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Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases 
(CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have 
been identified in many plant species. These enzymes exhibit different subcellular 
localization, substrate specificity, and functional diversity. Since PAs are involved in 
numerous physiological processes, considerable efforts have been made to explore the 
functions of plant CuAOs and PAOs during the recent decades. The stress signal 
transduction pathways usually lead to increase of the intracellular PA levels, which are 
apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of 
hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, 
respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged 
by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, 
recruiting different defense mechanisms, as compared to biotic stress. Amine and PA 
oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly 
by activating Ca2+ permeable channels. Here, the new research data are discussed on 
the interconnection of PA catabolism with the derived H2O2, together with their signaling 
roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic 
stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/
survival to adverse environmental conditions and to pathogenic infections.

Keywords: polyamine catabolism, polyamine oxidases, ROS, plant development, fruit ripening and senescence, 
abiotic and biotic stress

INTRODUCTION

Polyamines (PAs) are small aliphatic amines present in all living cells. For more than 100  years 
in biology, they were misunderstood as “ptomaine or food poisoning” substances by toxicologists 
(Cohen et  al., 1981). The largely known PAs in plants are putrescine (Put), spermidine (Spd), 
and spermine (Spm). In addition, cadaverine (Cad) and thermospermine (t-Spm), a Spm 
isomer, are also reported to exist in higher plants.

Polyamine homeostasis is determined by PA metabolism, conjugation, interconversion, chemical 
alteration and transport (Moschou and Roubelakis-Angelakis, 2014; Handa et  al., 2018; Nguyen 
et  al., 2018; Tiburcio and Alcazar, 2018; Podlesakova et  al., 2019). Biochemical effects of PAs have 
been unraveled in many physiological processes, primarily in stability and function of proteins 
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and nucleic acids (Handa et al., 2018), partly due to their positive 
charge that enables them to electrostatically interact with polyanionic 
molecules inside the cell. Polyamines correlate with numerous 
vital biochemical functions, including protein regulation (Takahashi 
and Kakehi, 2010; Sayas et  al., 2019), regulation of chemiosmosis 
and photoprotection in chloroplasts (Ioannidis et  al., 2016), ATP 
synthesis (Ioannidis et  al., 2006), ion channeling (Pottosin et  al., 
2014a; Shabala et al., 2016), membrane fluidity (Paschalidis et al., 
2010; Bleackley et al., 2014; Shabala et al., 2016; Dorighetto Cogo 
et  al., 2018), and control of N/C balance (Moschou et  al., 2012; 
Gupta et al., 2013; Majumdar et al., 2016). Exogenous PA application 
enhanced plant tolerance/resistance to several abiotic stress 
conditions, such as salinity, drought, water logging/flooding, osmotic 
stress, heavy metals, and extreme temperatures (Liu et  al., 2006, 
2015; Moschou et al., 2008c, 2012; Paschalidis et al., 2009a; Toumi 
et  al., 2010; Moschou and Roubelakis-Angelakis, 2014; Gupta 
et  al., 2016; Handa et  al., 2018; Nguyen et  al., 2018; Tiburcio 
and Alcazar, 2018; Pal et  al., 2019; Yin et  al., 2019). Polyamine 
application also enhanced tolerance to a few phytopathogenic 
infections in planta, such as Alternaria alternata (Estiarte et  al., 
2017), Phytophthora capsici (Koç, 2015), and Pseudomonas viridiflava 
(Rossi et  al., 2015, 2018), and in vitro, such as Fusarium strains 
(Wojtasik et  al., 2015) and Sclerotinia sclerotiorum (Garriz et  al., 
2003). The increase of host PA levels, either by using transgenic 
method or treatment with exogenous PAs, strongly decreased in 
planta growth of biotrophic pathogen Pseudomonas viridiflava, 
which was relieved by a PA oxidase (PAO) inhibitor (Marina 
et  al., 2008). However, increase of leaf PA levels, by the same 
experimental approaches, led to increased necrosis in planta due 
to infection by Sclerotinia sclerotiorum, and the PA-induced increase  
of leaf necrosis after fungal infection was attenuated by inhibiting 
the activity of DAO and PAO (Marina et  al., 2008). There is 
evidence that exogenous PA application modifies pathogenic 
responses depending on the strategy of the specific pathogen 
(Marina et al., 2008; Stes et al., 2011; Valdes-Santiago et al., 2012; 
Vilas et  al., 2018).

Polyamines have crucial roles in a plethora of developmental 
procedures, including floral initiation and development (Liu et al., 
2006, 2015; Liu and Moriguchi, 2007; Tavladoraki et  al., 2016; 
Ahmed et  al., 2017), leaf development and senescence (Kusano 
et al., 2008; Paschalidis et al., 2009b; Sobieszczuk-Nowicka et al., 
2015; Sobieszczuk-Nowicka, 2017), fruit development and ripening 
(Liu et  al., 2006; Liu and Moriguchi, 2007; Tsaniklidis et  al., 
2016; Fortes and Agudelo-Romero, 2018), and abiotic/biotic stress 
response (Alcazar et  al., 2006, 2010; Moschou et  al., 2008a;  
Liu et  al., 2015, 2018; Montilla-Bascon et  al., 2017).

Cellular PA levels are largely dependent on the dynamic 
regulation/balance among their biosynthesis, transport, and 
catabolism interchange. Polyamine biosynthesis has been 
thoroughly studied in the abovementioned physiological processes 
and a number of excellent literature reviews refer to their role 
(Kusano et  al., 2008; Paschalidis et  al., 2009a; Rangan et  al., 
2014; Liu et  al., 2015; Majumdar et  al., 2016; Fortes and 
Agudelo-Romero, 2018; Handa et al., 2018; Tiburcio and Alcazar, 
2018; Wuddineh et  al., 2018; Podlesakova et  al., 2019). 
Nevertheless, there is a substantial lack of information on PA 
catabolism; so far, the enzymes involved in this process and 

the potential functions of their genes remain poorly characterized. 
As far as substrate specificity is concerned, it is well known 
that PAs are catalyzed by two major categories of amine oxidases, 
copper-containing amine oxidases (CuAOs) and flavin-containing 
PA oxidases (PAOs) (Cona et  al., 2006), with cell type-specific 
functions in plant tissue/organ differentiation and development 
(Tavladoraki et  al., 2016).

Emerging evidence suggests that PA catabolism plays a critical 
signaling role in a variety of cellular and developmental processes 
in all organisms, mediated via regulation of their homeostasis 
in reaction to intercellular and/or intracellular signs, as 
developmentally generated by abiotic and/or biotic alarms. In 
an effort to elucidate the underlined biological mechanisms, 
the latest advances are updated here on the function of CuAOs 
and PAOs, as sources of bio-reactive products, such as H2O2, 
during developmental processes with emphasis in fruit ripening 
and senescence, and, moreover, in abiotic/biotic stress reactions. 
The present approach might help in unraveling the role/use 
of the PA catabolic pathway in plants as a focus area for 
innovative stress resistance/tolerance approaches.

ADVANCE IN POLYAMINE CATABOLISM 
RESEARCH

Copper-Containing Amine Oxidases in 
Polyamine Catabolism
Generally, in terms of substrate specificity, CuAOs exhibit strong 
preference for diamines (Put and Cad), and mainly catalyze 
their oxidation at primary amino groups, thus generating 
4-aminobutanal, H2O2, and ammonia (Alcazar et  al., 2010; 
Moschou et  al., 2012). However, it has been demonstrated 
that some CuAOs in Arabidopsis also catalyze the oxidation 
of Spd (Planas-Portell et al., 2013). Recently, CuAO genes from 
apple (Malus domestica) exhibited different substrate preferences, 
with MdAO1 displaying elevated catalytic efficiency for 
1,3-diaminopropane, Put, and Cad, whereas MdAO2 consumed 
only aliphatic and aromatic monoamines, comprising 
2-phenylethylamine and tyramine (Zarei et  al., 2015). Plant 
CuAOs usually exist at increased levels in dicot plants (Cona 
et al., 2006). Their genes have been identified in several species, 
as, for example, Arabidopsis (Møller and McPherson, 1998; 
Planas-Portell et  al., 2013), chickpea (Rea et  al., 1998), pea 
(Tipping and McPherson, 1995), tobacco (Paschalidis and 
Roubelakis-Angelakis, 2005b; Naconsie et al., 2014), apple (Zarei 
et  al., 2015), grapevine (Paschalidis et  al., 2009b), and sweet 
orange (Wang et al., 2017). Arabidopsis has at least ten recognized 
CuAO genes, however, only five of them (AtAO1, AtCuAO1, 
AtCuAO2, AtCuAO3, and AtCuAO8) have been characterized 
at protein level (Møller and McPherson, 1998; Planas-Portell 
et  al., 2013; Ghuge et  al., 2015; Groβ et  al., 2017). The apple 
genome contains five putative CuAO genes with two of them 
(MdAO1 and MdAO2) being identified at protein level  
(Zarei et  al., 2015) and, recently, eight putative CuAO genes 
were reported in sweet orange (Wang et  al., 2017).

As far as subcellular localization is concerned, plant CuAOs 
are separated into two groups (Zarei et  al., 2015). The first 
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group includes CuAOs that are typical extracellular proteins 
which contain an N-terminal signal peptide. Until now, seven 
CuAO members of the first group have been reported comprising 
Pisum sativum (PsCuAO), apple (MdAO2), Arabidopsis (AtAO1 
and AtCuAO1), and sweet orange (CsCuAO4, CsCuAO5, and 
CsCuAO6) (Tipping and McPherson, 1995; Møller and 
McPherson, 1998; Planas-Portell et  al., 2013; Zarei et  al., 2015; 
Wang et al., 2017). The second group includes CuAOs localized 
in peroxisomes, containing a C-terminal peroxisomal targeting 
signal 1 (PTS1). At present, seven CuAO members of the 
second group have been reported, including two CuAOs from 
Arabidopsis (AtCuAO2 and AtCuAO3), two from tobacco 
(NtMPO1 and NtCuAO1), one from apple CuAO (MdAO1), 
and two from sweet orange (CsCuAO2 and CsCuAO3) (Planas-
Portell et  al., 2013; Naconsie et  al., 2014; Zarei et  al., 2015; 
Wang et  al., 2017).

Polyamine Oxidases as Terminal and 
Back-Conversion Reaction Types in 
Polyamine Catabolism
In contrast to CuAO, in terms of substrate specificity, PAOs 
exhibit strong affinity for Spd, and Spm, as well as their derivatives 
(Alcazar et al., 2010). According to their functions in PA catabolism 
and subcellular localization, plant PAOs can be classified into 
two classes. The first class of PAOs (PA terminal catabolism 
reaction type) performs the oxidation and decomposition of 
Spd and Spm producing H2O2, 1,3-diaminopropane (DAP), and 
4-aminobutanal (Spd catabolism) or N-(3-aminopropyl)-4-
aminobutanal (Spm catabolism) (Cona et  al., 2006; Angelini 
et  al., 2010; Moschou et  al., 2012; Tavladoraki et  al., 2016; 
Bordenave et  al., 2019). On the other hand, the second group 
(PA back-conversion reaction type) includes PAOs that catalyze 
the PA back-conversion reactions which convert Spm to Spd 
and Spd to Put (Moschou et  al., 2012; Tavladoraki et  al., 2016; 
Takahashi et  al., 2018), in a reverse reaction of PA synthesis 
and produces 3-aminopropanal and H2O2. Although PAOs occur 
at high levels in monocot plants (Sebela et  al., 2001), until now, 
PAO genes have been characterized in both monocots and dicots, 
including maize (Tavladoraki et  al., 1998; Cervelli et  al., 2000, 
2006), rice (Ono et  al., 2012), barley (Smith and Davies, 1985; 
Cervelli et  al., 2006), Arabidopsis (Fincato et  al., 2011), tobacco 
(Paschalidis and Roubelakis-Angelakis, 2005b; Yoda et al., 2006), 
grapevine (Paschalidis et al., 2009b), poplar (Tuskan et al., 2006), 
apple (Kitashiba et  al., 2006), sweet orange (Wang and Liu, 
2015, 2016), Brachypodium (Takahashi et al., 2018), tomato (Ono 
et  al., 2012; Chen et  al., 2016; Sagor et  al., 2017; Hao et  al., 
2018), and upland cotton (Chen et  al., 2015). So far, only six 
PAO genes that belong to the first group have been identified. 
The best characterized PAO gene of the first group is the maize 
PAO gene (ZmPAO) (Tavladoraki et  al., 1998; Cona et  al., 2006) 
and PAO genes from barley (HvPAO1 and HvPAO2), rice 
(OsPAO7), sweet orange (CsPAO4), and Brachypodium (BdPAO2), 
which are proved to catalyze the PA terminal catabolism (Smith 
and Davies, 1985; Liu et al., 2014a; Wang et al., 2016; Takahashi 
et  al., 2018). In contrast, most of the identified plant PAO 
genes belong to the second group. All of the five existing 
PAO genes in Arabidopsis (AtPAO1–AtPAO5) catalyze the PA 

back-conversion reactions (Tavladoraki et  al., 2006; Kamada-
Nobusada et  al., 2008; Moschou et  al., 2008c; Fincato et  al., 
2011; Ahou et  al., 2014). In the rice genome, four (OsPAO1, 
OsPAO3, OsPAO4, and OsPAO5) out of seven (OsPAO1–OsPAO7) 
existing PAO genes execute the PA back-conversion reactions 
(Ono et  al., 2012; Andronis et  al., 2014; Liu et  al., 2014b; 
Zarza et  al., 2017). Similarly, in the tomato genome, four 
(SlPAO2, SlPAO3, SlPAO4, and SlPAO5) out of seven (SlPAO1–
SlPAO7) existing PAO genes are suggested to execute the PA 
back-conversion reactions (Hao et  al., 2018). On the other 
hand, six putative PAO genes have been identified in sweet 
orange and only one of them (CsPAO3) is demonstrated to 
catalyze the PA back-conversion reactions (Wang et  al., 2016) 
and, of the 12 putative PAO genes (GhPAO1–GhPAO12) 
recognized in upland cotton, only one (GhPAO3) is verified 
to be  implicated in the back-conversion pathway (Chen et  al., 
2017). To date,  in terms of subcellular localization, all of the 
reports support that the PA terminal catabolic pathway is 
specifically activated in the apoplastic compartments 
(extracellularly), whereas the PA back-conversion pathway mainly 
occurs in the intracellular space  (peroxisomes).

Beyond their functional/subcellular localization, in terms of 
either the terminal or the back-conversion type, PAOs exhibit 
further individual substrate specificities. The AtPAO1 only 
catalyzed the oxidation of Spm, but not Spd (Tavladoraki et al., 
2006), while AtPAO3 preferred Spd as substrate instead of 
Spm (Moschou et  al., 2008c). However, the AtPAO2 and the 
AtPAO4 present similar preference for both Spd and Spm 
(Fincato et  al., 2011). Differently, AtPAO5 only uses t-Spm as 
its substrate and catalyzes the back-conversion of t-Spm to 
Spd (Kim et al., 2014). Furthermore, PAOs also exhibit individual 
reaction conditions, as, for example, they present different 
optimal pH values and temperature upon catalyzing different 
substrates. The optimal pH of catalytic activity for AtPAO2 is 
7.5 towards both Spd and Spm, while the optimal pH for 
AtPAO4 catalytic activity towards Spd and Spm is 8.0 and 
7.0, respectively (Fincato et al., 2011). In adddition, for CsPAO4 
catalytic activity the optimal pH was 7.0 towards Spd and 8.0 
towards Spm (Wang and Liu, 2016).

POLYAMINE CATABOLISM IN  
PLANT DEVELOPMENT

Increasing studies report that PA catabolism is directly involved in 
plant development. Several evidence suggests that PA oxidation 
in the apoplast together with the generated reactive oxygen species 
(ROS) are involved in programmed cell death (PCD) and xylem 
differentiation (Corpas et  al., 2019; Podlesakova et  al., 2019). As 
early as 1998, Møller and McPherson found that AtCuAO 
localization in root xylem tissues is preceding and overlays with 
the synthesis of lignin in Arabidopsis (Møller and McPherson, 
1998), and the PAO-generated apoplastic H2O2 levels considerably 
contribute to Zea mays leaf blade elongation (Rodriguez et  al., 
2009). In addition, the perturbation of PA catabolism by 
overexpressing the ZmPAO gene, as well as by down-regulating 
the S-adenosyl methionine decarboxylase (SAMDC) gene via 
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RNA interference, in tobacco, promotes vascular cell differentiation 
and induces PCD in root cap cells (Moschou et  al., 2008b; Tisi 
et al., 2011). Recently, the AtPAO5 has been reported to participate 
in the tightly controlled interplay between auxins and cytokinins, 
which are necessary for proper xylem differentiation (Alabdallah 
et  al., 2017), and to regulate Arabidopsis growth through t-Spm 
oxidase activity (Kim et  al., 2014).

Other studies suggest that PAs, along with ROS derived by 
their oxidation, control ion channeling in plant cells throughout 
normal and stress conditions, by affecting the plasma membrane 
ion transporting or acting as second messenger molecules (Pegg, 
2014; Pottosin et  al., 2014b). It has been reported that the 
Spd oxidase-produced H2O2 controls pollen plasma membrane 
hyperpolarization-activated Ca(2+)-penetrable canals and pollen 
tube growth (Wu et al., 2010). In Arabidopsis thaliana, differences 
in expression patterns are revealed for all of the AtPAO gene 
family members, as AtPAO1 was mainly found in the transition 
area among meristems and elongation root regions, as well as 
in anther tapetum, and AtPAO2 was most expressed in the 
pollen, quiescent center and columella initials, whereas AtPAO3 
was predominantly identified in pollen, columella and guard 
cells. In addition, AtPAO5 was specifically expressed in the 
root vascular system and in hypocotyls (Fincato et  al., 2012). 
Moreover, the gene structure of AtPAO5 was quite different 
from the other four AtPAO genes (Fincato et  al., 2011). Its 
expression was detected during various growth stages, with 
the highest expression being observed in flowers, especially in 
sepals (Takahashi et al., 2010). AtPAO5 is classified as a cytosolic 
Spm oxidase/dehydrogenase protein undergoing proteasomal 
control (Ahou et  al., 2014), that controls Arabidopsis growth 
via t-Spm oxidase activity (Kim et  al., 2014; Liu et  al., 2014d), 
while the rice OsPAO1 is a functional ortholog of AtPAO5 
(Liu et  al., 2014d) and the rice OsPAO7 is involved in lignin 
synthesis in anther cell walls (Liu et  al., 2014c).

POLYAMINE CATABOLISM IN FRUIT 
RIPENING AND SENESCENCE

Fruits usually keep higher PA levels at early developmental 
stages and are followed by a continuing decrease thereafter, 
especially at ripening stage (Fortes and Agudelo-Romero, 2018). 
This phenomenon has been reported in both climacteric and 
non-climacteric fruits, such as apple (Biasi et al., 1988), avocado 
(Kushad et  al., 1988), peach (Liu and Moriguchi, 2007; Ziosi 
et  al., 2009), mango (Malik and Singh, 2004), olive (Gomez-
Jimenez et  al., 2010), tobacco (Paschalidis and Roubelakis-
Angelakis, 2005a), strawberry (Guo et  al., 2018), raspberry 
(Simpson et  al., 2017), oil palm (Teh et  al., 2014), tomato 
(Rastogi and Davies, 1991; Tassoni et  al., 2006; Mattoo et  al., 
2007; Van de Poel et  al., 2013; Tsaniklidis et  al., 2016; Liu 
et al., 2018), and grapevine (Paschalidis et al., 2009b; Agudelo-
Romero et al., 2013; Fortes et al., 2015). As PA contents largely 
depend on the balance between anabolism and catabolism, it 
is necessary to unravel this balance during fruit ripening.

Although the precise roles of PA catabolism in fruit ripening 
are poorly understood, current studies reveal their tight interplay. 

High expression levels of CuAOs and PAOs during fruit ripening 
denote the involvement of PAs in associated physiological 
processes. For example, the free and conjugated PAs dramatically 
decrease during grape ripening, together with an up-regulation 
of the CuAO and PAO genes/enzymes and an increase of the 
H2O2 content (Agudelo-Romero et  al., 2013), as well as an 
increase in γ-aminobutyric acid (GABA), a major product of 
PA catabolism (Fortes et  al., 2015). These data suggest that 
increased PA oxidation might lead to decrease in PA titers. 
As PAO-derived ROS usually act as secondary messengers, 
the up-regulation of CuAOs/PAOs during ripening might 
establish an adequate ROS source for signaling actions driving 
to ripening hastening. In peach fruit, a jasmonate-induced 
ripening delay was closely related to increased PA levels (Ziosi 
et  al., 2009). A few studies have unraveled strong indications 
for the interactions among PAs, PAO-derived products, and 
hormones, such as abscisic acid (ABA), cytokinins, auxins, 
and ethylene, aiming on their coordinated action in signaling 
pathways of several physiological processes, like fruit ripening 
and stress response (Podlesakova et al., 2019) (Agudelo-Romero 
et al., 2013). Inhibition of PA catabolism in grape with guazatine, 
a potent inhibitor of PAO activity, led to profound changes 
in amino acids, carbohydrates, and hormonal metabolism 
(Agudelo-Romero et  al., 2013).

POLYAMINE CATABOLISM IN  
ABIOTIC STRESS

Increasing evidences have showed that the plant PA catabolism 
is involved in various abiotic stresses responses, especially in 
salinity. Previously, it has been reported that GABA generated 
by CuAO-mediated PA oxidation exerts a substantial role in 
salinity stress response (Su et  al., 2007). The PAOs exerting 
multifaceted roles on plant growth and salt stress response 
have been identified in, among others, tobacco, grapevine, sweet 
orange, tomato, and Arabidopsis (Moschou et  al., 2008b; 
Paschalidis et  al., 2010; Fincato et  al., 2011; Wang and Liu, 
2016; Gemes et  al., 2017; Hao et  al., 2018). Salinity induces 
tobacco cells to secrete exodus of Spd to the apoplast, where 
it is oxidized by PAO, thus generating abundant H2O2 and 
leading to enhanced PCD (Moschou et  al., 2008a,b). A PAO 
gene of sweet orange (CsPAO4) has been further characterized 
functioning in PA terminal catabolism and playing an important 
role against salinity (Wang and Liu, 2016). This CsPAO4 was 
overexpressed in tobacco, which significantly promoted the 
germination of transgenic seeds, while prominently inhibited 
the vegetative growth and root elongation of transgenic plants 
under salinity (Wang and Liu, 2016). The PAO activity provided 
a significant apoplastic production of ROS, which partly 
contributed to the maize leaf blade elongation under salt stress 
(Rodriguez et  al., 2009). On the other hand, the peroxisomal 
AtPAO5 loss-of-function mutation in Arabidopsis thaliana exhibits 
constitutively higher t-Spm levels and activates metabolic and 
transcriptional reprogramming promoting salinity stress 
protection (Zarza et al., 2017). Moreover, PAO inhibitor treatment 
significantly decreased the H2O2 and NO production in tomato 
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under salinity (Takacs et  al., 2016), which indicates that PAO 
may contribute to H2O2 and NO production in order to cope 
with salinity and that the terminal activities of CuAO and 
PAO might play a role in cell death induction under lethal 
salt stress. The PA catabolism is also involved in many other 
abiotic stress responses, among others, in improved 
thermotolerance in Nicotiana tabacum by underexpressing the 
apoplastic PA oxidase (Mellidou et  al., 2017), in aluminum-
induced oxidative stress of wheat (Yu et al., 2018), in selenium-
induced H2O2 production in Brassica rapa (Wang et  al., 2019), 
and in wound-healing by producing the necessary H2O2 for 
suberin polyphenolic domain and lignin synthesis catalyzed 
by peroxidase (Angelini et  al., 2008).

POLYAMINE CATABOLISM IN  
PATHOGEN RESPONSE

Plants have developed a series of strategies to thwart pathogen 
attack (Vilas et  al., 2018). The production of ROS is one of 
the defense responses against pathogen attack. Hydrogen peroxide 
may act either as an antimicrobial means preventing pathogen 
from growing or contributing as a signaling molecule, which 
induces the activation of protecting genes (Corpas et al., 2019).

As the terminal catabolism of PAs is followed by the generation 
of H2O2, PA catabolism is, thus, involved in pathogen defense 
response. The ornithine decarboxylase (ODC) activity increased 
20-fold during the hypersensitive response (HR) to tobacco 
mosaic virus (TMV) infection; however, the levels of Put, Spd, 
and Spm were not greatly altered, as expected (Negrel et  al., 
1984), while the activities of arginine decarboxylase (ADC), 
ornithine decarboxylase (ODC), and CuAO were all obviously 
increased (Marini et al., 2001). In addition, the PAO expression 
level and PA titers were also increased in tobacco plants resistant 
to TMV (Yoda et  al., 2003, 2006), suggesting that both PA 
biosynthesis and catabolism are activated in the host during 
pathogen infection, where appropriate.

The H2O2, resulted from increased activities of CuAO and 
PAO, might be  the cause for the HR observed in barley after 
powdery mildew infection (Cowley and Walters, 2002). The 
increase of host PA levels limited bacterial growth, while 
inhibition of the PAO host enzymes increased the infection 
(Marina et  al., 2008). It has been reported that DAO and 
PAO activities might play role in promoted defense against 
biotrophic or hemibiotrophic pathogens. However, these activities 
enhanced the infection of necrotrophic pathogens (Marina 
et al., 2008; Yoda et al., 2009; Moschou et al., 2009a). Similarly, 
the accumulation and further oxidation of free PAs was detected 
in the apoplast of tobacco leaves during tobacco defense against 
infection by microorganisms with contrasting pathogenesis 
strategies (Marina et  al., 2008). This response affected the 
pathogen’s ability to colonize host tissues and was detrimental 
for plant defense against necrotrophic pathogens, but it might 
be beneficial for plant defense against biotrophic pathogens 
because the former fed on necrotic tissue while the latter 
depended on living tissue for successful host colonization 
(Marina et  al., 2008). Therefore, apoplastic PAs were suggested 

to play significant roles in plant-pathogen interactions and 
lead to significant changes in host susceptibility to different 
kinds of pathogens through regulation of host PA levels, 
particularly in the leaf apoplast (Marina et al., 2008). Similarly, 
tobacco plants overexpressing a ZmPAO unraveled a preinduced 
disease tolerance against the biotrophic bacterium Pseudomonas 
syringae pv tabaci and the hemibiotrophic oomycete Phytophthora 
parasitica var nicotianae (Moschou et  al., 2009a), showing a 
critical role for a PAO-generated H2O2 apoplastic barrier for 
these fungi and bacteria. The PA catabolism also contributed 
to a resistance state through modulation of the immune response 
in grapevine following osmotic stress and/or after Botrytis 
cinerea infection (Hatmi et  al., 2018). The pretreatment of 
stressed berries with appropriate inhibitors of DAO and PAO 
further increased PA level and greatly lowered defense responses, 
leading to higher susceptibility to B. cinerea (Hatmi et  al., 
2018). It is evident that the host PA apoplastic catabolism and 
the mediated H2O2 accumulation play an important signaling 
role in plant-pathogen interactions. However, the specific 
mechanisms of PA catabolism against plant resistance to 
pathogens are often more complicated. Further research is 
needed to clarify the exact role of PA catabolism in biotic 
stress resistance, in an effort to help plants cope with adverse 
environmental conditions and survive.

POLYAMINE CATABOLISM AND H2O2  
IN ABIOTIC AND BIOTIC STRESS 
RESPONSES

Stress conditions are accompanied by ROS accumulation and 
induce a composite signaling system recognized by endogenous 
plant cell sensors and transferred via secondary messengers 
to kinases, which lead to differentiations in gene expressions 
and related metabolites by means of the corresponding 
transcription factors in a plethora of processes identified as 
stress responses (Skopelitis et  al., 2006; Waszczak et  al., 2018).

In addition to several pathways, as, for example, 
photorespiration and electron transferring in chloroplasts and 
mitochondria, ROS are produced by apoplastic enzymes or 
enzymes that have different subcellular localization (Moschou 
and Roubelakis-Angelakis, 2014; Waszczak et  al., 2018; 
Bordenave et al., 2019). The NADPH oxidase (Papadakis et al., 
2005; Papadakis and Roubelakis-Angelakis, 2005; Andronis 
et  al., 2014; Gemes et  al., 2016), peroxidases (Papadakis et  al., 
2005; Paschalidis and Roubelakis-Angelakis, 2005b), oxalate 
oxidase (Angelini et  al., 2008), xanthine dehydrogenase 
(Zarepour et al., 2010), and PAOs (Paschalidis and Roubelakis-
Angelakis, 2005b; Moschou et  al., 2008a,b,c; Paschalidis et  al., 
2009a, 2010; Takahashi et al., 2010; Gupta et al., 2016; Tavladoraki 
et  al., 2016; Hao et  al., 2018; Wu et  al., 2018; Corpas et  al., 
2019) are included in these pathways, depending on each 
specific occasion.

Polyamines, as key compounds in plant physiology, are 
involved in this stress-signaling scheme, playing essential roles 
in the control of plant stress tolerance (Moschou and Roubelakis-
Angelakis, 2014). Furthermore, numerous protein kinases are 
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transcriptionally or posttranscriptionally regulated by PAs 
(Moschou and Roubelakis-Angelakis, 2014). Almost 3.5 centuries 
since their discovery – 1,678  in human semen – PAs still 
remain fundamental research interests, as they are widely 
implicated in a plethora of developmental and stress signaling 
responses. Proteomic and transcriptomic analyses on the PA-stress 
interplay and identification of over- or underexpressed key 
related genes, among others, ADC, ODC, SAMDC, Spd synthase 
(SPDS), Spm synthase (SPMS), CuAOs, and PAOs (Liu et  al., 
2006, 2015; Liu and Moriguchi, 2007; Tanou et al., 2014; Corpas 
et  al., 2019) may offer a new insight into the molecular 
mechanisms controlling stress responses. Polyamines partially 
reversed the NaCl-induced phenotypic and physiological 
disturbances and systematically up-regulated the expression of 
PA biosynthesis (ADC, SAMDC, SPDS, and SPMS) and 
catabolism (DAO and PAO) genes, reprograming the oxidative 
and nitrosative status and the proteome of citrus plants exposed 
to salinity stress (Tanou et  al., 2014). Recent transcriptomic 
analyses of the effect of Spd or norspermidine on Arabidopsis 
indicate up-regulation of the response to heat stress and 
denatured proteins, inhibiting protein ubiquitylation, both in 
vivo and in vitro, and this interferes with protein degradation 
by the proteasome, a situation known to deplete cells of amino 
acids (Sayas et  al., 2019). Furthermore, by in situ RNA–RNA 
hybridization approaches, the spatial contribution of ODC1,  2; 
ADC2; and CuAO gene transcripts has been largely elucidated 
in developing tomato fruits in order to decode the potential 
connection of PA anabolism/catabolism to developmental 
processes, like fruit ripening (Tsaniklidis et  al., 2016).

Polyamines may further alleviate the unfavorable stress effects 
by activating the antioxidant machinery (Podlesakova et  al., 
2019). Spd and Spm, and to a lesser extent, Put, inhibit NADPH-
oxidase, whereas Put prevents the induction of PCD (Papadakis 
and Roubelakis-Angelakis, 2005; Andronis and Roubelakis-
Angelakis, 2010; Andronis et al., 2014). Abiotic and biotic stress 
may cause radical alterations in PA metabolism. Several model 
systems, like Arabidopsis thaliana, have helped in deciphering 
the role of PAs and elucidating their metabolic paths (Gupta 
et  al., 2016). The preservation of an appropriate balance of the 
PA catabolic pathways with the H2O2 dual role under normal 
and stress conditions has helped in illuminating the plant 
adaptation mechanisms (Paschalidis and Roubelakis-Angelakis, 
2005b; Paschalidis et  al., 2010; Gupta et  al., 2016). ABA is an 
upstream signal for the induction of the polyamine catabolic 
pathway in the apoplast of grapevine, thus, amine oxidases are 
producing H2O2 which signals stomatal closure (Paschalidis et al., 
2010). When the titers of H2O2 are below a threshold, expression 
of tolerance effector genes is induced, while when it exceeds 
this threshold, the PCD syndrome is induced (Paschalidis et al., 
2010). Polyamines also increase nitric oxide and ROS in guard 
cells of Arabidopsis thaliana during stomatal closure (Agurla 
et al., 2018) and during growth inhibition in Triticum aestivum L 
seedlings (Recalde et  al., 2018). In addition, the redox gradient 
across plasma membranes may play an essential role in climate 
changes, as a redox signaling regulator (Gupta et  al., 2016).

Plant life and stress go hand-to-hand. During growth, in order 
to overcome abiotic stress conditions, plants develop a remarkable 

organ/tissue/age-specific PA-related phenotypic plasticity 
(Paschalidis and Roubelakis-Angelakis, 2005a). Under favorable 
conditions, a balanced hypogeous and hypergeous PA homeostasis 
is critical to allow constant water/nutrient uptake and photosynthetic 
flux, respectively. For example, PA genes/metabolites may contribute 
to an accurate adaptation of the shift between advancement in 
cell cycle/cell division, that pushes the growth of very young 
root/shoot primordia toward cell expansion, differentiation, and 
lignification (Paschalidis and Roubelakis-Angelakis, 2005b; 
Paschalidis et  al., 2009a). On the contrary, plant growth under 
abiotic stress might, among other effects, wound/wilt the leaf 
surface or increase evaporation, rendering plant susceptibility. 
In this case, plants constantly examine whether or not the 
environmental signals are favorable for their development/growth, 
and might redirect a PA-associated phenotypic plasticity, involving 
Η2Ο2, the product of PA catabolism, either for growth or for 
stress adaptation, e.g., via spermidine-mediated stomatal closure 
(Paschalidis et  al., 2009b, 2010). It is also specified that the 
seriousness/type of reaction (s) to (a)biotic stress is a cell/tissue/
organ/age-specific route, related to PA catabolism (Paschalidis 
et  al., 2009b, 2010). The assessment of the antioxidant genes/
machinery, along with the photosynthetic factors, the intracellular 
cation titers, and the PA interplay in over/underexpressing ZmPAO 
plants under prolonged/varying salinity (Gemes et al., 2016, 2017) 
and heat (Mellidou et  al., 2017) stress have highlighted a plant 
ontogenetic stage-specific role for PA oxidase and Η2Ο2 during 
plant developmental reactions to (a)biotic stress conditions.

During abiotic stress conditions, PAs (mainly Spd) are secreted 
in the apoplast and oxidized by PAOs (they refer to both CuAOs 
and PAOs, but, for simplicity, they are depicted only as PAOs, 
throughout the model presentation) (Figure 1), resulting in PA 
catabolism intermediates. The level of PAO-mediated Spd oxidation 
results in: (①) moderate apoplastic PAO oxidizing Spd at a 
small percentage producing modest (beneficial) H2O2 (and 
1,3-diaminopropane) contents, that act as signaling molecules, 
inducing a ROS-dependent protective pathway, thus triggering 
abiotic stress tolerance reactions; (②) high apoplastic PAO, over 
a specific threshold, oxidizing Spd considerably faster, producing 
high (harmful) H2O2 levels, and resulting in down-regulation 
of pro-survival genes and execution of a specific PCD  
pathway in plants under abiotic stress conditions (Figure  1;  
Moschou et al., 2008b; Moschou and Roubelakis-Angelakis, 2014; 
Gupta et  al., 2016; Corpas et  al., 2019).

A possible scenario below may be postulated in order to explain 
the stress signaling/defense. Abiotic stress induces the production 
of intracellular and extracellular H2O2, higher PAs, and second 
messengers like Ca2+ (Wu et  al., 2010). The higher PA levels, 
when oxidized, generate additional H2O2 that activates the plant 
antioxidant machinery. Indeed, under salt stress conditions, with 
increased levels of endogenous PAs induced by exogenously applied 
Spd, PAO activity is further enhanced, thus contributing to H2O2 
accumulation, subsequently inducing enhanced antioxidant defense, 
which is helpful for growth (Wu et  al., 2018). A cold-responsive 
ethylene-responsive factor from Medicago falcata was demonstrated 
to confer cold tolerance by upregulating polyamine turnover, 
antioxidant protection, and proline accumulation (Zhuo et  al., 
2018). ABA endogenous contents are also activated by stress, 
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which may trigger ROS-related routes involving PAs (Gupta et al., 
2016). A well-organized protection mechanism comprising of PAs, 
Ca2+, ABA, and H2O2 coordinates an adaptation response of plants 
to stress (Figure 1; Skopelitis et  al., 2006; Moschou et  al., 2008b; 
Paschalidis et al., 2010; Toumi et al., 2010; Moschou and Roubelakis-
Angelakis, 2014; Gupta et al., 2016; Majumdar et al., 2016; Gemes 
et  al., 2017; Handa et  al., 2018).

Under abiotic stress conditions, ABA triggers the PA machinery 
in tolerant/sensitive grapevine genotypes (Toumi et  al., 2010). 
The abiotic tolerance stress signal (③) is received by plants 
generating essential signal molecules like ABA that are involved 
in an augmentation of PA synthesis (Figure 1). Tolerant plants 
showed higher PA synthesis, as compared with the sensitive, 
giving rise to higher PA levels (Toumi et  al., 2010). Regardless 
the genotype competence in withstanding stress, PAs follow  
the secretion way and are oxidized in the apoplast by PAOs  
(Paschalidis et  al., 2010; Toumi et  al., 2010). In this way, higher 
intracellular PA titers and higher PA synthesis, together with 
the apoplastic PAO-derived H2O2, are participating in a “positive 

feedback loop” helping to maintain homeostasis and enhance 
tolerance through activation of further defense mechanisms. On 
the contrary, lower PA titers/anabolism enhance PCD syndrome 
(Paschalidis et al., 2010; Toumi et al., 2010; Gemes et al., 2017).

This model/hypothesis elucidates the role of mostly the 
intercellular PAs. In abiotic-induced PCD of down-regulated 
SAMDC tobacco plants, the cellular Spd and Spm levels were 
reduced, but, unexpectedly, these plants showed similar, to the 
wild type, PA levels and oxidation in the apoplast (Moschou 
et  al., 2008b). The plants with silenced SAMDC unravel a 
PA-dependent trade-off between growth and tolerance reactions 
(Mellidou et al., 2016) and the stimulation of the ADC pathway 
acts as a positive feedback loop to maintain the PA homeostasis 
(Toumi et  al., 2010).

A biotic stress-induced increase in PAO gene/enzyme occurred 
in overexpressing PAO tobacco plants infected by Pseudomonas 
syringae pv tabaci (Moschou et  al., 2009a). Under biotic stress 
conditions, mostly Spm is secreted in the apoplast and oxidized 
by the respective enriched PAO, causing a H2O2 buildup  

FIGURE 1 | Dual polyamine catabolic model for signaling plant abiotic and biotic stress defense. A stress signal is recognized by numerous sensors and is 
transferred by several cellular biochemical pathways. Abiotic and biotic stresses result in ROS production. The stress-signaling pathway gives also rise to intracellular 
PAs, which are secreted/oxidized in the apoplast by PAOs in order to supply H2O2 and several N compounds. Hydrogen peroxide and N molecules may involve 
further reactions, including, among others, mitogen-activated protein kinases (MAPKs) and Oxidative Signal Inducible 1 (OXI1) pathways (Rentel et al., 2004; 
Moschou et al., 2009a,b, 2012; Toumi et al., 2010; Moschou and Roubelakis-Angelakis, 2014; Gupta et al., 2016; Podlesakova et al., 2019). Under abiotic 
conditions, according to the H2O2 level created: ① when low (H2O2 below a specific threshold), it is powerfully scavenged leading to abiotic defense or ② when high 
(H2O2 over a specific threshold), it cannot be efficiently scavenged and PCD is caused. The abiotic tolerance stress signal (③) is received by plants generating 
essential signal molecules like ABA that are involved in an augmentation of PA synthesis rendering tolerance in plants (Toumi et al., 2010). Under biotic stress 
conditions, mostly Spm is secreted in the apoplast and oxidized by the respective enriched PAO, causing a H2O2 buildup (④, biotic defense) that protects plants 
from phytopathogenic bacteria. In the scavenging process, antioxidant enzymes are involved, such as ascorbate peroxidase (APX), in a procedure rendering defense 
reactions. The implication of PA oxidation to H2O2 production is not only a matter of apoplastic or cytoplastic PAOs. Polyamines are also back-converted in 
peroxisome, with the parallel generation of H2O2 and nitrogenous substances. Peroxisomally produced H2O2 might trigger Ca2+-penetrable canals (Wu et al., 2010; 
Moschou et al., 2012; Zepeda-Jazo and Pottosin, 2018; Corpas et al., 2019). However, the N compounds generated as a result of the PA back-conversion path are 
not yet elucidated. Further details are found in the text.
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(④, biotic defense) that protects plants from phytopathogenic 
bacteria (Figure 1). In this context, overexpressing PAO plants 
reveal a preinduced tolerance against diseases, such as the 
biotrophic bacterium Pseudomonas syringae pv tabaci and the 
hemibiotrophic oomycete Phytophthora parasitica var nicotianae 
(Moschou et  al., 2009a). PAO and DAO activities promote 
defense against biotrophic or hemibiotrophic pathogens and, 
by contrast, these activities favor the spread of the lesions 
provoked by necrotrophic pathogens (Marina et al., 2008; Yoda 
et  al., 2009; Moschou et  al., 2009a). Oxidation of others 
polyamines, such as t-Spm, is also involved in response to 
pathogenic bacteria, increasing Arabidopsis resistance to 
Pseudomonas viridiflava (Marina et  al., 2013). This is probably 
related to the ability of plant PAOs to oxidize t-Spm in a 
wide range of tissues and organs, as occurs when other PAs 
such as Spm are accumulated throughout the plant (Marina 
et  al., 2013). In addition to that, pathogens activate their own 
and the plant PA metabolism during the compatible interaction 
between tomato and Pseudomonas syringae (Vilas et  al., 2018). 
This activation results in the accumulation of Put in whole 
leaf tissues, as well as in the apoplastic fluids, which is explained 
by the induction of its synthesis in plant cells and also on 
the basis of its excretion by bacteria (Vilas et al., 2018). Ralstonia 
solanacearum also produces abundant Put, acting as a virulence 
metabolite and accelerating wilt disease, possibly reducing ROS 
in the host (Lowe-Power et  al., 2018). The present dual abiotic 
and biotic stress protection scheme may represent an innovative 
route for generating tolerant transgenic plants to a variety of 
environmental and phytopathogenic stress factors.

POLYAMINES ACT AS ORTHODOX-
CONCERTERS OR STRESS-RELIEVERS

During development, several molecules exist inside common 
plant tissues in normal environmental and phytopathogenic-
free states, concerting an orthodox plant behavior. However, 
as soon as normal conditions are substituted by stressful  
ones, these molecules begin to work as stress-relievers. In this 
work, PAs are suggested to work as such molecules, i.e., as 
“orthodox-concerters” under normal conditions and as “stress-
relievers” under stressful ones. Polyamines have established 
duties inside plants; however, when they are found in adverse 
conditions, they may reveal novel functions, not expected until 
that time. Polyamines, PA oxidases, and the generated H2O2 
all have specific roles in sustaining plant developmental 
procedures, such as fruit ripening and senescence. Furthermore, 
in this work, the role for the concerted action of PA catabolism 
and its products, in reaction to both abiotic and biotic stress 

are discussed. The PA oxidation will surely remain a fascinating 
area for scientific examination, as its concerted action with 
the generated H2O2 is shown to classify specific stressful 
parameters and build an effective defense device.

CONCLUSION

To date, many attempts have been made to investigate the 
roles of PA catabolism in plant growth, development, fruit 
ripening, and responses to biotic and abiotic stresses. Therefore, 
the understanding of the roles played by CuAOs and PAOs 
in these processes has progressed significantly during the recent 
decades, especially in rice and Arabidopsis. However, many 
key questions remain unanswered. Firstly, current studies show 
that the homeostasis regulation of PAs in plants is rather 
complex. So far, the information about specific regulatory 
mechanisms in PA biosynthesis and catabolism is very limited. 
Although it has been revealed, among others, that the 
transcription of PA biosynthetic genes is regulated by several 
transcription factors under stress (Paschalidis and Roubelakis-
Angelakis, 2005a; Paschalidis et  al., 2009a; Sun et  al., 2014; 
Wu et  al., 2016; Liu et  al., 2018), relatively less information 
is available on the transcriptional regulation of PA catabolism. 
Secondly, although many members of CuAOs and PAOs involved 
in PA back-conversion pathway have been identified, the explicit 
role of the PA back-conversion reactions in PA homeostasis 
and associated physiological processes remains obscure. Last, 
but not least, although a dual signaling role for PA catabolism 
and the generated H2O2 under abiotic and/or biotic plant stress 
conditions has been revealed, further study will enable researchers 
to better elucidate this role by using new era technology.
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