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Movement and regular physical activity are two important factors that help the human
body prevent, reduce and treat different chronic diseases such as obesity, type
2 diabetes, heart diseases, hypertension, sarcopenia, cachexia and cancer. During
exercise, several tissues release molecules into the blood stream, and are able to
mediate beneficial effects throughout the whole body. In particular, contracting skeletal
muscle cells have the capacity to communicate with other organs through the release
of humoral factors that play an important role in the mechanisms of adaptation
to physical exercise. These muscle-derived factors, today recognized as myokines,
act as endocrine and paracrine hormones. Moreover, exercise may stimulate the
release of small membranous vesicles into circulation, whose composition is influenced
by the same exercise. Combining the two hypotheses, these molecules related to
exercise, named exer-kines, might be secreted from muscle cells inside small vesicles
(nanovesicles). These could act as messengers in tissue cross talk during physical
exercise. Thanks to their ability to deliver useful molecules (such as proteins and miRNA)
in both physiological and pathological conditions, extracellular vesicles can be thought
of as promising candidates for potential therapeutic and diagnostic applications for
several diseases.
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INTRODUCTION

Skeletal muscle is the largest organ of our body, responsible for our posture and our movement.
It is equivalent to 2/5 of the whole body weight and it is responsible for more than 3/4 of the
total human metabolism. It is mainly composed of proteins and a fine balance between protein
synthesis and protein degradation regulates its mass. An unbalance in one of these two processes
can lead to the establishment and progression of pathological conditions (Bowen et al., 2015) such
as sarcopenia (slow and normal loss of muscle due to aging, in absence of other diseases) and
cachexia (multifactorial syndrome, characterized by a severe and involuntary loss of muscle mass,
with or without loss of fat mass) (Fearon et al., 2011).

A sedentary lifestyle, physical inactivity and malnutrition (reduction or hyper-caloric intake),
are among the causes that emphasize the accumulation of visceral fat. Therefore, a lifestyle based
on a greater physical activity and a lower energy intake, helps to decrease visceral fat mass content
(Miyatake et al., 2002; Shojaee-Moradie et al., 2007), inflammation (Petersen and Pedersen, 2005;
Mathur and Pedersen, 2008; Nilsson et al., 2019) and the risk of several chronic diseases such as
obesity (Roh and So, 2017), type 2 diabetes (Hu et al., 1999) and cancer (Hojman et al., 2011;
Barone et al., 2016).
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Muscle fiber is the principal unit of skeletal muscle and it
is able to shorten its length because of nervous stimulation.
Its development requires the involvement of several proteins
and it is promoted by the differentiation and fusion of muscle
cell progenitors into myotubes (Mauro, 1961). During physical
activity, these cells are subjected to energetic (metabolic) and
mechanical (contractile) stimuli that improve metabolic health
of skeletal muscle and promote the release of specific molecules
(called myokines), that can alter the function of other tissues
(Stanford and Goodyear, 2018).

Recently, physical activity has also been associated with
the release of extracellular vesicles (EVs) into the circulation
(Fruhbeis et al., 2015). These are nano-sized vesicles that appear
to be involved into cell-to-cell communication and may probably
bring cytokines to distal organs, such as the heart (Bei et al.,
2017). Communication is an essential process in multicellular
organisms, both in physiological and pathological conditions
and it is actuated by the exchange of information through
different mechanisms: direct contact between cells (Cartwright
and Arnold, 1980; Kalimi and Lo, 1988; Franke, 2009), secretion
of soluble factors (Sicard, 1986; Lukacs et al., 1995) or interaction
ligand-receptor (Qi et al., 2001). They are spherical organelles
(originating from intracellular lipid compartments and released
into the extracellular space and the systemic circulation) that
have been discovered as new protagonists of intercellular
communication (Pap et al., 2009; Zomer et al., 2010; Desrochers
et al., 2016; Verweij et al., 2019).

Extracellular vesicles were first considered as cell waste
products, but several studies revealed that they can transfer
signaling molecules among cells in an autocrine, paracrine or
endocrine manner (Lobb et al., 2015). They play a crucial role
in regulating physiological processes (Schweitzer, 1973; Ratajczak
et al., 2006; Kurachi et al., 2016; Niu et al., 2016; Bidarimath et al.,
2017), inducing local and systemic changes that can develop, in
some cases, into the progression of some diseases like cancer
(Becker et al., 2016; Ohyashiki et al., 2018), neurodegenerative
diseases (Vella et al., 2007; Danzer et al., 2012; Guix et al., 2018)
and viral infections (Jaworski et al., 2014; Kalamvoki et al., 2014).

Interest in EVs has grown exponentially in the last 30 years, in
part because most of the cells are able to secrete them. Skeletal
muscle, the organ most represented in our organism, with its
mechanical and secretory activities (Pedersen, 2013) may be
responsible for the release of most of the circulating EVs during
exercise. In fact, our research group has recently demonstrated
that a single bout of exercise induces an increase in the release
of EVs in the blood of healthy mice (Barone et al., 2016). While
another paper described how an event of injury in response to
exercise alters the composition of circulating EVs such as the
content of some micro-RNAs (mi-Rs) (Guescini et al., 2015;
Lovett et al., 2018).

MYOKINES AND THE
CONTRACTING MUSCLE

Physical activity is known to exert beneficial effects on
the prevention of chronic diseases (Zheng et al., 2006;

Mikus et al., 2010; Pedersen and Saltin, 2015), this may
be due to the release of contraction-regulated molecules
(cytokines and myokines) that play a crucial role in the
communication between muscle and other tissues (such as
adipose tissue, liver, and pancreatic cells) (Ahima and Park,
2015). Despite the term “myokine” is generally referred
to any secreted protein synthesized by the skeletal muscle
tissue, it should be effectively used to describe only those
proteins secreted by muscle cells. In fact, the skeletal muscle
also comprise fibrous connective tissue and endothelial
and nerve cells.

Several myokines are synthesized and secreted during
contraction (Pourteymour et al., 2017) like Fibroblast Growth
Factor 21 (FGF-21) (Kim and Song, 2017), Interleukin-6 (IL-
6) (Brown et al., 2018), Interleukin-8 (IL-8) (Covington et al.,
2016), Interleukin-15 (IL-15) (Hingorjo et al., 2018), Leukemia
Inhibitory Factor (LIF) (Broholm et al., 2011), irisin (Lu et al.,
2016), Myostatin (Hjorth et al., 2016), Angiopoietin-like 4
(ANGPTL4) (Norheim et al., 2014), Brain-Derived Neurotrophic
Factor (BDNF) (Fortunato et al., 2018), Follistatin-like 1 (FSTL1)
(Xi et al., 2016) and Vascular Endothelial Growth Factor (VEGF)
(Gomes et al., 2017). Their expression in skeletal muscle is
generally very low, but the levels of some of these myokines
increase considerably during muscle contraction (FGF-21, IL-6,
IL-15, irisin and BDNF among others) (Table 1). Moreover, the
use of different exercise-based protocols (aerobic or resistance
exercise training) can affect their secretion (Guescini et al.,
2015; Schild et al., 2016; Abd El-Kader and Al-Shreef, 2018;
Brown et al., 2018).

FGF-21 is an endocrine hormone belonging to the family
of fibroblast growth factors (FGFs), which plays an important
role in response to liver starvation, in lipolysis and glucose
uptake in adipose tissues and skeletal muscle. It enhances the
utilization of energy substrates (fatty acids, ketones and glucose)
and meddles with energy consuming processes (lipogenesis
and growth). Moreover, under certain conditions (such as
cold), it can stimulate the activation of brown adipocytes and
promote adaptive thermogenesis (Wu et al., 2013). It is also
involved in mechanisms related to physical activity; in fact, its
levels increase in acute exercise (in both human and mice),
enhancing the phosphorylation of protein kinase B (Akt) and
the translocation of Glucose Transporter Type 4 (GLUT4) to
the muscle cell membrane, with consequent glucose uptake
(Tanimura et al., 2016). Some results are controversial. For
example, Cuevas-Ramos et al. (2012) proved that its serum levels
increase only after 2 weeks of daily physical activity and no
change was observed after a single bout of exercise. Chronic
exercise and FGF-21 also induces the expression of Peroxisome
proliferator-activated receptor Gamma Coactivator -1α (PGC-
1α), a transcriptional protein factor that interacts with various
DNA-binding proteins resulting in increased gluco-neogenesis,
fatty acid oxidation, ketogenesis and mitochondrial biogenesis
(Barone et al., 2016, 2017).

Interleukins are another important class of molecules released
during exercise, especially IL-6, IL-8 and IL-15 (Ostrowski et al.,
1999; Peake et al., 2015). They are small molecules belonging
to the class of cytokines and constitute one of the most
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TABLE 1 | Principal myokines and exerkines released and regulated during physical activity.

Contracting Exerkines Levels of myokine Reference

FGF-21 Increase Cuevas-Ramos et al., 2012; Kim and Song, 2017

IL-6 Increase Papanicolaou et al., 1996

IL-8 Increase Mucci et al., 2000; Covington et al., 2016

IL-15 Increase Nielsen et al., 2007; Hingorjo et al., 2018

Irisin Increase Kraemer et al., 2014

BDNF Increase Gomez-Pinilla et al., 2002; Fortunato et al., 2018

ANGPTL4 Increase Norheim et al., 2014

LIF Increase Broholm et al., 2011

FSTL-1 Increase Xi et al., 2016

VEGF Increase Gustafsson et al., 2001; Gomes et al., 2017

Myostatin Decrease Hittel et al., 2010

important communication systems among cells, defending the
body (Nelson and Summer, 1998).

IL-6 is a pleiotropic cytokine, able to work as a pro- and
anti-inflammatory molecule (Petersen and Pedersen, 2006; Yao
et al., 2014), cardiovascular risk factor and regulator of lipid
metabolism (Bao et al., 2015). It also acts as a myokine and its
concentration increases up to 100-fold in response to muscle
contraction (Agarwal et al., 2017), mediating anti-inflammatory
responses and metabolic adaptations. It may reduce the incidence
of cardiovascular diseases through lipid and glucose metabolism
and the suppression of pro-inflammatory cytokines. During
exercise, it acts both locally (inside the muscle) and peripherally
(in several organs, such as white adipose tissue WAT) acting as
a hormone. In WAT, it affects adipose tissue metabolism and
lipolysis, with the release in the circulation and oxidation of fatty
acids (Knudsen et al., 2017) while in skeletal muscle, it activates
5′-Adenosine Monophosphate-activated Protein (AMP) and/or
Phosphatidylinositol 3-kinase (PI3 kinase) to increase glucose
uptake and fat oxidation (Pedersen, 2009).

IL-15 is one of the most abundantly expressed cytokines
in human muscle, involved in the regulation of adiposity,
muscle mass, exercise capacity and mitochondrial activity in
muscle cells (Thornton et al., 2016). Historically studied as an
activator of Natural Killer (NK) cells (with anti-tumorigenic and
anti-inflammatory properties) (Gosselin et al., 1999), its levels
strongly increase after resistance exercise, promoting muscle
growth (Nielsen et al., 2007). Similar to IL-6, its activity is
strongly correlated to the AMP-protein kinase (AMPK), a central
regulator of metabolism; indeed, it was shown that lacking muscle
AMPK reduces serum IL-15, causing the acceleration of skin
aging (Crane et al., 2015). IL-15 has also anti-tumorigenic effects;
in fact, Carbo et al. (2000) showed that, in tumorigenic rats
treated with IL-15, it partly inhibits skeletal muscle wasting
protein rates (eight-fold) to values even lower than those
observed in non-tumor-bearing animals.

Irisin is a secreted myokine that originates from the
cleavage of its precursor fibronectin type III domain-containing
protein 5 (FNDC5) (Huh et al., 2012). Firstly known as a
molecule responsible for the browning of WAT (Giralt and
Villarroya, 2013), it was also shown that its levels strongly
increase after resistance exercise (Miyamoto-Mikami et al., 2015;

Zhao et al., 2017), but not in aerobic training (Kim et al., 2016).
Moreover, it was also recently proposed as a novel marker for
patients with cardiac cachexia (Kalkan et al., 2018). Even if it
was shown that it can mediate those beneficial effects that follow
exercise (inducing the expression of pro-myogenic genes in
myotubes), its role in physical activity still remain controversial.
In fact, on one hand, Blizzard Leblanc et al. (2017) shown a
significant increase in irisin plasma levels after an acute bout
of aerobic exercise, also associated with the improvement in
insulin sensitivity. These data were also confirmed by Nygaard
et al. (2015), which further showed that single sessions of intense
endurance exercise and heavy strength training led to transient
increase of plasma concentration, without an increase in FNDC5
expression (Pang et al., 2018). However, on the other hand, a
pivot study in hemo-dyalised patients proved that there was no
correlation between intense intra-dialytic strength exercise and
the increase of circulating irisin (Esgalhado et al., 2018). Also,
the research group of Biniaminov et al. (2018) investigated the
association among resting irisin concentrations, regular physical
activity and physical fitness in serum of healthy humans; they
found that nor physical activity level, neither fitness status were
related to resting irisin concentrations in healthy humans.

Considering its potential beneficial effects during training,
Reza et al. (2017) investigated its capability to act as an exercise
mimetic. They injected wild-type mice with irisin and observed
an increase in body weight, skeletal muscle mass and muscle
strength, suggesting that irisin induces fiber hypertrophy and
enhances regeneration of injured muscle cells, through the
activation of satellite cells and protein synthesis.

Overall, the way irisin works is still largely unknown. However,
it may be that it exerts its activity in a way similar to that of
interleukins, through AMP kinase.

Another important myokine released during physical exercise
is the BDNF (Gomez-Pinilla et al., 2002), a type of neurotrophic
molecule mainly involved in memory and cognitive development
(Heldt et al., 2007). This molecule is the product of the proteolytic
cleavage of its precursor protein (proBDNF) (Koshimizu et al.,
2009). BDNF and proBDNF often have opposing actions; in
fact, while BDNF promotes synaptic long-term potentiation
and stress resistance, proBDNF enhances longterm depression
(Teng et al., 2005).
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Brain-derived neurotrophic factor has neurobiological and
metabolic effects, regulating the survival (Hofer and Barde, 1988),
growth (Kalcheim and Gendreau, 1988) and maintenance of
neurons (Griesbeck et al., 1995). Its association with physical
activity is already known (Almeida et al., 2016; Church et al.,
2016); in fact, its expression not only increases after exercise (Park
and Kwak, 2017) but also depends on the intensity of exercise
(Jeon and Ha, 2017). Previous studies demonstrated that its
mRNA and protein expression levels increase in human skeletal
muscle after exercise without any release into the circulation
(Matthews et al., 2009). Indeed, it acts as a contraction-inducible
protein that enhances fatty acid oxidation through the activation
of AMPK in the skeletal muscle. Thus, it does not act in a
hormone like manner, but as an autocrine and/or paracrine
molecule within the skeletal muscle tissue (Matthews et al., 2015).

EXTRACELLULAR VESICLES: ORIGINS
AND FUNCTIONS

First characterized in 1967 in hematopoietic cells (Wolf, 1967),
EVs are small particles composed of a lipid bi-layer containing
multiple molecules derived from the cytosol and from the
cellular membrane of the donor cell (Akers et al., 2013).
They constitute a heterogeneous population that differs in
cellular origin, size, morphology, antigenic composition and
functional properties (Table 2). Isolated from different body
fluids (including blood, urine, saliva, breast milk, amniotic fluid,
ascites, cerebrospinal fluid, bile and seminal fluid) (Colombo
et al., 2014), these vesicles are involved in the communication
of both prokaryotes and eukaryotes. Despite the fact that their
name originally referred to their size (apoptotic bodies > 800 nm,
microparticles in a range of 0.1–1 µm and exosomes with
diameter of 40–150 nm), their tissue of origin (prostasomes,
oncosomes) and their function or their presence outside the cells
(exosomes), one of the last classifications of EVs, focused on
their biogenesis pathways (Kalra et al., 2016). However, there
is still no consensus on specific EV subtypes markers, such
as endosome-origin “exosomes” and plasma membrane-derived
“ectosomes” (microparticles/microvesicles); therefore, assigning
an EV to a particular biogenesis pathway remains difficult unless
the EV is caught during its release in live imaging techniques.
Hence, in order to classify a particular vesicle to a specific EV
subtype, MISEV 2018 suggested considering several parameters
such as: size [“small EVs” (sEVs) and “medium/large EVs” (m/l-
EVs)], density (low, middle, high), biochemical composition
(CD63+, CD81+, Annexin A5), description of their tissue of
origin (prostasomes, oncosomes), their function or their presence
outside the cells, or their biogenesis pathway (Théry et al., 2018).

Extracellular vesicles obtained from differential
ultracentrifugation have been classified into: large EVs, pelleted
at low speed; medium-sized EVs, pelleted at intermediate speed
and small EVs (sEVs), pelleted at high speed. The latter were
further subdivided into four sub-categories: (1) sEVs rich in
tetraspanines CD63, CD9 and CD81 and endosomal markers
(better known as exosomes); (2) sEVs without CD63 and CD81,
but rich in CD9; (3) sEVs without CD63/CD9/CD81; (4) sEVs

rich in extracellular matrix or serum factors. The last two-listed
sEV are not associated with exosomes (Kowal et al., 2016).

Their molecular composition reflects the specific functions
of the cells from which they originate and, for this reason,
their cargo is defined as cell-type specific. They generally
carry several molecules, such as proteins, nucleic acids (largely
represented by mRNA and miRNA) and lipids, and their protein
composition is similar to that of the plasma membrane and of
the endocytotic and subcellular compartments of the budding cell
(Gutierrez-Vazquez et al., 2013). In particular, exosome protein
content is mainly divided in four categories: transmembrane
or lipid bound extracellular proteins (tetraspaninins like CD9,
CD81, CD63), cytosolic proteins normally involved in their
biogenesis (RAB proteins, Hsp70, Hsp90), intracellular proteins
unique of cellular organelles and typically absent in exosomes
(calnexin, Golgi and ER proteins) and extracellular proteins,
such as acetylcholinesterase (ACHE). When characterizing these
particles, at least one protein of each category should be identified
(Lotvall et al., 2014). Therefore, membrane and cytoskeletal
proteins, lysosomal markers enzymes, death receptors (FasL,
TRAIL), cytokines, HLA class I and II proteins, and some HSPs
can be part of these vesicles. As well as their molecular content,
even their functions are closely related to their cellular origin,
being involved in several mechanisms such as immune response
and inflammation (Zhang et al., 2014).

Despite the fact that the lipid composition of these
nanovesicles is still not well known, we know that EVs are mainly
composed of sphyngolipids, phosphatidyl serine, cholesterol
(possibly involved in exosomes release), saturated fatty acids and
ceramide (Pfrieger and Vitale, 2018).

The mechanisms underlying the biogenesis of EVs are
different among various types of vesicles. Apoptotic bodies
(>800 nm) are particles that cells produce during the apoptotic
process. During programmed cell death, membrane protrusion
known as apoptopodia (Atkin-Smith et al., 2015) release (in the
extracellular space) vesicles (apoptotic bodies) resulting from
the fragmentation of the apoptotic cell (Coleman et al., 2001).
Ectosomes (0.1–1 µm), also known as shedding vesicles or
microparticles, originate from plasma membrane through an
outward budding of the membrane; in this process, the increase
of intracellular Ca2+, induced by an external signal, causes
changes in lipid distribution and membrane blebbing, through
the alteration of the enzymatic activity of flippases, translocases
and scramblases (Willms et al., 2018). This increment of internal
Ca2+ enhances the activation of cytosolic proteases (such
as calpain and gelsolin), which re-organize the cytoskeleton
(through the deconstruction of the actin cytoskeletal protein
network) and causing plasma membrane protrusion with
consequent detachment of these vesicles (Turturici et al., 2014;
Cocucci and Meldolesi, 2015).

Exosomes (<150 nm) are the most studied small vesicles,
especially because of their small size and internal content that
reflects that of the cell of origin. They are mostly defined by
their size and their protein content, despite the fact that in
literature the term “exosome” is improperly used to refer to small
EVs (Wang et al., 2017). Their biogenesis is a well-organized
process, mainly characterized by exocytosis through an active
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TABLE 2 | Types of extracellular vesicles and most common markers.

Apoptotic Bodies Microvesicles-Ectosomes Exosomes
(small-medium-large)

Size >800 nm 0.1 nm–1 µm 30–150 nm

Biogenesis Apoptosis Outward budding of plasma membrane Endocytosis

Common Markers Chemokine (C-X3-C motif) ligand 1 X3CL1
Intercellular adhesion molecule 3 (ICAM-3)

β1 integrins; Selectins

CD40
Matrix metalloproteinase (MMP)

Tetraspanins (CD63; CD9;
CD81)
Hsps (Hsp70; Hsp90)
Tumor susceptibility gene 101
(TSG101)
Annexin V-VI
Metallopeptidase domain 10
(ADAM10)
Alix

Reference Groves and Ellwood, 1985; Catchpoole and
Stewart, 1995

Surman et al., 2017 Kowal et al., 2016

FIGURE 1 | Cells releasing extracellular vesicles. Representation of different extracellular vesicles. Brown particles represent Apoptotic Bodies (>500 nm), forming
during the apoptotic process; while the yellow and orange vesicles represent Microparticles (>150 nm) and Exosomes (30–150 nm) generated respectively by
outward budding of the membrane and endocytosis.

involvement of the membrane. The process starts with the
invagination of the plasma membrane and the development of
the early endosome (EE), a membrane bounded compartment
within the cell. Subsequently, the inner budding of the membrane
of the early endosome replaces the already existing endosomal
luminal space with small intraluminal vesicles (ILVs) and forms a
body called Multi-Vescicular Body (MVB) or late endosome (LE).
The latter is filled with proteins, lipids, and cytoplasm specifically
sorted (Gutierrez-Vazquez et al., 2013; Hessvik and Llorente,
2018). At this point vesicles within the MVB can undergo three
different fates: merge with the lysosomes and be degraded in their
protein content; constitute a momentary deposit compartment
or merge with the plasma membrane, releasing its intraluminar
vesicles in the extracellular space as exosomes (Figure 1) (Caruso
Bavisotto et al., 2017; Sutaria et al., 2017). The development of
ILVs and MVBs is a process that requires the participation of the
Endosomal Sorting Complex Required for Transport (ESCRT),
a complex composed by almost 30 proteins assembled into 4
components: ESCRT 0, ESCRT I, ESCRT II and ESCRT III.

ESCRT 0 is involved in the recognition and the sequestration
of ubiquitinated transmembrane proteins into the endosomal
membrane; ESCRT II and I are responsible for the membrane
deformation into buds with specific cargo; the last complex
is implicated into the detachment of the formed vesicle. Even
though the mechanism involved in exosomes secretion is still
not well understood, it is likely that the increase of internal
Ca2+, followed by a cytoskeleton remodeling, is involved in their
release. Once in the extracellular space, these vesicles can be either
internalized by the receiving cell through endocytosis processes,
or they act as transmembrane signals by binding receptors on the
plasma membrane and activate specific cellular pathways (Feng
et al., 2010; Mulcahy et al., 2014). It was also thought that their
uptake can be due by a “passive endocytosis” which occurs during
the natural recycling of the plasma membrane and could passively
take up exosomes attached to the surface of a cell.

Currently, the characterization of these vesicles is a
combination of several methods that include microscopy
(TEM, SEM, CrioTEM), Western Blot, Flow Cytometry,
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Nanoparticle Tracking Analysis (NTA), Tunable Resistive Pulse
Sensing (TRPS), Dynamic Light Scattering (DLS) and immuno-
histochemical analysis of specific EVs markers, used to describe
their morphology, biochemical composition and the receptors
localized on these vesicles (Szatanek et al., 2015) (Table 3).

However, one of the main issue when purifying these particles
is that, currently, there is no consensus for a unique standard
isolation protocol. Ideally, the method used for their isolation
should be simple, fast and inexpensive.

Overall, there are three main methodologies used for
their isolation: differential centrifugation/ultracentrifugation
with/without a sucrose gradient/cushion, adsorption to
magnetic/non-magnetic micro-beads and size exclusion
chromatography. Each has its own advantages and the choice
of one method rather than another can result in different EV
subpopulations with different properties (Konoshenko et al.,
2018). Hence, one important challenge is the absence of a
unique method able to minimize co-isolating protein aggregates
and other membranous particles from a pure sample of EVs.
Currently, the gold standard for pure exosome preparation is
differential ultracentrifugation coupled with sucrose/iodixanol
density gradient. Van Deun et al. (2014) isolated EVs with 4
commonly used methods (ultracentrifugation, density gradient,
exo-kit and total exosome isolation) for the evaluation of
yield, size, morphology, protein and RNA content of exosome.
They demonstrated that density gradient ultracentrifugation
gave the purest exosome preparations, while the other three
techniques also co-isolate contaminating factors. Similarly,
Skottvoll et al. (2019) evaluated the performance of different
isolation methods based on differential ultracentrifugation and
a commercial isolation kit (total exosome isolation reagent).
These results shown that the two isolation methods had
similar performance with only some differences based on
the origin of the cell. In another study, the results published
by Gamez-Valero et al. (2016) suggested that size-exclusion
chromatography (SEC) is capable of eliminating most of the

abundant proteins contained in a body fluid, also maintaining
the EVs vesicular structure and conformation, thus making this
procedure ideal for biomarker discovery as well as for therapeutic
applications. Benedikter et al. (2017) also confirmed these data,
demonstrating that ultrafiltration followed by size exclusion
chromatography (UF-SEC), provides well-concentrated EVs
for proteomic and functional analysis. Indeed, because of
its efficient capability to separate EVs from contaminant
proteins (especially from large initial volumes) UF-SEC gives
a higher yield of pure vesicles if compared to those isolated by
simple ultracentrifugation.

Interest on EVs is growing very fast over the years. Thanks to
their characteristics (specifically their non-immunogenic nature
due to the similar composition to the cell from which they
originate) they were recently taken into consideration for their
use as drug delivery vehicles (Batrakova and Kim, 2015).

Actually, liposomes are used as drug delivery vehicles, but
their biocompatibility and their safety are still unknown. Unlike
these synthetic systems, exosomes have long circulating half-life,
promise to be biocompatible and stable, and have minimal or no
inherent toxicity issues. Moreover, thanks to their small size, they
are able to cross the blood-brain barrier (BBB), thus providing a
useful carrier for the delivery of small drugs across this area.

Ninety-eight percent of drugs potentially important for the
central nervous system cannot cross the BBB and their conceptual
efficacy shown in labs has not a counterpart in clinical trials
(Haney et al., 2015). Moreover, thanks to their capability to
carry different molecules (protein and miRNA among others),
they can also eliminate problems related to the instability of
nucleic acid based drugs (Liang et al., 2018). Furthermore, the
possibility to isolate them from all biological fluids, suggests
their use for diagnostic applications, providing a non-invasive
diagnostic method. For instance, they can be used for diagnosis
since circulating exosomes can be correlated to specific diseases
(Aryani and Denecke, 2016). For these reasons, if compared with
their synthetic counterparts, they seem to be a better choice,

TABLE 3 | Most common extracellular vesicles isolation and characterization methods.

Isolation References Characterization References

Ultracentrifugation Thery et al., 2006 Electron Microscopy: TEM; SEM;
cryo-EM

Escola et al., 1998; Poliakov
et al., 2009; Sokolova et al.,
2011

Density gradient
Ultracentrifugation

Zhang et al., 2014 Dynamic Light Scattering (DLS);
Nanoparticle Tracking Analysis (NTA);
Tunable Resistive Pulse Sensing (TRPS)

Kesimer and Gupta, 2015
Gercel-Taylor et al., 2012
Maas et al., 2014

Size Exclusion
Chromatography (SEC)

Boing et al., 2014 Biochemical analysis (Western Blot) Théry et al., 2018

Immunological separation:
Magnetic beads; ELISA
exoTEST

Logozzi et al., 2009; Pedersen et al., 2017 Flow cytometry Pospichalova et al., 2015

Polymer-based precipitation Brown and Yin, 2017 Omics analysis: Proteomic; Lipidomic Schey et al., 2015; Haraszti
et al., 2016

Flow-field-flow fractionation Sitar et al., 2015

Commercial Kits ExoQuick
Total Exosomes Isolation (TEI)
Exo-Spin (ExoS)

Ding et al., 2018
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exceeding those synthetic nanoparticles limitations. That’s why
they have aroused a lot of interest as a drug delivery system for
the treatment of several chronic and neurodegenerative diseases
(Ha et al., 2016).

Nowadays their use as a drug delivery system for small
molecules, proteins and nucleic acids is already a true reality;
Alvarez-Erviti et al. (2011) showed that intravenously injected
Rabies Virus Glycoprotein (RVG) targeted exosomes delivered
GAPDH siRNA specifically in the brain, resulting in a specific
gene knockdown. A similar result was also confirmed by Liu
et al. (2015), showing that exogenous siRNA transfected into
cells can be packaged by exosomes and delivered into recipient
cells to regulate gene silencing, indicating that exosomes can
serve as siRNA delivery vesicles in gene therapy for cancer
and other diseases. In another study, large size plasmid DNA
encapsulated into exosomes was successfully transferred to
MSCs (Lin et al., 2018). Sun et al. (2010) treated mice with
curcumin carrying exosomes, demonstrating that they were
protected against lipopolysaccharide (LPS)-induced septic shock.
Curcumin was more stable both in vitro and in vivo. In a similar
study, Gomari et al. (2018) encapsulated doxorubicin (a drug
currently used for breast and solid cancer) into exosomes to
increase local dosage of the molecule and reduce its adverse
effects on other organs. Considering their ability to deliver large
molecules (such as proteins), Khatua et al. (2009) demonstrated
that human cytidine deaminase APOBEC3G (A3G), a cellular
defense system against human immunodeficiency virus type 1
(HIV-1) and other retroviruses, can be secreted in exosomes
conferring an antiviral phenotype to target cells, also limiting
replication of the virus in recipient cells.

However, despite several evidences of their potential as drug
delivery system, one of the principal obstacles for the application
of exosomes in clinic is their final yield from donor cells, which is
often very limited and strongly related to the protocol of isolation
(Van Deun et al., 2014). In addition, they may act as vehicles
for the replication and propagation of transmissible pathogens,
since exosomes derived from bacteria, or virus-infected cells,
might contain pathogen-derived factors that activate a pro-
inflammatory pathway. Plus exosomes have also a different
effect on health and diseases; indeed, despite some of them can
prevent tumor development (Naseri et al., 2018; Rosenberger
et al., 2019), others provide a communication system between
tumor cells and the surrounding tissues (Haga et al., 2015;
Keklikoglou et al., 2019).

In the last few years, researchers have started to combine
exosomes with synthetic nanoparticles, developing engineered
particles more efficiently than their natural counterparts do.
For instance, Sato et al. (2016), to control and modify the
performance of exosomal nanocarriers, realized hybrid exosomes
fusing them with polyethylene glycol (PEG) liposomes. This
modification facilitated cellular uptake of the PEG modified
exosomes, reducing also their circulation time in the blood.
Other researchers created exosome-mimetic nanovesicles by
serial extrusions through polycarbonate membranes with pore
sizes of 10, 5, and 1 µm, for their utilization in tissue repair and
regeneration. These exosome-mimetic nanovesicles (NVs) had a
final yield almost 100 times higher than exosomes and promoted

cell proliferation and liver regeneration similar to that induced by
exosomes (Wu et al., 2018).

EVs AND EXERCISE: EVs CHANGES
INDUCED BY EXERCISE

The capacity of myokines to positively influence the metabolism
and homeostasis of the body, makes them promising targets
for treatment of several diseases. However, little is known
about the mechanisms that regulate the release of these
factors, especially regarding the final steps in recruitment
and exocytosis of specific secretory vesicles. In fact, despite
muscle cells express several secretory vesicle transport proteins
(Romancino et al., 2013), the mechanisms that target containing
vesicles to particular regions in the plasma membrane to
control myokine secretion are largely unknown. Some studies
demonstrated that glucose receptor GLUT4 is translocated to the
plasma membrane in Vesicle-Associated Membrane Protein 2
(VAMP2) labeled vesicles and, its translocation, requires an active
remodeling of actin filament which can be induced by insulin
(Giudice and Taylor, 2017).

Exercise triggers the release of exerkines (EXs) into the
circulation, possibly through their encapsulation within EVs
(Gorgens et al., 2015; Lombardi et al., 2016) that mediates the
systemic benefits of physical exercise, in both physiological and
pathological conditions (Safdar et al., 2016). In fact, it was shown
that in patients with cardio-metabolic risk factors, acute exercise
promoted a large release of plasma EVs (Bei et al., 2017). A similar
mechanism of communication among cells was already seen
during high energy demand related to exercise; in this case,
cells released enzymes of the glycolytic pathway into the EVs,
that probably influenced the glycolytic rate in the recipient cells
(Garcia et al., 2016; Zhao et al., 2016).

Whitham et al. (2018) analyzed (by means of the Nano-
UHPLC followed by mass spectrometry) the proteome of the
EVs of human plasma (before and after exercise), demonstrating
how the EV trafficking was involved in tissue cross talk during
physical activity. Indeed, exercise induces an increase of more
than 300 proteins in the circulation, many of them associated with
the biogenesis and function of “small vesicles” and exosomes.
They identified 35 new myokine candidates, supporting the
idea that the skeletal muscle is one of the major distributors
of secreted molecules during exercise (Deshmukh et al., 2015).
Some of these molecules were also found in EVs collected from
myotubes conditioned medium (Forterre et al., 2014), but also
from plasma and serum of participants who had walking speed
decline (Suire et al., 2017). Another interesting data obtained
by Petersen et al. (2011), showed the amino acid sequences of
each protein transported inside these vesicles. Using the SignalP
4.0 server, they revealed that these proteins were deprived of
the signal peptide sequence, typical of the classical secretion
pathway. According to the obtained results, they postulated that
the increase of EVs into the circulation (induced by exercise),
can be related to the mechanism by which the skeletal muscle
releases myokines, in a way independent of the classic secretory
pathway. Moreover, exosome release is generally associated with
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an increase of intracellular calcium (Savina et al., 2003); since
the motoneuron stimulates skeletal muscle fibers (causing an
immediate release of Ca2+ from the sarcoplasmic reticulum)
(Melzer et al., 1984), it may be plausible that the release of muscle
small vesicles is faster than in other organs. However, uptake
of the EVs in the recipient cells during exercise is a necessary
step to talk about tissue cross talk and the reduction of the
amount of proteins within the EVs (4 h after exercise), suggests
that these proteins are partially removed from the circulation by
tissue absorbing.

Therefore, exosomes and sEVs may act as communicator
factors among cells, through the packaging of proteins
inside their lumen.

CONCLUSION

Even though it has been widely proved that, during exercise,
muscle cells release several myokines into the circulation with
a potential role in whole-body homeostasis (Aswad et al., 2014),
the mechanisms underlying this secretion process are still vaguely

known. Since calcium is an essential ion involved in both
extracellular vesicles secretion and contraction of skeletal muscle
fibers, it may be possible that, during exercise, the stimulation
of muscle cells from motoneurons enhances the release of
small vesicles potentially carrying myokines. However, there
are almost no studies about that, hence, further analysis are
needed in order to better understand the relationship between
nanovesicles and myokines.
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