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Abstract. Gear transmission systems are very important machine elements and their failure can lead to losses
or damage of other mechanical components that comprise a machine or device. Since gears are applied in
numerous mechanical devices, there is need to design and subsequently optimize them for intended use. In the
present work, two objectives, viz., volume and center distance, are minimized for a rotary tiller to achieve a
compact design. Twomethods were applied: (1) analytical method, (2) a concatenation of the bounded objective
function method and teaching–learning-based optimization techniques, thereby improving the result by 44% for
the former and 55% for the latter. Using a geometric model and previous literature, the optimal results obtained
were validated with 0.01 variation. The influence of design variables on the objective functions was also
evaluated using variation studies reflecting on a ranking according to objective. Bending stress variation of
12.4% was less than contact stress at 51% for a defined stress range.
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1 Introduction

Mechanization is a key economic enabler for improved
product volumes and efficiency in industrial and agricul-
tural production systems. Gears are key mechanical
elements that enable the transmission of power in differing
configurations and output ranges. Their application in
agricultural, automotive, manufacturing, power genera-
tion, aerospace, and marine industries further demon-
strates the potential for improvement that could be
realized through optimization studies. The optimization
of gear systems has been extensively investigated and the
literature surveyed identifies the application of computa-
tional methods as early as the 1970s [1–3].

With the improvement of optimization theory and
introduction of new methods and tools such as advanced
and evolutionary algorithms [4,5], researchers have also
applied these to gear optimization [6–8]. However,
literature shows that various methodology based on
decision practice and computer-aided argumentations
[9–11] have been applied to the study of gear systems.
Gear systems can be classified according to the type or
constructional arrangement: the latter being a broad
classification, while the former is specific. Furthermore,
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gear arrangement can be defined by axes, whether they are
parallel or perpendicular, or by the number of stages
forming a gear system. Gear types such as worm and wheel,
spur, bevel, and helical have been investigated by
researchers [12–14] while using various optimization
methods. Single-stage, multistage, and multispeed gear
systems have been investigated in literature [15,16] while
considering numerous gear types.

The consideration of multiple objectives is necessary
since gears by nature are defined by numerous parameters
that may singularly/simultaneously require maximization
and minimization. Multiobjective optimization may be
applied using three different methodologies, viz., a priori, a
posteriori, and progressive articulation [16]. A priori
articulation informs the optimization process with designer
preferences by via weights as espoused in weighted sum,
e-constraint, and weighted metric methods. Such method-
ology does not result in a general Pareto frontier but rather
one that is biased toward the designer’s intent. While
applying an a priori method, Stefanović-Marinović et al.
[17] applied a weighted coefficients method to four
objectives for optimization on a planetary gear system.
Other researchers argue that the criteria for setting weights
need to be informed by sensitivity analysis.

A posteriori articulation method begins with the
generation of a Pareto frontier that is then investigated
using decision methods such as Linear Programming for
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
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Multidimensional Analysis of Preference (LINMAP),
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS), and Fuzzy [18,19] in order to identify
the optimal result. This allows for trade-off studies [15] to
be performed on the frontier to discover new insights on
objectives, variable, and constraint assignments. Progres-
sive articulation allows the preferences weights or factors to
be adjusted as the optimization process is running.

Numerous optimization techniques have been applied
to gear design problems, viz., particle swarm optimization,
genetic algorithm, simulated annealing, sheep flock algo-
rithm, teaching–learning-based algorithms, etc. Research-
ers have made comparisons on convergence rate, time to
solution, and the optimal result while searching for better
algorithm applications. In all these investigations, numer-
ous combinations of objectives, viz., volume, efficiency,
power output, center distance, mass, and cost were
considered.

Literature surveyed indicates the following:

–

Fig. 1. Rotary tiller gear train system.
That most gear design problems investigated are
abstract in formulation and presumed to apply on
numerous applications.
–
 The application of gears under investigation has not been
included in setting designer preferences
–

Table 1. Rotary tiller specifications [20].

Specification Unit Specification Unit

Length (mm) 1250 z1, zi, z2 31, 43, 38
Width (mm) 1930 i 0.815
Weight (kg) 450 PTO (rpm) 540
Application of advanced optimization techniques in gear
optimization has not been investigated.

In the present work, a three gear-train design problem
that was investigated by Akinci et al. [20] for gear failure is
further considered for optimization. The minimization of
center distance and volume informs of a compact configura-
tion that reduces material cost and energy usage. In the
presented research work, Section 2 describes a rotary tiller,
its functions, and the setup of the gear transmission system.
Section 3 reflects on gear designmethodologywith a focus on
the AGMA design procedure that is applied analytically.

Section 4 discusses the engineering design optimization
and highlights the boundary objective function (BOF) and
teaching–learning-based optimization (TLBO) methods.
Section 5 introduces the design problem as a mathematical
formulation. Results of the optimization process are shown
in Section 6 with variation and validation studies, while
Section 7 is the conclusion of research work.

2 System description

Rotary cultivators are not simply tractor-drawn imple-
ments but are also powered through the power takeoff
(PTO) shaft of a tractor. The implement is mounted at the
rear end of a tractor while supported by a linkage system
[20]. The power transmission mechanism of a rotary
cultivator, shown in Figure 1, is composed of a bevel gear
unit that is linked to a three-gear train system composed of
spur gears. The three-gear train system is composed of two
gears that mesh with an idler gear. Power is transmitted
from the PTO point and passes through a bevel gear
arrangement. The output of this first gear system is
generated at an angle of 90° to connect with the second
gear unit. The second gear unit through a parallel shaft
arrangement then transmits the power to the tiller unit
that is composed of spade knives.
Spur gears in general are geometrically cylindrical and
mesh with each other to form gear stages. The system
under investigation can be described as single stage with an
idler or rather as a three-gear two-stage system. The
specifications for rotary tiller gear train system are
recorded in Table 1.
3 Gear design

Researchers and industry practitioners have advanced
gear design practice over numerous years by applying
state-of-the-art computational tools to previously known
manual procedures. The gear design process is iterative
and involves numerous variables and constraints that
increase the cost of computation. The direct gear design
method was introduced by Kapelevich [21] as an attempt
to formalize the design process, while other researchers
introduced novel, practical, and computer-aided meth-
ods [10,11,22]. Fundamentally, gear design procedures
emanate from geometric relations of parameters such as
module, gear tooth number, and face width. Parameter
sets are then evaluated for bending and surface/contact
stress. Generally, the bending stress calculation ema-
nates from the Lewis equation that analyzes the gear
tooth as a beam under load, while surface fatigue is



Fig. 2. AGMA design procedure for spur and helical gears.
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derived from hertz contact stress analysis. Failure in gear
operation occurs mainly due to contact/surface and
bending stress.

The balance in favor of either stress factor depends on
the application, selection, and computation of safety
factors. Gear transmission systems are key to the industrial
systems such that design standards have been instituted to
aid the practice. Numerous gear design standards exist for
various types of gears and applications and in this research,
the American Gear Manufacturers Association standard
(AGMA 2001-D04) “Fundamental Rating Factors and
Calculation Methods for Involute Spur and Helical Gear
Teeth” is applied.

3.1 AGMA design procedure

The acronym AGMA refers to the America Gear
Manufacturers Association that has developed numerous
standards for gear design. In this research the AGMA
standard (AGMA 2001-D04) that is specific to spur and
helical gears is utilized. Figure 2 shows the design
procedure as implemented in this research work. A defined
set of input data is required to initialize the design process.
These data are used in the preliminary design phase, before
calculation of the bending and contact stress values. This
preliminary phase seeks to interpret the input parameters
for the transmission system.
This is essentially a load analysis phase to determine
the effects of input power as expressed by equations
(1)–(5).

z2 ¼ i�z1 ð1Þ

Tin ¼ Pin

Nin
ð2Þ

To ¼ Tin�i ð3Þ

D1;i;2 ¼ Z1;i;2�m ð4Þ

Wt ¼ Tin

r1
ð5Þ

V t ¼ r1�vp: ð6Þ
After this preliminary stage, the bending stress analysis

begins with estimation of face-width value and setting of
the following factors: km, kv, ks, kb, kt, kr, I, and J. The
bending stress value is then evaluated according to
equation (7). The material to be used for manufacturing
the gear has been selected prior to computation and its
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hardness value is used to estimate the allowable bending
stress by use of equation (8). Similarly, contact stress and
allowable contact stress are evaluated using equations (9)
and (10).

st ¼ WtKoKvKs
1

bmt

KmKB

Y j
ð7Þ

sat ¼ 2:41HB þ 237 ð8Þ

sC ¼ Cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WtKoKvKs

Km

dF

Cf

I

r
ð9Þ

sac ¼ 0:703HB þ 237 ð10Þ

st � satY N

SFY #Y Z
ð11Þ

sC � sacZNCH

SHKTKR
: ð12Þ

The calculated stress values must always be lower than
the allowable stress values and the ratio of these values is
the safety factor of the design. Safety factors depend on
application and are usually set by the designer. As shown in
Figure 2, if the stress factor is not satisfactory, the design
procedure loops back to the first stage to begin the second
iteration until a suitable solution is reached.

3.2 Engineering design optimization

Traditional design procedures map the decision process
from need through prototyping to final product [23]. Design
procedures can also be classified into phases or stages such
as preliminary and detailed design.

The former defines the initial stages of the designwhere a
priori articulation is done based on experience/or by the use
of a decision-based method. The detailed design phase then
articulates the finer details of the chosen design that are
based on the preferences set by the designer. Resultantly,
final results can be sufficient but not optimal due to
subjectivity in setting preferences. Designmay be defined as
a goal-seeking activity within a defined solution space.

In other words, design is a search process instructed by
an objective, boundary metrics, and constraints, which
represent a problem definition. Such definitions are the
rudder of the search process and their formulation impacts
the rate of convergence to a solution and the certainty of
optimality. Literature [24–26] shows that there is increas-
ing application of computing and optimization algorithms
to solve design engineering and scientific problems. Such
investigations have resulted in discovery of new optimal
values while using less resources and time.

Generally, optimization is performed to either
minimize/maximize an objective. However, optimization
processes are influenced by numerous factors. Objectives
may be singular (single objective) or multiple (multi-
objective). Constrained optimization is whereby the
max/min of an objective is investigated subject to defined
constraints on the objective. In gear design, bending,
surface fatigue limits and interference checks are some of
the constraints to be considered. Furthermore, the numeric
size of shafts, bearings, materials, and parts is not available
in continuous but integer form. In this research work,
center distance and volume objectives are minimized by
formulating a scalarized objective function.

4 Optimization

Broadly, optimization may be classified as either single-
objective or multiobjective optimization, with the latter
defined as the simultaneous and systematic process by
which objectives are optimized. When more than one
objective is investigated, change in one objective will
impact the corresponding objectives. When two objectives
are considered, a Pareto frontier [18] is obtained.

The Pareto frontier is a set of optimal solution sets
that can be obtained for a given multiobjective problem.
On this frontier, trade-off studies can be performed to
ascertain the impact of variable changes. On the other
hand, multiple objectives may not be of equal importance
with regard to the ultimate goal sought by the designer.
In view of this, methods to prioritize objectives may be
employed by setting weights as preference values. In
recent years, various multiobjective optimization
studies have been carried out by a number of researchers
[27–35].

The articulation of preferences may be done a priori,
progressively, or a posteriori to the optimization exercise. A
priori articulation refers to the setting of design preferences
before the optimization process such that they are included
in the objective functions. Essentially, multiobjective
processes can be classified into two approaches: vector
and scalarization methods [36]. Vector methods refer to the
sequentially independent optimization of each objective
function depending on a set of preferences. On the other
hand, scalarization results in a single function that is then
applied to a single-objective methodology.

4.1 Weighted sum method (WSM)

This is a very common method that applies weights to
objective functions as measure or indicator of importance
and can be described mathematically as follows:

FðxÞ ¼
Xn
i¼1

wifiðxÞ ð13Þ

where w represents a vector of weights that sum up to 1,
with values in the range of 0–1. These weights can be
applied a priori or a posteriori to problem solving where
in the latter case weights are varied to obtain different
optimal results. This method is relatively easy to use
and for weights in the range prescribed earlier,
Pareto optimality can be achieved. However, major
challenges arise from weight assignment and the
certainty of true optimality based on systematic varia-
tion of weights.
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4.2 Weighted min–max method (WMM)

This method unlike the weighted sum can provide all
Pareto and non-Pareto points. It is, however, computa-
tionally expensive, requires setting of more constraints,
and has ambiguity in single-solution point problem and
weight settings. Also referred to as the weighted Tche-
bycheff method, mathematically it may be described as
follows:

Considering a function F(x),

FðxÞ ¼ max
i

wi fiðxÞ � foi
� �� �

: ð14Þ

This may be modified by introducing a parameter l:
Minimize l
Subject to

wi fiðxÞ � foi
� �� l � 0 ð15Þ

where i=1 to k

4.3 Weighted global criterion (WGC)

Another multiobjective optimization method is WGC.
This is a type of scalarizationmethodwhose parameters are
not directly related to preferences. Mathematically, it may
be defined as follows:

FðxÞ ¼ max
i

Xk
i¼1

vi fiðxÞ � foi
� �� �p( )1=p

: ð16Þ

The parameters p and w are not varied simultaneously,
rather p is selected and then a predetermined weight based
on preferences is applied as w. Various values of p such as
1,2, and ∞ result in WSM, compromise, and the WMM,
respectively.

4.4 Lexicographic method (LM)

This is classified as a vector multiobjective optimization
method whose preferences are reflected by the order of
optimization [36]. Pareto optimal solution is guaranteed
with its unique way of specifying preferences. However, it is
computationally expensive since it is effective with a global
optimization tool. The goal programming (GP) method
applies goals to each objective and strives to minimize the
total deviation of all the goals. There is no guarantee of
reaching an optimal solution, with an increase in variables
and constraints that make the method undesirable.

4.5 Bounded objective function (BOF) method

This method focuses on the single most important objective
while treating all otherobjectives as constraints.Avariant of
this method is the e-constraint method [23]. When applying
this method, it is not necessary to normalize the objective
functions and it guarantees an optimal solution when one
exists. As per definition, it focuses on a single objective as
selectedbythedesigner.Essentially, thismethod reduces the
multiobjective problem into a single-objective formulation.
4.6 Advanced optimization techniques

Optimization techniques are multidisciplinary tools, hence
this has sparked research and development of many new
techniques and hybridization of those existing. Two major
advantages that advanced techniques possess over classical
are hybrid ability and universality. Nature-inspired/evolu-
tionarytechniquesare thosebasedonstudyof thebehaviorof
nature (animals and plants) and are also classified as
advanced optimization techniques. Such techniques include
artificial bee colony (ABC), genetic algorithms (GAs),
differential evolution (DE), harmony search (HS), artificial
immune algorithms (AIA), bacteria foraging optimization
(BFO), particle swarm optimization (PSO), and shuffled
frog leaping (SFL).With regard to gear design optimization,
techniques such as PSO, SA, and GA have been widely
applied in single-objective optimization problems.

In this research work, a three-gear train system is
optimized using the TLBO algorithm.

Philosophically, the TLBO algorithm is derived from
the relations between an educator, students, and their
peers in a learning environment. In this environment,
basically two activities occur, namely, teaching (teacher
stage) and learning (learner stage). Interaction between
student and teacher results in knowledge enrichment as the
teacher is considered as the ideal. Further interaction
between high-performing students and their peers results
in improvement of the peers.

As is synonymous with pedagogy, subjects are pursued
and evaluated at the end of a course to measure
improvement. Rao [37] linked these concepts with the
mathematical formulation of an optimization problem. The
students in the class are considered the population,
variables (design parameters) representing subjects, while
the fitness function (objective function) is reflected by the
evaluation of subject marks.

4.6.1 Teacher phase

As shown in Figure 3, the teaching phase begins after
initialization. The mean is calculated and solutions ranked.
Once the difference mean value has been obtained, the
existing solution is updated in the teacher phase. The
difference mean is added to the existing value to obtain the
updated value. Of the two phases comprising the process of
the algorithm, the teacher phase is the genesis of the
algorithmic process. Students appreciate through contact
with the teacher, who strives to improve student perfor-
mance as reflected by the increase in the (mean) average
result of the class. The main objective in TLBO is to
approach the ideal value identified as the teacher. This
resonateswith the notion that the teacher is the best learner.
The mean result is computed as the compounded product of
the random value, variable mean, teaching factor (TF), and
difference in best value. TF is randomly generated and is not
a set parameter in the TLBO algorithm. From practice, the
best results are obtained when TF is set as either 1 or 2 [38].

4.6.2 Learner phase

This is the final phase of the algorithm in which learners
begin to interact through self-study. The main assumption



Fig. 3. TLBO flow chart.
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for this stage is that there is no facilitation from the teacher
and learners interact as peers. Through such interaction
with greater fitness value learners, lower fitness value
learners appreciate without any trade-off loss for the
greater value learner. In this phase any two learners whose
values are not similar are updated with respect to formulas
premised on greatness of value. Furthermore, max/min
structure of the objective is also a deciding factor.
Depending on the population, this process will continue
until the termination criterion is satisfied, failure to which
the process returns to the learner phase. Summarily, in this
manner the TLBO algorithm is executed.

5 Mathematical problem formulation

Two objectives, volume and center distance, have been
considered for minimization on a spur gear train with three
gears. The mathematical problem is reduced to a single-
objective problem by applying the BOF method. By
application of this method, the volume objective is then
considered as the main objective, while center distance is
treated as a constraint.

Therefore,

MinimizeVol ¼ V pinion þ V idler þ V gear ð17Þ

V pinion ¼ p

4
� ðm�z1Þ ð18Þ

V idler ¼ p

4
� ðm�ziÞ ð19Þ

V gear ¼ p

4
� ðm�z1�iÞ ð20Þ
Subject to
Center distance

220 � CD � 300 ð21Þ
where

CD ¼ m z1ð Þ
2

þmðziÞ þm z1 � ið Þ
2

ð22Þ

Geometric constraints

r1 þ ri þ r2 � 300 ð23Þ

Design constraints

st � satY N

SFY #Y Z
ð24Þ

sC � sacZNCH

SHKTKR
ð25Þ

5.1 AGMA and TLBO algorithm parameters

The TLBO algorithm is parameterless and is defined by the
population and number of iterations. These parameters
have been set as shown in Table 2.

On the other hand, the AGMA method is a gear design
standard that defines gear design procedure. The method-
ology is defined by various formulas and design factors that
are selected based on intended application of the design.
The rim thickness factor is applied as 1 since the design



Table 2. TLBOalgorithm andAGMAmethod parameters.

TLBO parameters

Population 50
No. iterations 100

AGMA design factors

KB, rim thickness 1

Ko, overload 1.75
Kv, dynamic 0.925
Ks, size 1
Km, load distribution 1
KT, temperature 1
KR, reliability 1
CH, contact stress factor 1
Cf, surface condition factor 1
Cp, elasticity coefficient 1

Table 3. AGMA and TLBO optimal results.

Method Variables Objectives

m b Z1 Zi Hb CD (mm) Vol (mm3)

AGMA 5.29 15 26 47 236 253 1.273� 106

TLBO 3.94 30 23 38 233 250 1.005� 106

Fig. 4. Center distance and module variation.
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ensures the minimum root thickness of gear is designed.
The overload factor was chosen as 1.25 considering a
uniform power from the tractor power takeoff and
moderate shock from the tilling operations of the rotary
tiller. The reliability factor was also chosen to represent
failures less than 1 in 100. The size factor is taken as 1 due
to proper selection of materials. Load distribution is taken
as uniform and the operating temperature of gear blank to
be less than 120 °C. Contact stress, surface condition, and
elasticity factors are also applied as unitary due to normal
conditions.

Therefore, the TLBO algorithm being a parameterless
algorithm requires population and number of iterations that
control are related to the convergence of the solution and
search space. AGMA design factors relate to the various
practical aspects of the design problem under study.
6 Results and discussions

In this research work, a three-gear train system was
optimized using the bounded objective method and TLBO
algorithm. Two objectives, volume and center distance,
were investigated with one main objective volume mini-
mized while the other, center distance, treated as a
constraint. The same gear train was also solved analytically
using the AGMA design approach. A total of five variables,
viz., face width, module, pinion, idler, and gear teeth, were
investigated for the optimization problem. The results
are shown in Table 3. Using AGMA design procedure, the
center distance obtained was 253mm, while 1.273�
106mm3 was realized as total volume of the gear system.
The result obtained for center distance, using the TLBO
algorithm, was 250mm, which is approximately 3mm less
than that for AGMA method.

The volume was 1.005� 106mm3 reflecting 21%
decrease in total volume. In terms of design variables,
the AGMA result had higher values for module, hardness
factor, pinion, and idler tooth numbers, while the face
width value was lower than that obtained using TLBO.

6.1 Variation study

Variation studies were performed for variables against
objectives in order to determine their influence on objective
functions. Center distance is a function of gear diameters
that are defined bymodule and number of teeth. Studies on
these two variables against center distance are represented
in Figures 4 and 5 for two different gear ratios: 3.5 and 4.5.
The linear relationship indicates a proportional increase in
the objective induced by the variables under investigation.
Though variation ranges for design variables differ in scale
and range, there is a noticeable greater influence induced
by module as compared to pinion teeth number.

Therefore, in order to achieve minimization of objec-
tives for the rotary tiller, lower tooth number and module
values need to be obtained. This is also reflected by the
results obtained by applying TLBO as shown in Table 3,
whereby module value is 3.94 compared to 5.294 obtained
using the AGMA method analytically.

With regard to face width, there is no direct
relationship to center distance. However, there exists a
linear relationship between volume and face width, as
shown in Figure 6. Module and volume exhibit a parabolic
curve. The change in volume per standard module
variation increases as the value of module appreciates,



Fig. 5. Center distance and pinion tooth number variation.

Fig. 6. Volume and face width variation.

Fig. 7. Volume and module variation.

Fig. 8. Volume and pinion tooth variations.
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as shown in Figure 7 and similarly for pinion tooth number
in Figure 8. In this study, it can be shown that the four-
variables module, face width, and pinion tooth numbers
that affect the physical properties of a gear system
influence the two objectives differently. While considering
these variables as dimensionless against the volume
objective, Figure 9 shows that module has the greatest
influence on volume, followed by face width and pinion
tooth numbers. Another important variable considered in
this research work is hardness, which is a factor that is
related to material choice. The hardness value determines
the bending and contact stress values that are compared
with the allowable stress values to determine safety factors.
In this research work, bending and contact stress are
evaluated as constraints. Hardness factor and stress are
compared for bending and contact stress evaluations in
Figure 10. The two lines shown represent variations in
bending and contact stress for the range under investiga-
tion. The results indicate that there is a higher risk to
bending as compared to contact stress. For a hardness
factor range of 150–400, there is 12.4% variation in bending
stress as compared to 51% variation for contact stress. This
means that material selection is more critical when
considering bending stress. Practically, bending fatigue



Fig. 9. Volume, module, face width, and pinion tooth number.

Fig 10. Stress, hardness variation for bending, and contact
stress.

Table 4. Validation of the study.

Method Variables Objectives and variances

m b Z1 Zi Hb CD (mm) %
Change

Vol.
(mm3)

% Change
against
reference
[20]

Variance
against
the TLBO
result

AGMA 5.29 15 26 47 236 253 23 1.27� 106 44 0.257
TLBO 3.94 30 23 38 233 250 24 1.01� 106 55 –

Geometric modeling 4 30.62 23 38 – 252.7 23 1.02� 106 55 0.01
Reference [20] 4.23 38 31 43 328.08 – 2.27� 106 – 1.27
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failure is proven to be the major cause of gear failure [39]
and in a study carried out by Akinci et al. [20], bending
fatigue accounted for at least 61% of failures. Furthermore,
74.7% of failures were due to usage faults that are mostly
overloading of gear systems resulting in fracture.

6.2 Validation

The AGMA and TLBO results obtained were validated
against results in literature and those obtained by
geometric modeling, as shown in Table 4. It was observed
that there was a 44% improvement in volume between
AGMA results and reference [20], while a 55% reduction
was obtained using TLBO and the geometric model results.
In terms of center distance, percentage change was 23% for
both AGMA and geometric model results and 24% for
TLBO results against reference [20]. Using a computer-
aided software, the gear train systems were modeled and
evaluated for optimal volume reflecting a variance of 0.01
against the TLBO result, while 0.257 and 1.27 values were
obtained for AGMA and reference [20] comparisons with
TLBO.
7 Conclusions

Multiobjective optimization of a three-gear train was
conducted with volume and center distance as objectives. A
total of five variables, viz., face width, module, number of
pinion teeth, idler teeth number, and material hardness
were considered. The gear model was formulated to explore
the minimization of volume, center distance in order to
reduce material, and its associated cost. In order to solve
the problem as a single-objective formulation using TLBO,
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a BOF method was applied treating center distance as a
constraint while minimizing volume. The example problem
was adopted from Akinci et al. [20] focusing on a rotary
tiller. Two methodologies AGMA and TLBO were applied
to solve the design problem. The obtained results were
validated through a geometric model generated using
SolidWorks CAD software for the given optimal set of
designing parameters. Variation studies were conducted to
determine parameter influence on the gear train system.

The major outcomes of the research work are summa-
rized as follows:

–
 It is observed that there is a 55% improvement in the
solution when TLBO is applied to solve the gear design
problem, thereby reflecting the ability of the TLBO
algorithm to improve optimal result.
–
 It is observed that center distance and volume objectives
are directly related and that increase/decrease in one
result will induce increase/decrease in the other.
–
 It is observed that the influence ranking for the geometric
design variables is module, face width, pinion tooth
number, respectively, for theminimum volume objective,
while face width has no relation with center distance.
–
 It is observed that geometric models can be used to
validate optimal results as reflected by the small variance
and utilization by other authors such as Wang et al.
[40].
–
 Optimization techniques can search the solution space
efficiently and with less resources expended as compared
to iterative procedures and the consideration of center
distance and volume results in a distinct gearbox
configuration that has a higher length-to-width ratio.
–
 It is observed that there is a greater risk from bending
than from contact stress for spur gears, while stress
variation is higher for the latter at 51% than the former at
12.4%.
Nomenclature
B, F
 face width, net face width (mm)

m
 module

Po-
 power output (kW)

CD
 center distance (mm)

z1, zi, z2
 number of teeth on pinion, idler,

gear

v1
 angular velocity (rad/s)

Pin
 power input (kW)

KB KoKvKsKm
 rim thickness, overload, dynam-

ic, size, load distribution factor

KTKRCH
 temperature, reliability, contact

stress factor

J
 geometry factor of bending stress

ZN, YN
 stress cycle factor for contact

stress, bending strength

Cf Cp
 surfaceconditionfactor,elasticity

coefficient

D1�4
 geardiameters for gears1–4 (mm)

Tin, To
 input, output torque (Nm)

i
 overall gear ratio
Vol, Vpinion, Vidler,Vgear
 total volume, volume of pinion,
idler, gear (mm3)
r1�5
 gear radii (mm)

sat
 allowable bending stress

(N/mm2)

u
 pressure angle

sC
 contact stress (N/mm2)

Wt
 tangential load (N)

sac
 allowable contact stress

(N/mm2)

st
 bending stress (N/mm2)

HB
 material hardness number

Sh, Sf
 safety factor for bending, contact

stress

Nin
 input rpm

LINMAP
 Linear programming for multidi-

mensional analysis of preference

TOPSIS
 Technique for order of preference

by similarity to ideal solution
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