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The biology and clinical efficacy of immune cells from patients with infectious diseases
or cancer are associated with metabolic programming. Host immune- and stromal-cell
genetic and epigenetic signatures in response to the invading pathogen shape disease
pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is
the role of the host microbiome, which is also discussed here in the context of productive
immune responses to lung infections. We also present host-directed therapies (HDT) as
a clinically viable strategy to refocus dysregulated immunometabolism in patients with
infectious diseases, which requires validation in early phase clinical trials as adjuncts
to conventional antimicrobial therapy. These efforts are expected to be continuously
supported by newly generated basic and translational research data to gain a better
understanding of disease pathology while devising new molecularly defined platforms
and therapeutic options to improve the treatment of patients with pulmonary infections,
particularly in relation to multidrug-resistant pathogens.

Keywords: lung infections, immunometabolism, inflammation, immunological memory, protective
immune responses

BACKGROUND

Central immune effector functions, e.g., the development of long-term immunological memory,
homing to target tissues and effective immune-surveillance are, in part, determined by metabolic
programming, which plays a role not only in cellular physiology yet also in immunopathology
(Shehata et al., 2017; Gardiner, 2019). A better understanding of the dynamic role of metabolic
programming may devise new ways of targeted therapeutic intervention(s). Preclinical and clinical
studies in patients with non-communicable diseases link metabolic cellular impairment with
immune dysfunction (Hotamisligil, 2017). A shift in metabolite requirement appears to govern the
nature and dynamics of the immune response in the host – largely involving glucose or lipids and
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fatty acids (FA) (Lochner et al., 2015; Wei et al., 2017). For
example, aberrant glucose metabolism and subsequent impaired
immune function in patients with diabetes mellitus (DM)
increases the risk for infections that require hospitalization (Shah
and Hux, 2003). Dietary practices, i.e., Mediterranean eating
habits versus a classical, high-fat Western diet underline how
a ‘healthy diet’ is generally able to reduce inflammation and
infections (Martínez-González et al., 2017). High blood glucose
levels are associated with a higher incidence of pulmonary
tuberculosis (TB) – predisposing patients with type 2 DM
(T2DM) to a higher risk of TB-related mortality despite
antimycobacterial therapy (Faurholt-Jepsen et al., 2013). The
World Health Organisation (WHO) and global clinical TB
working groups have identified DM to be a major comorbidity
for TB susceptibility (Marais et al., 2013; Lonnroth et al.,
2014; Girardi et al., 2017). We review here the role of
immunometabolism in the tissue microenvironment, the axis
of the intestinal microbiome and tissue-associated immune
responses and discuss how targeted therapies may shift
the balance of dysfunctional, damaging or non-productive
immune responses to protective immune reactivity patterns
that allow the containment of pathogens – or elimination of
transformed host cells.

THE DISEASED TISSUE
MICROENVIRONMENT AS A CRITICAL
MODULATOR OF IMMUNOMETABOLISM

In T cells, glucose metabolism via the glycolytic pathway
as opposed to fatty acid oxidation (FAO) differs between
various T-cell maturation/differentiation subtypes, i.e., those
expressing the ‘effector,’ ‘memory,’ and the ‘exhausted’ functional
phenotypes. The transmembrane channel glucose transporter
1 (Glut1) is mandatory for cellular glucose uptake to fuel
mitochondrial ATP generation, which plays a cardinal role in
initiating IFN-γ gene transcription during an inflammatory
response to fuel anti-tumor T-cell functions and cellular
proliferation (Buck et al., 2017; Wei et al., 2017). Glut1 is induced
by interleukin (IL) 7, a quintessential homeostatic cytokine
necessary for the formation and maintenance of memory T-cell
responses (Wofford et al., 2008). Along with the engagement of
signal transducer and activator of transcription 5 (STAT5), IL-
7 promotes cellular glucose uptake and survival (Wofford et al.,
2008). The biological significance of IL-7 has been consolidated
in translational and clinical studies to improve host immunity
to infectious diseases by activation of CD4+ T-cell populations
and re-programming of the antigen-specific T-cell repertoire
in the context of TB, human immunodeficiency virus (HIV)
infection and sepsis in preclinical (Maeurer et al., 2000; Vassena
et al., 2012; Rao et al., 2013; Kulkarni et al., 2018) as well
as clinical settings (Sportes et al., 2008; Levy et al., 2009;
Francois et al., 2018).

The presence of extracellular lactate has been shown to be
associated with (human) T-cell proliferation in vitro and CD4+
T-cell activity (Grist et al., 2018). Importantly, CD4+ effector T
cells also produce lactate which abrogates regulatory T-cell (Treg)

responses and promotes Th17 development (Haas et al., 2015;
Grist et al., 2018), which is reversible by blocking aerobic
glycolysis (Haas et al., 2015; Eleftheriadis et al., 2016). However,
an earlier study showed that lactate produced by tumor cells can
inhibit cytolytic activity of human CD8+ effector T cells in vitro
(Fischer et al., 2007). Memory CD8+ T cells rely more heavily on
fatty acid oxidation (FAO) compared to effector T cells, where
glucose breakdown leading to pyruvate production is crucial
(Pearce et al., 2009; O’Sullivan et al., 2014). Tregs also rely greatly
on FA metabolism in an adenosine monophosphate-activated
protein kinase (AMPK)-dependent manner, therefore raising the
possibility of Treg survival in an environment enriched with high
bioavailability of FA species (Newton et al., 2016).

Mycobacterium tuberculosis (M.tb)-infected macrophages
experience a shift from oxidative phosphorylation (OXPHOS)
to aerobic glycolysis in vitro, which leads to abrogated IL-1β

production and increased IL-10 synthesis associated with
intracellular mycobacterial growth (Gleeson et al., 2016). This
also resonates with the observation that individuals with T2DM,
having high blood glucose, exhibit impaired TB disease control
(Wang et al., 2009; Ferrara et al., 2012; Faurholt-Jepsen et al.,
2013). In mice infected with M.tb, Glut1 transcription is
upregulated, in addition to the transporter associated with lactate
secretion (Shi et al., 2016), which might have a negative effect
on bystander effector CD8+ T cells (Shehata et al., 2017). Of
note, glucose transporters (including Glut1) as well as the ADP-
dependent glucose kinase (ADPGK), which is associated with
metabolic T-cell activation in active pulmonary TB, are also
upregulated in lung granulomas from patients with active TB
(Subbian et al., 2015; Shi et al., 2016). The lung pathogens
Staphylococcus aureus and Bordetella pertussis also perpetrate
dysregulated glucose metabolism in the host, with the latter
directly causing insulin resistance by negatively regulating
blood glucose homeostasis (Vitko et al., 2015; Bischoff et al.,
2017; Freyberg and Harvill, 2017). Rats fed with a high-fat
diet (in relation to obesity) were shown to present with an
accumulation of inflammatory macrophages characterized by
Glut1 upregulation as well as IL-6 and TNF-α expression in
adipose tissue and the liver (Freemerman et al., 2014). Glut1
overexpression enhanced glucose uptake and glycolysis in these
macrophages, further to upregulation of other pro-inflammatory
mediators such as CCL5 (also called RANTES), necessary
for CD8+ T-cell activity against viral infections (Crawford
et al., 2011) and granulocyte-colony-stimulation factor (G-CSF),
which promotes neutrophil growth, downregulation of IL-17
production (Martins et al., 2010) and potentially expands central
memory G-CSF receptor-expressing CD4+ IL-4+ Th2 cells
in human blood (Malashchenko et al., 2018). Immunological
mediators, measured at various time points in individuals with
metabolic disorders, i.e., obesity and diabetes, may hold great
clinical value in terms of preventing full-fledged pulmonary
infections particularly TB with respect to devising host-directed
immunotherapeutic interventions (Rao et al., 2019a,b).

Disbalance in glucose metabolism triggered by influenza
virus has been reported in pediatric patients, which was
found to be reversible by pharmacological inhibition of the
phosphatidylinositol-3-kinase/mammalian target of rapamycin
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(PI3K/mTOR) pathway (Smallwood et al., 2017). Pertaining to
HIV infection of macrophages, the glycolysis-associated enzyme
hexokinase 1 (HK-1) has been shown to bind to mitochondria
to increase its membrane potential and support the survival and
maintenance of infected cells. The common antifungal agent
clotrimazole can inhibit HK-1 activity in macrophages, thereby
unleashing caspase 3/7-mediated apoptosis (Sen et al., 2015).
Inhibition of HK-2 can has also been shown to promote skewing
of human CD4+ T cells to acquire a regulatory phenotype
(Eleftheriadis et al., 2016). Enhanced mitochondrial membrane
potential to support pathogen replication has also been attributed
to the infection of epithelial cells with Chlamydia pneumoniae,
an important intracellular bacterial parasite, under normoxic
conditions further to increased expression of NADPH in host
cells (Käding et al., 2017). Glucose uptake is also necessary for
B-cell proliferation and antibody production, which has been
shown to depend on PI3K activity in association with an increase
in lactate production (Doughty et al., 2006; Caro-Maldonado
et al., 2014). This balance is disrupted in patients with T2DM,
manifesting in exaggerated and deleterious pro-inflammatory
immune responses (Deng et al., 2017) which possibly makes
patients with T2DM more susceptibility to TB and other
pulmonary infections compared to non-diabetic individuals
(Casqueiro et al., 2012; Rao et al., 2015). Collectively, these
‘shunting’ mechanisms of host metabolism support pathogen
survival either directly or by manipulating the immune system
and may, therefore, represent an ‘immune escape strategy’
used by pathogens.

New research has shed light on the role of glycolysis in
subduing T-cell infiltration into tumors as well as the ability
of T cells to kill target cells, concomitant with downregulation
of interferon regulator factor 1 (IRF1), an essential interferon
gamma (IFN-γ) response element (Cascone et al., 2018). Since
host molecules linked to glucose transport and metabolism are
activated in human TB granulomas, it appears that the glycolytic
pathway could potentially affect effective T-cell responses in
pulmonary TB. Glucose metabolism in CD4+ T cells during
chronic HIV infection also promotes activation, marked by
Glut1 and upregulation of the major histocompatibility class
II (MHC-II) molecule human leukocyte antigen-DR (HLA-DR)
(Palmer et al., 2014b), a marker of T-cell activation. At the same
time, this T-cell subset is also depleted regardless of antiretroviral
therapy (ART). A similar pattern of increased glucose metabolism
and Glut1 expression profile has been observed in monocytes
derived from patients with HIV, irrespective of ART status
(Palmer et al., 2014a).

L-arginine is also necessary for T-cell survival; elevated levels
are metabolized by arginase 2 (ARG2) in mitochondria to induce
OXPHOS, switching from glycolysis, for production of ATP
via the electron transport chain (Geiger et al., 2016). Increased
L-arginine uptake by T cells promotes the expansion of central
memory T-cell subsets (CCR7+) in addition to acquisition of
effector functions, i.e., IFN-γ production even in the absence
of T-cell homeostatic cytokines such as IL-2 or IL-15 (Geiger
et al., 2016). M.tb-infected macrophages present at the hypoxic
center in TB lung granulomas in a murine model of pulmonary
TB have been previously shown to utilize ARG1, in lieu of

NOS2, to catabolize L-arginine (Duque-Correa et al., 2014).
This reduces T-cell proliferation and the resulting immuno-
pathology while abrogation of ARG1 enzymatic activity
exacerbates lung pathology (Duque-Correa et al., 2014).

Excessive glucose uptake by activated T cells as well
as macrophages during inflammation has been observed in
conjunction with hypoxia. Response to hypoxia by ‘foamy’
macrophages in atherosclerotic plaques as well as migratory
CD8+ T cells during inflammation, marked by hypoxia-
inducible factor 1 alpha (HIF-1a) expression, has been observed
to elevate glucose uptake (Folco et al., 2011; Finlay et al.,
2012). ‘Foamy’ macrophages are cytoplasmic lipid-enriched
cells associated with atherosclerotic plaques which, due to
dysregulation of cholesterol metabolism, accumulate intracellular
cholesteryl ester deposits (Moore et al., 2013). Hypoxic TB
lesions/granulomas in the lung have also been shown to display
an accumulation of ‘foamy’ macrophages which can be induced
by M.tb-derived lipids, i.e., mycolic acids species (Peyron et al.,
2008) as well as host-derived triglyceride esters in necrotic
lesions (Guerrini et al., 2018; Jaisinghani et al., 2018) and
are capable of local modulation of T-cell responses (Prosser
et al., 2017). Although yet to be formally tested, hypoxia-
induced ‘foamy’ macrophage accumulation may also pose the
likelihood of affecting positron emission tomography-computed
tomography (PET-CT) readouts in pulmonary TB imaging due
to the increased glucose uptake by and glycolytic activity of
macrophages in granulomas (Fu et al., 2004; Singh et al., 2015;
Geadas et al., 2018). In addition, recent evidence suggests
that M.tb-infected macrophages accumulate intracellular lipid
droplets following IFN-γ-dependent immune activation rather
by direct, pathogen-derived mechanisms (Knight et al., 2018).
This feature was found to benefit the host in a murine model
of pulmonary TB, although the metabolic profile of immune
cells is likely to shift with a high amount of lipid intake –
potentially promoting FAO and longevity of the cells in tissue
(Remmerie and Scott, 2018).

The afore-mentioned HIF-1α has also been shown to
be induced in HIV-infected macrophages, involved in the
upregulation of HK-1 for supporting viral replication and
biogenesis (Barrero et al., 2013), warranting further elucidation
of the HIF-1α axis in TB/HIV co-infection in relation to
immunometabolism. C. pneumoniae-infected epithelial cells
have also been shown to upregulate enzymes involved in
hypoxia-induced glycolysis, i.e., phosphofructokinase, lactate
dehydrogenase and glycerol-3-phosphate dehydrogenase which
promote pathogen survival (Szaszak et al., 2013). Furthermore,
C. pneumoniae infection itself directly stabilizes HIF-1α

expression to enhance glycolysis (Rupp et al., 2007), which is also
likely to dampen HLA class I antigen processing, presentation
and immune surveillance as observed in cancer (Sethumadhavan
et al., 2017). Epstein-Barr virus (EBV) and CMV are known
downmodulators of the HLA class I pathway (Levitskaya et al.,
1995; Benz et al., 2001), while M.tb early-secreted antigenic
target of 6 kDA (ESAT-6), an immunodominant antigen, has
been shown to interfere with beta-2-microglobulin (β2M)
insertion into the HLA class I complex within the endoplasmic
reticulum (Sreejit et al., 2014). Thus, testing whether alteration
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of glucose uptake during infection with intracellular pathogens
would improve HLA class I antigen presentation using
clinically relevant models would be very useful to devise
immuno-stimulatory interventional strategies.

Fatty Acids and Immunometabolism
The availability of free fatty acids (FFA) and the intracellular
biosynthesis of lipid droplets in T cells following glucose
metabolism has a drastic impact on T-cell functionality and
polarization (de Jong et al., 2014). As mentioned previously,
FAO is a quintessential metabolic program in memory CD8+ T
cells for their development, sustenance and immuno-protective
activity in the host (Pearce et al., 2009; van der Windt et al.,
2012; O’Sullivan et al., 2014). Saturated FFA, i.e., palmitic
acid, lauric acid, myristic acid as opposed to unsaturated FA,
such as oleic acid and linoleic acid, appear to be generally
less toxic and promote less inflammatory responses by human
T cells (Lima et al., 2002; Cury-Boaventura et al., 2004, 2006).
Conversely, saturated FA have been shown to impair HLA
class I antigen processing and presentation, resulting in reduced
recognition and killing of target cells by FA-exposed human
CD8+ T cells (Shaikh et al., 2008). Similarly, palmitic acid-
treated APCs were also unable to activate naïve CD8+ T cells,
which resonates with the earlier finding that saturated FA do
not trigger strong inflammatory responses (Shaikh et al., 2008).
In addition to CD8+ T-cell activation, a reduced exogenous
supply of FA has also been attributed to compromised HLA-
DR (major HLA class II molecule in humans) expression profile,
in part owing to impaired lysosomal activity – which was
rescuable with coenzyme-A (CoA)-coupled unsaturated FA, i.e.,
oleic and linoleic acids (Schweitzer et al., 2006). Human adipose
tissue-derived stem cells (ASCs) from obese individuals have
also been shown to exhibit increased HLA-DR expression albeit
with lesser cytoplasmic lipid-droplet accumulation (Pachón-
Peña et al., 2016), possibly due to increased cellular oxygen
consumption leading to depletion of fat deposits in ASCs (Perez
et al., 2015). Another preclinical study in mice provided evidence
that a high fat diet-induced upregulation of MHC-II, leading
to generally increased inflammatory responses, lowered anti-
inflammatory responses and M1-polarized pro-inflammatory
macrophages (Deng et al., 2013). While in the afore-mentioned
study this MHC-II-driven immune activation was identified as
an important perpetrator of obesity, this may, on the contrary, be
beneficial in the context of pulmonary infections at the initiation
of host immune responses targeting pathogens (Zumla et al.,
2016). Nutrition may, therefore, indirectly affect susceptibility
to pulmonary infections – as with TB (Fox et al., 2015)
and recurrent respiratory infections among children (Zhang
et al., 2015). In addition to T cells, the requirement of FA
by antigen-presenting cells (APCs), i.e., macrophages, dendritic
cells and B cells has also been reported to be crucial for
activation, phagosome–lysosome fusion, antigen processing and
presentation via HLA-DR expression – as well as anchoring
proteins into lipid rafts on the cell surface (Bouillon et al., 2003;
Schweitzer et al., 2006).

The discussion presented above warrant deeper insights
into the various mechanisms by which FA-mediated metabolic

programming in immune cells, adaptive and innate alike, shape
the immune repertoire in humans – particularly in pulmonary
infections and associated diseases (Krishnamoorthy et al., 2018).

PULMONARY SURFACTANTS IN THE
CONTEXT OF LUNG
IMMUNOMETABOLISM

An important lipoprotein class unique to the lungs are
pulmonary surfactants, which are produced by type II
pneumocytes and crucial for reducing surface tension, gas
exchange functions, tissue integrity and host defense (Wright,
2004). Two members of lung surfactants, namely SPA-A
and SPD-D, also possess immune-related properties. SP-D is
mainly associated with opsonization of Gram-negative bacteria
by binding to the LPS moieties on the bacterial surface for
subsequent engulfment by innate immune cells – which leads
to activation of APCs and T-cell recruitment (Wright, 2004).
SP-A, on the contrary, while capable of inducing IL-8 production
by neutrophils and macrophage activation, can inhibit T-cell
proliferation and the maturation of dendritic cells (Wright,
2004). While important in clearing Gram-negative bacterial
infections, e.g., Pseudomonas sp. and streptococcal infections,
individuals with chronic autoimmune manifestations, i.e.,
ARDS, sarcoidosis and pulmonary fibrosis also exhibit impaired
surfactant functions (Hermans and Bernard, 1999). The
homeostasis of cholesterol, the major neutral lipid of pulmonary
surfactants, requires ATP-binding cassette transporter G1
(ABCG1) and ATP-binding cassette transporter A1 (ABCA1)
activity without which cholesterol build-up in the alveolar air
space can occur in addition to the accumulation of ‘foamy
macrophages’ (Baldan et al., 2008; Wojcik et al., 2008; Draper
et al., 2010). In keeping with this, ABCG1-deficient macrophages
can also be found in patients with pulmonary alveolar proteinosis
(PAP) – a rare disease characterized by the build-up of surfactant
in the alveolar space (Borie et al., 2011) – in conjunction with
autoantibodies against GM-CSF blocking its signaling cascade
(Thomassen et al., 2007).

Impaired lipid efflux functions have been demonstrated in
immune cells from patients with chronic lung diseases. Some
examples are ABCA1 and ABCG1, downregulated in lung-
resident immune cells from patients with sarcoidosis (Barna
et al., 2016); compromised activity of the transcription factor
liver X receptor (LXR); reduced plasma levels of alveoli-derived
cholestenoic acid in patients with TB, emphysema as well as
sarcoidosis (Babiker et al., 1999) and the absence of ABCG1
expression in PAP (de Aguiar Vallim et al., 2017). Accumulation
of foamy cells in smokers – a strong comorbidity factor in lung
infections (Wilson et al., 2011) – reflects impaired lipid cellular
metabolism, as reduced levels of apolipoprotein A1 (ApoA1)
are found in the bronchoalveolar lavage fluid of patients with
idiopathic pulmonary fibrosis (IPF) (Kim et al., 2010). These
indicators may provide a clinically relevant matrix concerning
an individual’s susceptibility to contract pulmonary infection(s)
(Glasser and Mallampalli, 2012) while aiding the development of
targeted treatment strategies.
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While patients with PAP harboring ATP-binding cassette
deficiency are prone to opportunistic lung infections
(Goldschmidt et al., 2003; Borie et al., 2011), TB or mycobacterial
infections in general, it has also been implicated in the
pathogenesis of sarcoidosis (van Enschot and van Balkom,
2013; Ferrara et al., 2017), suggesting an overall impaired host
defense involving pulmonary surfactant disbalance. Interestingly,
ABCA1 loss in murine alveolar macrophages enhanced pro-
inflammatory immune responses in the lung and clearance
of bacterial infection (Draper et al., 2010), which requires
well-designed studies in humans. Taken together, surfactant/lipid
homeostasis in the lung, pertaining to cholesterol metabolism,
suggests a critical role in balancing pulmonary inflammation.
Herein, the ABC transporters associated with lipid homeostasis
in the lung play a crucial role in mediating local immune
responses and pathogen control.

METABOLIC REPROGRAMMING OF
NATURAL KILLER CELLS IN INFECTED
TISSUE COMPARTMENTS

Akin to metabolic changes experienced by T and B cells during
pulmonary infections, natural killer (NK) cells also appear to
undergo similar tissue-associated ‘metabolic stress’ which affects
their capacity to clear infectious pathogens (Gardiner, 2019).
While NK cells play a role in halting development of active TB in
individuals with LTBI (Garand et al., 2018; Roy Chowdhury et al.,
2018), circulating IL-6Rα+ NK cells in T2DM have been shown
to perpetrate deleterious inflammation (Theurich et al., 2017),
with the likelihood of affecting NK-cell activity in the lung. The
functionality of NK cells in obese individuals also appears to be
compromised and is further accentuated by exposure to cigarette
smoke (O’Shea et al., 2010; Laue et al., 2015) – which subdues
host defense mechanisms in general, particularly in the lungs
(Bagaitkar et al., 2008; Lugade et al., 2014). In humans, CD56bright

NK cells exhibit reduced cytotoxic functions (granzyme, perforin
production) albeit superior IFN-γ production compared to
CD56dim NK cells. Furthermore, CD56bright NK cells constitute
the most frequent tissue-resident population, while CD56dim

NK cells comprise approximately 90% of circulating NK cells
(Gardiner and Finlay, 2017). Adaptive, memory-like NK cells
have also been described to share similarities with memory CD8+
T cells in terms of DNA promoter region hypermethylation
patterns (Schlums et al., 2015). Memory-like NK cells display
reduced expression of the Fc gamma receptor III (FcγRIII and
CD16) – necessary for antibody-mediated cellular cytotoxicity
(ADCC) (Vivier et al., 2008)– although in the presence of
IgG antibodies, these NK cells regain cytotoxic function and
specifically lyse human cytomegalovirus (HCMV)-infected cells
(Lee et al., 2015).

Despite limited knowledge about metabolic programming
in human NK cells, some in vitro studies have shown that
upregulation of mTOR complex 1 (mTORC1) in CD56bright NK
cells, more reflective of a less mature subpopulation, promotes
their uptake of glucose and responsiveness to IL-15 signaling
(Marçais et al., 2014; Keating et al., 2016; Mao et al., 2016).

CD56bright NK-cell proliferation also promotes upregulation of
Glut1 and renders these cells metabolically more active than
their CD56dim counterparts (Keating et al., 2016). In line with
this, glycolysis is necessary for CD56bright NK cells to produce
IFN-γ, which is among their primary effector functions in
addition to cytotoxicity (Cooper et al., 2001). Therefore, NK
cells in tissue may necessitate increased glycolytic activity while
maintenance of memory-like populations marked by CD57 and
CD16 expression as well as enhanced cytotoxic capacity – akin to
memory CD8+ T cells – might require FAO (Kared et al., 2016;
Peng and Tian, 2017), although this demands formal testing using
ex vivo material from healthy subjects as well as in patients with
infections (e.g., TB), or malignancies.

MicroRNAs AND METABOLIC
PROGRAMMING DURING LUNG
INFECTION PATHOLOGY

Inflammation drives the biosynthesis of certain microRNAs
(miR) – short molecular structures which post-transcriptionally
regulate gene expression – that can directly influence the
metabolic profile of immune cells during infectious disease
pathogenesis (Iannaccone et al., 2014; Jackson et al., 2017; Sabir
et al., 2018; Zhou et al., 2018) and cancer (Thorsson et al.,
2018). The Let-7 family of microRNAs reduce the ability of B
cells to take up glucose and glutamine from their immediate
microenvironment due to downregulation of transport channels,
which results in loss of IgM production (Jiang et al., 2018).
While Let-7 upregulation has been observed in hepatocellular
carcinoma in association with disease severity (Shi et al., 2017),
a cancer attributed to viral infection and inflammation, Let-7
upregulation has been associated with protective anti-viral (HIV)
cellular CD4+ T-cell responses (Swaminathan et al., 2012).
Furthermore, the decreased expression of Let-7 in CD8+ T
cells – downstream of T-cell receptor (TCR) activation – allows
for the acquisition of effector functions (Wells et al., 2017),
underlining that metabolic shifts affect different immune-cell
subsets in several ways.

Not only immune cells yet also stromal cells or transformed
cells are affected by such metabolic shifts. For instance, miR-155
has been implicated in supporting the growth of breast cancer
cells by enhancing glucose metabolism (Kim et al., 2018); the
same microRNA also promotes the intracellular survival of M.tb
by inhibiting autophagy in infected myeloid cells (Etna et al.,
2018). A previous study showed that miR-155 is upregulated in
peripheral blood mononuclear cells (PBMCs) from patients with
active pulmonary TB and a mechanistic in vitro approach was
used to demonstrate that the Foxhead-box protein O3 (FOXO3)
transcription factor is targeted by miR-155 to abrogate apoptosis
of M.tb-infected cells under normoxic conditions (Huang
et al., 2015). Interestingly, FOXO3 is known to be involved
in regulating mitochondrial respiration during hypoxia and
inhibiting reactive oxygen species (ROS) generation (Ferber et al.,
2012), which is also characterized by aberrant vascularization
in inflamed tissue (Tafani et al., 2016). Considering that tissue
hypoxia is associated with several infectious diseases of the
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lung, i.e., TB, leishmaniasis (Schatz et al., 2018) and legionellosis
(Shankar et al., 1981) as well as solid tumors, FOXO3-mediated
activity may increase local apoptosis of transformed cells, which
has been shown in the context of cancer (Du et al., 2017).

THE HOST MICROBIOME AND
PRODUCTIVE IMMUNE RESPONSES
TO PULMONARY INFECTIONS

‘Metabolic programming’ in the host – to a great extent
modulated by the gut microbiota – takes place in the small
intestine and colon - and affects the quality and quantity of
immune responses occurring in other parts of the body (Anand
and Mande, 2018; Feng et al., 2018). While translocation of gut
pathobionts can induce unfavorable immune responses elsewhere
in the body (Manfredo Vieira et al., 2018), inflammatory response
originating in the gut can equally influence how the host responds
to an invading pulmonary pathogen (Mjosberg and Rao, 2018).
Candida albicans, a yeast species which is a commonly found
member of the human gut microbiome, can activate CD4+ T
cells which produce IL-17 and possibly traffic to the lung, where
they can specifically cross-react with antigens from Aspergillus
fumigatus (Bacher et al., 2019), the aetiological agent of invasive
pulmonary aspergillosis (IPA). These IL-17 responses were very
prominent in patients with airways diseases such as chronic
obstructive pulmonary disease, asthma (although this is often
associated with a Th2 responses, i.e., IL-4, IL-5 production)
and cystic fibrosis (Bacher et al., 2019). Importantly, patients
with Crohn’s disease, a debilitating form of inflammatory bowel
disease, had high frequencies of IL-17-producing, C. albicans-
specific CD4+ T cells (Bacher et al., 2019). While dysregulation
of the microbiota may lead to activation of IL-17-producing cells
which can translocate to the lung to cause pathology locally,
the same type of IL-17+ T cells may also be protective in early
stages of infection, as shown in preclinical mouse models of
pulmonary infections (reviewed by Das and Khader in Das and
Khader, 2017). This hypothesis, however, requires formal testing
in clinically suitable models which closely resemble the disease
immunopathology in humans.

However, not only ‘distant’ effects of tissue/organ-associated
microbiomes, i.e., the gut-lung axis, affect lung-resident immune
cells, yet the local pulmonary microbiome itself maintains tissue
integrity and regulates local immune responses (O’Dwyer et al.,
2016). In human avian influenza A H7N9 infection, several
FA species were shown to be reduced in the peripheral blood
associated with impaired patient survival (Sun et al., 2018). This
observation was accompanied by histological evidence of severe
lung inflammation, supported by molecular analyses showing
downregulation of genes associated with lung epithelial barrier
integrity (Sun et al., 2018) – in which the lung microbiome
plays a role. Resonating with this observation is the finding
that tissue-resident CD8+ T cells require an external supply
of FA for their survival, via the activity of fatty-acid-binding
proteins 4 and 5 (FABP4 and FABP5) (Pan et al., 2017). This
may – at least in part – explain as to why high numbers of
activated CD8+ T cells, including those that can home to tissue

compartments, are elevated in patients with HIV receiving ART
(Mudd and Lederman, 2014), leading to increased circulating
cholesterol and triglycerides (Ngala and Fianko, 2013).

Bacteria also produce their own metabolites which can
alter immune functions (Feng et al., 2018). FA production
by commensal intestinal bacteria – that constitute the host
gut microbiome – may complement the FA source needed
for memory CD8+ T-cell homeostasis (Luu et al., 2018).
Antibiotic-associated clearance of commensal bacterial species
can potentially have a drastic effect on the survival of memory
CD8+T cells in the host (Keselman et al., 2016), as shown in mice
and warranting confirmation in humans. Microbial metabolites,
i.e., short-chain fatty acids (SCFA; acetate, propionate, butyrate)
can induce IL-18 production by epithelial cells while also
tuning the differentiation of B cells in to plasma cells, antibody
production and IgA class switching (Shibata et al., 2017). Butyrate
promotes IL-10 production, tight junction formation between
epithelia and downregulation of pro-inflammatory responses
in human intestinal cells (Zheng et al., 2017). In a murine
model of azoxymethane/dextran sodium sulfate (AOM/DSS)-
induced colitis, mice treated with a mix of SCFAs (acetate,
butyrate, and propionate) were shown to be protected against
colon inflammation concomitant with reduced expression of
IL-6, TNF-α, and IL-17A (Tian et al., 2018), suggesting regulation
of both pro- and anti-inflammatory immune responses by
SCFAs. This is in line with clinical observations of patients
with inflammatory bowel disease (IBD) such as Crohn’s disease
or ulcerative colitis who present with gut microbiota dysbiosis
marked by reduced numbers of SCFA-producing bacteria
(Goncalves et al., 2018).

Another study in patients with HIV and bacterial pneumonia
showed that the indigenous lung microbiome, containing a
combination of bacterial communities (annotated by the authors
as microbial communities states or MCS) represented by
Pseudomonadaceae with a mixture of Sphingomonadaceae and
Prevotellaceae (MCS1), was associated with a survival benefit as
compared to individual grouped into other MCS characterized
by an abundance of Streptococcaceae (MCS2A) or Prevotellaceae
(MCS2B) (Shenoy et al., 2017). Interestingly, patients harboring
the MCS1 lung microbiome profile also showed an increase
in serum lipid metabolites further to upregulation of T-cell
immunoglobulin and mucin domain 3 (TIM-3) in the lungs,
based on chromatographic and mRNA analysis, respectively
(Shenoy et al., 2017). Using fecal samples provided by individuals
from Bangladesh and Tanzania, an intriguing study by Devoto
et al. (2019) recently described the discovery and characterization
of large bacteriophages containing more than 540 kilobases
of genomic material (termed ‘Lak megaphages’) which, based
on CRISPR sequences, specifically target Prevotella species in
the human gut. The authors also found an abundance of
Prevotella and Lak megaphages in human fecal samples to be
inversely correlated. Thus, Lak megaphages may be an important
indicator of gut microbiome health, given the benefit provided by
Prevotella species in health and disease, which may be addressed
in future clinical studies using appropriate cohorts.

Several studies in patients with TB have linked the gut
microbiome with TB disease activity (reviewed in Hong et al.,
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2018). Individuals with LTBI exhibited a higher abundance of
Bifidobacterium spp. in the gut compared to patients with active
TB who underwent standard antimycobacterial therapy; higher
abundance of Bacteroides spp. was found in the gut of patients
who were cured of TB following therapy (Wipperman et al.,
2017). In this regard, Bifidobacterium spp. have been associated
with superior immune responses to respiratory infections, while
Bacteroides spp. have been shown to rather augment antigen-
specific, cancer-directed T-cell responses in the host (Forsythe,
2014; Pitt et al., 2017). However, the presence of fat tissue affects
the host immune response at different levels: white/beige adipose
tissue deposits have been shown to accommodate memory T cells
which can provide long-term protection against infections (Han
et al., 2017). Conversely, white adipose tissue is also associated
with obesity and increased susceptibility to infectious diseases
(Hegde and Dhurandhar, 2013), while harboring viral and
bacterial pathogens such a HIV and M.tb (Damouche et al., 2015;
Beigier-Bompadre et al., 2017).

Microbial Metabolites and
Immunomodulation in the Host
Further to the roles of microbial metabolites previously
mentioned, SCFAs are able to prime the immune system by
increasing the release of IL-18, prompt IgA production by
plasma cells and activation of cathelicidin LL-37 (antimicrobial
peptide) secretion along with retinoic acid production by APCs
to potentiate first-line innate immune responses (Shibata et al.,
2017). However, butyrate can also induce Treg development
and expansion in a sodium ion-dependent manner, which
requires intracellular activation of indolamine-1,2-dioxygenase
(IDO) (Gurav et al., 2015), an enzyme necessary for tryptophan
metabolism (Taylor and Feng, 1991). Thus, there is a chance
that butyrate in combination with IFN-γ – which is the major
inducer of IDO expression (Taylor and Feng, 1991) – can
promote immune-tolerance in diseased tissue to avoid overt
inflammation and also help to fine-tune antigen-specific T-cell
responses (Laidlaw et al., 2015). Nevertheless, and dependent
on the stage and the nature of infection, Treg engagement
may also dampen the formation of productive, pathogen-
directed immune responses (Geffner et al., 2009; Lieske et al.,
2015). Previous work has shown that depletion of intracellular
tryptophan in relation to increasing IDO activation leads
to impaired survival of Chlamydia trachomatis, which can
also be potentiated by IL-1β in combination with low-dose
IFN-γ (Carlin and Weller, 1995). Tryptophan is sourced by
dietary protein intake by mammals, which in the gut is
catabolized by certain species of commensals, i.e., Bacteroides
sp., Clostridium sp., lactobacilli (Roager and Licht, 2018).
Metabolites resulting from tryptophan degradation can promote
protection against fungal (and potential intracellular bacterial)
pathogens in an IL-22- and aryl hydrocarbon receptor (AhR)-
dependent mechanism (Zelante et al., 2013). The AhR is
generally a toxin-reactive (dioxin) host transcription factor
which also has a role in sensing bacterial derivatives to engage
immune responses in the lung (Moura-Alves et al., 2014).
In mice, AhR has been shown to be indispensable for the
development of IL-22+ NKp46+ innate lymphoid cells (ILCs)

in the gut (Lee et al., 2011) and the importance of IL-22 in
protection against intestinal infections (Guo et al., 2014) as
well as lung tissue repair following severe influenza infection
(Pociask et al., 2013). Li et al. (2011) described a specialized
population of gut-associated AhR-expressing intraepithelial
lymphocytes (IELs) which responds to the synthetic tryptophan-
derived phytochemical I3C, provides immune surveillance at
the epithelial barrier and is able to control bacterial outgrowth
following their translocation into the gut lumen. Branched
SCFAs, i.e., isovalerate, isobutyrate, and valerate can have an
inhibitory effect on histone deacetylases (HDACs), which may
in turn downregulate the pro-inflammatory polarization of
macrophages in the gut (Chang et al., 2014; Kim, 2018) – based on
studies in mice. These findings, therefore, implicate amino acid
metabolism, SCFAs and cytokine signaling axes in maintaining
host-protective immune mechanisms in tissue during infection
and require confirmation in humans.

Long-chain fatty acids (LCFAs) such as arachidonic acid
and linoleic acid, both of which are produced by host
cells as well as gut bacteria, are known to modulate innate
immune responses, i.e., downregulation of IL-6, IL-8, and IL-1β

production, increased phagocytic potential of macrophages,
increased IL-10 production by epithelial cells and activation
of the eicosanoid pathway to produce prostaglandins (Shibata
et al., 2017). Arachidonic acid had already been shown (more
than 20 years ago) to induce IgE and IL-4 production (strong
Th2-skewed immunomodulation) in individuals with atopic
dermatitis (Punnonen et al., 1993). Evans et al. (2019) very
recently showed that prostaglandin E2 (PGE2) production by the
opportunistic fungal pathogen Cryptococcus neoformans activates
peroxisome proliferator-activated receptor gamma (PPAR-γ)
in host macrophages to support intracellular survival and
proliferation. Pulmonary C. neoformans infections are rare, but
can be burdensome and – although treatment with fluconazole
is highly effective (Kanjanapradit et al., 2017) – the effect of
fluconazole on dysbiosis and immunometabolism is clinically
relevant as seen in murine preclinical models (Wheeler et al.,
2016) and warrants evaluation in humans.

The exposure of host cells to a broad array of metabolites
produced by commensal and invading microbes, as well as the
derivates thereof, requires further dissection in humans with
different diseases. Future clinical studies may examine, based
on previous observations in patients with metabolic disorders
(IBD, diabetes, and chronic infections), where biomarkers were
available, that metabolite imbalance and subsequent microbiota
‘disruption’ may lead to immune dysfunction (Kim, 2018).
Similarly, novel biomarkers in pediatric patients are required to
better understand the effect of dysbiosis in early childhood –
perpetrated by fatty liver disease, congenital diabetes and drug
prescriptions – and whether their value as clinical correlates
of susceptibility to infection as well as autoimmune disease
(Nash et al., 2017) is relevant or not. Target organs of immune-
metabolites may also be distant anatomical sites: The role of
the gut-lung axis in accentuating trans-anatomical immune
responses is being increasingly appreciated (Mjosberg and Rao,
2018; Bacher et al., 2019), providing strong precedence to
account for systemic and gastrointestinal health in patients
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with lung infections with a focus on circulating and locally
available metabolites.

Microbiota and Immune-Modulation by
Pre- and Perinatal Nutrition
Metabolic imprinting on immune cells may in fact occur early in
life: while a common ante-natal nutritional source in developed
nations (at least 80% of mother-child pairs), only a meager 37%
of infants under 6 months of age in the developing world (low-
to middle-income countries) are breastfed (Victora et al., 2016).
Children who do not receive breastmilk in the first few months
after birth have been found to be more prone to developing
infections and reduced intellectual capabilities (Victora et al.,
2016). Furthermore, mothers who do not breastfeed suffer a
higher risk of contracting breast or ovarian cancer in their
lifetime compared to women who breastfed their babies (Victora
et al., 2016). More recently, Moossavi et al. (2019) provided
empirical evidence based on a large cohort study of 392 mother-
infant dyads (pairs) comprising various ethnicities and found
that direct breastfeeding was strongly associated with a higher
prevalence of beneficial bacteria, i.e., Bifidobacterium supplied to
infants as opposed to pumped breastmilk, which had a higher
content of potentially pathogenic bacteria such as Pseudomonas
spp. This would subsequently influence the infant’s metabolic and
immune profiles as well as their gut microbiota composition and
how they would respond to infections (Le Doare et al., 2018).
Breastfeeding has been previously shown to be closely associated
with increased protection against bronchiolitis (usually due to a
viral infection of the lower respiratory tract) in children under
2 years of age (Wang et al., 2017). Breastmilk composition
could, therefore, be a crucial component of future clinical studies
investigating immune dynamics as well as treatment outcome
following diagnosis of respiratory infections in neo-nates.

All in all, antibiotics directly affect the composition of
the microbiota in association with host factors, i.e., the HLA
haplotype, lifestyle and environmental factors, i.e., high-fat diets,
or uncontrolled glucose intake. These factors may be considered
for a more holistic approach in the clinical management
of patients with pulmonary infectious diseases. Furthermore,
this may not only be conscious decisions of the individual
yet also reflect social pressure and socio-economic differences
including factors before birth including maternal nutrition,
as discussed above.

THERAPEUTIC TARGETING OF HOST
IMMUNOMETABOLISM

Evidence stemming from cancer precision medicine offers
a wealth of information to target host immunometabolism
for therapeutic purposes, where the tumor microenvironment
(TME) in solid tumors is an emerging drug target to induce
disease-modifying effects (Le Bourgeois et al., 2018; Vodnala
et al., 2019). Much can be learned from the pathophysiological
and immunological similarities between the TME and TB lesions
in the lung (Vento and Lanzafame, 2011; Bhatt et al., 2012;
Dagaonkar et al., 2017), non-tuberculous bacterial pneumonia

(Yao et al., 2018) and pulmonary fungal infections (Guimaraes
et al., 2013) to be applied for interventional purposes in infectious
disease. For instance, the anti-diabetic drug metformin which
modulates FAO in memory CD8+ T cells was shown to
contribute to improved immune control and better outcomes
in a preclinical (murine) TB model (Singhal et al., 2014). In
keeping with this observation in mice, a later clinical study
demonstrated correlation with desirable clinical outcomes in
patients with cancer and T2DM under metformin treatment
(Zi et al., 2018). More recently, two retrospective clinical
studies showed that metformin use in patients with T2DM, who
also contracted pulmonary TB, was associated with improved
prognosis after standard anti-TB treatment (Marupuru et al.,
2017; Degner et al., 2018) while a third study revealed that
patients with T2DM who received metformin therapy exhibited
a lower chance of contracting active TB during anti-diabetic
treatment follow-up (Lee et al., 2018). Likewise, zileuton, an anti-
asthmatic drug [thus representing yet another indication with
immunometabolic dysregulation particularly in obese individuals
(Periyalil et al., 2013)] which blocks the synthesis of 5-
lipoxygenase and thus, leukotriene release, regulates IFN-αβ

and IL-1β-associated adverse immunopathology in (murine) TB
(Mayer-Barber et al., 2014). Targeting epithelial-cell sphingolipid
metabolism using miglustat (marketed as Zavesca

R©

, a synthetic
analog of D-glucose) resulted in reduced airway inflammation,
neutrophilia and Pseudomonas aeruginosa burden in a murine
infection model (Dechecchi et al., 2011), further strengthening
the case for drug-repurposing or multi-purposing.

Immunotherapy-Based Interventions
Reversing glucose uptake by highly activated effector CD4+
T cells might be a viable option for therapeutic intervention
to reduce overt inflammation (Macintyre et al., 2014) and
possibly promote CD8+ T-cell activity (Sukumar et al.,
2013). However, it may not necessarily affect antigen-
specific tissue-resident T-cell subsets, which appear to
rely more on lipid metabolism (Pan et al., 2017). Genetic
manipulation of T cells, prior to adoptive therapy, may be
used to change their metabolic profile and/or susceptibility
to certain metabolites by introducing mRNA transcripts
of proteins using a newly described microfluidic system,
which also measures cell viability and motility in real-time
(Jarrell et al., 2019). Analysis of programmed cell-death 1
(PD-1)- and cytotoxic T lymphocyte-associated antigen 4
(CTLA-4)-mediated immune-suppression showed that
while the former shifts the cellular metabolic profile from
glucose (glycolysis) to lipid-dependence (FAO), CTLA-4
engagement with CD80/86 leads to inhibition of glycolysis
without augmenting the requirement for FAO (Patsoukis
et al., 2015). Immune checkpoint blockade (ICB) has been
particularly successful in patients with metastatic melanoma
and lung cancer (Ribas and Wolchok, 2018). PD-1-expressing
T cells may, in fact, display a metabolic profile resembling
that of memory CD8+ T cells that rely on FAO for survival
(Patsoukis et al., 2015). Given that PD-1-mediated therapeutic
intervention warrants clinical exploration in infectious diseases
(Rao et al., 2017), it is worthwhile bearing in mind that the
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metabolic reprogramming of pathogen-specific T cells in lung
infections is also possible with ICB.

Corrective therapy to improve vascularization in the tumor
by inhibiting vascular endothelial growth factor A (VEGF-A)
signaling has been clinically beneficial in glioblastoma, lung
cancer and age-related macular degeneration (Arjaans et al.,
2016). The most widely used anti-VEGF-A monoclonal
antibody, bevacizumab, was also shown to rectify aberrant
neovascularization and improve small-molecule uptake in TB
granulomas in rabbits (Datta et al., 2015). Pharmacological
inhibition of angiogenesis with pazopanib (tyrosine kinase
inhibitor approved for renal cell cancer) in the zebrafish
model of Mycobacterium marinum infection – which can
recapitulate the early inflammatory events in human pulmonary
TB – also enabled improved vascularization and enhanced
anti-TB drug penetration into lesions, coupled with reduced
bacterial dissemination to other parts of the host (Oehlers et al.,
2015). With relevance to immune-cell metabolism, VEGF-A
neutralization using bevacizumab in mice fed with a high-fat
diet reversed insulin resistance in the liver and adipose tissue,
decreasing blood sugar levels (Wu et al., 2014). However,
while VEGF-A inhibition improves anti-cancer drug access
to the tumor tissue, it has also been shown to reduce tissue
oxygenation and induce acute hypoxia in diseased tissue in
patients with cancer (Bonekamp et al., 2017; Ueda et al., 2017),
unlike the observation within bevacizumab-treated pulmonary
TB lesions in rabbits (Datta et al., 2015). VEGF-A utility in
chronic infectious disease requires validation in well-designed
early phase clinical studies using suitable patient cohorts.

Immunomodulation by
Cholesterol-Lowering Drugs
Statin intake among patients with severe influenza has
shown a link with decreased inflammation and MHC class
II downregulation in addition to reduction in serum lipids
and lower incidence of death (Vandermeer et al., 2012). The
use of atorvastatin among patients with HIV infection may
result in less activated and less exhausted T-cell populations
(downregulation of HLA-DR, TIM-3, and PD-1) while
pravastatin contributes to higher numbers of circulating
antigen-specific IFN-γ+ CD8+ T cells (Overton et al., 2014).
The cellular target of statins is β-hydroxy β-methylglutaryl-CoA
(HMG-CoA) reductase (Kwak et al., 2000). A hallmark of
statin-based HMG-CoA reductase inhibition is the abrogation
of the mevalonate pathway which leads to production of
isoprenyl pyrophosphate (IPP) – an intermediary that is
indispensable for cholesterol synthesis (Cerqueira et al.,
2016). While both atorvastatin (Lipitor

R©

) and pravastatin
(Pravachol

R©

, Selektine
R©

) block HMG-CoA reductase aptly,
the former does so in a reversible fashion (Holdgate et al.,
2003). It also important to mentioned here that, while
atorvastatin is more potent than pravastatin at lowering
blood cholesterol levels, it also impairs mitochondrial function
(Urbano et al., 2017).

In addition to cholesterol synthesis, IPP is also a direct
agonist of Vγ9Vδ2 T-cell activation (Wesch et al., 1997).
Vγ9Vδ2 T cells represents a particular TCR-γδ population that

is prevalent in blood and has been shown to be associated with
anti-viral (Agrati et al., 2011; Qin et al., 2011), anti-bacterial
(Szereday et al., 2003; Roberts et al., 2007; Qaqish et al., 2017)
and anti-tumor (Nakajima et al., 2010; Kobayashi et al., 2011;
Nicol et al., 2011) activity. Reduced cholesterol production –
due to halted IPP turnover – triggers an upregulation of the
low-density lipoprotein (LDL) receptor on cells, leading to an
accumulation of intracellular LDL and a dramatic decrease
in circulating levels of ‘bad’ cholesterol (Afonso et al., 2018).
This phenomenon (high LDLR expression in addition to high
intracellular LDL content) in Vγ9Vδ2 T cells has been shown
to compromise their immune functions in association with
reduced mitochondrial ATP generation and dampened pro-
inflammatory functions against breast cancer cells (Rodrigues
et al., 2018). Given the growing importance of Vγ9Vδ2 T cells
in the host’s armament against infectious agents, i.e., M.tb,
pathogenic Escherichia coli, CMV, Plasmodium falciparum etc.
(Dechanet et al., 1999; Yoshida, 2001; Wang et al., 2001a,b; Chen
et al., 2013; Jagannathan et al., 2014; Schmitt et al., 2017), there is
a high likelihood that the use of statins may not promote immune
activation but rather immune suppression in patients – most
likely dependent on the disease state. Further to Vγ9Vδ2 T cells,
inhibition of HMG-CoA also leads to impaired B-cell activation
and their subsequent capacity to activate CD4+ T cells via
HLA-DR upregulation and antigen presentation (Shimabukuro-
Vornhagen et al., 2014). Therefore, statin adjunctive therapy may
be considered for inducing anti-inflammatory effect to ameliorate
chronic infection rather than to stimulate immune responses for
improving clinical outcomes.

Another cholesterol-lowering drug, ezetimibe, has also shown
potency against intracellular M.tb under hypoxic conditions (Tsai
et al., 2017). Furthermore, the study also reported that patients
receiving ezetimibe therapy exhibited a lower incidence of LTBI
as well as intracellular lipid content, concomitant with reduced
bacterial reservoirs (Tsai et al., 2017). However, like statins but
via a different mechanism, ezetimibe also has anti-inflammatory
properties which downregulates nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) expression and
monocyte chemotactic protein 1 (MCP-1) production albeit with
a chance of increasing NO expression (Toshiyuki and Yasuchika,
2011). NO is a strong mediator of intracellular antimicrobial
responses in APCs, i.e., macrophages and dendritic cells, and
in modulating T-cell responses (Niedbala et al., 2006; Tripathi
et al., 2007). Further to an immunological component, NO
is a major intracellular communication molecule involved in
vascular integrity and neuronal function (Blaise et al., 2005).
Low NO levels was shown to be associated with dyslipidaemia
in patients with T2DM, suggesting a role for NO in modulating
lipid metabolism (Mishra and Mishra, 2017).

Non-steroidal Anti-inflammatory Drugs
The role of non-steroidal anti-inflammatory drugs (NSAIDs)
such as aspirin and ibuprofen has been previously explored as
adjunctive therapy for tissue protection in severe lung infections,
including TB (Eisen et al., 2013; Vilaplana et al., 2013; Kroesen
et al., 2017) and influenza (Epperly et al., 2016). Although these
drugs target cyclooxygenases (COX), crucial enzymes in the
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TABLE 1 | Drugs (clinically approved and candidates in clinical trials) capable of altering host immunometabolism to improve clinical outcomes in pulmonary infections.

Drug/chemical
compound

Biological
target

Description References

Clinically approved agents

Metformin Activation of
AMPK

Clinically approved to treat T2DM. Increases mitochondrial respiration and FA
breakdown, leading to increased generation of memory CD8+ T cells. Shown to
enhance immune clearance of M.tb in murine models.

Singhal et al., 2014

Bevacizumab VEGF Used in the treatment of glioblastoma. Corrects aberrant neovascularization in
cancer tissue, allowing for oxygenation and reduction of hypoxia. Has been
shown to improve vascular remodeling in TB granulomas, also increasing drug
penetration. This is bound to affect immune-cell infiltration and anti-pathogen
activity in situ due to an increase in oxygen, which enables aerobic glycolysis.

Datta et al., 2015; Oehlers et al., 2015

Ipilimumab CTLA-4 Both anti-CTLA-4 and anti-PD-1 are clinically approved for treating metastatic
melanoma while the latter is also approved for treatment-refractory non-small cell
lung cancer. Shown in the cancer setting to cause a shift to FAO from glucose
metabolism, reminiscent of memory CD8+ T cells, including reduced uptake of
glucose from the extracellular environment, thereby modulating the ability of T
cells to acquire effector functions and produce IFN-γ. CTLA-4, on the other
hand, inhibits glycolysis without switching the cell metabolism to FAO. This might
have implications in patients with diabetes and lung infections, where high blood
glucose level is a characteristic; PD-1-expressing antigen-specific T cells may be
long-lived (like central memory cells) and highly amenable to
therapeutic intervention.

Patsoukis et al., 2015

Nivolumab,
pembrolizumab

PD-1

Statins, i.e.,
atorvastatin,
pravastatin,
lovastatin,
simvastatin

HMG-CoA
reductase

Blocks the enzymatic activity of HMG-CoA reductase which catalyzes an
important intermediate step in the isoprenoid pathway: conversion of HMG-CoA
to mevalonate. Downstream of this process is the synthesis of isoprenyl
pyrophosphate, which is necessary for cholesterol synthesis as well as Vγ9Vδ2
T-cell activation. Statin use in the cancer setting has shown to reduce Vγ9Vδ2 T
cell-mediated tumor rejection owing to increased LDLR expression, increased
LDL uptake and compromised mitochondrial function. However, statins could be
useful against chronic inflammatory processes during infectious disease
pathogenesis, i.e., TB.

Wesch et al., 1997; Urbano et al.,
2017; Rodrigues et al., 2018

Ezetimibe Nieman-Pick-
C1-Like1
(NPC1L1)
protein

Ezetimibe blocks the reabsorption of cholesterol by cells, thereby reducing the
amount of intracellular LDL levels. Has anti-inflammatory properties but may
induce NO expression. It has been shown to reduce intracellular M.tb survival in
macrophages while patients with T2DM taking ezetimibe have lower
incidence of LTBI.

Toshiyuki and Yasuchika, 2011; Tsai
et al., 2017

Aspirin (potentially
also other non-
steroidal anti-
inflammatory
drugs, NSAIDs)

Activation of
NO/ROS
release

NO is an important biological mediator as well as immune effector molecule,
particularly against intracellular pathogens – as is the ROS hydrogen peroxide
(H2O2). Maybe involved in lipid metabolism, based on observations in patients
with T2DM. Aspirin-driven NO production in macrophages and dendritic cells (as
well as adipocytes) may, in fact, promote eradication of local bacterial reservoirs
in the case of TB without raising an exaggerated immune response.

Taubert et al., 2004; Blaise et al., 2005;
Niedbala et al., 2006; Tripathi et al.,
2007; Morris et al., 2009; Schroder,
2009; Eisen et al., 2013;
Vázquez-Meza et al., 2013; Vilaplana
et al., 2013; Epperly et al., 2016;
Beigier-Bompadre et al., 2017; Kroesen
et al., 2017; Mishra and Mishra, 2017

Resveratrol (also
metformin)

Activation of
SIRT1

Sirtiun 1 (SIRT1) is an important histone deacetylase with functions in modulating
lipid metabolism as well as immune regulation in myelocytic and lymphocytic
cells. Treatment of obese individuals with resveratrol improved lipid metabolism
and reduced circulating levels of fatty acids and glucose as well as inflammatory
markers. Resveratrol-mediated SIRT1 activation results in dampened
pro-inflammatory CD4+ T cells responses as well as resolution of chronic lung
inflammation and associated tissue pathology in mice infected with M.tb.

Timmers et al., 2011; Zou et al., 2013

Candidates in clinical trials

ADU-S100 Activation of
STING
pathway

ADU-S100 is a synthetic cyclic dinucleotide mimicking the structure of cGAMP
and is currently in clinical trials as an agonist of the STING pathway. Recent
evidence demonstrates that STING activation via cGAMP allows for correction of
lipid/glucose metabolism dysregulation while enhancing innate and adaptive
immune responses, i.e., type I interferon production and CD8+ T-cell activity.
This has implications for eradicating latent pathogen reservoirs, i.e., LTBI,
Cryptococcus sp. infections, asymptomatic Klebsiella spp. infection in
individuals, including those who suffer from metabolic conditions/diseases.

(Miller et al., 1996; Weintrob et al.,
2013; Qureshi et al., 2014;
Chonmaitree et al., 2015; Ohkuri et al.,
2017; Desbien et al., 2018);
ClinicalTrials.gov identifiers:
NCT02675439, NCT03172936

(Continued)
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TABLE 1 | Continued

Drug/chemical
compound

Biological
target

Description References

Dactolisib
(BEZ235)

PI3K/mTOR
pathway

Dactolisib inhibits the PI3K/mTOR pathway to the effect of abrogating glycolysis
in exposed cells. This has shown benefit in ameliorating deleterious lung
pathology in influenza A infection while extending survival (murine model).
Dactolisib is currently in clinical trials for patients with cancer.

Smallwood et al., 2017; National
Library of Medicine, 2018

AMPK, adenosine monophosphate-activated protein kinase; T2DM, type II diabetes mellitus; VEGF, vascular endothelial growth factor; CTLA-4, cytotoxic T lymphocyte-
associated antigen 4; PD-1, programmed cell death 1; FAO, fatty acid oxidation; LDL, low-density lipoprotein; NO, nitric oxide; ROS, reactive oxygen species; NSAID, non-
steroidal anti-inflammatory drug; cGAMP, cyclic guanosine-monophosphate adenosine-monophosphate; STING, stimulator of interferon genes; LTBI, latent tuberculosis
infection; PI3K, phosphatidylinositol-3-kinase; mTOR, mammalian target of rapamycin.

eicosanoid pathway for production of lipid mediators such as
prostaglandins and leukotrienes, exposure to aspirin in particular
has been observed to induce NO synthesis in several cell
types (Taubert et al., 2004; Schroder, 2009). Also, aspirin has
been shown to induce the expression of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase – which leads to ROS
generation – in adipocytes (Vázquez-Meza et al., 2013), that can
also harbor M.tb bacilli (Beigier-Bompadre et al., 2017). Thus,
aspirin-induced NO and ROS production may shift the balance
to reflect increased intracellular ROS concentrations without
necessarily prompting exaggerated pro-inflammatory cytokine
release (Morris et al., 2009; Hsieh and Wang, 2018).

Sirtuin Activation as an HDT Strategy
Sirtuin 1 (SIRT1) is an enzyme which participates in epigenetic
modification of the genome and possesses mono-ADP-
ribosyltransferase activity (Kitada and Koya, 2013). The histone
deacetylation properties of SIRT1 is involved in regulating the
expression of genes involved in lipid and glucose metabolism as
well as mitochondrial biogenesis in cells (Kitada and Koya, 2013).
In patients with T2DM, SIRT1 expression is downregulated,
concomitant with insulin resistance and impaired FAO (Kitada
and Koya, 2013). Individuals suffering from obesity showed
improvement in lipid metabolism, marked by increased SIRT1
expression, improved mitochondrial turnover and function
as well as reduced amounts of intracellular lipid storage and
circulating glucose levels (Timmers et al., 2011). Resveratrol-
mediated SIRT1 activation has been shown to interrupt the
pro-inflammatory activity of CD4+ T cells (Zou et al., 2013),
while myeloid cell-specific inactivation of the SIRT1 gene in
a murine model of pulmonary TB resulted in amelioration
of lung pathology, resolution of chronic inflammation and
improved responses to anti-TB drug treatment (Cheng et al.,
2017). The therapeutic potential of SIRT1 activation in lung
infections – by means of metabolic reprogramming – may
suggest more favorable clinical outcomes and warrants the
design of appropriate early-phase clinical trials.

HDT Candidates Currently in
Clinical Trials
Cyclic adenosine-monophosphate guanosine monophosphate
(cGAMP) is a naturally occurring cyclic dinucleotide structure
produced by cyclic GMP-AMP synthase (cGAS) in response to
DNA stimulation (Sun et al., 2013). cGAMP also happens to

be the natural agonist of the innate immune response-activating
molecule stimulator of interferon genes (STING) – which is
important for inducing type 1 interferon production (Sun
et al., 2013). Administration of exogenous cGAMP followed
by STING stimulation was recently shown to result in
rectification of glucose and lipid metabolism in mice fed
with a high-fat diet by reducing lipid deposition in the liver
as well as gluconeogenesis (Guo et al., 2017). Furthermore,
cGAMP treatment lead to a decrease in pro-inflammatory
responses in hepatocytes and adipocytes concomitant with
an increase thereof in myelocytic cells (Guo et al., 2017).
A novel STING agonist, ADU-S100, is currently in clinical
trials sponsored by Novartis and Aduro Biotech to stimulate
anti-cancer immune responses in patients with solid tumors
(ClinicalTrials.gov identifiers: NCT02675439, NCT03172936).
Preclinical assessment of ADU-S100 showed that, in combination
with anti-PD-1 therapy, the drug promotes CD8+ T-cell
infiltration into tumors while, on its own, type I interferon and
TNF-α induction in haematopoietic cells was observed (Desbien
et al., 2018). While immune-stimulation is not necessary
for patients with active infection-induced lung pathology,
the use of ADU-S100 may be considered to engage innate
immune mechanisms as well as tissue-associated T-cell responses
(Ohkuri et al., 2017) for eradicating ‘silent’ pathogen reservoirs
in individuals harboring asymptomatic/latent infections, i.e.,
LTBI, Cryptococcus neoformans infection in HIV-infected adults
(Miller et al., 1996), respiratory viral infections in young
children (Chonmaitree et al., 2015) and drug-resistant Klebsiella
pneumoniae as well as Acinetobacter baumannii infections
(Weintrob et al., 2013; Qureshi et al., 2014). Considering that
cGAMP and STING activation also influences the normalization
of metabolic dysregulation in the host, individuals with
dyslipidaemia or DM and latent lung infections may also benefit
from cGAMP/STING-targeted therapy for enhancing immune
responses while correcting their metabolic profile.

Another clinical drug candidate targeting host
metabolism is dactolisib (BEZ235), which is currently in
early-phase clinical trials for patients with solid cancers
(National Library of Medicine, 2018). Dactolisib is an inhibitor
of the PI3K/mTOR pathway and was tested in influenza-infected
human cells, resulting in strong impairment of glycolysis and
a stark reduction in viral titres albeit not affecting virus entry,
genome replication and gene transcription in cells (Smallwood
et al., 2017). In vivo evaluation of the drug (in mice infected with
influenza A virus) showed that the drug was well tolerated and
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FIGURE 1 | Targeting the host immunometabolism to treat lung infections. A schematic representation of the central role played by glucose and lipid metabolism in
immune-cell homeostasis and control of pulmonary infection(s). Uptake of free fatty acids as well as glucose by T and B cells is important for immunological effector
functions and maintenance of immune-cell memory. In this regard, saturated fatty acids may have a higher likelihood of promoting anti-inflammatory activity in T cells,
while unsaturated fatty acids may lead to the contrary. Antigen-presenting cells (APCs), encompassing macrophages, dendritic cells and B cells, are affected by the
intake and endogenous production of fatty acids in their capacity to generate phagolysosomes and upregulate HLA-DR on the cell surface to activate T cells.
Similarly, glucose metabolism in B cells is important for cellular proliferation and antibody production. However, infected myeloid cells, represented here by an
M.tb-infected macrophage (Mf), can disrupt the fatty acid-metabolic balance by increasing consumption of both nutrient types as indicated by the thicker arrows.
This loss of equilibrium results in bacterial proliferation, subdued immune activation/modulation and survival of the pathogen in the lung. Furthermore, high levels of
circulating low-density lipoprotein (LDL) are also taken up by infected host cells to support intracellular survival of the pathogen. Interspersed in this intricate
immuno-metabolic circuit are NK cells, which can also acquire adaptive, memory-like functions and contribute to effective host immune control of pulmonary
pathogens. Glucose uptake is also necessary for effector NK cells with regard to IFN-γ production, which is essential for protection against intracellular pathogens.
This is concomitant with mTOR upregulation and responsiveness to IL-2. However, the regulation of lipid immunometabolism in NK cells requires further
investigation. Also shown in the figure are several drugs (in yellow/orange boxes), most of which are clinically approved except for ADU-S100 and dactolisib, which
may be used for targeting the immunometabolic axis in lung infections. Metformin, via the activation of AMPK, can induce oxidative phosphorylation (OXPHOS) in
macrophages and improve memory CD8+ T-cell responses (IFN-γ production). Statins block intracellular HMG-CoA reductase and induce an increase in LDL
accumulation in exposed cells by upregulating surface expression of the LDL receptor, which can affect both T and B cells by reducing inflammatory responses.
Conversely, ezetimibe, which also regulates cholesterol homeostasis, does so by blocking uptake of exogenous LDL. Ezetimibe, like statins, shows a rather
anti-inflammatory effect and can induce nitric oxide (NO) production. Aspirin (acetylsalicylic acid), which was already proposed as a possible anti-inflammatory HDT
for TB, may also induce NO expression in cells – which is crucial for killing intracellular pathogens. Resveratrol can improve the uptake of free fatty acids by T cells by
activating host sirtuin1 (SIRT1) – to fine-tune cellular immune responses while reducing the occurrence of adverse tissue pathology. Although not directly shown,
anti-PD-1 and anti-CTLA-4 therapy have been shown to improve glucose metabolism in T-cell populations, in part adding to their clinical anti-tumor activity and may
also apply to TB. The investigational clinical drug candidate ADU-S100 mimics cyclic guanosine-monophosphate-adenosine-monophosphate (cGAMP) and can
activate the stimulator of interferon genes (STING) protein, thus qualifying it as an immunomodulatory drug candidate with effects on immunometabolism. Dactolisib
is currently in early-phase clinical trials to treat patients with solid cancers and has been shown to be beneficial in a preclinical murine influenza infection model – by
targeting glycolysis and may apply to TB and staphylococcal infections, where increased glycolysis in host cells supports pathogen growth.
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a reduction in pathogen burden as well as extension of survival
was achieved (Smallwood et al., 2017). This places dactolisib on
the list of candidates for host-directed adjunct therapies further
to conventional antimicrobials, warranting further evaluation in
clinically relevant models representing suitable indications.

Table 1 is a summary of clinically approved drugs or
candidates with HDT properties that can modulate host immune
metabolism to improve disease outcomes, which are presently
in clinical trials. Figure 1 summarizes the dysregulation of
host immunometabolism in pulmonary infections and presents
several of the afore-mentioned therapeutic agents that may be
considered in a host-directed fashion to restore a dysregulated
immunometabolism or to fine-tune the metabolic milieu to
the effect of decreasing detrimental immunopathology while
enhancing specific and protective immune responses.

CONCLUSION

The role of cellular metabolism in immunomodulation is an
integral component of HDTs. Existing evidence, based on
preclinical and clinical observations, suggest that metabolism-
targeting drugs given in an adjunct fashion to standard
antimicrobial therapy may lead to clinical benefits. In addition,
immunometabolic modulatory axes – marked by transcriptional
regulation and post-transcriptional as well as epigenetic
checkpoints – need to be considered in the process of
designing HDTs. An integrated view of information supplied
by ongoing clinical trials (‘drug repurposing’) in various patient
populations – including dietary practices, genetic backgrounds

and exposure to pathogens – is critical in our collective attempts
to improve clinical outcomes in treating pulmonary infections.
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