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INTERVENTIONS IN MODEL-TRACING COGNITIVE TUTORS 
 

This paper presents some models and methods for generating pedagogical interventions in model-tracing 
cognitive tutors. They use Bayesian networks for assessment and making decisions, this feature allows 
managing uncertainty reasoning based on a formal foundation. This technique combines the rigorous 
probabilistic formalisms with a graphical representation and efficient inference mechanisms. It is explained 
how Bayesian networks are employed as an inference engine to assess the degree of learning of the relevant 
knowledge components in the learning domain and determine the proper pedagogical interventions for 
performing a productive learning process. 
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Introduction 
 

Model-tracing cognitive tutors (MTCT) have 
successfully been applied on different knowledge 
domains, and have proved positive results on students 
while acquiring skills and knowledge under specific 
learning domains [1-4]. Moreover, MTCT can track 
students’ actions to provide pedagogical interventions 
such as hints and feedbacks in a task-structured 
curriculum [2]. This feature, also called cognitive model 
needs determining the student’s thinking and the 
required skills and knowledge for the learning domain. 
Cognitive models (CM) are an integral part of 
developing Intelligent Tutoring Systems (ITS) [4]. 
Thus, a CM requires a proper understanding of the 
knowledge involved in student’s actions in a given 
learning domain, problem-solving strategies or 
principles and it should also be able to interpret 
student’s recurrent behavioral patterns and tendencies 
that reflect a way of thinking in order to provide 
constructive pedagogical interventions. A MTCT is 
“interested” on the way the student processes and 
assimilates the relevant knowledge components, this can 
be tracked by analyzing the behavior when the student 
attempts to commit actions to satisfy the requirement(s) 
of a task, and it can be recurrent in terms of the way that 
knowledge is required, in other words; how tasks are 
graphically presented. An approach discussed on this 
paper is based on the hypothesis that some students are 
less able to seek for help when they needed or get close 
to a person to get it, e.g. the teacher or other means of 
information, communication or learning support, due to 
the lack of meta-cognitive skills for “help-seeking” [3]. 
This approach gives students support for developing 
skills like help-seeking and self-regulatory by means of 

adaptive pedagogical interventions. These interventions 
may be in the context of an interactive learning 
environment that leads them to learn the knowledge and 
skills of certain domain. 

So according to the hypothesis that a help-seeking 
student becomes a better learner [3], the MTCT uses a 
task specific pedagogical intervenor. Mainly cognitive 
tutors support the base of learning by doing, help-
seeking instructions and self-analyzing. These features 
in learning platforms and cognitive tutors have been 
tested and they prove to raise student’s scores [3-5]; the 
models and methods explained in this work are 
developed to perform pedagogical interventions 
according to student’s actions and performance. For 
implementing and testing them, a MTCT named TITUS 
was developed [6]. It employs Bayesian Networks 
(BNs) with diagnostic models for assessing students [5, 
6, 8]. Therefore, the aim of this work is to present some 
models and methods for implementing into the 
development of Model-tracing cognitive tutors that 
make use of Bayesian networks with diagnostic models 
for performing inferences in order to produce adaptive 
pedagogical interventions. 
 

1. Generic description of the two loops 
pedagogical interventions framework 

 
It is expressed on [5] that tutors behaves similarly 

despite of their different structures, thus a common two 
loops structural blocks are proposed, the outer and inner 
loops. Despite the essence and the main common 
features of the two loops structure had been described in 
detail in the literature [5], there still exist the absence of 
the related models and methods to understand their 
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internal functionality and guide designers to build 
algorithms or solutions for developing them. A basic 
explanation of the common functionalities in the two 
loop structure is presented as following. 

In short words, the outer loop has the 
responsibility to define the task that the student should 
do next. The main challenges this loop presents are 
selecting intelligently a task as well as developing a rich 
enough set of tasks to select from. On the other hand, 
inner loop is focused on the student’s actions while he 
attempts to complete a determined task; whereas the 
outer loop deals with the tasks, the inner loop deals with 
the steps related to complete a task and offers the 
students some “services” as they use the tutor. These 
services will be deeper explained ahead on the inner 
loop related section. 

Furthermore, in basis of Bloom’s taxonomy [7] 
that is employed on different spheres of pedagogy, 
including the computer-oriented training, an ITS can 
attain the first three lowest levels: knowledge, 
understanding and application. Assessment and 
acquirement of new knowledge or skill based on the 
trained knowledge components by the students can be 
carried out when they attempt to complete different 
practical tasks, computing solutions of tasks, fulfillment 
of individual laboratory practices, etc. Higher levels 
assume creativity moments and ambiguity; thus, these 
aspects cannot be realized without the expert assessment 
of the teacher. Learning automation under such 
circumstances lies beyond this work. 

 
2. Models for implementing the outer loop 

 
Assessment model for determining the degree of 

learning of knowledge components in the domain. A 
key factor to aid the student to navigate through the 
learning domain is to be able to model the prior degree 
of learning he has and to keep track of each relevant 
knowledge component, and Bayesian networks (BN) 
can help to manage this uncertainty [8-10]. 

The basic structure for the BN that models the 
degree of learning in a student is depicted on Fig. 1. 

 

 
Fig. 1. BN assessment basic structure 

 
This BN consists of four nodes: Kt, St+1, DM and 

Kt+1, where Kt is the probability of learning of certain 
knowledge component or skill at t time; St+1 is the step 
or student’s action at moment t+1 after he attempts to 

complete certain task; DM is a diagnostic model [9] that 
is directly linked to the student’s actions and influences 
the probability of the degree of learning of the relevant 
knowledge component at t+1 moment; and Kt+1 is the 
probability of learning of the knowledge component at 
t+1 moment. ¬Kt, ¬St+1, ¬DM and ¬Kt+1 are the 
respective complementary probabilities. 

Probability P(Kt+1) of learning certain knowledge 
component at t+1 moment, after a student’s correct 
action is obtained with (1), in this situation, evidences in 
a student’s action are denoted by P(St+1) = 1 (correct 
action) and P(DM) = 0 (deactivated). 
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Conditional probabilities P(Kt|St+1,¬DM) and 

P(¬Kt|St+1,¬DM) in (1) are obtained with (2) and (3) 
respectively, 
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where α is a normalization coefficient, 

 

    t t+1 t t+1P K |S ,¬DM P ¬K |S ,¬DM 1α .   

 
This model assumes that each task depends on 

individual knowledge components. That is, the set of 
relevant knowledge components in a task are individual 
cognitive processes, thus when a student attempts to 
complete a task, they can be applied independently one 

Kt 
St+1 

Kt+1 

DM 

(1) 
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from another, so their posterior probability must be 
assessed separately. 

Therefore, a step analyzer assesses each relevant 
knowledge component in the actual task and passes it to 
the outer and inner loops in order to determine the 
proper pedagogical interventions. Thus, outer and inner 
loops directly depend on this assessment. 

Model for selecting tasks. For implementing this 
model, a set of several tasks for the learning domain 
must be developed and separated into complexity levels 
and sequential modules. Three or five levels of 
complexity are commonly instantiated under the 
macroadaptation approach as standard for educational 
proposes [4-6] (e.g. very easy, easy, average, difficult, 
and very difficult). Modules should be created so that in 
each of them there were two tasks as minimum from 
each level of complexity in order to have alternatives 
for a choice. Moreover, all the set of tasks in a module 
must cover the complete set of relevant knowledge 
components related to it, and they should be trained 
more than once in each level of complexity. Set of tasks 
in every module should be developed as an interwoven 
network over the relevant knowledge components that it 
contains. Thus, it is preferable that every knowledge 
component should be trained at least by two different 
tasks; this relation between a knowledge component and 
tasks increases the probability of learning it by 
increasing the times of possible situations that students 
might employ it, this is well known because it is the 
classic approach that is commonly implemented in the 
classrooms. Task model (MT) above explained, is 
represented by (4) and its boundaries in (5). Fig. 2 
depicts and example of the MT. 

 

 MT : {Tijk} → {KWkl}, (4) 
 

where T is a task, KW defines a knowledge component, 
i is the task identifier, j  [1, 5] represents the levels of 
complexity, k is the module of the task T, and l is the 
identification number for the knowledge component. 
 

  k j ijk ijk, , T = 0, T   2,    

    -1

ijk kl ijkk j l, , T = MT KW 0, T 2,      (5) 

    ijk klk MT T  = KW ,   
 
where MT-1 - {KWkl} → {Tijk}. 

The parameters related to the learning domain are 
fixed, and the number or tasks included in the MTCT 
may be added but this process is performed out-of-
working time, thus the MT is static. On the other hand, 
the student model (MS) is constantly updated while the 
student is working with the MTCT, for this reason, MS 
is a dynamical representation of the student. 

This “representation” might include name, 
surname, user, password, learning progress, perfor-

mance, right attempts, and another key information that 
outer loop in join with the inner loop may use for 
assessing the student’s degree of learning of each 
knowledge component in the learning domain. The 
above concepts can be represented in (6) and (7), where 
S represents the student, q is his identification number, 
P  R are real numbers in the interval [0, 1], that 
represents the probability of learning certain knowledge 
component, N is the attempts of completing a 
determined tasks. 

 
 MS1 : {Sq} × {Tijk} → N. (6) 

 MS2 : {Sq}×{KWkl} → P. (7) 
 

Fig. 2. Task model structure (example) 
 
The prior information is initialized if a student Sq 

uses the tutor for the first time, thus for each Sq:  

i , j , k  MS1(Sq, Tijk)={0}; l , k  MS2(Sq, KWkl) 
={0.5}. After this, first module is selected and 
complexity level is set to the middle one: k = min(k), j = 
[max(j)/2]. As it was commented above, the outer loop 
selects the next tasks (NT) in a certain module 
represented by (8), for a determined student, containing 
knowledge components with lower degree of learning. 

 

  
kl-1

q kl

KW
NT=MT .

MS2 S ,KW min

  

 (8) 

 

Because many knowledge components might have 
a lower degree of learning and tasks may contain 
several of them, (8) can return more than one choice 
( NT >1), thus the outer loop searches the next task 
based on attempts (NT’), represented by (9). 
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In case that NT' >1 , the outer loop will 

implement (10), and randomly will realize a model 
imitation for selecting a task (NT*). This case is 
certainly possible at the first time a student uses the 
MTCT. 
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Processes described by (8)-(10) repeats in 
accordance with the situations above explained, 
meanwhile the student has not probably learned the 
knowledge components in the current module; only 
then, the outer loop passes to the closest upper module: 
k + 1 and again it repeats the process of choosing the 
next task, until k < max(k). In case the complete set of 
knowledge components in the domain and the max(k) 
have reached, the training program comes to the end. 

 
3. Models and method for implementing 

the inner loop 
 
Models for defining complexity level and 

assessing degree of learning of knowledge 
components. The most common services that an inner 
loop may offer, according to (5), are following listed: 

  minimal feedback on a step. Thus, the tutor 
indicates whether the step is correct or incorrect; 

  error specific feedback on incorrect steps. This 
information is intended to help the student to focus on 
which particular step or knowledge component is wrong 
and how to avoid making it again; 

  hints on misconceptions or errors on specific 
knowledge components; 

  assessment of knowledge. 
 
It is important to emphasize that, the main aim of 

the services above listed is to assist students in learning 
the knowledge components in the learning domain. 
Designers may probably learn from the misused 
services under classic educational activities. Inner loop 
implements a “step analyzer” that is used for other 
services and interwoven with the outer loop. However, 
many other services could be implemented inside the 
inner loop structure. Once the outer loop has chosen a 
task, the MTCT waits the student’s action (step). After 
the student has committed it, the inner loop mechanism 
is triggered; the step analyzer in particular which is one 
of the services listed above, and assesses the degree of 
learning of the relevant knowledge components in the 
task (Soli): 

 
Soli(NT)  {0,1},  

NT  { NT, NT', NT*}, 
 

then updates the information about the attempt as well. 
The complexity level is adjusted according to the 
piecewise model in (11). 
 

 
 
 
i

i

j+1, if ( Sol NT =1) & (j < max(j));

j= j-1, if (Sol NT =0) & (j < min(j));

j, other cases.






 (11) 

A module is completed when the set of knowledge 
components that conform it are “learned”, thus a 
threshold pKW helps to estimate this. Statements (12) 
and (13) are used for determining if certain knowledge 
component has been probably learned. 

 
 MIN[MS2(Sq, KWkl)] > pKW. (12) 
 AVG[MS2(Sq, KWkl)] > pKW. (13) 

 
According to [5] over a threshold pKW = 0.85, it 

can be determined that student probably has learned a 
certain knowledge component; besides, this value can 
be adjusted. Statement (12) corresponds to a more 
“rigid” tracing for all knowledge components, whereas 
(13) permits to scatter degree of learning of knowledge 
components. 

Method for pedagogical feedback support. Inner 
loop is also responsible of supplying a “service” for 
pedagogical feedback; this service may be offered at the 
moment the student makes actions during attempting or 
after completing a task. Although, a hint could be 
supplied before, during or after attempting to complete 
the assigned task to support or assist the student in 
completing it as well. Hints are intended to avoid 
frustration or remarking repetitive misconceptions or 
mistakes. However, in this work, it is only proposed a 
general method for supplying pedagogical feedback 
after the student has submitted his answer. It can be 
used as a base for developing other supporting 
pedagogical methods, but this may increase complexity 
of the software to make it capable of tracking every 
minimal student’s action even over the MTCT’s graphic 
users interface for interpreting and “translate” it into a 
pedagogical intervention. 

 
k Soli (NT), NT  { NT, NT', NT*} 

Start 
  Analyze: l{KWkl} : {Soli (NT)} → [Tijk] 
     {Soli (NT)} ↔ 1 
 MS1 : {Sq}x{Tijk}→({Nikr}+1) 
 Give: {min(FBl)} : {Soli (NT)} →1; 
 
     {Soli (NT)} ↔ 0 
 MS1 : {Sq}x{Tijk}→({Nikw}+1) 

({Nikw} = 1) → {min(FBl)}, {Tijk} → [k] 
Give: l {FBl} = 2 : {Nikw} ϵ [2, 3], {Tijk}→[k] 
Give: l {FBl} = 3 : {Nikw} > 3, {Tijk} → [k] 

End 
 
The method for the pedagogical feedback support 

is above presented and following explained. When the 
student’s step is submitted, the step analyzer assesses 
the relevant knowledge components in the current task. 
In addition, it computes how many times the student has 
correctly employed a specific knowledge component 
(Nikr); how many times he has misused it (Nikw), and 
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accordingly the inner loop returns some classification of 
feedback, (FBl)  {1: minimal feedback, 2: hint about 
error, 3: specific error feedback}. 

For the first time a knowledge component has been 
misused the inner loop, after employing the step 
analyzer, will return a minimal feedback (FBl → 1), 
such as “correct” or “incorrect”. For the second and 
third time that the step analyzer determines certain 
knowledge component has been misused in the current 
task, it will return an error-specific hint or feedback  
(FBl → 2). For instance in a fault-tolerant learning 
domain, “You should pay more attention on the value of 
the transfer coefficient” or “The class of fault you have 
chosen is not correct”, “Static characteristics for this 
class of fault are depicted on the figure, identify them”, 
etc. It has been determined that the inner loop will give 
second level feedback twice as a very simple 
mechanism to minimize feedback abuse. Nevertheless, 
other more advanced mechanisms may be implemented. 

On the fourth and over of wrong attempts or 
misuse of a relevant knowledge component, the inner 
loop will return and error-specific feedback, leading the 
student to review and study the corresponding theory or 
related information to overcome the deficiencies on the 
corresponding knowledge components in order to 
prevent this from occurring again and supporting a 
constructive learning process. The inner loop gives only 
delayed feedbacks and hints in accordance with the 
policies explained above and it will only give them right 
after the student had submitted his step(s). 

 
4. Experimental results and analysis 
 
A MTCT was developed to implement and test the 

performance of the proposed models and methods [6]. 

The training program has been classified into three 
sequential modules, 29 relevant knowledge components 
were defined. As it was explained above, 
macroadaptation knows which knowledge components 
are required for each task. 

Thus, for training the complete set of knowledge 
components, 43 tasks were developed. Moreover, some 
of these tasks have more than one variant; this feature 
increases the set of tasks up to 212 different tasks that 
the MTCT may present to the student and they are 
grouped by level of complexity as well. 

Experimental results for evaluating the 
effectiveness of the models and methods were obtained 
by means of the analysis of 38 students’ performance, 
separated in two groups as follows: 

1) 19 students used the MTCT without the 
implementation of the outer and inner loops during the 
learning process (Group A); 

2) 19 students used the MTCT with a fully 
implementation of the outer and inner loops (Group B); 

 
Experimental results from the group of students 

that used the tutor without implementing the outer and 
inner loops mechanism are depicted on Fig. 3. 

Average degree of learning of the Group A for 
each of the 29 knowledge components in the learning 
domain is clearly below the threshold pKW on the  
Fig. 3, and it states that the degree of learning of the 
knowledge components in the learning domain is less 
probably. 

On the other hand, when the Group B used the 
tutor with the outer and inner loops implemented and 
obtaining adaptive pedagogical interventions the 
probability of learning every knowledge component 
considerably increased, and this result is shown on 
Fig. 4. 
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Fig. 3. Probability of learning of knowledge components without outer and inner loops mechanisms 
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Fig. 4. Probability of learning of knowledge components with outer and inner loops mechanisms 



Навчаючі системи 41 

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
D iagno stic  M o del (D M )

Ti
m

es
 A

ct
iv

at
ed

 
Fig. 5. Times knowledge components’ diagnostic models (DM) were activated 
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Fig. 6. Total and misused attempts for each task 

 
Times that students misused a knowledge 

component is shown on Fig. 5, it shows times the DMs 
for each KW were activated when it was misused and 
states on it that knowledge components 18, 19 were 
difficult ones for students. On base of that, adjustments 
in the educational role must be done and pay attention 
on them in order to compensate these deficiencies. 

Attempts of completing a task depicted on Fig. 6 
say which tasks resulted problematic for students, but 
also demonstrates the adaptability of the outer loop in 
accordance to the student’s performance and because of 
that, some tasks were not showed at all, however others 
were more often required on basis of their relevant 
KWs. 

The students’ final results from each group are 
depicted on Fig. 7. Students’ numbers are just for a 
generic identification but there is not any relationship 
between the groups. 

As Table 1 shows that by implementing the 
models and methods for pedagogical interventions 
Group B obtained an average ~0.56 higher probability 
of learning the knowledge components in the task 
domain than the Group A which did not obtained any 
pedagogical intervention. 

 
Table 1 

Average probability of learning of knowledge 
components in the learning domain 

Group Average probability 
A 0.4068 
B 0.9662 
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Fig. 7. Students’ average probability of learning  

for the learning domain 
 

Conclusions 
 

This paper proposes some models and methods for 
implementing into information technologies means for 
education, specifically in MTCT. An assessment model 
based on Bayesian networks with diagnostic models for 
making inferences for generation of pedagogical 
interventions was presented as well. A two-loop 
structure was described and the content of each 
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component in it was in detail explained. This provides 
the learners with cognitive pedagogical support, like 
hints and feedback. It has the ability to build a student 
model from each student and generate individual 
pedagogical interventions based on it, in order to 
actively adapt the learning process according to the 
student’s performance. 

The implementation of the proposed models and 
methods demonstrates their own effectiveness based on 
the increment of the degree of learning of the relevant 
knowledge components in the learners. This 
effectiveness was obtained by implementing them into a 
MTCT that was employed with regular students in a 
master degree program of the learning domain. Students 
that received pedagogical interventions from the MTCT 
obtained a 42% better performance than those ones that 
did not receive any kind of assistance from the cognitive 
tutor. So students with better performance have a higher 
probability of having learned the relevant knowledge 
components and it proves the positive educational 
impact in students when the proposed approach is 
implemented in a MTCT. 

 
References (GOST 7.1:2006) 

 
1. The Affective Meta-Tutoring project: Lessons 

learned [Text] / K VanLehn, W. Burleson, S. Girard,  
M. E. Chavez-Echeagaray, Y. Hidalgo-Pontet, L. Zhang 
// Intelligent Tutoring Systems, 12th International 
Conference, ITS 2014. – Berlin, 2014. – P. 94-103. 

2. Designing a Knowledge Representation 
Approach for the Generation of Pedagogical 
Interventions by MTTs [Text] / L. Paquette, J. F. 
Lebeau, G. Beaulieu, A. Mayers // International Journal 
of Artificial Intelligence in Education. - 2015. - Vol. 25. 
- P. 118-156. 

3. Toward Meta-cognitive Tutoring: A model of 
Help-Seeking with a Cognitive Tutor [Text] / V. Aleven, 
B. McLaren, I. Roll, K. Koedinger // International 
Journal of Artificial Intelligence in Education. – 2006. 
 - Vol. 16. – P. 101-130. 

4. Aleven, V. Rule-Based Cognitive Modeling for 
Intelligent Systems [Text] / V. Aleven // Advances in 
Intelligent Tutoring Systems / Eds. R. Nkambou, J. 
Bourdeau, R. Mizoguchi. – Berlin : Springer-Verlag, 
2010. - P. 33-62. 

5. VanLehn, K. The Behavior of Tutoring Systems 
[Text] / K. VanLehn // International Journal of Artificial 
Intelligence in Education. – 2006. - Vol. 16, № 3. 
- P. 227-265. 

6. Martinez Bastida, J. P. A learning platform for 
developers of faults-tolerant systems based on the 
signal-parametric approach [Text] / J. P. Martinez 
Bastida, A. G. Chukhray, E. V. Gavrilenko // 
Радіоелектронні і комп’ютерні системи. – 2012.  
- № 4 (68). - С. 40-46. 

7. Bloom, B. S. Taxonomy of Educational 
Objectives: The Classification of Educational Goals, 

Volumen 1 [Text] / B. S. Bloom. – New York : David 
McKay Co. Inc., 1956. – 207 p. 

8. Conati, C. Using Bayesian Networks to 
Manage Uncertainty in Student Modeling [Text] / C. 
Conati, A. Gertner, K. VanLehn // User Modeling and 
User-Adapted Interaction, Kluwer Academic 
Publishers. – Netherlands, 2002. - Vol. 12. – P. 371-
417. 

9. Чухрай, А. Г. Методологические основы 
интеллектуальных компьютерных программ, 
обучающих решению алгоритмических задач 
[Текст] : дис.  д-ра техн. наук : 05.13.06 ; 
защищена 14.03.14 / Чухрай Андрей Григорьевич.  
– Х., Национальный аэрокосмический университет 
им. Н. Е. Жуковского «ХАИ», 2013. – С. 104-118. 

10. Russel, S. Artificial Intelligence: A Modern 
Approach [Text] / S. Russel, P. Norving. – Third Ed.  
– USA, Prentice Hall, 2010. – 1132 p. 
 

References (BSI) 
 
1. VanLehn, K., Burleson, W., Girard, S., 

Chavez-Echeagaray, M. E., Hidalgo-Pontet, Y., Zhang, 
L. The Affective Meta-Tutoring project: Lessons 
learned. Intelligent Tutoring Systems, 12th International 
Conference, ITS 2014, 2014, pp. 94-103. 

2. Paquette, L., Lebeau, J. F., Beaulieu, G., 
Mayers, A. Designing a Knowledge Representation 
Approach for the Generation of Pedagogical 
Interventions by MTTs. International Journal of 
Artificial Intelligence in Education, 2015, vol. 25, pp. 
118-156. 

3. Aleven, V., McLaren, B., Roll, I., Koedinger, 
K. Toward Meta-cognitive Tutoring: A model of Help-
Seeking with a Cognitive Tutor. International Journal 
of Artificial Intelligence in Education, 2006, vol. 16,  
pp. 101-130. 

4. Aleven, V. Rule-Based Cognitive Modeling for 
Intelligent Systems. Nkambou, R., Bourdeau, J. & 
Mizoguchi, R. (Eds.) Advances in Intelligent Tutoring 
Systems, 2010, pp. 33-62. 

5. VanLehn, K. The Behavior of Tutoring 
Systems. International Journal of Artificial Intelligence 
in Education, 2006, vol. 16, no. 3, pp. 227-265. 

6. Martinez Bastida, J. P., Chukhray, A. G., 
Gavrilenko, E. V. A learning platform for developers of 
faults-tolerant systems based on the signal-parametric 
approach. Radioelektronni i komp'uterni sistemi - 
Radioelectronic and computer systems, 2012, no. 4 (68), 
pp. 40-46. 

7. Bloom, B. S. Taxonomy of Educational 
Objectives, Handbook I: The Cognitive Domain. New 
York, David McKay Co. Inc., 1956. 207 p. 

8. Conati, C., Gertner, A., VanLehn, K. Using 
Bayesian Networks to Manage Uncertainty in Student 
Modeling. User Modeling and User-Adapted 
Interaction, Kluwer Academic Publishers, Netherlands, 
2002, vol. 12, pp. 371-417. 

9. Chukhray, A. G. Metodologicheskie osnovy 
intellektual'nyh komp'juternyh programm, 



Навчаючі системи 43 

obuchajushhih resheniju algoritmicheskih zadach. Dys. 
 d-ra tekhn. nauk [Methodological bases of intelligent 
computer programs, training solving algorithmic 
problems. Dis. … Dr. techn. Sciences]. Kharkov, 

National Aerospace University N. E. Zhukovsky 
"KhAI", 2013, pp. 104-118. 

10. Russel, S., Norving, P. Artificial Intelligence: 
A Modern Approach. USA, Prentice Hall, 2010. 1132 p. 

Поступила в редакцию 8.01.2017, рассмотрена на редколлегии 15.02.2017 
 

МОДЕЛИ И МЕТОДЫ ДЛЯ ВНЕДРЕНИЯ ПЕДАГОГИЧЕСКОГО ВЛИЯНИЯ  
В СЛЕДЯЩИХ КОГНИТИВНЫХ СИСТЕМАХ 

Х. П. Мартинес Бастида, А. Г. Чухрай, Е. В. Гавриленко 
В данной работе предложены формализованные методы и модели для внедрения в информационные 

технологии в области образования. Их отличительной особенностью является использование байесовских 
сетей для оценки и принятия решений, что позволяет управлять неопределенностью на формальной основе. 
Рассмотрено, каким образом байесовские сети целесообразно использовать в качестве механизма создания 
логического вывода для оценки уровня владения знаниями студентов и определения соответствующих 
педагогических мероприятий для продуктивного процесса обучения. Приведено подробное объяснение 
формализации процессов в области образования, а также некоторых методов для достижения этой цели. 

Ключевые слова: информационная технология, байесовская сеть, педагогические мероприятия, 
модель трассировки, обучающие комплексы, байесовская оценка. 

 
МОДЕЛІ ТА МЕТОДИ ДЛЯ ВПРОВАДЖЕННЯ ПЕДАГОГІЧНОГО ВПЛИВУ  

НА ВІДСТЕЖУВАЛЬНИХ КОГНІТИВНИХ СИСТЕМАХ 
Х. П. Мартінес Бастіда, А. Г. Чухрай, О. В. Гавриленко 

В даній роботі запропоновано формалізовані методи і моделі для впровадження в інформаційні 
технології в сфері освіти. Їх особливістю є використання баєсівських мереж для оцінки і прийняття рішень, 
що дозволяє управляти невизначеністю на формальній основі. Розглянуто яким чином баєсівські мережі 
доцільно використовувати в якості механізму створення логічного висновку для оцінки рівня володіння 
знаннями студентів і визначення відповідних педагогічних заходів для продуктивного процесу навчання. 
Приведено докладні пояснення формалізації процесів у галузі освіти, а також деяких методів для досягнення 
цієї мети.  

Ключові слова: інформаційна технологія, баєсова мережа, педагогічні заходи, модель трасування, 
навчальні комплекси, баєсова оцінка. 
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