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Our knowledge of the brain has evolved over millennia in philosophical, experimental
and theoretical phases. We suggest that the next phase is simulation neuroscience.
The main drivers of simulation neuroscience are big data generated at multiple levels
of brain organization and the need to integrate these data to trace the causal chain
of interactions within and across all these levels. Simulation neuroscience is currently
the only methodology for systematically approaching the multiscale brain. In this review,
we attempt to reconstruct the deep historical paths leading to simulation neuroscience,
from the first observations of the nerve cell to modern efforts to digitally reconstruct
and simulate the brain. Neuroscience began with the identification of the neuron as the
fundamental unit of brain structure and function and has evolved towards understanding
the role of each cell type in the brain, how brain cells are connected to each other,
and how the seemingly infinite networks they form give rise to the vast diversity of
brain functions. Neuronal mapping is evolving from subjective descriptions of cell types
towards objective classes, subclasses and types. Connectivity mapping is evolving
from loose topographic maps between brain regions towards dense anatomical and
physiological maps of connections between individual genetically distinct neurons.
Functional mapping is evolving from psychological and behavioral stereotypes towards
a map of behaviors emerging from structural and functional connectomes. We show
how industrialization of neuroscience and the resulting large disconnected datasets
are generating demand for integrative neuroscience, how the scale of neuronal and
connectivity maps is driving digital atlasing and digital reconstruction to piece together
the multiple levels of brain organization, and how the complexity of the interactions
between molecules, neurons, microcircuits and brain regions is driving brain simulation
to understand the interactions in the multiscale brain.

Keywords: simulation neuroscience, digital reconstruction, brain modeling, neuronal types, connectome, brain
structure and function, history

THE NEXT PHASE OF BRAIN RESEARCH

Over past millennia, brain research evolved through a series of fundamental transformations
of human thinking to approach the mind and the brain. At the dawn of human civilization,
mainly based on intuitive and analogical thinking, the deeply philosophical phase relied on
subjective experience and ‘‘pure reason’’ (Lamb, 1925), without any empirical method for proving
suggested ideas. To gain empirical evidence, mainly based on reductionist thinking, brain research
evolved into an experimental phase, by means of observation, measurement and experimentation,
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which led to the hyper-specialization we see in modern
neuroscience. During this phase, huge amounts of disconnected
datasets were produced, each limited to a certain level of
brain structure and function (Frackowiak and Markram, 2015).
To deal with the daunting forests of data, abstraction and
simplification methods from physics, mathematics and computer
science gave rise to the theoretical phase of neuroscience.
This kind of abstractive thinking follows the logic that ‘‘if
one squeezes out all the complexity from a system, one
eventually reaches its essence and then, and then only, does one
truly understand the brain.’’ Theoretical neuroscience tries to
interpret experimental data and to gain analytical tractability by
simplifying experimental observations, generating concepts and
building minimal mathematical models (Gerstner et al., 2012).
This phase also gave rise to artificial intelligence and its evolution
to its current form today.

Experimental and theoretical phases have developed through
three main paths: neuronal mapping that tries to classify and
catalog different types of cells in the brain; connectivity mapping
that aims to map connectivity between individual neurons
(neighboring neurons, neurons in neighboring groups, neurons
in distant brain regions), between groups of neurons (layers,
columns, nuclei, etc.) and between brain regions (visual area,
auditory area, etc.); functional mapping that tries to relate brain
function and behavior to the structure of the brain (e.g., role of
partial connectomes or the whole connectome).

Neuronal mapping is evolving from subjective descriptions
towards objective classifications of cell types, from
morphological types (Berlin, 1858; Meynert, 1867; Golgi,
1883; Ramón y Cajal, 1909) to genetic types (Monyer and
Markram, 2004; Toledo-Rodriguez et al., 2004; Urban and
Rossier, 2012; Wagner et al., 2016) and multidimensional types
(e.g., according to a combination of morphological, electrical,
afferent, efferent, molecular and genetic types; Markram et al.,
2004, 2015; Zeng and Sanes, 2017).

Connectivity mapping is evolving from loose topographic
maps of major nerve tracts between brain regions (Vicq-d’Azyr,
1786; Gall and Spurzheim, 1810; Meynert, 1871) towards dense
anatomical and physiological maps of connections between
individual genetically distinct neurons (Oh et al., 2014; Swanson
and Lichtman, 2016). The nomenclature of the types of
connections formed in the brain evolves at the pace of the
development of the nomenclature of cell types and is set on a path
towards a nomenclature for a large addressing system indicating
each cell type in the brain.

Functional mapping is evolving from psychological and
behavioral stereotypes towards a map of behaviors emerging
from structural and functional connectomes (Gall and
Spurzheim, 1810; Vogt and Vogt, 1903; Brodmann, 1908;
Sporns, 2016), from observing and characterizing brain
responses to stimulation (Hitzig and Fritsch, 1870; Penfield and
Boldrey, 1937) towards understanding the causal relationship
between neural connectivity and brain function (Bassett and
Sporns, 2017; Reimann et al., 2017a). Today, at the cellular
level, neuroscientists are still surprised to find that different
neurons respond to different inputs in a different manner
and are still composing an endless spectrum of stimulus

preference maps for neurons, while we are moving from
considering only how the type of neurons is responsible for
their different responses towards identifying the contribution
of the underlying networks. At the whole-brain level, studies
are beginning to reveal how the underlying connectome shapes,
for example, functional magnetic resonance imaging (fMRI)
image patterns. At the behavioral level, attempts to map
signatures of specific cognitive functions to the underlying
structures are still limited to networks of brain regions. As
the number of brain regions found to be involved in any
cognitive task grows, functional mapping will likely evolve
from statistical subgraphs of the brain towards dynamic
full graphs.

However, in these three paths, experimental and theoretical
approaches are hindered by the barriers of scale and complexity.
How can we scale up cellular phenotyping and deal with the
dynamics of cellular properties to achieve a comprehensive
census of cell types in mammalian brains? How can we rise to
the challenge of volume, time and dynamics in full connectome
mapping potentially even down to the nanoscale? How can we
trace all the molecular and cellular mechanisms that give rise to
brain function and behavior?

To transcend these barriers, simulation neuroscience was
born. It is arguably the next phase of brain research, after its
philosophical, experimental and theoretical phases. Simulation
neuroscience combines experimental and theoretical approaches
to achieve a dense digital reconstruction of the brain consistent
with experimental data, which in itself forms a unifying theory
of brain structure and function and which can be used to test
and evolve new theories (Figure 1). The goal of simulation
neuroscience is to build a digital copy of the brain instead of
an arbitrary model, even if that model could imitate certain
brain functions (Markram, 2006; Markram et al., 2015). Since
neither a comprehensive repertory of data nor a complete
map of the brain exists or will likely be obtained purely from
experiments, we obviously cannot do this blindly. It requires
building the digital copy by formulating principles of cellular
structure to synthesize all the neurons and glial cells, principles
of molecular organization and interaction, principles of how ion
channels and receptors are formed and distributed in neurons,
principles of synaptic connectivity, principles of how brain
regions are connected, and ultimately, principles of how the
brain is coupled to the body. It is through formulating and
exercising these principles that simulation neuroscience makes
progress systematic and understanding tractable. If correct, these
principles allow predicting vast gaps in data and drive a new
question: what is the minimal, not maximal, data we need to
reconstruct the brain? Indeed, experimental neuroscience should
be asking what can be predicted and what must be measured.

Reconstructing the brain recapitulates the history of
neuroscience by evolving and accelerating its major steps,
from early morphological descriptions of the nerve cell to
later electrophysiological and biochemical studies of neural
connectivity: synthesize and evolve available knowledge,
methods and technologies into a new science, and take
a quantum leap onto a path that, in the end, can lead to
understanding the multiscale brain. Industrialization of
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FIGURE 1 | Understanding the multiscale brain.

neuroscience and the resulting large disconnected datasets
are generating demand for integrative neuroscience; the scale
of neuronal and connectivity maps is driving digital atlasing
and reconstruction to piece together the multiple levels of brain
organization, and the complexity of the interactions between
molecules, neurons, microcircuits and brain regions is driving
simulation neuroscience to understand the multiscale brain.
To explore the origin and making of this paradigm shift, we
reconstruct the deep historical paths leading to simulation
neuroscience through the philosophical, experimental and
theoretical phases of brain research, in particular, from the first
observations of the nerve cell to modern attempts to digitally
reconstruct and simulate the brain, by identifying the major
scientific, technological and conceptual breakthroughs that have
guided this passionate quest of humans to understand the brain
and their own condition.

FROM THE WEIGHT OF THE HEART TO
BRAIN SIMULATION

Humans see and feel, live and die, conscious of their own
existence. They think and desire to understand themselves.

About 3,000 years ago, in ancient Egypt, almost 200,000 years
after the birth of Homo sapiens and 9,000 years after the
Agricultural Revolution (Harari, 2014), the heart was still
considered to be the seat of emotions and thoughts, weighed after
death by gods against a feather representing truth and order to
determine the destiny of the deceased: to go to heaven or to be
devoured by a monster (‘‘Book of the Dead,’’ Papyrus of Ani,

1250 BC). The brain, considered trivial, was the first organ to
be thrown away during embalming: part of it was drawn out
through the nostrils with a crooked piece of iron, and the rest
was rinsed with drugs (Herodotus, 1875).

About 2,500 years ago, in Ancient Greece, Alcmaeon
of Croton (∼460 BC), a great philosopher and pioneer of
anatomical dissection, traced the nerves of the sense organs until
their terminations in the brain and inferred that the brain was the
seat of sensation and thought (Tannery, 1887). Thus were laid
the foundations of brain science. One century later, influenced
by Alcmaeon of Croton, Plato (∼360 BC) located the immortal
soul, the logos (thinking and reasoning), in the head, since it is in
the form of a globe, at the top of the body, close to the heaven,
reflecting the perfect image of God and the Universe (Lamb,
1925). The logos is a dæmon inside each of us, a genius given
by God to guide humans to communicate with the divine soul
of the Universe. Plato located in the thorax the mortal soul—the
thymos and the eros—our fearful but ineluctable passions and
desires. However, in Aristotle’s view (∼350 BC), the intellectual
soul (nous), imperishable and self-existing, which bestowed on
humans the ability to understand and which distinguished them
from plants and animals, did not operate through any specific
bodily organ (Hicks, 1907). Relating sensation to the blood,
relying on the idea that the brain was bloodless and cold, Aristotle
thought that the heart was the seat of sensation, while the brain
was just an organ for cooling the heat produced by the heart
(Ogle, 1911).

About 500 years ago, what has become known as the
‘‘Scientific Revolution’’ began (Burtt and Edwin, 1923;
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Butterfield, 1959). We acknowledged our ignorance (Harari,
2014) and embarked on an exploration of the unknown. Modern
science was born. The view of the universe and the nature
of human life was transformed through the transition from
mainly relying on the internal mind to external observation.
To survive and evolve, to increase their capacities and to
produce new resources, humans gained knowledge and invented
technologies both transmittable to others to accelerate scientific
discoveries—therefrom arose the powerful collective scientific
process. We explored the world and our own body, including the
brain. Brain science accelerated.

About 475 years ago, Vesalius (1543) dissected human
corpses, described the anatomy of the brain and first
distinguished between gray matter and white matter. About
300 years ago, ‘‘fine vessels’’ were observed within a nerve
under a self-made one-lens microscope (van Leeuwenhoek,
1719). More than 100 years later, ‘‘large, colorless and
free globules’’ and ‘‘granules connected in rows by delicate
filaments’’ were described in leech nervous tissue through an
achromatic microscope (Ehrenberg, 1833). About 30 years
later, ‘‘protoplasmic processes’’ were identified through carmine
staining (Deiters, 1865). In about 150 years, ‘‘vessels,’’ ‘‘globules’’
and ‘‘protoplasmic processes’’ were finally connected together
in the human mind to form a single cellular unit, the nerve cell,
named later the ‘‘neuron’’ (von Waldeyer-Hartz, 1891).

Where are we now? Our quest to understand the brain has
advanced in scale and complexity through the experimental
and theoretical phases of brain research. We are beginning to
understand the structural and functional diversity of neurons,
how they are connected, and how a specific network of neurons
gives rise to emergent functions.

However, since Alcmaeon of Croton dissected brains and
suggested that the brain was the seat of sensation and thought,
almost 2,500 years have elapsed (Tannery, 1887). We still
do not understand the basic neural mechanisms underlying
brain function, which give rise to our emotions, thoughts
and memories (Koch et al., 2016; Südhof, 2017). We remain
‘‘strangers to ourselves’’ (address by Shimon Peres when the
Human Brain Project was awarded, the European Parliament,
March 12, 2013).

Modern philosophers continue to reason about the mind and
the brain in diverse forms. Dualists argue for the irreducibility
of conscious experience and sensory qualia—surviving forms of
Plato’s and Descartes’ substance dualism. In their view, we will
probably never obtain a complete explanation of consciousness
based on neural mechanisms—What is it like to be a bat
or a zombie (Nagel, 1974; Chalmers, 1996)? Relying on the
concept of multiple realizability and the computational theory
of mind, functionalists pay little attention to neuroscientific
details, presuming that a given mental state can be realized
through diverse physical mediums, either a brain or a computer
(Fodor, 1975; Putnam, 1965). The rise of neurophilosophy fosters
the co-evolutionary research methodology, in particular the
co-evolution of philosophy with cognitive and computational
neuroscience (Churchland, 1986), with the aim of applying
neuroscientific findings to classical philosophical concepts such
as morality (Prinz, 2007; Churchland, 2011). On the basis of

eliminative materialism, neurophilosophers try to replace the
categories of ‘‘folk psychology’’ with neuroscientific ontology
(Churchland, 1986). Contrary to dualists, they search for a
neurobiological explanation of consciousness, a unified theory
of how the mind-brain works (Searle, 1992; Dennett, 1993;
Churchland and Churchland, 1997). However, today, this goal
still remains vague.

In parallel with these philosophical pursuits, methodologies
in neuroscience also evolved by crossing the boundaries between
different doctrines and disciplines. Against rationalist Descartes’
‘‘Cogito ergo sum’’ (Descartes, 1905), empiricists argued a
half-century later for ‘‘tabula rasa’’ and thought that instead
of a priori reasoning, the nature of the world and the
mind could only be understood through empirical research
with observations and experimental reasoning (Locke, 1689).
This view prepared the philosophical ground for the rise of
experimental neuroscience. Influenced by modern mathematical
logic developed in the late 19th century (Frege, 1879, 1960), early
empiricism further evolved into logical empiricism (Carnap,
1928; Neurath, 1932), which led to the idea of the mind as a logic
machine and the computational theory of mind (McCulloch and
Pitts, 1943; Putnam, 1965; Fodor, 1975). This gave rise to another
phase in brain research—theoretical neuroscience.

Reduction is the major form of reasoning in both
experimental and theoretical neuroscience, although it varies
from intertheoretic reduction to ‘‘reductionism-in-practice’’
(Hooker, 1981a,b,c; Bickle, 2003). This kind of reasoning
has been challenged by several theories of neuroscientific
explanations. Causal-mechanistic reasoning aims to capture the
unity of neuroscience by producing a mosaic of explanations at
different levels, instead of reductive, unifying or model-based
forms of scientific explanations (Craver, 2009). However,
to the philosophers of neuroscience in search for a unified
theory of brain function and behavior, understanding the
brain will require both neurobiology and large-scale theoretical
frameworks. In this view, a major methodological theme
consists in the co-evolution of macrotheory and microtheory,
an interanimation of philosophy, psychology, computer science
and neuroscience, of top-down and bottom-up research
(Churchland, 1986). This endeavor aims to combine multiple
disciplines, in particular philosophy and neuroscience, into a
unified science, to obtain a unified theory of the mind-brain.
However, since the birth of neurophilosophy, more than 30 years
have passed, this goal still remains remote. Why cannot we
understand the mind-brain?

Brain research over past millennia is like solving a strange
jigsaw puzzle that is devoid of a predetermined picture—various
pieces have been accumulated semi-randomly in the hope that
all the data and knowledge will self-organize. The mind does not
have a shape, but the brain does. Instead of imposing arbitrary
forms on the mind, can we reconstruct a brain from its basic
molecular and cellular units, find out the principles that connect
them together and test our theories in a systematic manner?
This quest gave rise to simulation neuroscience. What is the
philosophy of this new science?

For thousands of years, seeking truth, philosophers have been
addressing fundamental questions about the mind and ourselves,
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FIGURE 2 | Epistemological and methodological evolution of brain research.

yet without producing empirical evidence; their reasoning
wanders in the silence of the desert. For hundreds of years,
seeking completeness, experimental neuroscientists have been
trying to understand every single part of the brain by breaking
it into its basic components and have built forests of datasets,
but how much more elements are there still to map, are we lost?
For nearly a century, seeking a single unified theory, theoretical
neuroscientists have been trying to walk out of these forests by
cutting down trees; the complexity indeed decreases but also
the structural and functional richness of the ecosystem. Finally,
have not the models simply become data fitting functions? If
several models can fit the data, does it mean that they all explain
brain function? To transcend the barriers to these endeavors,
can we get an overview of all the forests of datasets, reorganize
and integrate them in the context of the whole brain, while
filling the gaps that experiments will never be able to fill and
finding ways through the forests by considering the ecosystem
of the brain? The deep meaning of simulation neuroscience
consists in reconstructing and simulating the brain from the most
fundamental principles we can isolate to understand and link the
multiple layers that form ourselves, from molecules and cells to
brain function and behavior, to give meaning and life to data
and theories.

Due to reductionist thinking, experimental neuroscience
is hindered by huge amounts of disconnected datasets and
seemingly infinite scale and complexity. Based on abstractive
thinking, theoretical neuroscience tries to address these
problems through simplification but abstracts away detailed
brain structures and their emergent functional properties. To
reconcile and transcend these two extremes, by leveraging high
performance computing, simulation neuroscience approaches
the brain through integrative and predictive thinking:
integration of experimental and theoretical approaches,
integration of disconnected datasets and knowledge and
integration of the multiple scales of brain structure and

function, in association with predictive methods for filling the
gaps (Figure 2).

The brain is a multidimensional network of networks of genes,
proteins, cells, synapses and brain regions, all interacting inside
a dynamically changing environment of neurochemicals. Brain
functions emerge as electrical, chemical and mechanical chain
interactions through these networks. Since there is no scientific
evidence that we can ignore any kind of these interactions, the
only way to understand all aspects of the multiscale brain is to
reconstruct and simulate all these types of interactions.

The philosophy of simulation neuroscience originates from
the will to transcend the barriers of scale and complexity during
the evolution of neuronal mapping, connectivity mapping and
functional mapping in the experimental and theoretical phases
of brain research. The present review will trace the historical
evolution of this pursuit by identifying the major milestones that
are the most related to it and that are capable of characterizing
it in a concise way, instead of conducting an exhaustive survey of
all the investigators whose important work has contributed to the
evolution of brain research.

NEURONAL MAPPING: FROM THE BIRTH
OF THE NEURON TOWARDS A
COMPREHENSIVE CENSUS OF BRAIN
CELL TYPES

Neurons and glial cells constitute the two major cellular
populations in the human brain (∼86 billion neurons vs.
∼85 billion non-neuronal cells; von Bartheld et al., 2016).
Although they were probably first described at the same time
(Dutrochet, 1824), neurons have been more studied because their
electrical excitability correlates well with higher brain functions
and are therefore considered essential to brain function and
behavior (Galvani, 1791; du Bois-Reymond, 1843). Neurons are
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divided into diverse types characterized by their morphological,
physiological or molecular properties. Just in the retina, the
number of neuronal types is estimated to be 100–150, and
2,500–5,000 in the adult mammalian nervous system (Bota et al.,
2003; Zeng and Sanes, 2017). Although efforts are underway to
try to achieve a comprehensive census of neuronal cell types
over the next decade (Zeng and Sanes, 2017), neuronal cell-type
classification is controversial and extremely challenging for the
future of neuroscience. Even so, then we will still need to ask:
‘‘What does each cell type do?’’

To better visualize the trajectory of neuronal mapping in
the future, we need to understand its origin. What is the
history of the neuron, from its first descriptions to modern
neuronal classification? First of all, how did humans discover
the neuron?

In fact, humans did not discover the neuron; they
reconstructed it.

All Began With a Nerve
About 300 years ago, ‘‘fine vessels’’ were observed within a
nerve under a self-made one-lens microscope (van Leeuwenhoek,
1719), clearly identified as axons only more than 60 years later
(Fontana, 1781). After about 50 years, ‘‘large, colorless and free
globules’’ and ‘‘granules connected in rows by delicate filaments’’
were described in leech nervous tissue through an achromatic
microscope, considered yet to be the ‘‘excreted nuclei’’ of red
blood cells (Ehrenberg, 1833). Three years later, appeared the
first microscopic image of the nerve cell body with the nucleus
and nucleolus, but the ‘‘primitive fiber’’ (axon) and the ‘‘globule’’
(soma) were still considered to be separated elements (Valentin,
1836). Nevertheless, in the same year, the anatomical continuity
between the nerve fiber and the nerve cell body was observed
(Remak, 1836). However, ‘‘protoplasmic processes’’ (dendrites)
were only described more than 80 years after the identification of
the axon, owing to chromic acid fixation and carmine staining
(Deiters, 1865). Only then did humans succeed to reconstruct
together the ‘‘vessel,’’ ‘‘globule’’ and ‘‘protoplasmic processes’’
into a single nerve cell, which took almost 150 years.

However, at that time, the soma and fiber of the nerve cell
were still considered functionally separated. The nerve cell body,
often taken for a trophic center, was thought unnecessary to
nerve conduction because most anatomists believed that the
nerve fiber ran straight through the cell body (Bernard, 1858;
Lorente de Nó, 1935). Therefore, electrophysiology was only
based on the study of nerves. Nevertheless, recordings of spinal
cord antidromic evoked potentials showed that the polarization
of conduction in the spinal cord was not a property of nerve
fibers, but rather localized in the soma (Sherrington, 1897).
However, it was not until the development of intracellular
recording (Hodgkin and Huxley, 1939; Ling and Gerard, 1949),
making it possible to characterize local potentials in different
parts of a neuron, that the soma and fiber of the neuron
were functionally reconstructed together by humans, almost
90 years after the morphological reconstruction of the nerve cell
(Eccles, 1952).

Even so, at this stage, humans still did not succeed to
completely reconstruct the neuron, hindered by the fierce

controversy over the mode of connection between nerve
cells. On the one hand, nerve cell anastomotic networks
connected by axons and/or by dendrites were observed through
ammoniated carmine and gold chloride staining or Camillo
Golgi’s ‘‘black reaction’’ (silver nitrate impregnation after
fixation with potassium dichromate and osmic acid), which
established the reticular theory (von Gerlach, 1872; Golgi,
1875). On the other hand, ontogenetic method and retrograde
degeneration method revealed that each nerve fiber originated
from a single cell and that the degeneration of the fibers and
somas of nerve cells was limited to the units directly affected
(Forel, 1887; His, 1887). These observations were later supported
by direct histological evidence obtained with improved Golgi’s
method, which showed the individuality of each nerve cell
and founded the neuron doctrine (Ramón y Cajal, 1888;
von Waldeyer-Hartz, 1891).

And yet, neuroscientists at that time were still confronted
with another question: how do nerve cells communicate between
them? Camillo Golgi thought that the communication between
nerve cells and the unified functioning of the nervous system
could only be achieved through a continuous network, while
Santiago Ramón y Cajal suggested that neural transmission could
occur through a kind of ‘‘granular cement’’ or a ‘‘particular
conductive substance’’ connecting the surfaces of nerve cells
in contact. Ramón y Cajal’s idea announced the concept of
the synapse (Foster and Sherringon, 1897), demonstrated later
through Loewi’s famous experiment during which a substance
collected from a stimulated heart stimulated another heart in the
same way as the action of a nerve (Loewi, 1921).

However, it was not until the mid-20th century that the
individuality of each nerve cell and the existence of the synaptic
cleft were finally confirmed, owing to electron microscopy
(EM) observations (Palade and Palay, 1954; De Robertis and
Bennett, 1955). Since the first observation of nerve fibers (van
Leeuwenhoek, 1719), the human reconstruction of the neuron
as an independent cellular unit had taken almost 240 years.
How much time would take the classification of different
types of neurons?

A Way Through the “Butterflies of the Soul”
What is the path through the labyrinth of billions of the
‘‘butterflies of the soul’’ (Ramón y Cajal, 1917)? Early researchers
first noticed different shapes of nerve cells and named them
either by their morphological features or after their discoverers.
With the development of histological techniques in the mid-19th
century, nerve cells were first classified into pyramidal cells,
small and irregular or granular cells and spindle-shaped
cells, which founded cytoarchitectonics (Berlin, 1858). Then
this morphological classification was further elaborated in
association with cortical layers and cell function (Meynert,
1867). About 16 years later, using the ‘‘black reaction,’’ Golgi
distinguished two basic types of nerve cells in the cerebral
cortex and suggested their functions: Type I cell with a long
axon giving off a small number of lateral filaments was motor
cell; Type II cell with a short axon divided into many complex
lateral branches was sensory cell (Golgi, 1883). However, this
functional definition of the two cell types was later refuted by
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Ramón y Cajal (1894), who observed that Type I cells were
abundant in sensory organs and Type II cells were distributed
in all nerve centers. This revealed the complex relationship
between nerve cell morphology and function. Ramón y Cajal
(1909) also attempted to classify neurons by their shapes.
However, were these morphological descriptions a reliable way
to classify neurons?

Confronted with the subjectivity of these morphological
classifications determined by single investigators, some
researchers tried to establish objective criteria to classify
nerve cells by their electrophysiological or biochemical features.
Nissl (1894), using basic aniline dyes, classified nerve cells
according to which parts of the cell content were stained
and which parts were not and the relationships between the
stained and unstained parts. Neurons were also classified by the
velocity of their action potentials measured with the cathode
ray oscilloscope (Gasser and Erlanger, 1922). Due to a better
understanding of the chemical transmission of nerve impulses,
neurons were divided into two types: cholinergic and adrenergic
cells (Dale, 1933).

However, electrophysiological and biochemical states
are limited by their sensitive condition-dependence. Faced
with this problem, researchers attempted to characterize
neurons with more stable features. With the development of
immunohistochemistry in the 1940s and that of RNA and
DNA sequencing in the 1970s (Coons et al., 1941; Min Jou
et al., 1972; Wu, 1972), molecular classification methods were
introduced to classify neurons according to their molecular
properties, in particular protein composition and mRNA
composition, with the assumption that some molecular features
stay permanent to maintain cell identity (Fishell and Heintz,
2013; Deneris and Hobert, 2014). Single-cell transcriptomics,
developed in the early 1990s, is considered to have the potential
to provide a ‘‘complete’’ census of neuronal types (Toledo-
Rodriguez et al., 2004; Poulin et al., 2016; Zeng and Sanes, 2017).
High-throughput, multiplexed methods, such as multiplexed
fluorescence in situ hybridization (FISH) and in situ sequencing
methods, are being developed to scale up the enterprise of
neuronal cell-type classification (Ke et al., 2013; Lee et al., 2014;
Chen et al., 2015, 2016).

In 160 years, neuronal classification has evolved from
subjective, morphological description to objective, multi-criteria
identification; from monothetic approach to polythetic clustering
(Berlin, 1858; Ramón y Cajal, 1909; Markram et al., 2004;
Migliore and Shepherd, 2005; Armañanzas and Ascoli, 2015).
However, a comprehensive census of neuronal cell types is still
out of reach. What are the major challenges?

Towards a Comprehensive Census of Brain
Cell Types
Neuroscience aims to achieve a comprehensive census of neurons
and glial cells in the brain, with molecular annotation at
subcellular resolution, such as mRNA expression, ion channels
and synaptic proteins. However, there are ∼86 billion neurons in
the human brain, and every neuron appears unique; single-cell
transcriptome analysis represents only a snapshot due to cyclic
and stochastic fluctuations in RNA content (Raj and van

Oudenaarden, 2008; Shapiro et al., 2013); gene expression
and phenotypic properties of cells can dynamically change in
response to internal and external cues (Cohen and Greenberg,
2008; West and Greenberg, 2011). Due to these factors, all
neuronal classifications are provisional and hypothetical.

Faced with these challenges, how can we build a way through
billions of the ‘‘butterflies of the soul’’? It is true that there are
∼86 billion neurons in the human brain, but it is possible to
define a minimum sample size able to reliably reveal distinct
types. It is true that every neuron appears unique, but we have to
reduce dimensionality by defining a relevant level of granularity
to identify neuronal types. It is true that gene expression in cells
is dynamic, but we have to find out their molecular ground
states that maintain cell identity. So, the question is: how can
we overcome the barriers of scale and complexity to achieve a
reliable neuronal cell-type classification?

CONNECTIVITY MAPPING: FROM WHITE
MATTER TRACTS TOWARDS A FULL
CONNECTOME

Leaves of a Cabbage
Arising from a stem, dispersed into leaves spreading out in a
circular shape to form cavities, in the eyes of a 17th-century
anatomist, the extending nerve tracts in the brain formed loose
nets and ventricles like the leaves of a cabbage (Malpighi and
Fracassati, 1669). Since Ancient Greece, nerve tracts had been
considered related to brain function (Tannery, 1887). A question
then arose: how to trace these tracts?

About 330 years ago, white matter was observed to be
composed of fibrils arranged in bundles through the scraping
method of dissection (Vieussens, 1684). A century later,
nerve tracts were divided into inter- and intra-hemispherical
pathways (callosal and association systems; Vicq-d’Azyr, 1786).
The first category connected the two hemispheres, including
the corpus callosum, the corpora quadrigemina, the anterior
and posterior commissures, the cerebral peduncles, the pons,
the anterior medullary velum, the interthalamic adhesion and
the trigeminal tubercle. The second category was supposed
to assure the communication between the base and other
parts of the brain, including the arcuate fasciculus, the
pillars of the fornix, the peduncles of the pineal gland, the
tracts connecting the mammillary tubercles and the anterior
thalamic tubercles. More than 20 years later, the projection
system was identified through blunt dissection, including
afferent and efferent fiber pathways linking the cortex with
the subcortical regions, the brain stem and the spinal cord
(Gall and Spurzheim, 1810).

However, dissection techniques could not determine the
precise trajectory and arrangement of nerve tracts. Detailed
tract tracing only became possible with the development of
histological methods. Using a Zeiss-microscope and carmine
or gold chloride staining, Theodor Meynert identified clearly
the three main types of white matter tracts: the association
systems—the short arcuate fibers and long association fibers
connecting the various parts of the cerebral cortex; the
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commissural pathways connecting the two hemispheres; the
afferent and efferent projection systems linking the cortex to the
subcortical structures (Meynert, 1871).

Early tracing studies, relying on physical diffusion of dyes in
fixed material, were limited to large fiber tracts between brain
regions. The studies of neurocircuitry required more refined
methods applicable to living tissue. Degeneration methods
inferred neuronal connectivity from pathological changes
following experimental lesions to the nervous system (Türck,
1849; Waller, 1850; von Gudden, 1870; von Monakow, 1897).
However, lesions were usually nonspecific, degeneration altered
the normal morphology of neurons, and pathological changes
were extremely variable (Cowan et al., 1972).

To remedy this, tracing methods exploiting axonal transport
in living neurons were developed in the 1970s. Retrograde tracing
techniques introduced an enzyme or fluorescent tracer in a
downstream location relative to the targeted neurons, capable
of labeling the somas of the neurons projecting to the injection
site, but unable to visualize the fiber pathways linking them
(Kristensson, 1970; Kristensson and Olsson, 1971; LaVail and
LaVail, 1972). This problem was resolved by anterograde tracing
techniques, based on macromolecule transport from the soma
to the axon terminals, such as autoradiographic tracing method
(Cowan et al., 1972).

Nevertheless, injections of tracers usually resulted in
indiscriminate labeling of different types of neurons, and
the surgical procedure to introduce an exogenous tracer was
complex. To deal with this, tracing techniques exploiting genetic
engineering were developed more than 20 years ago (Prasher
et al., 1992; Chalfie et al., 1994), which use intrinsic fluorescence
to label exclusively the projections of neurons that express a
specific molecular phenotype (Feng et al., 2000; Livet et al.,
2007; Kuhlman and Huang, 2008). These techniques were even
adapted for live imaging of intact animals such as Drosophila
(Boulina et al., 2013). The leaves of a cabbage have become a
forest of rainbow trees.

However, these tracing methods are limited to anatomical
connectivity, which alone is not sufficient to account for
brain function, because the synapse is dynamic (Tsodyks
and Markram, 1997). Therefore, physiological methods
were invented. Owing to intracellular recording techniques,
synaptic plasticity was better understood, such as the
quantal release of neurotransmitters (Fatt and Katz, 1952),
central synaptic inhibition (Coombs et al., 1953), short-term
synaptic plasticity (Curtis and Eccles, 1960) and spike-timing-
dependent plasticity (STDP; Markram and Sakmann, 1995).
Neural plasticity also inspired theoretical studies, such as
Hebbian cell assembly and learning rule (Hebb, 1949) and
the theoretical study of STDP (Abbott and Blum, 1996;
Gerstner et al., 1996). Theoretical approach abstracts away
detailed biological mechanisms to loosely model neural
connectivity by building artificial neural networks. About
75 years ago, the first mathematical model of a simplified
neural network appeared (McCulloch and Pitts, 1943), which
led to the computational theory of mind and machine
learning. This model then evolved into more sophisticated
ones, in particular, multilayer perceptrons (Rosenblatt,

1957), recurrent neural networks (Hopfield, 1982) and
convolutional neural networks (Cireşan et al., 2011). However,
to get deep insights into the detailed neural structures and
mechanisms underlying brain function, we still need biologically
realistic models.

Although the aforementioned experimental methods are able
to trace neuronal connections on the cellular or even molecular
scale, these invasive techniques are limited to postmortem brain
tissue and experimental animals. To better understand our own
brain, would it be possible to trace the neural connections in
the living human brain? In the early 1970s, the development of
noninvasive neuroimaging techniques, in particular MRI, made
it possible to study the structural and functional connectivity
of the human brain in vivo (Damadian, 1971; Lauterbur, 1973).
Nowadays, human brain atlasing combines MRI with gene
expression studies, such as the Allen Human Brain Atlas that
comprises a comprehensive ‘‘all genes–all structures’’ array-
based dataset (Shen et al., 2012). Nevertheless, generally, MRI
methods can only trace neural connections between brain regions
usually with millimeter resolution.

Over the past 300 years, connectivity mapping has evolved
from gross tracing of major tracts in fixed brains to mapping
neuronal projections with cellular and molecular resolution in
living tissue, from mapping static neural connectivity to dynamic
synaptic plasticity, from postmortem studies to in vivo large-
scale mapping of human brain connectivity including structure,
function and gene expression. Is it possible to experimentally
map all the neural connections of the brain—the ‘‘connectome’’?

Towards Completeness
Science dreams of completeness. Since the emergence of the term
‘‘genome’’ in 1920 (Winkler, 1920), fostered by technological
advances in large-scale, high-throughput research, the ‘‘ome’’ has
become a doctrine, aiming to capture all the parts of biological
systems and their interactions (Sporns, 2013b). Inspired by the
‘‘genome,’’ the term ‘‘connectome’’ was introduced in 2005,
initially referring to a comprehensive structural description of the
network of brain elements and connections (Sporns et al., 2005)
or the set of all neuronal connections of the brain (Hagmann,
2005). ‘‘Connectomics’’ aims to map the connectome on the
macro-, meso-, micro- and nano-scales and to explain its relation
to brain functions (Hagmann, 2005; Sporns, 2013a; Swanson and
Lichtman, 2016).

The concept of the connectome originated from the long-held
belief that neural connections are related to brain functions,
as illustrated by tract tracing since the 17th century. This
relationship has been further revealed by recent research: at the
microscale, synaptic connectivity is linked to neuronal network
dynamics (Chambers and MacLean, 2016); at the macroscale,
the anatomical connectivity of the brain is related to its
functional connectivity and different states (Hermundstad et al.,
2014), and the ‘‘connectivity fingerprint’’ of brain regions may
predict their specific functional properties (Saygin et al., 2016;
Tavor et al., 2016).

Since the function of neural circuits and systems cannot
be explained only through wiring diagrams, we also need
information such as the types of neurons and synapses,
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the dynamics of neuronal synchronization, and the role of
different types of glial cells and neuromodulators (Sporns,
2013b; Fields et al., 2015). Therefore, the concept of the
‘‘connectome’’ is evolving to include all the structural and
functional relationships between different types of neurons,
as well as all their connections with their cellular partners
in a defined neural region or the whole brain (Marc et al.,
2013; Sporns, 2016; Swanson and Lichtman, 2016). Nevertheless,
this concept owes its origins to MRI methods, which enable
in vivo rapid-throughput mapping of human brain connectivity
at the macroscale.

Mapping Long-Range Neural Connections Between
Gray Matter Regions
Macroconnectomics aims to map all the neural connections
between gray matter regions at millimeter resolution. It is best
suited to in vivo human studies with neuroimaging methods,
where few of fine-scale methods used in laboratory animals
are applicable (Sporns, 2013b; Van Essen, 2013). MRI, the
major noninvasive neuroimaging technique for in vivo human
connectome mapping, was developed in the early 1970s, first
used to diagnose cancer (Damadian, 1971; Weisman et al., 1972;
Lauterbur, 1973). Described as ‘‘in vivo Brodmann mapping’’
(Brodmann, 1908; Turner and Geyer, 2014), MRI cerebral
cartography has inherited the long tradition of connectivity
mapping, established since the 18th century (Vicq-d’Azyr, 1786).

Diffusion MRI (dMRI) is the main MRI method of mapping
structural connections of the brain (Glasser and Van Essen, 2011;
Craddock et al., 2013). Invented in the 1980s, dMRI uses water
diffusion anisotropy along myelinated axons to map large white
matter fiber bundles, combined with probabilistic tractography
to estimate fiber trajectories (Le Bihan and Breton, 1985;
Margulies et al., 2013; Le Bihan and Iima, 2015). About 30 years
ago, the first dMRI images of the human brain were obtained
at 0.5T, with an in-plane spatial resolution of 1.09 × 1.09 mm
(Le Bihan et al., 1986). Since then, the sensitivity to diffusion has
augmented about 100 times (McNab et al., 2013). To improve
spatial resolution of white matter fiber tracking, ultrahigh field
magnetic resonance engineering is a basic solution. MRI for
clinical use is usually at 1.5T or 3T, and more recently at 7T. The
first human 8T MRI was installed in 1999 (Robitaille et al., 1999),
and 18 years later, a human whole-body 11.7T MRI (Quettier
et al., 2017). Efforts are underway for human 14–20T MRI
(Ekosi 20 Tesla Project, 2018). Human brain in vivo imaging was
already performed at 9.4T (Vaughan et al., 2006); rodent brain
and human postmortem tissue imaging at 21.1T (Qian et al.,
2012). The final resolution also depends on the acquisition and
reconstruction of diffusion images. For example, reconstructing
nerve fiber orientations, especially in brain regions where fibers
of multiple orientations intersect, involves a trade-off between
the accuracy of the peak orientation and the sensitivity to
crossing fibers and minor fiber bundles (Van Essen et al.,
2012; Lowe et al., 2016). Hitherto, the highest resolution for
the human brain achieved at 7T is 0.2 mm, owing to motion
correction methods (Stucht et al., 2015). However, even this rare
performance is not sufficient to study the connections between
individual neurons.

Functional MRI (fMRI) is the main MRI method for studying
functional connections in the human brain. Developed in the
early 1990s, fMRI first used contrast agents administrated
intravenously (Belliveau et al., 1991), then exploited correlations
in blood oxygen level dependent (BOLD) signals, based
on different magnetic susceptibilities of oxygenated and
deoxygenated hemoglobin to detect functional correlations
between brain regions (Ogawa et al., 1990, 1992; Bandettini et al.,
1992; Kwong et al., 1992). Functional MRI includes two main
methods: resting-state fMRI (rsfMRI), measuring correlations in
spontaneous activity between brain regions in resting subjects,
and task-evoked fMRI (tfMRI), trying to detect functionally
distinct brain regions during various tasks such as visuomotor
or cognitive processes (Glasser et al., 2016). Almost 30 years
ago, human fMRI studies were mostly performed at 1.5T with
a spatial resolution of 3–4 mm (Bandettini et al., 1992; Kwong
et al., 1992). Since then, the spatial resolution of fMRI has been
largely improved, such as the achievement of 0.65-mm resolution
in the human brain at 7T (Heidemann et al., 2012), but this is still
not sufficient to study how individual neurons are connected to
generate brain functions. Furthermore, the temporal resolution
of fMRI is fundamentally limited by the nature of BOLD
signals, which only indirectly reflect neuronal activity. Due to
the temporal dynamics of neurovascular coupling, the peak
of BOLD response to a neural stimulus occurs with 5–6 s
delay (Glover, 2011). Finally, as a result of artifacts and noises,
neurobiologically relevant signals represent only ∼4% of primary
data (Glasser et al., 2013).

Although MRI is a useful tool for studying human brain
connectivity in vivo, it offers little data on the connectivity
between neurocircuits and between individual neurons that
is essential for understanding the mechanisms underlying
brain function. Hence the need for meso-, micro- and
nano-connectomics.

Mapping Connections Between Neuronal Groups
and Between Individual Neurons
Meso- and micro-connectomics aim to map all the connections
between different neuronal groups defined by cell types or
connectivity patterns and between individual neurons at the
micrometer scale. Such studies, using invasive techniques, are
limited to experimental animals and postmortem human brain
tissue. The first mesoconnectome, capturing cell type-specific
connections as well as short- and long-range interregional
axonal projections, was achieved in the mouse in 2014, through
enhanced green fluorescent protein (EGFP)-expressing adeno-
associated viral vectors and high-throughput serial two-photon
tomography (Oh et al., 2014).

Single-cell staining is the first and most influential method
for studying neural circuits at microscale, established by Golgi
and Ramón y Cajal in the late 19th century (Golgi, 1875;
Ramón y Cajal, 1888). However, dyes could only be applied
to small blocks of tissue, making this method unsuitable for
tracing long-distance connections. To resolve this problem,
chemical markers were injected into circumscribed neural areas,
which, however, could not label selectively different types of
neurons (Kristensson, 1970; Kristensson and Olsson, 1971;
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Cowan et al., 1972; LaVail and LaVail, 1972). This was later
remedied by transgenic multicolor labeling strategies such as
‘‘Brainbow’’ (Livet et al., 2007). More recently, non-optical,
high-throughput methods were invented, such as Barcoding
of Individual Neuronal Connections (BOINC), which barcodes
individual neurons and introduces transsynaptic viruses to
map synaptic connections, based on high-throughput DNA
sequencing (Zador et al., 2012). Nevertheless, due to several
factors, connectivity reconstructed by this method is difficult to
interpret as neuronal connectivity with single-synapse precision
(Oyibo et al., 2018).

Light microscopy was, at the origin of the history of
neuroscience, the major tool for elucidating the problem of
intra-/inter-neuronal and interregional connectivity in the brain.
However, conventional light microscopes cannot resolve neural
structures smaller than ∼0.25 µm, due to the diffraction
barrier identified almost 150 years ago (Abbe, 1873). This
barrier was finally broken by super-resolution microscopy
developed in the late 20th century, which can routinely
resolve a few tens of nanometers, such as stimulated emission-
depletion (STED) microscope (Hell and Wichmann, 1994),
structured illumination microscopy (SIM; Gustafsson, 2000) and
photoactivated localization microscopy (PALM; Betzig et al.,
2006). Yet, even so, major challenges still lie ahead, in particular,
mapping connections in small neural areas where many cells are
targeted at the same time and where the connection density is
high (Lichtman et al., 2008). This may require a resolution of
a few nanometers (Huang et al., 2010). How to map neuronal
connections at this scale?

Mapping Neural Connections at Individual Synapses
and Gap Junctions
Nanoconnectomics uses EM, the only method capable
of identifying unequivocally synapses and gap junctions
at nanometer or even sub-nanometer resolution. EM
provides high-resolution validation of macro-, meso- and
micro-connectomes.

The first electron microscope, a transmission electron
microscope (TEM), was built in 1931, only capable of 14.4×

magnification (Ruska, 1993). However, 2 years later, the
resolving power of the TEM (12,000×) surpassed already the
resolution limit of light microscopy at that time (Ruska, 1993).
Another major type of EM is scanning electron microscopy
(SEM), introduced in 1937 (von Ardenne, 1937), capable of
sub-nanometer resolution (Masters et al., 2015). TEM remains
to date the highest resolution technology able to validate specific
gap junctions and small synapses requiring, for example, 0.3 nm
resolution (Marc et al., 2013). Recently, using the aberration
correction technique, scanning TEM (STEM) has even achieved
a sub-ångström resolution of 45 pm (Sawada et al., 2015).

However, EM methods are extremely time-consuming
and labor-intensive, so currently limited to very small
postmortem specimens. The first and the only almost complete
nanoconnectome, that of Caenorhabditis elegans hermaphrodite,
whose nervous system has in total 302 neurons, was achieved in
1986 with serial-section TEM, containing about 5,000 chemical
synapses, 2,000 neuromuscular junctions and 600 gap junctions

(White et al., 1986). Today, studies continue to fill the gaps in
this original connectome and to address further questions such
as the nature of individuality and how genetic and environmental
factors regulate connectivity (Mulcahy et al., 2018).

The goal of connectomics is to experimentally map a full
connectome of the mammalian brain, and ultimately the human
brain. Is this achievable?

Metaphor and Myth
What About Biological Reality?
Although MRI methods are capable of large-scale, rapid-
throughput mapping of human brain connectivity at macroscale,
MRI-derived macroconnectomes result from data reduction,
simplification and assumptions, and they do not necessarily
reflect the actual structure and function of the brain. They are
even described as ‘‘metaphors’’ or ‘‘caricatures’’ (Catani et al.,
2013; Margulies et al., 2013).

MRI methods suffer from low spatial resolution. The isotropic
voxel size often used is 2 mm (dMRI) or 3 mm (rsfMRI) at 3T and
1–2 mm at 7T. However, the human cerebral cortex contains on
average 40,000 neurons and 3 × 108 synapses/mm, and the white
matter contains ∼300,000 axons/mm2 (Van Essen et al., 2012).

The fundamental concept of dMRI consists in using water
molecules to probe neural tissue structure (Le Bihan and
Johansen-Berg, 2012). However, the basic mechanism underlying
water diffusion in neural tissue, especially the role of cell
membranes in modulating water diffusion, remains to be
clarified, hence the fundamental limitation of the sensitivity
of dMRI resides in the complexity of water diffusion in the
microenvironment of the brain (Van Essen et al., 2014; Le
Bihan and Iima, 2015). MRI tractography is indirect and
probabilistic: it reconstructs neuronal connections by estimating
the ‘‘most likely’’ fiber orientations at every voxel, which may
contain tens of thousands of diverging axons; it produces
more invalid than valid bundles (Margulies et al., 2013;
Maier-Hein et al., 2017). MRI tractography is also biased
towards some brain regions, such as the famous ‘‘gyral bias,’’
induced by current fiber tracking algorithms which tend to
track towards gyral crowns rather than the walls of sulci
or the sulcal fundi (Van Essen et al., 2014; Schilling et al.,
2018). The signal-to-noise ratio (SNR) in subcortical regions
is usually weaker than in cortical regions, mainly due to
their buried location relative to the head coil (Uğurbil et al.,
2013). Data processing introduces artifacts and distortions that
are difficult to distinguish from actual neural connections
(Jones et al., 2013).

The sensitivity of fMRI is affected by the fundamental
problem of neurovascular coupling. BOLD signals reflect a
complex combination of vascular system dynamics as well as
the activity of neurons, astrocytes (Iadecola and Nedergaard,
2007), interneurons (Cauli et al., 2004), pericytes (Hall et al.,
2014), vascular endothelium (Hillman, 2014) and smooth
muscle cells (Cipolla, 2009). However, the way all these
elements contribute to fMRI signals still remains to be clarified.
Furthermore, fMRI detects only functional correlations between
brain regions, and most functional connections show significant
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temporal fluctuations depending on measurement and analysis
methods—they do not necessarily reflect the causal relationships
between neural connections (Friston, 2011). This means that the
interpretation of results is often doubtful.

From this point of view, current macroconnectome maps do
not offer an actual image of the brain. Reproducibility is also a
major concern for MRI studies (Zuo et al., 2014).

Volume, Time and Dynamics
The major challenge for micro- and nano-connectomics is the
huge number of neurons in the human brain: ∼86 billion
(Herculano-Houzel, 2012). With current techniques, it
would take ∼10 million years to map all the synapses
in a single human brain (Morgan and Lichtman, 2013).
Moreover, the reconstruction of a complete nanoconnectome
would only be possible in some invertebrates or simple
nervous systems, because the magnification required to
visualize synapses produces very small images of tens of µm2

(DeFelipe, 2015).
The storage and processing of gigantic volumes of data are

problematic (Schreiner et al., 2017). The first fairly complete
reconstruction of the C. elegans nanoconnectome required
∼10,000 EM images (White et al., 1986). Recent local circuit
mapping by EM has high data output rates of gigabytes per
minute (Helmstaedter and Mitra, 2012). At synaptic resolution,
a human brain may require ∼2 million petabytes (Swanson
and Lichtman, 2016). And this is just for the anatomical data,
but what if we include the electrophysiological, biophysical and
biochemical counterparts?

Although section preparation automation techniques such
as SBF (serial block-face) SEM (Denk and Horstmann, 2004)
and ATUM (automated tape ultramicrotomy) SEM (Schalek
et al., 2011) were invented and data acquisition has been
accelerated through parallel image processing (Eberle et al.,
2015), the automation of large-scale image segmentation and
reconstruction remains the fundamental bottleneck for EM.
Methods such as machine learning and crowdsourcing are
gradually reducing the problem (Kim et al., 2014; Greene
et al., 2016; Staffler et al., 2017), but no existing computational
segmentation algorithm is accurate enough to completely
replace human annotators. A recent reconstruction of the
nanoconnectome of 950 neurons in the mouse retina took
∼30,000 h (Helmstaedter et al., 2013). At current speeds, the
complete reconstruction of the nanoconnectome of the human
brain may require ∼14G person-years (Plaza et al., 2014).

Therefore, it seems impossible that we will ever resolve
the full micro- or nano-connectome of any mammal by only
relying on experimental methods (Schröter et al., 2017), which
in the opinion of many researchers, is nothing more than a
myth (Catani et al., 2013). Moreover, the very concept of ‘‘full’’
connectome mapping is problematic: (1) due to connectivity
deduction from primary experimental data, individual variability
and the parallel application of multiple imaging, reconstruction
and analysis methods, any unified map would be based
on probabilistic representations of connectivity data (Sporns,
2013b); (2) all the molecular and cellular components of
the nervous system are constantly resynthesized or replaced;

development involves changes in myelination and the number
of neurons; synaptic connections are subject to continuous
rewiring and changes in strength and dynamics driven by
experiences (Markram and Tsodyks, 1996; Holtmaat and
Svoboda, 2009; Bennett et al., 2018; Roelfsema and Holtmaat,
2018). Therefore, any connectome map represents only a
snapshot of the dynamic brain; and (3) neurons can rapidly
change their functional roles in response to chemical signals
such as peptides, hormones or neuromodulators, all with no
visible modification to the connectivity diagram, and each
wiring diagram can encode many possible circuit outcomes
(Bargmann and Marder, 2013).

However, if we want to understand the neural mechanisms
underlying brain function, we have to identify their constituent
neural connections from the molecular and cellular levels to
the whole brain. Facing the ‘‘metaphor’’ of macro-connectomics
and the ‘‘myth’’ of micro- and nano-connectomics, how can we
overcome the barriers of scale and complexity to reconstruct the
neural connections that give rise to brain function?

FUNCTIONAL MAPPING: FROM CRANIAL
BUMPS TOWARDS NEURAL
MECHANISMS

Feeling the Bumps of the Skull
What is the link between verbal memory and bulging eyes, the
cerebellum and sexuality? About 200 years ago, early attempts
to localize brain functions and behaviors in cerebral structures
began with Franz Gall’s phrenology (Gall and Spurzheim,
1810). The brain was considered to be composed of different
‘‘organs,’’ each with its own function, and the size of cortical
organs depended on the development of mental faculties,
reflected through cranial bumps. Gall noticed that individuals
with a retentive verbal memory had bulging eyes and that
several cases of aphasia were caused by the damage to the
frontal lobe. Therefore, he localized verbal memory in the
frontal lobes, assuming that the super development of these
lobes pushed out the eyes. Feeling the burning nape of a
nymphomaniac widow, he considered the cerebellum to be
the organ of the sexual instinct (Gall et al., 1838). Although
phrenology was based on such false assumptions, it drove
the functional mapping of the brain. After all, Gall was not
completely wrong with the relation between brain structure
and function, which has been partly supported by some
modern studies, in particular, the famous MRI study showing
that London taxi drivers have larger posterior hippocampi
(Maguire et al., 2000).

To surpass the simplistic correlation between cranial bumps
and mental faculties, functional mapping further developed
in cytoarchitectonics and myeloarchitectonics to build maps
of cerebral regions according to their structure and inferred
function. Motor function was one of the first functions to
be located in the brain, owing to the identification of the
giant pyramidal cells (Meynert, 1867; Betz, 1874; Lewis, 1878;
Campbell, 1903). Cécile and Oskar Vogt mapped 200 structural
and functional areas in the monkey cortex, using myelin-
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stained histological sections (Vogt and Vogt, 1903). Five years
later, Brodmann (1908) distinguished 43 cytoarchitectonic areas
in the human cortex, using cell body-stained histological
sections, and assigned to each of them a function. Although
today Brodmann’s map is still largely used to localize
neuroimaging data (Turner and Geyer, 2014), it does not
match recent anatomical and functional data in many brain
regions, and the mosaic-like segregation of the cerebral
cortex is far from reflecting its heterogeneous structure
(Amunts and Zilles, 2015).

Methods in cytoarchitectonics and myeloarchitectonics
mapped brain functions to brain areas mainly by inference. To
relate directly behaviors to brain regions, clinicopathological
correlation was one of the first methods developed in the
history of functional mapping. The faculty of speech was
located in the anterior lobes, the lesions to which led frequently
to the loss of speech (Bouillaud, 1825; Broca, 1861). Motor
centers were located in the region of the middle cerebral artery
through the observation of ‘‘Jacksonian seizures’’ with unilateral
convulsions (Jackson, 1870). These early studies suggested that
the brain consisted of specific, circumscribed, yet interconnected
functional areas, the disconnection of which caused neurological
disorders. This led to the concept of disconnection syndromes,
caused by the destruction of either the centers of convergence
where crucial associations were formed or the conduction
pathways transmitting information between these centers
(Wernicke, 1874; Dejerine, 1892). The concept of disconnection
syndromes was further developed in the 1960s: the studies of
split-brain patients revealed the topographic organization and
functional specificity of the corpus callosum (Gazzaniga et al.,
1962), and neo-associationism reinterpreted apraxia, amnesia,
agnosia and hemispatial neglect (Geschwind, 1965a,b). However,
the phenomenon of ‘‘diaschisis’’ questioned localization of
brain functions: the destruction of a cortical area could produce
transient symptoms in other distant areas, which showed that
immediate symptoms were not a reliable guide to the function
of a destroyed cortical area (von Monakow, 1914). This was
one strong argument held by holists. They considered that
brain functions were distributed continuously throughout
the brain: stimulation of a single point in the nervous system
stimulated the whole system; a weakened point weakened the
whole system (Flourens, 1842). In the late 20th century, brain
functions and dysfunctions were further investigated in vivo in
human subjects with neuroimaging techniques, in particular
positron emission tomography (PET) and fMRI (Frackowiak,
1986, 1994). Today, the relationship between segregation and
integration, localized and distributed aspects of brain functions
still poses a major challenge to neuroscience (Cauda et al.,
2014; Sporns, 2014), and new approaches are mandatory
(Frackowiak and Markram, 2015).

To directly test the function of brain regions, experimental
methods, in particular, electrical stimulation and ablation
techniques were developed. Through electrical stimulation that
induced motor responses, the motor centers were first mapped
in the dog cerebral cortex (Hitzig and Fritsch, 1870), then in
a patient with a cranial malformation exposing parts of both
cerebral hemispheres (Bartholow, 1874). These results were

demonstrated by destructing the motor centers in the monkey
brain, which caused motor paralysis totally dissociated from
sensory paralysis (Ferrier, 1875). However, the localization of
the motor centers was questioned by the ‘‘functional instability’’
of the motor cortex, revealed by stimulating repetitively the
same point in the motor cortex (Brown et al., 1912), which
suggested that the motor cortex was a changing organ. The
famous ‘‘sensory and motor homunculi’’ were built through
electrical stimulation of the cerebral cortex in conscious patients
undergoing surgery for epilepsy (Penfield and Boldrey, 1937).
Owing to ablation techniques, vision was located in the occipital
lobe and auditory function in the temporal lobe (Panizza, 1855;
Munk, 1890). And ablation of the frontal lobe in monkey was
found to disintegrate the personality and to destroy the ability
to classify and synthesize groups of representations (Bianchi,
1920). However, these experimental methods suffered from low
resolution and lacked specificity.

With the development of single-cell recording techniques,
in particular tungsten microelectrodes invented in the 1950s
(Hubel, 1957), specific brain functions were localized in certain
populations of cells, such as ‘‘complex cells’’ in the visual cortex
with specific oriented receptive fields (Hubel and Wiesel, 1962),
‘‘place cells’’ in the hippocampus that respond to stimuli in
specific spatial locations (O’Keefe and Dostrovsky, 1971), ‘‘face
cells’’ in the superior temporal sulcus that respond selectively
to faces (Desimone et al., 1984), and ‘‘mirror neurons’’ in the
rostral part of the inferior premotor cortex that become active
not only during the execution but also during the observation
of specific movements (di Pellegrino et al., 1992). During the
same period, theoretical neuroscience explored brain functions
through mathematical modeling, such as Marr’s famous models
of visual processing widely adopted in computer vision (Marr,
1982). Nevertheless, both of these approaches could not resolve
how different types of brain cells and circuits interact together to
generate the full array of diverse brain functions.

Over the past 200 years, functional mapping has developed
from correlation-based methods to experimental perturbation
of brain activity; from observing correlations between cranial
bumps and behavioral stereotypes, cyto-/myelo-architectures
and brain functions, brain lesions and behavioral deficits, to
relating brain regions to behavioral outputs through electrical
stimulation or ablation techniques; from localization of brain
functions in brain regions to those in specific populations of cells.
Functional mapping is evolving towards causally linking brain
structure to function with high resolution and specificity. How
does modern neuroscience face this major challenge?

Recording and Manipulating Neural
Activity
Current correlation-based methods are particularly represented
by fMRI studies that detect the similarity of regional activation
profiles reflected indirectly in BOLD signals to extract patterns
of correlation or covariance and to infer functional connectivity
between brain regions. Trying to correlate neural connections
and brain regions to pre-defined behavioral categories, this
approach is described by some researchers as ‘‘neophrenology’’
(Miller, 2008). The biophysics of how BOLD signals relate to
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underlying neural activity remains an unsolved question and
represents a fundamental limitation of fMRI studies (Hillman,
2014; Gao et al., 2017). Since correlation-based methods deliver
non-causal similarity-based metrics of statistical dependence
(Bassett and Sporns, 2017), other methods are used to unravel the
causal relationship between neural activity and brain function,
in particular recording and manipulating neural activity and
observing the behavioral outputs.

About 150 years ago, resting and action potentials were first
recorded from frog sciatic nerves with a differential rheotome
(Bernstein, 1868). Almost 80 years ago, the first intracellular
recording of individual neurons was achieved in the squid giant
axon with glass microelectrodes (Hodgkin and Huxley, 1939).
Ten years later, voltage clamp was developed, and patch clamp
in the 1970s (Cole, 1949; Marmont, 1949; Neher and Sakmann,
1976). About 60 years ago, implantable microelectrodes were
developed to record from single neurons in a freely behaving
ground squirrel during 4 days (Strumwasser, 1958). Nowadays,
penetrating multi-electrode arrays (MEAs) can record from
individual neurons simultaneously at multiple sites to study
distributed neural circuits (Gehring et al., 2015; Maccione
et al., 2015), and mesh nanoelectronics, which are tissue-like
electronics consisting of a macroporous mesh structure with
addressable electronic devices, have achieved stable single-
neuron level chronic recording and stimulation in freely
behaving animals for at least 8 months (Fu et al., 2016). Yet, even
so, the huge number of neurons and the complexity of neural
interactions preclude the high-density parallel recordings of the
whole mammalian brain.

Almost 230 years ago, experimental manipulation of neural
activity began with electrical stimulation of nerves. The
first electrophysiological experiments were achieved in frog
neuromuscular preparations through electrical stimulation of
sciatic nerves by using electric machine or atmospheric electricity
during lightening (Galvani, 1791). Electrical stimulation provides
high temporal resolution and can be used in humans to modulate
neural activity, such as deep brain stimulation, introduced in
clinical practice in the 1950s to treat psychiatric disorders
such as schizophrenia (Delgado et al., 1952) and neurological
disorders such as Parkinson’s disease (Benabid et al., 1987).
Multi-electrode arrays were developed in the 1950s to record
and manipulate neural activity in living laboratory animals
(Strumwasser, 1958) and are evolving towards chronic, large-
scale recording and stimulation at the single-neuron level
in freely behaving animals (Fu et al., 2016). Optogenetics,
developed in the early 21st century, has been generalized
during the last decade to test and generate hypotheses on
brain function in non-human neuroscience, using genetically
encoded light-activated proteins to manipulate cell activity with
cell type-specific and high temporal resolution (Zemelman
et al., 2002; Boyden et al., 2005; Lima and Miesenböck, 2005).
Nevertheless, it is extremely challenging to control separately all
of the cells in the mammalian brain with high spatiotemporal
resolution during behavior, particularly due to light scattering
and power deposition requirements (Deisseroth, 2015).

Noninvasive approaches such as EEG and MEG are suitable
for human studies and long-term monitoring of brain activity,

but their low spatial resolution precludes studies at the
cellular level (Babiloni et al., 2009; Wendel et al., 2009).
Efforts are underway to measure at the cellular level brain
activity in persons carrying recording or stimulation electrodes
or neurotechnological devices for therapeutic applications or
experimental studies, such as deep brain stimulation and brain-
machine interface (Moran, 2010; Lozano and Lipsman, 2013).
However, these studies are not scalable to large-scale monitoring.
Noninvasive stimulation techniques for human studies usually
activate brain areas on a centimeter scale, such as transcranial
magnetic stimulation, introduced in 1985 to stimulate the human
motor cortex for neurological examination (Barker et al., 1985).
These techniques lack accuracy and specificity.

Over the past 200 years, experimental studies trying to
unravel the causal relationship between neural activity and
behavior have evolved from recording and stimulating nerves
in frog neuromuscular preparations to chronic monitoring
and manipulation of individual neurons in freely behaving
animals, from electrical stimulation and ablation techniques
to optogenetic manipulation with cell type-specific and high
temporal resolution, from univariate correlation between brain
regions and behavioral stereotypes to large-scale multivariate
monitoring and manipulation of neural circuits, with the
ultimate goal of producing a dense functional map of the
dynamic brain (Insel et al., 2013).

However, to demonstrate the causal relationship between
neural activity and brain function, dense functional mapping
requires in principle a comprehensive map of the connectome
and the parallel recording from the interacting molecules, cells,
circuits and areas throughout the brain. Even with technological
advances, dense functional mapping of the whole brain is
extremely challenging and thus considered by many researchers
to be science fiction (Shen, 2013). How can we overcome this
challenge to identify all the molecular and cellular mechanisms
underlying brain function and behavior?

Identifying the Molecular and Cellular
Mechanisms Underlying Brain Function
and Behavior
Quantifying behavior is a major challenge to studies that
aim to identify the neural correlates of pre-defined classes
of behavioral stereotypes, from the movement of a limb to
decision making and emotions (Blakemore and Robbins, 2012;
Koelsch, 2014; Uhlmann et al., 2017), based on psychological
taxonomy or descriptive representations of observable behavioral
outputs which are individual- and context-dependent. In these
kinds of studies, behaviors are classified into schemes that
are either coarse-grained or intuitively defined and biased by
human observers’ assumptions (Berman, 2018). Such behavior
classifications do not necessarily correspond to inherent behavior
structure constrained by biophysics and neural activity, and they
preclude the identification of intrinsic neural mechanisms that
give rise to behavior—the output of the functioning brain as an
integrated system.

Automated behavior quantification and classification using
techniques such as machine vision and learning to extract
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representations of stereotyped behaviors are the first steps
towards objectivity and consistency in behavior classification and
have the potential to reveal behavioral patterns overlooked by
human observers, although these approaches are still based on
assumptions and biased (Hong et al., 2015; Robie et al., 2017;
Todd et al., 2017; Berman, 2018).

Dense functional mapping is producing huge amounts
of data, ranging from molecular and cellular interactions
to the connectivity between brain regions and behavioral
outputs. Network-based approaches propose to analyze these
big, complex data and to model brain networks with theoretical
and computational methods such as graph theory and algebraic
topology, through statistical inference and dimensionality
reduction (Bassett and Sporns, 2017). Although these approaches
have the potential to uncover structural and functional
features of brain activity, they are subject to methodological
and interpretational limitations that result from uncertainties
in data acquisition and network definition, thus requiring
sophisticated, neurobiologically based brain models down to
the molecular scale to reveal the mechanisms underlying brain
function and behavior (Sporns, 2014; Medaglia et al., 2015;
Bassett and Sporns, 2017).

Organism-level behavior emerges from the interaction of
structural connectivity and signaling processes at the molecular,
cellular and circuit levels, involving the dynamic activity of huge
numbers of molecules and cells as well as multiple physiological
and biochemical systems. It is the output of the functioning
brain as an integrated system. How can we avoid assumptions
in behavior classification that bias our research on the causal
relationship between brain structure and function? How can we
overcome the barriers of scale and complexity to trace the causal
chains of events leading from molecular and cellular mechanisms
to brain function and behavior?

SIMULATION NEUROSCIENCE: FROM THE
SQUID GIANT AXON TO THE HUMAN
BRAIN

Over past millennia, brain research has evolved through
philosophical, experimental and theoretical phases, all of which
have contributed to the development of modern neuroscience.
Great achievements have been realized in neuronal mapping,
connectivity mapping and functional mapping, but these
endeavors are hindered by the barriers of scale and complexity.
How can we scale up cellular phenotyping and deal with the
dynamics of cellular properties to achieve a reliable neuronal
cell-type classification? How can we rise to the challenge of
volume, time and dynamics in full connectome mapping?
How can we identify the molecular and cellular mechanisms
that give rise to brain function and behavior? To overcome
these fundamental barriers, brain research has to shift to a
new phase.

Simulation neuroscience aims to fill the gaps in our
knowledge of brain structure and function through building
a digital copy of the brain with predictive methods, by
combining experimental and theoretical approaches (Markram,

2006; Markram et al., 2015; Figure 3). It has the potential to
overcome the challenge of scale and complexity. The following
pages are aimed at exploring the historical roots of this endeavor
by identifying the major milestones that are the most related to it
and that are capable of characterizing it in a concise way, instead
of conducting an exhaustive survey of all the investigators whose
important work has contributed to the evolution of modeling and
simulation in neuroscience.

All Began With an Axon
Neuroscience originated in a nerve, while detailed simulation in
neuroscience began with an axon.

Action potentials were already measured in frog nerve-
muscle preparations more than 170 years ago (du Bois-Reymond,
1843), but how is the action potential generated? Although a
mathematical model of nerve excitability, the ‘‘integrate and
fire’’ model, was built in the early 20th century, based on data
obtained from frog nerve stimulation, it was a simple capacitor
circuit model (Lapicque, 1907). Since the first measurement
of action potentials, the molecular mechanisms of action
potential generation had remained an open question over the
following 100 years.

More than 60 years ago, two neuroscientists managed to
insert voltage clamp electrodes into a squid giant axon and
measured the flow of electric current through its surface
membrane (Hodgkin and Huxley, 1952). On the basis of their
experimental data and inspired by cable theory rooted in the
19th-century model of signaling through submarine telegraph
cables (Thomson, 1857), they built a mathematical model of ionic
currents to quantitatively account for conduction and excitation
and simulated the action potential on the Cambridge University
computer. Simulations showed how potassium and sodium ion
channels could generate the action potential and predicted the
electrical behavior of the axon consistent with experimental data.
This was the first detailed digital simulation of a physiological
property of a neuron.

Cable theory was further developed to take account of
dendritic branching that largely affects neuronal processing. This
endeavor gave birth to the first multicompartment dendritic
neuron model, based on anatomical and electrophysiological
data and simulated on an IBM 650 computer (Rall, 1959,
1962; Segev and Rall, 1998), which was further developed
in the following years to unravel the role of dendrites in
information transmission (Segev and London, 2000). Single
neuron models then evolved into neurocircuit models to study
the activity of neuronal populations and synaptic connectivity.
The pioneering studies consisted in reconstructions of field
potentials and dendrodendritic synaptic circuits in the olfactory
bulb for interpreting their underlying mechanisms, based on
known anatomical organization and nerve membrane properties
and simulated on Honeywell 800 and IBM 370/168 computers
(Rall and Shepherd, 1968; Shepherd and Brayton, 1979).

The development of supercomputers in the 1980s drove
large-scale simulation of detailed neuron networks, which
made it possible to study collective neuronal activities and
the neural mechanisms underlying certain brain functions. In
1982, a network model of 100 multicompartment hippocampal
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FIGURE 3 | Simulation neuroscience workflow.

neurons, each capable of intrinsic bursting and interconnected
by excitatory chemical synapses, was simulated on an IBM
370/168 to reproduce field potentials and intracellular recordings
during interictal spikes in epilepsy and to identify the
mechanisms underlying this form of neuronal synchronization
(Traub and Wong, 1982; IBM Archives, 2003). Six years later, a
network of 990 multicompartment hippocampal neurons with
different types of cellular interactions was simulated on an
IBM 3090 to analyze in particular the mechanisms regulating
neuronal synchronization in epilepsy (Traub et al., 1988). At
the same time, began the early efforts to simulate neurocircuitry
underlying vertebrate behavior, in particular simulation of a
segmental network of inhibitory and excitatory interneurons
underlying locomotor behavior in lamprey, using Rall neuron
models with one soma and a three-compartment dendritic
tree, which unraveled the cellular bases of segmental pattern
generation, including central and sensory mechanisms and

the immediate supraspinal mechanisms initiating locomotion
(Grillner et al., 1988, 1991).

In the early 1990s, the simulator ‘‘NEURON’’ was developed
for empirically based simulations of single and networks of
neurons with complex anatomical and biophysical properties,
such as complex branching morphology, multiple channel types,
inhomogeneous channel distribution, ionic diffusion and the
effects of second messengers (Hines, 1989, 1993). During the
same period, was released the GEneral NEural SImulation System
(GENESIS), a simulation environment for constructing realistic
models of neurobiological systems from subcellular processes
and individual neurons to networks of neurons and neuronal
systems (Wilson et al., 1989; Bower et al., 2013). In the following
years, simulators such as MCell and STEPS were developed to
simulate biochemical signaling pathways at the molecular scale
(Stiles et al., 1996; Hepburn et al., 2012). As detailed models of
neural systems have become more and more sophisticated, efforts
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are underway to develop a language that provides a common data
format for defining and exchanging descriptions of these detailed
models, such as the NeuroML project which aims to develop an
eXtensible Markup Language (XML) based description language
(Goddard et al., 2001).

In parallel with the development of simulators, large-scale
simulations continued to grow. A single-column thalamocortical
network model with 3,560 multicompartment neurons,
including seven cell types characterized by different types of
morphology, connectivity and electrical behavior, was simulated
on a Linux cluster (IBM e1350) to particularly address the
physiology of network oscillations and epileptogenesis (Traub
et al., 2005). Although the model exhibited gamma oscillations,
sleep spindles and epileptogenic bursts, it was insufficient to
describe other neuronal network behaviors, particularly due
to the omission of many cell types, many unknown structural
details, the absence of synaptic plasticity and the restriction
of the model to a single column. In the modelers’ view, their
work represented an extremely preliminary step towards
understanding subtle aspects of brain function, such as learning
or information processing, and they hoped for more detailed
models to study a broader range of network phenomena. They
considered that detailed modeling of extensive brain circuits
was necessary for understanding brain function and for making
important experimental predictions that would not have been
made without the model.

These previous endeavors mainly aimed to build models to
reproduce certain brain functions or dysfunctions, such as action
potential generation or neuronal synchronization in epilepsy.
However, to trace the causal chains of events leading from
molecular and cellular mechanisms to diverse brain functions
and behaviors, biologically realistic dense reconstructions of
the brain realized without the goal of fitting the model to
any specific function (if reconstructions are correct, functions
should arise naturally) are demanded. This need led to the
birth of simulation neuroscience in the early 21st century
(Markram, 2006). Since then, digital reconstructions have
increased in size and biological accuracy to unravel deeper
mechanisms underlying brain function. To date, the most
detailed reconstruction concerns the microcircuitry of rat
somatosensory cortex, containing ∼31,000 multicompartmental
conductance-based neuron models, including 55 layer-
specific morphological and 207 morphoelectrical subtypes,
and simulated on supercomputers such as the Blue Brain
IV, ranked the 100th most powerful supercomputing system
(Top500, June 2015). This digital reconstruction is able to
generate emergent network activity and to reproduce an array of
in vitro and in vivo experiments without parameter tuning, and
it enables experiments so far impossible either in vitro or in vivo
(Markram et al., 2015).

Since its origin, detailed simulation in neuroscience has
evolved from a single cell type to more than 200 cell types
characterized by morphological and physiological features, from
one type of synaptic connectivity to the predicted anatomical
and physiological properties of all the intrinsic synapses
formed onto and by any neuron, from specific models aimed
at reproducing certain forms of neuronal activity to generic

dense reconstructions of brain regions with various neuronal
activity patterns and emergent network behaviors, from an
action potential generated through a squid giant axon to
diverse network behaviors of rat neocortical microcircuitry
with 31,000 neurons connected through 36 million synapses.
A large body of disconnected experimental datasets and
knowledge accumulated since the origin of neuroscience have
been integrated into a unified digital copy of neocortical
microcircuitry, allowing deeper insights into the neural
mechanisms underlying brain function. Efforts are underway
to reconstruct more electrophysiological and biochemical
mechanisms and to simulate the human brain.

Transcending Scale and Complexity
Simulation neuroscience identifies strategic data and formulates
principles of brain structure and function to accelerate our
understanding of the brain, instead of experimentally mapping
all the elements and activities in the brain, which is impossible
to achieve due to their scale and complexity (Markram, 2006;
Markram et al., 2015; Figure 4).

Neuronal Reconstruction and Simulation
Reconstructions of single neurons are the building blocks of the
digital brain. In the early years of simulation in neuroscience,
some researchers were aware of the importance of describing the
detailed structure of neurons to simulate the voltage response
to inputs impinging on the cell in different locations and
interactions between cells generated by extracellular current
flows. They were also aware of the importance of reconstructing
the diverse types of electrical behavior of neurons. Therefore,
they argued against using point neuron models (Traub et al.,
1988). Nevertheless, at this stage, the endeavor to digitally
reconstruct the morphological and physiological types of
neurons was limited in scale and accuracy, so new approaches
were to be developed.

Historically, neuronal morphologies were first qualitatively
described through visual inspection, then quantitatively
described based on morphometric parameters. Since these
methods are not standardized to objectively describe complex
branching patterns of neuronal trees, topological methods
have been developed in simulation neuroscience to rigorously
quantify the structural differences of neuronal trees and to
classify neurons into distinct morphological types by encoding
the spatial structure of each neuronal tree with a unique
topological signature (Kanari et al., 2018). Then cloning each
morphological type with statistical variations allows scaling up
the reconstruction of neurons belonging to each morphological
type while respecting biological variability.

Automated statistical analysis can reveal distinctive electrical
types; computational multi-parametric approach can extract
combinatorial expression rules of ion channel genes underlying
electrical phenotypes; ion channels can be automatically
inserted by simulators combined with an automated fitting
algorithm. These methods developed in simulation neuroscience
allow objective and high-throughput reconstruction of
electrical types (Khazen et al., 2012; Druckmann et al., 2013;
Markram et al., 2015).
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FIGURE 4 | Transcending scale and complexity.

The high-throughput digital reconstruction of different
types of neurons can be extended from morphological and
electrophysiological features to other dimensions such as
projection and molecular features when sufficient data that
allow quantifying these features become available. Furthermore,
the structure and function of brain cells vary according to
their position in the brain; this should be considered while
reconstructing different classes of brain cells. To support this
endeavor, whole-brain cell atlases are being built, providing
insights into cellular organization only possible at the whole-
brain scale. The first dynamic 3D cell atlas for the whole
mouse brain has recently been achieved, showing cell positions
constructed algorithmically from whole brain Nissl and gene
expression stains, and providing the densities and positions of all
excitatory and inhibitory neurons, astrocytes, oligodendrocytes
and microglia in each of the 737 brain regions defined in the
Allen Mouse Brain Atlas (Erö et al., 2018).

During the evolution of simulation neuroscience, the digital
reconstruction of different types of neurons has become more
and more multi-constrained, realistic and high-throughput, and
it allows evolving current neuronal classifications (Deitcher et al.,
2017). Today, we have objective classification of morphologies
which is helping define morphological types; we have more
or less agreed electrical protocols that can be used to describe
electrical types; we have tracing studies that are helping define
the projection types, and we have single cell transcriptome
data that are beginning to describe the genetically different

types of cells. Efforts are underway to define a minimum
sample size capable of reliably revealing distinct types of brain
cells, to reduce dimensionality by defining a relevant level of
granularity and to identify permanent molecular features that
maintain cell identity—a step forward towards an objective and
comprehensive classification of neuronal types.

Connectivity Reconstruction and Simulation
More than 100 years ago, Santiago Ramón y Cajal initiated
predictive reconstruction by inferring neuronal connectivity
from morphological features of neuronal arbors (Ramón y
Cajal, 1894). About 80 years later, trying to digitally reconstruct
neuronal circuits, some researchers considered pointless to
explicitly specify all the neuronal connections, which is
unattainable experimentally (Traub et al., 1988). They chose to
reconstruct neuronal connections by a series of random choices,
based on the statistical properties of the network topology, such
as the average number of inputs or outputs per cell and the
probability of connection between pairs of cells.

New approaches based on statistical modeling and synaptic
rules have been developed in simulation neuroscience to
accurately predict synaptic connectivity (Perin et al., 2011; Hill
et al., 2012; Ramaswamy et al., 2012), in particular data-driven
algorithmic approaches based on established principles of
synaptic connectivity and constrained by interdependencies
between microcircuit properties such as the number of synapses
and bouton densities. With these approaches, it is possible to
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predict the number and location of all synaptic connection types
shown experimentally and connection properties impossible to
measure experimentally such as the number of source and target
cells and synapses (Markram et al., 2015; Reimann et al., 2015).
The physiology of synapses can be predicted by formulating
rules of synaptic types based on experimental data to generate
a relatively complete map of synaptic dynamics (Markram et al.,
2015). Synaptic plasticity rules can also be formulated (Kalisman
et al., 2005; Loebel et al., 2013). In this way, it is possible to predict
the anatomical and physiological properties of all the intrinsic
synapses formed onto and by any neuron. These predictions
combined with future experiments could be used to further refine
connectivity reconstruction and simulation.

Functional Reconstruction and Simulation
More than 60 years ago, Hodgkin and Huxley’s reconstruction
and simulation of the action potential predicted the properties
of the gating structures of ion channels (Hodgkin and Huxley,
1952), showing the power of simulation in neuroscience to
unravel biological mechanisms long before their experimental
observations. Since the birth of simulation neuroscience, digital
reconstructions and simulations have been used to fill the vast
gaps in our data, to interpret experimental observations and
identify the underlying mechanisms, and to test and generate
theories about brain function and dysfunction (Markram, 2006;
D’Angelo, 2014; Frackowiak and Markram, 2015).

To identify neural mechanisms that give rise to emergent
complex behavior, reconstructing and simulating neurons
embedded in microcircuits, microcircuits embedded in brain
regions and brain regions embedded in the whole brain is an
approach consistent with the biological reality that organism-
level behavior is the output of the functioning brain as an
integrated system, from molecular and cellular interactions to
connections between neurocircuits and between brain regions.
Neurorobotics, combined with digital reconstructions, creates
new possibilities for studying neural mechanisms leading
to emergent behavior across different spatiotemporal scales
(Falotico et al., 2017).

The deep relationship between structure and function that
guided the first investigators at the origin of neuroscience
is the foundation of simulation neuroscience. Recent digital
reconstructions and simulations of rat neocortical microcircuitry
could reproduce the spatial mode and the temporal dynamics
of empirically observed functional networks without parameter
tuning and showed emergent network states modulated by
physiological mechanisms (Markram et al., 2015). In the same
reconstructions, a new algebraic topology approach revealed that
synaptic networks contain an abundance of cliques of neurons
bound into cavities that guide the emergence of correlated
activity, showing a formal link between neural network structure
and function (Reimann et al., 2017b). Our understanding of brain
structure and function is being deepened through building a
digital copy of the brain.

Perspectives and Challenges
The dense digital reconstruction of the brain from sparse,
complementary datasets by predicting biological parameters
that are not available experimentally involves dealing with the

relationships between known and unknown parameters, deriving
principles from experimental data, and reducing biological
complexity while preserving the principles of brain structure
and function.

Initial digital reconstructions need to integrate more types
of neural mechanisms and signaling systems, such as neuro-
glio-vascular unit and neuromodulation (Jolivet et al., 2015;
Ramaswamy and Markram, 2018). They will be challenged and
refined by new experimental observations. As more types of
datasets and parameters are to be integrated, more relevant
biological principles have to be derived, and programming
complexity will largely increase. Efficient computational
methods have to be developed to satisfy the requirements of
this nascent science in rapid evolution. Simulation neuroscience
is rising to these challenges and constitutes an essential phase
of brain research towards transcending scale and complexity
to causally link molecules, genes and cells to brain function
and behavior.

The Next Phase of Brain Research
Simulation neuroscience is an efficient approach to integrating
disconnected datasets and knowledge in neuroscience that have
been accumulated over hundreds of years. The extraction of the
rules of the relationships between datasets that concern different
levels of brain organization helps to build an integrated view
of brain structure and function (Tiesinga et al., 2015). Through
digital reconstructions and simulations, researchers can conduct
in silico experiments, improve experimental methods, test and
generate hypotheses and theories, make predictions and suggest
new experiments (Druckmann et al., 2011; Reimann et al., 2013;
Abdellah et al., 2015; Hay and Segev, 2015).

Neuromorphic computing uses very-large-scale integration
(VLSI) systems containing electronic analog circuits to mimic
neuroarchitectures of the nervous system (Mead, 1990). This
approach has the potential to overcome the major limitations
of traditional computing, such as energy consumption, software
complexity and component reliability. Current neuromorphic
computing consists in large-scale simulations of neuronal
connectivity with few biological details (Furber et al., 2014; The
FACETS Project, 2018). This research field would benefit from
simulation neuroscience, which has the potential to provide the
blueprints of neurocircuits.

Without deeper insights into the fundamental mechanisms
underlying brain function, we cannot effectively treat
neurological disorders, which result from dysfunctions of
neural systems down to the molecular scale. The widely known
neurodegenerative disease, Alzheimer’s disease, was described
more than 110 years ago (Alzheimer, 1906). Today, there is
still no effective treatment (The Lancet, 2016). In fact, this
‘‘disease’’ is poorly defined, referring to an array of various
symptoms ranging from memory loss to diverse cognitive
impairments, caused by multiple distinct brain dysfunctions
(Scheltens et al., 2016; Frisoni et al., 2017). How can we treat a
brain disease if we cannot identify its underlying mechanisms
and clearly define it? How can we restore brain dysfunctions if
we do not even understand the neural mechanisms underlying
normal brain function? Deep understanding of brain structure
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and function is fundamental to clinical research, which will
make it possible to identify the ‘‘biological signature’’ of each
brain dysfunction instead of simple syndromic descriptions
(Frackowiak and Markram, 2015). This is why biologically
realistic digital reconstructions of the brain can be a valuable
tool for modeling and simulating brain dysfunctions and
for developing and validating treatments (D’Angelo, 2014;
Frackowiak and Markram, 2015).

Our understanding of brain structure and function is being
deepened as we build and refine a digital copy of the brain.
Each step unravels new aspects of brain structure and function
in a systematic manner. Even though an accurate and complete
reconstruction and simulation of the human brain will require
at least yottaflop (1024 flops) computing or even more1, we are
getting closer to a comprehensive understanding of the brain by
developing multiscale simulations. According to the nature of
the studied question, some parts of the brain can be simulated
at low resolution, and others at high resolution. This allows
accelerating our understanding of the brain even before enough
computing power becomes available. Finally, it would be possible
to trace the neural mechanisms leading to the emergence of
biological intelligence and to challenge the foundations of our
understanding of consciousness through building a digital copy
of the brain.

UNDERSTANDING THE MULTISCALE
BRAIN

Since the dawn of neuroscience, hundreds of years ago,
this human endeavor has fundamentally been a series of
reconstructions: reconstruction of the neuron as a single cellular
unit; reconstruction of neurons into distinct types according
to their morphological, electrophysiological, biochemical and
molecular properties; reconstruction of neural connectivity
between brain regions, neuronal groups, individual neurons;
reconstruction of the neural mechanisms underlying brain
function and behavior. In attempting to complete the
reconstruction of brain structure and function, experimental and
theoretical approaches are hindered by the fundamental barriers
of scale and complexity.

To overcome these barriers, the tools for reconstructing
neurons and the brain have dramatically evolved, from
Leeuwenhoek’s self-made one-lens microscope to compound
achromatic microscope and Ramón y Cajal’s pencil until today’s
supercomputers. Leveraging high performance computing, data
analysis and statistical inference methods as well as algorithmic
approaches, simulation neuroscience quantifies, integrates, scales

1High-resolution real-time molecular simulation of the human brain would need
∼4 × 1029 flops∗:

• ∼90 billion neurons, ∼1,000 trillion synapses
• ∼90 billion glial cells, ∼450 billion vascular end feet, supporting ∼450 trillion

synapses
• ∼1 trillion molecules/cell, ∼1,000 reactions/molecule/s, ∼20 diffusion jumps/s
• ∼10,000 time steps/s
∗Henry Markram. ‘‘Will Computers Become as Capable as the Brain?’’ presented at
the conference ‘‘What Makes Us Human: From Genes to Machines,’’ The Hebrew
University, Jerusalem, June 4–6, 2018.

up and accelerates all the previous reconstruction processes
and evolves them into a unified digital copy of the brain—a
quantitative and qualitative shift through the dense digital
reconstruction and simulation of the brain from sparse
experimental data, with the aim of causally linking molecular,
cellular and synaptic interactions to brain function and
behavior (Figure 5).

Since the introduction of the first supercomputers in the
mid-20th century, in 70 years, processing power has increased
from ∼103 to ∼143.5 × 1015 flops (Dongarra, 2006; November,
2018 | TOP500 Supercomputer Sites). Since the first observation
of nerve fibers, the microscopic and physiological reconstruction
of the neuron as an independent cellular unit had taken almost
240 years, while the evolution from the first digital reconstruction
of the action potential to the dense digital reconstruction
of neocortical microcircuitry took about 60 years. What will
the future hold for the reconstruction and simulation of the
entire brain?

From the dawn of human civilization, the advances in brain
research have been generated through a series of fundamental
shifts in the types of human thinking to understand the mind
and the brain. Relying on intuitive and analogical thinking,
ancient philosophers tried to address fundamental questions but
were unable to provide empirical evidence. Seeking evidence,
reductionist thinkers in experimental neuroscience have gained
a deep understanding of many components of the brain but
have also produced a huge number of disconnected datasets and
knowledge. Theoretical neuroscience applies abstractive thinking
to be free from the details in the brain, which may advance
artificial intelligence but leaves open the question whether it
will advance our understanding of the causal links between
brain structure and function. To transcend these barriers, brain
research needs a new way of thinking and a new approach. This
new phase is proposed to be simulation neuroscience, which is
based on integrative and predictive thinking.

Will simulation neuroscience be able to go deep enough
through multiple different layers to finally understand the
multiscale brain, to answer the probably ultimate question for us,
humans, of understanding ourselves, which has haunted us since
the dawn of time?

Atoms are combined into molecules; DNA molecules are
bound into sequences to produce genes; genes produce proteins;
different combinations of proteins produce various types of
cells, which are combined into different brain regions to
finally form the unique human brain. How do these complex
mechanisms interact, leading from single atoms and molecules
to brain function and behavior? How does the brain create our
small world immersed in the universe? How does the brain
incorporate our experiences that define our existence? Still so
many unsolved questions.

After thousands of years of brain research, hundreds of
years of neuroscience, we remain strangers to ourselves. From
the Temple of Apollo, traveling through millennia, the Delphic
maxim is still resonating: ‘‘Know thyself (Pausanias, 1918).’’
What will the future hold for us, in 10 years, 100 years, 1,000
years? To understand the multiscale brain, neuroscience now has
to shift to a new phase.
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