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Detailed behavioral analysis is key to understanding the brain-behavior relationship.

Here, we present deep learning-based methods for analysis of behavior imaging data

in mice and humans. Specifically, we use three different convolutional neural network

architectures and five different behavior tasks in mice and humans and provide detailed

instructions for rapid implementation of these methods for the neuroscience community.

We provide examples of three dimensional (3D) kinematic analysis in the food pellet

reaching task in mice, three-chamber test in mice, social interaction test in freely moving

mice with simultaneous miniscope calcium imaging, and 3D kinematic analysis of two

upper extremity movements in humans (reaching and alternating pronation/supination).

We demonstrate that the transfer learning approach accelerates the training of the

network when using images from these types of behavior video recordings. We also

provide code for post-processing of the data after initial analysis with deep learning. Our

methods expand the repertoire of available tools using deep learning for behavior analysis

by providing detailed instructions on implementation, applications in several behavior

tests, and post-processing methods and annotated code for detailed behavior analysis.

Moreover, our methods in human motor behavior can be used in the clinic to assess

motor function during recovery after an injury such as stroke.

Keywords: behavior analysis, deep learning, motor behavior, social behavior, human kinematics

INTRODUCTION

A major goal in neuroscience research is to understand the relationship between neural function
and behavior (National Institute of Health BRAIN 2025: A Scientific Vision, 2014). In order to
understand this relationship, a vast array of exciting technologies have been developed over the
years to characterize the structure and record the activity of neuronal populations (Real et al., 2017),
as well as tomodulate neuronal activity at cellular resolution andmillisecond timescale (Deisseroth,
2015). In contrast, the development of behavioral analysis has lagged, with indirect measurements
and a reductionist approach (Krakauer et al., 2017). This is, in part, due to a lack of tools to do
automated and detailed analysis of behavior.

Observation and description of natural animal behavior has been fundamental to ethology
(Tinbergen, 1963). Although modern high-speed video can record the natural behavior of animals
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in exquisite detail, analysis of these recordings can be extremely
difficult. The blinded observation and description of the video-
recordings can take much longer than the time needed to
record them, and these observations are highly subjective. Thus,
tools that automate the analysis of these videos are needed for
faster and more objective description of the video recordings.
Several methods have been developed for this purpose: For
example, classical machine vision techniques combined with
depth imaging can identify patterns of behavior (Wiltschko
et al., 2015). However, this requires special depth cameras and
is not generalizable to all types of images. Other studies have
used machine vision techniques with unsupervised data analysis
(Vogelstein et al., 2014; Robie et al., 2017). While unsupervised
analysis is very promising to identify patterns inherent to
the data, it is not easy to apply the classical machine vision
techniques to different behavior/experimental settings. While the
commercial systems can provide off-the-shelf solutions for some
behavioral tests, they are not open-source, thus limiting any type
of modification, and their application to other behavioral tests.
Automated tools that can easily be implemented and generalized
to many different behavior tests are needed.

Advances in the deep learning field present opportunities for
the automated analysis of images (LeCun et al., 2015). More
specifically, convolutional neural networks (CNN), a class of deep
neural networks, are most commonly used for image analysis.
They are made up of nodes (“neurons”) with learnable/trainable
weights and biases, and the architecture is comprised of width,
height (similar to images) and depth (a third dimension of
activation volume) (Lecun et al., 1998). There have been recent
advances in the field with several different CNN architectures
(Krizhevsky et al., 2012; He et al., 2015; Szegedy et al., 2015)
resulting in faster and more accurate outcomes.

Recently, deep learning applications have been used in
behavior imaging data analysis (Stern et al., 2015; Mathis et al.,
2018; Pereira et al., 2018). The first one of these studies created
their own network architecture (Stern et al., 2015) which can limit
the implementation of the technique and its broad use. The other
two approaches (Mathis et al., 2018; Pereira et al., 2018) showed
successful implementation of the CNNs to behavior imaging
data analysis, both of them focusing on body pose estimation in
animals. One of these used transfer learning approach on only
one network architecture (Mathis et al., 2018), whereas the other
one trained the network from scratch and achieved similarly good
results (Pereira et al., 2018). These two approaches focused on
animal pose estimation. While this provides useful information
for behaviors where the pose detection of individual body parts
is important, it cannot perform direct object recognition (for
example distinguishing an apple vs. an orange). Specifically,
it cannot distinguish two mice in different positions (vertical
vs. horizontal) or identify a mouse performing a specific
behavior (such as grooming). Therefore, these networks would
detect body positions but not recognize that position/behavior
directly. In order to identify these specific behaviors or body
positions, these algorithms would require inferences based on
the pose coordinates of body parts. Moreover, both studies
used only one neural network architecture, thus limiting the
user from trying and comparing different network architectures.

Additionally, they did not provide post-processing methods for
3D kinematic analysis.

Similarly, motor behavior analysis in humans has also lagged.
Currently, the most commonly used clinical motor function
assessment tests are based on subjective scoring of the outcome
(whether a task is completed fully, partially or not at all). These
types of clinical motor impairment scores (i.e., Fugl-Meyer,
Action Research Arm Test) are based on ordinal scales, and
are insensitive to detect the meaningful changes in the motor
function. Moreover, this is important because this type of simple
and inexact motor impairment scores or, even worse, disability
scores (modified Rankin Score) are not adequate (Bernhardt
et al., 2017), and may not accurately reflect true recovery
(Kitago et al., 2013). It is important to distinguish between the
compensatory movements and true recovery, which can best be
done via kinematic analysis (Cirstea and Levin, 2000; Kitago
et al., 2013; Krakauer and Carmichael, 2017). Kinematic analysis
reveals the timing and typicality of movements, and allows
compensatory actions to be distinguished from true recovery
of function (Krakauer and Carmichael, 2017). Moreover, it also
provides objective metrics that have the potential to capture the
movement quality. However, performing kinematic analysis on
human motor behaviors can be challenging. Various sensors,
reflective markers, external devices, or robotics have been used to
perform kinematic analyses (Krebs et al., 2014). The complexity
and cost of these devices greatly limits their generalized use.
Moreover, using external devices may also alter the natural
behavior itself. Thus, marker-less, automated analysis methods
are needed for clinical assessment of motor function.

Here, we present a deep learning toolbox and post-processing
methods. We name this toolbox DeepBehavior. We expand the
deep learning applications for animal behavior imaging analysis
by using two different CNN architectures in three different
rodent behaviors (food pellet reaching task and two social
behaviors). We demonstrate three dimensional (3D), marker-less
kinematic analysis of reaching movement in mice. We provide
detailed analysis of social behavior when two mice are interacting
with post-processing methods. We show evidence that transfer
learning approach accelerates training of the network with these
types of images. Furthermore, we also demonstrate how CNNs
can be used in clinical settings to assess motor function to
perform 3D kinematic analysis of motor function in humans.

MATERIALS AND METHODS

Animals
All animal procedures were approved by the University of
California, Los Angeles, Department of Laboratory Animal
Medicine Institutional Animal Care and Use Committee, and
were in accordance with the AAALAC and NIH guidelines. The
animals used in this study were either GAD2CrexAi9 or C57Bl6/J
mice, and both male and female mice were included. The age
range of mice was 10–16 weeks-old.

Human Subjects
A 35-year-old, healthy adult was recorded. A written informed
consent was obtained prior to the recording in accordance
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with the Declaration of Helsinki. The consent included the use
of video recordings for research, education, publication and
public presentation.

Skilled Food Pellet Reaching Test
We have developed an apparatus for head-fixed mice to perform
a reaching task for a food pellet. This apparatus is 3D printed
(Shapeways, New York, NY) and has an arm that controls a
platform with scotch and yoke mechanism. The arm is controlled
by a small servo motor (Sparkfun, Niwok, CO). This is connected
to a plexiglass cylindrical food pellet dispenser that is controlled
by a stepper motor (Sparkfun, Niwok, CO). This releases one
food pellet at a time. The apparatus automatically detects the
pellet removal with an infrared light sensor, and provides a
new pellet in the same exact position. During this time, the
animal’s paw is video recorded at 124 frames per second by two,
monochrome, USB3.0, CMOS cameras (ThorLabs, Newton, NJ)
at 448x460 pixel image size. The videos were recorded by using
StreamPix software (Norpix, Montreal, QC, Canada) and were
saved as “.seq” files. Then, a custom-written Python script was
used to generate “.png” images and “.avi” video files from the
“.seq” files. The servo and steppermotors and the infrared sensors
are all controlled by an Arduino circuit board with a custom
designed PCB shield. The cameras were triggered by a function
generator (Siglent Technologies, Solon, OH). The animals were
trained in this setup for 2 weeks until they were reaching for the
food pellets on their own repetitively.

Three-Chamber Test for Sociability
We have custom built a plexiglass box (60 × 45 × 45 cm)
with three chambers divided by plexiglass walls with spaces
(45 × 19 × 45 cm) on them to allow exploration. Each side
chamber has an upside down wired cup with one of them
empty and the other one with a stranger mouse inside. The
experimental animal is gently placed in the middle chamber, and
is allowed to explore for 10min. During this time, the whole
apparatus is recorded from the top by using a Logitech web
camera at 30 frames per second. In some recordings, the mouse
wears a miniaturized fluorescence microscope on the head for
simultaneous calcium imaging recordings. We calculate the time
exploring each cup and their percentages of total time.

Social Interaction in Home Cage Test
For this test, two mice (one with a miniaturized microscope)
were placed in a custom made, 45 × 45 cm plexiglass chamber,
and their interaction was recorded from top view by using
a monochrome, USB3, BlackflyS camera (Flir, Richmond, BC,
Canada) at 30 frames per second.

Human Motor Behavior Recording System
We have built a stereo camera system with two high speed
(170Hz) color CMOS cameras (Flir, Richmond, BC, Canada).
The cameras were fixed (62 inches apart from each other) on
a foldable optical aluminum rail (McMaster-Carr) so that their
positions and angles were fixed relative to each other. The
orientation of cameras was almost orthogonal to each other.
The cameras were connected to each other with a general I/O

cable to provide synchronization between the cameras, and to a
laptop computer with 32GB RAM for data acquisition. SpinView
software (Flir, Richmond, BC, Canada) was used to acquire the
videos. The aluminum rail that the cameras were fixed on was
then placed on a tripod. The videos were recorded at 1,280 ×

1,024 pixels resolution and at 170 frames per second. For reaching
test, the subject sat on a chair andwhile sitting straight up reached
for a ball hanging from the ceiling. For supination/pronation
task, the subject sat on a chair and alternately rotated both hands.

Converting Videos to Single Frame Images
The Streampix software saves the images in “.seq” format
(reaching task). Using Python PIMS (Phyton image sequence)
package, and a custom Python script, we convert these video
files to folders of images in “.png” format. We then make “.avi”
format video by using ffmpeg. To process the “.avi” videos (social
behavior), we use ffmpeg.

Creating Training and Test Datasets
In order to train the neural networks, we used custom written
Python scripts to obtain bounding box coordinates for the paw
positions. This script creates “.json” files that include x1, x2, y1,
and y2 coordinates of the bounding boxes for each image in
a folder. A different set of images were also labeled using the
same script but then used as a test dataset. These “.json” files
and the folders of corresponding raw images are then used as the
training and test datasets for the GoogLeNet network (Stewart
et al., 2016). This network model was written in Python and
Tensorflow (Google) framework. We determined the size of the
training dataset as described in the Results section. Because there
is only one bounding box to be labeled, the labeling process
is rather fast (we were able to label 100 images in ∼20min).
For the two-mouse interaction assay, we use a different custom
script to label the images because the format this network uses is
different. It requires labeling the position, as well as the size, of
the bounding box relative to the size of the image in both x and y
directions. Another difference is that we can label up to 80 classes
(in our case, it was 8: for each mouse body, nose, head, and tail).

Human Pose Detection
We used OpenPose neural network architecture to detect the
human poses in the videos (Cao et al., 2017). This network
uses a non-parametric representation, which is referred to as
Part Affinity Fields (PAFs), to learn to associate body parts with
individuals in the image. This network model is implemented
in C++ and Caffe. We then use a 10 × 7 checkerboard with
115 × 115mm square sizes to calibrate the cameras. The camera
calibration and 3D pose calculations were all done in MATLAB
(Mathworks, Natick, MA).

Training the Neural Networks
We trained the networks, assessed their performance and used
them for new image analysis on a computer with a TITAN X
Pascal and Quadro P6000 graphics processor units (NVIDIA).
The operating system was Ubuntu 16.0 with LinuxMint 18.
CUDA 8.0, CUDNN 5.0 and Python 2.7 were used. On this
computer, with one GPU in use, training the first network
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architecture (for food pellet reaching task) takes∼8 h for 600,000
iterations. Processing new images on the trained network takes∼
50ms per image again with one GPU. Similarly, training YOLO
v3 takes ∼12–14 h for 180,000 iterations, and new images are
processed on the trained network at 30 frames per second with
one GPU. Processing new images on OpenPose occurs at 3–4Hz
with two GPUs.

Code to Obtain Kinematic Data
Both algorithms in mice and humans generates the positions
in “.json” files. We process these files in custom written code
in MATLAB (Mathworks, Natick, MA) to obtain each joint’s
position from each camera view. We then combine two camera
views to obtain the 3D positions. We used 4 × 6 checkerboard
with 4.5 × 4.5mm square size for mouse paw videos camera
calibration. After obtaining the 3D position of joints or paws, we
calculate several parameters such as the velocities, trajectories,
shoulder and elbow angles as well as the supination angles all
with custom written MATLAB codes. All of our code is open-
source and available on our GitHub page at www.github.com/
aarac/DeepBehavior.

RESULTS

3D Marker-Less Paw Detection During
Skilled Reaching Task
Food pellet reaching in rodents is a commonly used motor
behavior task to study motor learning and motor recovery
(Farr and Whishaw, 2002; Guo et al., 2015). However, even
simple motor behaviors such as reaching, when examined in
detail, can be very difficult to define and quantify. Traditionally,
performance in this task has been measured either by the
percentage of the attempts in which the mouse is able to grab
and eat the pellet (success rate), or with subjective scoring of
each step of movement by a blinded observer (Farr andWhishaw,
2002). We have modified this task to include an apparatus for
head-fixed mice to allow for future simultaneous imaging and
electrophysiological recordings of the brain (Figure 1A). In this
setup, the mouse is head-fixed and performs a reaching task for
a food pellet. During this time, the food pellet is delivered by an
automated food pellet delivery system after detection of the pellet
removal (Supplementary Figure 1). During performance of the
task, the animal’s paw movements are video-recorded with high-
speed cameras from two angles (Supplementary Figure 1). The
cameras are triggered by a function generator to enable inter-
camera synchronization. In order to detect the paw position in
these video frames, we used a CNN model with an architecture
of GoogLeNet (Szegedy et al., 2015, 2016) followed by an LSTM
(long short-term memory) layer in TensorFlow (Stewart et al.,
2016). This network model detects several outputs based on a set
threshold value for LSTM (Supplementary Figures 2A–C). We
trained this network with manually labeled images as described
below. We obtained the initial weights of the GoogLeNet after
training it first with ImageNet dataset. In order to manually
label the images, we used a custom Python script which enabled
placement of a bounding box around the paw and registered the
coordinates of that bounding box in a separate text document.

The input for this algorithm is the raw video frames, and the
output is the coordinates of a bounding box around the right
paw (Figures 1B,C; Video 1). The algorithm also provides a
confidence score for each detection that can be useful for post-
processing. Of note, we trained only one network with images
from both front view and side view cameras. This network can
detect the right paw position in both types of images.

In order to obtain 3D positions of the paw movements,
we first calibrated the cameras with 24 checkerboard images
(Supplementary Figures 3A,B), using a camera calibration
toolbox in MATLAB (Bouguet, 2015). This toolbox creates
a 3D cartesian coordinate system (Supplementary Figure 3C),
which then provides the 3D position of a point when 2D
positions of that point is given from the two camera views.
By using this, we combined the 2D positions of paws detected
by the neural network, and obtained the 3D trajectories of
paw movements (Figure 1D; Video 2). After obtaining 3D
coordinates, the kinematic data such as the distance traveled, time
spent during themovement, maximum and average velocities can
be calculated from these data (Figure 1E).

Social Behavior Analysis in the
Three-Chamber Social Interaction Test
Similar to the paw detection method, we show that the same
network can be used to analyze the three-chamber social
interaction test. In this test, there are three chambers that the
mouse can freely explore. In one chamber there is an empty
wired cup, in another chamber a wired cup with a stranger mouse
inside, and the third chamber is empty (Figure 1F). The mouse
can freely move and explore all three chambers. The traditional
analysis measures the times spent exploring/interacting with the
wired cups, as the normal mice spend more time with the cup
that has the stranger mouse. In order to perform this type
of analysis automatically, we detect and track the head of the
mouse throughout its exploration of the chambers using the same
network architecture and methods as described above. We also
detect the position of the chambers and when the head of the
mouse is close enough to the chambers, we count it as interaction
(Figure 1G; Video 3). With this type of analysis, we can measure
the interaction times with either cup automatically. Moreover,
the analysis also provides the position of the animal at any given
time (Figure 1H). This allows calculation of whether the mouse
is moving from one chamber to another, the precise timing of
interactions, interaction counts, and the mouse’s velocity as it
explores the chambers.

Transfer Learning Results in Faster and
More Reliable Training
Large datasets are required for training CNNs to obtain
accurate results that generalize well. However, to create custom
applications, one needs to create manually labeled training
datasets from custom images. This can be challenging as labeling
tens to hundreds of thousands of images manually is time-
consuming and cumbersome, and defeats the purpose of creating
an automated tool that should be easily modifiable. In order
to overcome this, the transfer learning approach has been
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FIGURE 1 | 3D paw kinematics and three-chamber social behavior analysis in mice. (A) Schematic of skilled food pellet reaching task in head-fixed mice. This setup

allows simultaneous two-photon (2P) calcium imaging or electrophysiological recordings. (B) An example of the data processing with feeding of raw video frames to

the deep learning algorithm to obtain the coordinates of a bounding box around the paw. (C) Representative images showing detected paws from two camera views

when the paw is in different positions. (D) 3D trajectory of a single reaching attempt obtained from 2D coordinates of paw positions in two camera views. (E)

Kinematic parameters such as velocity-time graphs can be obtained from the 3D trajectories. (F) Raw video-frame of three-chamber test. (G) Representative analysis

showing detection of the head of the mouse (red circle), and the cup with a stranger mouse in (green circle), and without a mouse (blue circle). (H) Trajectory of the

mouse seen in Video-3.

proposed. In this approach, the network model is first trained
with another larger dataset such as ImageNet (with 1.2 million
images in one thousand classes) with random initialization of
the weights, followed by re-training with a smaller dataset with
custom images. This method improves performance significantly
(Mahajan et al., 2018). However, behavioral video recordings
contain images with less variability given that they are recorded
under one condition (compared to the high variability of the
larger datasets such as ImageNet). Thus, the network may
overfit the model when trained with random initialization. This,

however, may not matter to the experimenter as it will be used to
analyze only the same type of images. In fact, one (Mathis et al.,
2018) of the two deep learning methods for behavior analysis in
the literature uses transfer learning whereas the other (Pereira
et al., 2018) does not. Thus, it is not clear whether transfer
learning is really necessary to obtain good results in these types
of experiments. To test whether the transfer learning approach is
better with images of behavioral videos, we trained two networks
with the same architecture. One of themwas trained with random
initialization of weights using Xavier initialization, and the other
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FIGURE 2 | Transfer learning results in faster and more reliable training. (A) Training results of the test dataset. As the training dataset size increases from 10 images

to 2,065 images, the regression and confidence losses decrease, and the accuracy (IoU: intersection over union) increases. For each training dataset size, transfer

learning results in more accurate training compared to random initialization (low regression and confidence losses, and high accuracy). (B) Training results of the

training dataset. Note that the transfer learning training curves in the 2,065 training dataset size group converge faster and stay stable throughout the training,

meaning more reliable training.

with the transfer learning approach. We used different sizes
of training datasets (10, 100, and 2065 images) and the same
test dataset (230 images) for each training. We found that the
transfer learning approach resulted in greater accuracy (lower
regression and confidence losses, and higher accuracy) with
each training dataset size (Figure 2A). Moreover, as expected,
increasing training dataset size improved the accuracy while
decreasing confidence and regression loss (Figure 2A). As the
training dataset size increased, this difference between transfer
learning and random initialization decreased. However, transfer
learning resulted in faster andmore reliable training as evidenced
by faster convergence and more stability on confidence loss and
accuracy of the training dataset (Figure 2B). These results show
that even with these types of behavior images with less variability,
the transfer learning approach is better than training a naïve
network (random initialization of weights).

Our overall workflow is shown in Figure 3. After acquisition
of behavior videos, we split them into individual frames. Next, we
choose images semi-randomly based on the different positions of
themice or paws depending on the content of the videos.We then
label them manually using custom scripts, and train the network
that is already pre-trained with ImageNet dataset. For the above
network, we recommend starting with 200–300 manually labeled

images. We train the network and then test the performance on
a new video. This will show what kind of errors the network
makes (such as misdetection, multiple detections, etc.). We then
choose some of these images where the network had a difficulty
in obtaining good results, manually label them, and add them
into the training dataset and retrain the network. After a few
iterations, the network becomes more generalizable within that
image category.

Analysis of Social Interaction of Two Mice
Similar to the above example, the same approach can be
expanded to the use of other network architectures. As an
example, in social interaction assay, a stranger mouse is placed
in a 45 × 45 cm chamber with another mouse which has a
miniaturized microscope (Cai et al., 2016) (miniscope) attached
to its head (Figure 4A). Their interaction is recorded from the
top (bird’s eye view). The interaction time between them is then
recorded. This behavior assay can be powerful especially when
combined with imaging of different brain regions during social
behavior by using miniscopes (Cai et al., 2016). The mice can
interact by sniffing nose-to-nose, nose-to-body, nose-to-tail. One
difficulty in the literature has been the detection and tracking
of these two mice throughout the recording. To analyze these
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FIGURE 3 | Proposed workflow for processing of the raw behavior video and

training the network. After pre-processing of the videos, and initial training of

the network, an iterative training algorithm allows selection of images with high

variability, resulting in more generalizable training for that dataset. After the

images are processed, they can be used for post-processing.

videos, when the training dataset is created, we manually label
images of the mouse without miniscope and with miniscope
separately. We detect their nose, head, body, and tail (Figure 4B;
Video 4). We use YOLO version-3 (Redmon and Farhadi, 2018)
as the CNN architecture (Supplementary Table). This network
is pre-trained with COCO dataset. After detecting the mice
throughout the video, we do post-processing in MATLAB. We
first separate each mouse and obtain their movement trajectories
throughout the recording session (Figure 4C). We then measure
the distance between their body centers, and the distance below a
certain threshold is accepted as a close contact (Figure 4D). With
this, we can obtain exactly when they are in close contact, the
duration of contact, and their velocities throughout the recording
session (Figure 4E). We then go into each “close contact” epoch
and calculate the distances between each animal’s nose and tail
and the other animal’s nose or tail. Interestingly, this gives unique
interaction patterns. For example, in one close contact, mouse-
A approaches mouse-B from behind (nose-to-tail interaction),
but then mouse-B responds to this and turns around, and
the interaction becomes nose-to-nose (Figure 4F; Video 5). In

another example, the interaction is only a short nose-to-nose
sniffing (Figure 4G; Video 6).

3D Human Pose Detection for Clinical
Motor Function Assessment
Similar to rodent behavior analysis, the clinical motor function
assessment in humans currently relies on subjective scoring of
movements with ordinal scales. Performing detailed kinematic
analysis in a clinical setting is challenging, and the best available
techniques use robotics, exo-skeletons, sensors or externally
attached markers. However, these external devices may affect the
nature of the behavior. To overcome these problems, we have
developed a two-camera stereo video recording system.With this
system, we record the movement of the subjects at 170 frames
per second, and importantly, the subjects do not need to put on
any markers, or wear any sensors or special equipment. We then
use a CNN (OpenPose) that was trained to detect the joint poses
in humans (Wei et al., 2016; Cao et al., 2017; Simon et al., 2017)
from two camera views (Figure 5A). After this, we calibrate the
cameras and reconstruct the 3Dmodels (including the individual
finger joints) (Figure 5B; Video 7). As an example, we recorded
a subject performing reaching movement toward a hanging ball,
and then plotted the wrist movement trajectories for 10 reaches
(Figure 5C), and calculated several kinematic parameters such as
elbow and wrist velocities (Figures 5D,E). Moreover, after using
dynamic time alignment kernels (Santarcangelo and Xiao, 2015)
we can calculate the Euclidean distance between these kernels
and cluster them (Figure 5F). This method identifies the similar
reaches based on their trajectories in an unsupervised manner.
Furthermore, from the 3D positions of joints, we can calculate
the shoulder vs. body and elbow angles (Figures 5G,H).

In order to analyze forearm/hand movements, we recorded
the subject during an alternating supination/pronation task
(Figure 6A). We can reconstruct the 3D model of the hands with
individual finger joints (Figures 6B,C and Video 8). With this
task, we can calculate the supination angles (rotation angle along
the forearm axis) from the 3D models (Figure 6D). We then use
dynamic time warping to align these supination angle curves
and calculate the Euclidean distance between them. By using
hierarchical clustering on these calculated Euclidean distances,
we can identify similar movement patterns (Figure 6E). This
analysis robustly clustered the right and left hand movements as
well as the differentmovement patterns for each hand in a healthy
subject (Figure 6E).

DISCUSSION

Here, we present easy-to-use methodology on how to use
CNNs for behavior imaging data analysis in mice and humans.
Specifically, we use three different neural network architectures
and five different behavior tasks. We present methods and
share tips on how to train neural networks to achieve good
accuracy, and provide methods for post-processing of the data.
This approach can be applied to most, if not all, of the available
CNN architectures.
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FIGURE 4 | Detection of two mice separately during social interaction and post-processing of data. (A) Representative raw video frame when two mice are interacting

in a 45 × 45 cm chamber. Of note, one of the mice has a miniscope installed on the head to do calcium imaging of neuronal activity. (B) Detection of two mice

separately (as mouse A and mouse B) by using YOLO v3 CNN. (C) Trajectories of body positions of these two mice in one session of interaction (∼7min). (D) The

distance between two mice over time during the interaction session. The time periods when two mice are critically close to each other to allow any kind of interaction

are marked and highlighted by orange color. A higher magnification of one of these close contacts is shown in the lower panel. (E) The velocity vs. time graphs can be

obtained for each mouse throughout their interaction. (F) A representative distance time graph over one of the close contacts. The distances are between noses, or

nose and tails of two mice. In panel (F), the close contact starts as mouse B sniffing mouse A’s rear (shorter distance between tail-B to nose-A) but then turns into a

nose-to-nose interaction. (G) A representative distance time graph over one of the close contacts showing a short nose-to-nose interaction between two mice.

The transfer learning approach generally provides very good
results requiring minimal number of images that need to be
manually labeled for training dataset (Mahajan et al., 2018).
Given the low variability of images in the videos obtained
in the animal studies compared to larger datasets such as
ImageNet, one argument is that overfitting may not cause
significant problem given that the test images are all in the
same category. However, we show that even with this type of
similar image sets with low variability, the transfer learning

approach makes the training faster and more reliable. Thus,
the transfer learning approach should be considered for these
types of analyses. The network models used in this study
are chosen for their ease of use, and the same technical
approach can be applied to other available network models,
or any future network architecture. As the deep learning field
grows and generates better and faster network architectures,
those new models (or the existing ones) can be used with a
similar approach.

Frontiers in Systems Neuroscience | www.frontiersin.org 8 May 2019 | Volume 13 | Article 20

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Arac et al. DeepBehavior for Automated Behavior Analysis

FIGURE 5 | Marker-less detection of human pose with 3D kinematics. (A) Representative images from the stereo camera system with two cameras that have different

angles, with detection of joint poses on these 2D images. (B) 3D model reconstructed after calibration of the two camera views in panel (A), showing accurate

detection of joint positions down to individual finger joints. (C) 3D trajectories of air reaches of the subject in panel (A), there are 10 reaches with superimposed reach

trajectories. Velocity vs. time graphs for right elbow (D) and right wrist (E) during these 10 reaches. (F) Hierarchical clustering of these 10 reaches based on the

dynamic time aligned kernels of the 3D trajectories. The numbers indicate the reach number. (G) Shoulder vs. body angles during these 10 reaches obtained from the

3D positions. H. Elbow (arm vs. forearm) angles during the 10 reaches. All the kinematic parameters (D,E,G,H) were obtained from the 3D model (as seen in panel B).

The traditional analysis for the food pellet reaching task in
rodents evaluates whether the animal can successfully grab the
food pellet over a number of reach attempts (success rate). A
more sophisticated method (Farr and Whishaw, 2002) breaks
down this movement into different stages, and gives subjective
scores based on how close they are to a predefined normal
movement. However, this type of scoring system is subjective and
is dependent on an evaluator watching the videos in slow motion
(almost frame by frame), thus requiring significant amount of
time to analyze. To overcome this, a reflective marker that is
glued on the paw can be tracked (Azim et al., 2014). However,
this method fails when the marker is occluded. Alternatively,
traditional computer vision classifier algorithms can be used for
marker-less detection of paw (Guo et al., 2015). However, these
algorithms need to be trained for each video.

Deep learning applications for behavioral analysis have
recently been developed (Mathis et al., 2018; Pereira et al., 2018).
One (Mathis et al., 2018) of these applications uses the transfer
learning approach whereas the other one does not (Pereira et al.,
2018). However, these require separate training for each camera
view and lack the post-processing code for kinematic analysis.
While these methods are very useful, we are expanding the
behavior analysis tools available for the neuroscience community.

We extend the use of same methodology into different social
behavior tasks. In the three-chamber test, the traditional analysis
approach has been manual measurement of interaction times

with the cups (Moy et al., 2004). By using the same network
architecture that we used for paw detection, we first detect
the head of the mouse, and track it as the mouse explores all
three chambers. This type of analysis provides more relevant
information than just the interaction times, it also lowers the time
spent for analysis significantly.

In the other social behavior test of two mice interacting, the
traditional analysis was based on just the interaction of two mice
(Kim et al., 2015). However, this analysis is very limited. Using
the same transfer learning approach, but this time a different
network architecture, we can automatically track twomice, one of
them wearing a miniaturized microscope. Because the algorithm
recognizes these mice separately (one with the miniaturized
microscope, the other without), we can distinguish them even
after a very close contact. The analysis also provides whether the
mice are moving, and if so, their velocities, the interaction type
(nose-to-nose vs. nose-to-tail sniffing), the time that they start
approaching to each other, etc. This type of detailed analysis is
important in identifying the details of the social interaction.

Clinical motor impairment scores (i.e., Fugl-Meyer, Action
Research Arm Test) are insensitive to detect the meaningful
changes in the motor function. Moreover, they may not even
reflect accurate motor behavior. When tested after constraint-
induced movement therapy for stroke victims, although
these measurement scales showed benefit, the kinematics
of how patients performed these movements didn’t change,
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FIGURE 6 | Marker-less detection of fine hand/finger movements in 3D. (A) Representative images from the stereo camera system, focusing more on the hand

movements, with detection of the joint poses in 2D images. (B) Representative 3D models of both hands and forearms while the subject is doing alternating

supination/pronation movements. (C) 3D views from different angles of the same hand positions as in panels (A,B). (D) Supination angles (rotation angles of the

forearm) of both right and left hands during nine repetitive movements. (E) Hierarchical clustering based on the Euclidean distance between the supination angle

curves of each rotation (supination and pronation) after these curves were aligned by dynamic time warping. Please note distinct clustering of right and left hand

rotations as well as the heterogeneity among rotations within each hand.

suggesting compensatory mechanisms rather than true recovery
(Kitago et al., 2013). Kinematic analysis has the potential to
provide information on multi-joint coordination and motor
control mechanisms (Alt Murphy and Häger, 2015). Here, we
demonstrate that by using video recording in a standardized
way, more meaningful data with 3D kinematic parameters can
easily be collected in clinical settings. The setup of the hardware
is also straightforward and very portable, making it feasible to
obtain data at bedside. This type of kinematic analysis reduces
subjectivity by capturing whole limb movements and replacing
ordinal scales with continuous ones. Moreover, this setup can
be expanded in simple but meaningful ways, such as adding
simultaneous electromyographic recordings in a few key muscles
of interest. However, before its clinical use, one needs to perform
clinimetric studies such as reliability, validity, measurement
error, responsiveness to abnormal motor function, etc., but these
are beyond the focus of the current study. Several kinematic
metrics such as task completion time, number of movement
onsets, path length ratio, number of velocity peaks, joint angles
and angular velocities have been proposed to provide objective
evaluation of the movement quality (de los Reyes-Guzman et al.,
2014). However, more longitudinal studies are required to enable
a detailed understanding of recovery patterns after injury such
as stroke.

Elucidating the behavior in detail is critical to understanding
the brain-behavior relationship (Krakauer et al., 2017). The
tools provided here have the potential to define the behavior in
more detail, and when combined with other tools to study the

brain, will likely help dissect out the brain-behavior relationship.
Overall, we show proof of principle of the technique using several
neural network architectures and different ways of analyzing
several behavior tasks inmice and humans. In the future, with the
advances in the deep learning field, faster and more sophisticated
methods can likely be used with the same approach.
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