and explicitly
with respect to the fugacities. More complex and realistic
test cases will also be treated to compare the two
formulations.
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