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The V(D)J recombination forms the immunoglobulin genes by joining the variable (V),

diversity (D), and joining (J) germline genes. Since variations in germline genes have

been linked to various diseases, personalized immunogenomics aims at finding alleles of

germline genes across various patients. Although recent studies described algorithms for

de novo inference of V and J genes from immunosequencing data, they stopped short of

solving a more difficult problem of reconstructing D genes that form the highly divergent

CDR3 regions and provide the most important contribution to the antigen binding. We

present the IgScout algorithm for de novo D gene reconstruction and apply it to reveal

new alleles of human D genes and previously unknown D genes in camel, an important

model organism in immunology. We further analyze non-canonical V(DD)J recombination

that results in unusually long CDR3s with tandem fused IGHD genes and thus expands

the diversity of the antibody repertoires. We demonstrate that tandem CDR3s represent

a consistent and functional feature of all analyzed immunosequencing datasets, reveal

ultra-long CDR3s, and shed light on the mechanism responsible for their formation.

Keywords: repertoire sequencing, VDJ recombination, germline gene inference, antibody repertoire, repertoire

diversity

INTRODUCTION

Antibodies provide specific binding to an enormous range of antigens and represent a key
component of the adaptive immune system. The antibody repertoire is generated by somatic
recombination of the V (variable), D (diversity), and J (joining) germline gene segments.
Immunosequencing has emerged as a method of choice for generating millions of reads that
sample antibody repertoires and provide insights into monitoring immune response to disease and
vaccination (1).

Information about all germline genes in an individual is a pre-requisite for analyzing
immunogenomics data. However, nearly all immunogenomics studies rely on the population-level
germline genes rather than germline genes in a specific individual that the immunosequencing data
originated from. This approach is deficient since the set of known germline genes is incomplete
(particularly for non-Europeans) and contains alleles that resulted from sequencing and annotation
errors (2, 3). Moreover, it is non-trivial to figure out which known allele(s) is present in a specific
individual since the widespread practice of aligning each read to its closest germline gene results in
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high error rates (3). These errors hide the identity of the
individual germline genes, make it difficult to analyze somatic
hypermutations (SHM) and complicate studies of antibody
evolution (4–6).

Personalized immunogenomics (i.e., identifying individual
germline genes) is important since variations in germline genes
have been linked to various diseases (7), differential response
to infection, vaccination, and drugs (8, 9), aging (10), and
disease susceptibility (7, 11, 12). However, since the International
ImMunoGeneTics (IMGT) database is incomplete even in the
case of well-studied human germline genes (13), there exist still
unknown human allelic variants that are difficult to differentiate
from SHMs. In the case of immunologically important but less
studied model organisms, such as camels or sharks, the germline
genes remain largely unknown. Unfortunately, since assembling
the highly repetitive immunoglobulin locus from whole genome
sequencing data faces challenges (14), the efforts like the 1,000
Genomes Project have resulted only in limited progress toward
inferring the population-wide census of germline genes (14–16).

In addition to personalized immunogenomics, the
incompleteness of the IMGT database negatively affects
analysis of monoclonal antibodies. Existing tools for antibody
sequencing from tandem mass spectra (17, 18) rely on a
comprehensive database of V, D, and J genes to assemble tandem
mass spectra into an intact antibody. Lack of such databases for
many species limits applications of Valens (Digital Proteomics),
SuperNova (Protein Metrics), and other software tools for
antibody sequencing.

Although the personalized immunogenomics approach was
first proposed by Boyd et al. (19), themanual analysis in this study
did not result in a software tool for inferring germline genes.
Gadala-Maria et al. (20) developed the TIgGER algorithm for
inferring germline genes and used it to discover 11 novel allelic V
segments. However, 20 stopped short of de novo reconstruction
of the germline genes and acknowledged that it is important to
develop algorithms for finding diverged alleles that TIgGER is
not able to find. In the case of V and J genes, this challenge was
addressed by Corcoran et al. (21), Zhang et al. (22), and Ralph
and Matsen (3). However, as Ralph and Matsen (3) commented,
the more challenging task of de novo reconstruction of D genes
remains elusive. This is unfortunate since D genes contribute
to the complementarity determining region 3 (CDR3) that covers
the junctions between V, D, and J genes and represents the
highly divergent part of antibodies. We describe the IgScout
algorithm for de novo inference of D genes and apply it to
diverse immunosequencing datasets with the goal to reconstruct
dominant variants of highly abundant D genes and discover
novel highly abundant variations.

Althoughmany studies analyzed patterns of V-D-J pairing (23,
24), there is still a shortage of studies of unusual recombination
events such as V(DD)J recombination incorporating two D genes
into a single unusually long CDR3 with tandem fused IGHD
genes (or tandem CDR3). Meek et al. (25) were the first to reveal a
few tandem CDR3s, thus confirming the V(DD)J recombination
conjecture put forward by Kurosawa and Tonegawa (26).
However, since tandem CDR3s are rare, they remained elusive
for the next two decades and (27, 28) even argued that tandem

CDR3s found in Meek et al. (25) represent artifacts. However,
Briney et al. (29) and Larimore et al. (30) demonstrated that
tandem CDR3s do exist (at frequency 1 per 800 B-cells) by
analyzing high-throughput immunosequencing datasets.

As emphasized in Briney et al. (29), detecting V(DD)J
recombination has to be done with caution since it is often
confused with standard V(D)J recombination. Although they
came up with a heuristic for detecting tandem CDR3s, there is
still no software for detecting tandem CDR3s and it remains
unclear how many tandem CDR3s found in Briney et al. (29)
represent false positives. We thus extended the functionality of
the IgScout algorithm to finding tandem CDR3s and revealed
that V(DD)J recombination is a functional (rather than aberrant)
feature with frequency varying from 1 per 200 to 1 per 2,500
B-cells across various datasets. Finally, we revealed ultra-long
tandem CDR3s and shed light on the mechanism responsible for
their formation.

RESULTS

Immunosequencing Datasets
We analyzed the following datasets described in the
Supplemental Note “Immunosequencing datasets”:

• HEALTHY: 14 datasets from 14 healthy human donors,
• ALLERGY: 24 datasets from six allergy patients (31),
• HIV: 13 datasets from two HIV-infected patients (32),
• NAÏVE: 7 datasets from naïve B cells of healthy

human donors,
• PROJECT10: 600 datasets from various humans resulting

from 10 NCBI projects
• CAMEL: 6 datasets from three healthy camels (33).

Constructing CDR3 Datasets
We illustrate the work of IgScout using one of the HEALTHY
datasets (Set 1) containing heavy chain repertoires extracted
from peripheral blood mononuclear cells (PBMC). The IgReC
tool (34) extracted 228,619 distinct CDR3s from this dataset.
To minimize impact of sequencing and amplification errors, we
clustered similar CDR3s (differing by at most three mismatches)
and constructed consensus for each cluster resulting in 98,576
consensus CDR3 of average length 46 nucleotides.

Each CDR3s typically starts from a short suffix of a V gene
and ends with a short prefix of a J gene. Since these suffixes and
prefixes negatively affect reconstruction of D genes, IgScout trims
them as described in the Supplemental Note “Preprocessing
CDR3 datasets.” This procedure reduces the average length of
CDR3 strings (46 nucleotides) to 30 nucleotides strings that
represent substrings of CDR3s that are not encoded by IGHV
or IGHJ genes. The result of the procedure is the set of
strings CDR3∗. We refer to the number of strings in CDR3∗

as |CDR3∗|.

Overview of Human D Genes
The human immunoglobulin (IGH) locus contains 27 D genes
that vary in length from 11 to 37 nucleotides. Since two pairs
of human D genes are identical, there exist only 25 distinct D
genes. Since the IMGT database refers to D genes using rather
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long names and since these names do not reveal the ordering of
D genes in the IGH loci (that is important for analyzing tandem
CDR3s), it is difficult to visualize the IgScout results across
all D genes and across multiple immunosequencing datasets.
We thus renamed distinct human D genes from D1 to D27 in
the increasing order of their positions in the IGH locus. The
IMGT database also contains seven alleles of D genes denoted
D2∗2, D2∗3, D3∗2, D8∗2, D10∗2, D16∗2, and D21∗2. See Table 1
and Supplemental Note “Information about human D genes”
for details.

Frequent k-mers in D Genes
The problem of inferring germline genes can be formulated
as the Trace Reconstruction Problem (35) in information
theory described in the Methods section. IgScout is a heuristic
for solving this problem that is inspired by the RepeatScout
algorithm for de novo repeat finding (36) and that is based on
analyzing frequent k-mers (contiguous strings of length k) in
CDR3s. We illustrate the work of IgScout using k-mers of size
15 (all human D genes are longer than 15 nucleotides except for
11 nucleotide long gene D27).

The human D genes contain 305 15-mers. We classify a k-
mer as known if it occurs in a human D gene (from IGHD1-
1 to IGHD7-27), mutated if it differs from a known k-mer
by a single substitution, and trimmed if it contains a known
(k-2)-mer. All other k-mers are called foreign. Twenty-seven
percent of strings in the CDR3∗ dataset contain a known 15-
mer and 35% contain either a known, or a mutated, or a
trimmed 15-mer.

We classify a k-mer as common if its abundance exceeds
fraction∗ |CDR3∗| (the default value fraction=0.001). Figure 1
and the Supplemental Note “Common k-mers” present
distributions of frequencies of all common 15-mers in various
datasets. Although the vast majority of common k-mers are
known, mutated, or trimmed, some of them are foreign. These

foreign common k-mers have to be treated with caution since
they may trigger false positive inferences of D genes.

From Frequent k-mers to D Gene
Reconstruction
IgScout selects a most abundant k-mer in the CDR3∗ dataset,
aligns all CDR3 that contain this k-mer (using this k-mer
as the alignment seed), and constructs the motif logo of the
resulting alignment (Figure 1). It further trims all positions
of the motif logo with the information content below IC
(the default value IC = 0.5) and computes the consensus
string. Afterwards, it extends the consensus strings to the
right and to the left (the PrefixExtension and SuffixExtension
steps in the Supplemental Note “IgScout pseudocode”) to
construct a putative D gene as described in the Methods
section. Finally, the algorithm removes the sequences that
contain k-mers from the identified putative D gene from the
set CDR3∗, finds a most abundant k-mer in the resulting
dataset, and iterates. IgScout stops when a most abundant
k-mer is not a common k-mer (see Supplemental Notes
“IgScout pseudocode,” “IgScout parameters,” and “Benchmarking
IgScout on simulated immunosequencing datasets”). Figure 2
demonstrates that IgScout reconstructs many known human
D genes.

Similarly to the existing tools for reconstructing V and J genes
(that typically trim a few nucleotides in the beginning/end of
the reconstructed genes), IgScout also trims a few nucleotides
in the beginning/end of the reconstructed D genes. Although
lowering the IC threshold would reduce the number of trimmed
nucleotides, we decided not to do it since lowering this
parameter may result in erroneous reconstructions and since the
trimmed nucleotides hardly affect the downstream applications
of IgScout. See Supplemental Note: “How trimmed (rather

TABLE 1 | Positions and lengths of human D genes.

Name IMGT name Position (bp) Length (nt) Name IMGT name Position (bp) Length (nt)

D1 IGHD1-1 105,919,502 17 D15 IGHD2-15 105,897,957 31

D2 IGHD2-2 105,916,826 31 D16 IGHD3-16 105,895,634 37

D3 IGHD3-3 105,914,359 31 D17 IGHD4-17 105,894,508 16

D4 IGHD4-4 105,913,222 16 D5 IGHD5-18 105,893,542 20

D5 IGHD5-5 105,912,257 20 D19 IGHD6-19 105,891,699 21

D6 IGHD6-6 105,910,410 18 D20 IGHD1-20 105,891,191 17

D7 IGHD1-7 105,909,907 17 D21 IGHD2-21 105,888,551 28

D8 IGHD2-8 105,907,211 31 D22 IGHD3-22 105,886,031 31

D9 IGHD3-9 105,904,681 31 D23 IGHD4-23 105,884,870 19

D10 IGHD3-10 105,904,497 31 D24 IGHD5-24 105,883,903 20

D4 IGHD4-11 105,903,616 16 D25 IGHD6-25 105,881,539 18

D12 IGHD5-12 105,902,649 23 D26 IGHD1-26 105,881,034 20

D13 IGHD6-13 105,901,142 21 D27 IGHD7-27 105,865,551 11

D14 IGHD1-14 105,900,638 17

Since the IGH locus starts at the end of the 14th chromosome, positions are given with respect to its complementary sequence (assembly GRCh38.p12). Green and orange cells

correspond to two duplicated and identical D genes IGHD4-4*01–IGHD4-11*01 (D4) and IGHD5-5*01–IGHD5-18*01 (D5).
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than complete) D genes affect the downstream analysis of
immunosequencing datasets.”

Indeed, the personalized immunogenomics applications [such
as the discovery of “deficient” germline variants that lead to
poor responses to vaccination (12)] are hardly affected by
the fact that all existing tools for inferring the V, D, and J
genes trim a few nucleotides from the ends. Reconstruction of
monoclonal antibodies from tandem mass spectra and various
proteogenomics applications are also hardly affected by this
trimming. Moreover, in the case of human germline genes
(and other genomes with well-characterized germline genes) the
trimmed nucleotides can be tentatively reconstructed based on
similarity with known germline genes (as has been done in
previous studies of V and J genes). However, in some cases,
assigning terminal nucleotides by homology might lead to the
inference of erroneous alleles (38–40). Ideally, the gene inference
problem should be followed by validation using genomic data
that raises need in paired Rep-Seq and WGS datasets from the
same individual. The antibody analysis and engineering in model
organisms can also be done with partial D genes.

Limitations and Advantages of IgScout
The IgScout pipeline consists of three steps: (i) preprocessing
Rep-seq reads; (ii) inferring D genes; (iii) analyzing VDJ
recombinations based on the inferred genes (Figure 3). The
preprocessing step extracts CDR3s, constructs consensus CDR3s,
and trims prefixes and suffixes of CDR3s to exclude suffixes of V
genes and prefixes of J genes. The inference step derives D genes
from the set of trimmed CDR3s and combines them with the set
of known D genes (if available). The final step computes usage of
D genes (including analysis of the allele usage of heterozygous D
genes) and finds CDR3s with tandem D-D fusions.

Analysis of simulated CDR3s suggests that IgScout correctly
reconstructs long D genes (length at least 20 nucleotides) if
they give rise to at least 1% of CDR3s but misses short D
genes (length <20 nt) if they give rise to <2.5% of CDR3s
(see Supplemental Note “Benchmarking IgScout on simulated
immunosequencing datasets”).

Since it is difficult to distinguish amplification artifacts from
SHMs, IgScout takes a conservative approach and partially
removes the clonal diversity (step “Hamming Graph (HG)
Constructor” in Figure 3) to avoid propagation of amplification
errors. Since naïve B cells do not have SHMs, the preprocessing
step results in correcting amplification errors and enables
reconstruction of long fragments of D genes. As a result,
IgScout performs well on datasets with a sufficiently large
number of consensus CDR3s (Figure 3). Below we analyze how
the number of consensus CDR3s in real datasets affects the
IgScout performance.

If a dataset contains hypermutated sequences, then the
processing step keep SHMs in the consensus CDR3s. However,
if the dataset does not have large clonal lineages (e.g., PBMC
from a healthy donor) and the number of consensus CDR3 is
large (Figure 3), IgScout treats unremoved SHMs as random
errors and still reconstructs mutation-free D genes. However, if
a dataset is formed by large clonal lineages, the preprocessing
step creates a small number of consensus CDR3s with abundant

FIGURE 1 | Abundances of all 443 common 15-mers (top) and the motif logo
constructed for the most abundant 15-mer CGATTTTTGGAGTGG in the
CDR3* dataset constructed from the Set 1 dataset (bottom). (Top) The
CDR3* dataset contains 91% of all 15-mers appearing in human D genes (all
15-mers in human D genes are unique, i.e., appear in a single D gene). Four
hundred forty-three common 15-mers in the CDR3* set have abundances
varying from 83 to 3,141. The y–axis represents the number of common
15-mers with given abundance (in logarithmic scale). Red, yellow, violet, and
blue bars represent the number of common 15-mers with given abundance
among known, mutated, trimmed, and foreign 15-mers, respectively. There
exist 175 known, 195 mutated, 70 trimmed, and three foreign common
15-mers. The histogram represents 100 bins of width 30 each. (Bottom) The
ATTACGATTTTTGGAGTGGTTAT is the initial 28-nucleotide long sequence
formed by positions in the motif logo with high information content (37). The
motif logo was constructed using 3,141 sequences from the set CDR3*
containing the most abundant k-mer. After extending this 28-mer, IgScout
reconstructed the 30-mer GTATTACGATTTTTGGAGTGGTTATTAT that is a
substring of the 33-nucleotide long IGHD3-3 gene
GTATTACGATTTTTGGAGTGGTTATTAT acc shown below the logo.

SHMs. Although IgScout is able to reconstruct some over-
represented D genes for such datasets, some of the inferred D
genes may still contain SHMs (Figure 3). We thus suggest to
use caution while applying IgScout to clonally expanded datasets
(see Supplemental Note “How IgScout results are affected by the
number of consensus CDR3s and cell types”).

Reconstruction of Human D Genes
IgScout is best suitable for reconstructing D genes in the
case of naive datasets and PBMC datasets with small clonal
lineages. To illustrate this point, we applied IgScout to the
NAÏVE, HEALTHY, ALLERGY, and HIV datasets. The number
of consensus CDR3s in the NAIVE datasets varies from 1,000
to 115,000. Figure 4 shows that IgScout reconstruct the same
set of D genes as on the simulated datasets for naïve datasets
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FIGURE 2 | IgScout results on the CDR3* dataset. Each row shows a
reconstructed string (strings are inferred in the order from the top to the
bottom). Dark green segments correspond to reconstructed substrings of
human D genes (flanking non-reconstructed nucleotides are shown in
standard green). The most frequent 15-mers that were used for reconstructing
the corresponding D genes are shown in red (their abundances are shown on
the left). The reconstructed substring of the D2 gene (IGHD2-2) also occurs in
D2*2 and D2*3 genes. Seventeen strings reconstructed by IgScout represent
substrings of 17 human D genes. IgScout misses short prefixes and suffixes of
D genes: 1.4 nucleotides on the left and 1.7 nucleotides on the right, on
average for the Set 1 dataset (0.9 nucleotides on the left and 1.5 nucleotides
on the right, on average after combining reconstructions over all HEALTHY
datasets). IgScout did not reconstruct eight human D genes: D1 (IGHD1-1),
D4 (IGHD4-4), D7 (IGHD1-7), D14 (IGHD1-14), D20 (IGHD1-20), D23
(IGHD4-23), D25 (IGHD6-25), and D27 (IGHD7-27) that contributed to few
CDR3 in the Set 1. These genes have the following abundances of their most
frequent 15-mers: 43 for D1, 59 for D4, 83 for D7, 0 for D14, 33 for D20, 75
for D23, 0 for D25, and 0 for D27.

with at least 20,000 consensus CDR3s. Figure 4 shows that
IgScout performs well on the HEALTHY and ALLERGY datasets
and reconstructs the same set of D genes as for the simulated
and NAÏVE datasets. Since number of consensus CDR3s in
some of the HEALTHY and ALLERGY datasets is as low as
40,000, we recommend applying IgScout to dataset with small
clonal lineages if the number consensus CDR3s exceeds 40,000.
Although the HIV datasets also has many consensus CDR3s
(varying from 19,000 to 55,000), the high SHM rate in the HIV
datasets makes it difficult to reconstruct some short D genes
(Figure 4).We thus suggest to use caution while applying IgScout
to highly hypermutated datasets (such as repertoires of HIV and
lymphoma patients.

Figure 5 illustrates that IgScout reconstructed 18 out
of 25 human D genes across all HEALTHY datasets,
Supplemental Note “Summary of IgScout results across
diverse immunosequencing datasets” describes inference of 20
human D genes across multiple immunosequencing datasets.
Supplemental Note “Reconstructing variants of humanD genes”
describes inference of five allelic variants of the D7, D10, D16,
D17, and D23 genes, However, since variations in D7, D17, and
D23 genes affect the first or last nucleotides of the corresponding
D genes, they likely represent computational artifacts caused by
abundant nucleotides at the flanking positions of the D genes
within CDR3s. In contrast, variations of the D10 and D16 genes

(referred to as D10+ and D16+, respectively) have mutations
in the middle of D genes (Figure 5). They were inferred from
multiple datasets (Set 5 and Set 7 for D10+, and Set 5, Set 7, Set
9, and Set 13 for D16+) and are consistent with alleles identified
in previous studies [alleles IGHD3-10∗p03 and IGV3-16∗p03
reported in Lee et al. (41) and Boyd et al. (19)], but still missing in
IMGT. Supplemental Note “Reconstructing variants of human
D genes” illustrates that 50 (42) samples among 600 samples in
the PROJECTS10 dataset support D10+ (D16+) variants and
presents two more variants D10++ and D16++.

To demonstrate that D10+ and D16+ indeed represent
new variants of D10 and D16 genes, we analyzed 40 whole
genome sequencing datasets from the population-wide study of
esophageal cancer (PRJNA427604 project) and searched for exact
occurrences of D10+ and D16+ in reads. Both variations were
detected in five out of 40 datasets (SRR6435661, SRR6435676,
SRR6435686, SRR6435691, and SRR6435692) with the number
of reads supporting D10+ (D16+) varying from 8 to 14 (30 to
58) across these five datasets.

In general, IgScout has limitations with respect inferring both
variants of a heterozygous D gene. Specifically, if two variants of
the same D gene share a k-mer and IgScout selects this k-mer
as a seed, the current version of IgScout may only reconstructs
the most abundant variant of this D gene. We plan to enable
inference of heterozygous D genes with two novel alleles and thus
address this limitation in the next version of IgScout. Currently,
to analyze allele usage of heterozygous human D genes, IgScout
combines the inferred D genes with known D genes.

Reconstruction of Camel D Genes
Although camel V genes were inferred in Conrath et al. (43),
camel D genes remain unknown. We analyzed six CAMEL
datasets from three camels (VH and VHH libraries for each
camel) labeled as Camel 1VH, 1VHH, 2VH, 2VHH, 3VH, and
3VHH (33). While the VH libraries contain the heavy chain of
the conventional (both heavy and light chain) camel antibodies,
the VHH libraries contain the heavy chains of the single-chain
antibodies.

We extracted camel CDR3s by aligning camel antibody
repertoires against the known camel V and J genes using
the IgReC tool (34). For the Camel 1VH dataset, IgScout
constructed 60,066 consensus CDR3 sequences of average length
48 nucleotides. The CDR3∗ dataset for Camel 1VH has total
length 1,400,360 nucleotides (the average length 23 nt).

IgScout reconstructed four D genes in the case of the
Camel 1VH dataset that we refer to as D1, D2, D3, and D4
(see Supplemental Note “Reconstructing camel D genes”). It
reconstructed four putative D genes in datasets Camel 1VHH,
and Camel 2VH, and three putative D genes in the remaining
three camel datasets (17 strings in total) that are largely
consistent with genes D1, D2, D3, and D4 derived from the
Camel 1VH dataset (previous studies assumed that the camel
genome has a single germline D gene (43). Supplemental Note
“Reconstructing camel D genes” illustrates that all camel
D genes are shared between the VH and VHH datasets.
Supplemental Note “Usage of camel D genes” demonstrates that

Frontiers in Immunology | www.frontiersin.org 5 May 2019 | Volume 10 | Article 987

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Safonova and Pevzner De novo Inference of IGHD Genes

FIGURE 3 | The IgScout pipeline. (Top) IgScout steps. (Bottom). IgScout performance on a hypothetical naive dataset (left), a dataset with small clonal lineages
(middle), and a dataset with large clonal lineages (right). We assume that all CDR3s are derived from the same D gene (shown in gray). CDR3s corresponding to the
same ancestral VDJ recombination are shown by the same color. Sequencing and amplification errors are shown in red; somatic hypermutations are shown in green.
The reconstructed (missing) part of the inferred D gene is shown in gray (light gray).

the camel D genes have strikingly different usage in the VH and
VHH antibodies.

D Gene Usage
Twenty-five human D genes form a set of strings that we refer
to as D-Genes. Given an arbitrary string Target, a string D from
D-Genes, and a parameter k, we say that a string Target is formed
by D if it contains a k-mer from D but does not contain k-mers
from other strings in D-Genes (the default value k = 11). We
classify a CDR3 as traceable if it is formed by a D gene and non-
traceable, otherwise. The percentage of traceable CDR3s is rather
conservative across all HEALTHY datasets: ≈60% of CDR3s
in the HEALTHY datasets are traceable (Supplemental Note
“Traceable CDR3s”).

Given a set of strings Strings and a string D from D-
Genes, we define usage(Strings, D-Genes, D) as the fraction
of traceable strings in Strings formed by the string D. We

are interested in usage(CDR3∗, D–Genes, D) for each human
D gene. Supplemental Note “Traceable CDR3s” analyzes the
usage of all human D genes across all HEALTHY datasets.
Supplemental Note “D gene classification by IgScout and
IgBlast” compares IgScout and IgBlast classification of D genes
forming CDR3s.

We analyzed the usage of known and novel allelic variants
(D10+ and D16+) across all HEALTHY datasets. Figure 6
reveals that usage of allelic variants of D2 and D3 is
consistent across all datasets with D2∗2 and D3 as dominant
variants. However, the Set 5 has different dominant variants
as compared to other datasets: D8∗2 (compared to D8
in all other datasets); D10+ (compared to D10 in all
other datasets); and D21 (compared to D21∗2 in all other
datasets). The variant D16+ is dominant in Sets 5, 7, 9,
and 13, while the D16 gene is dominant in the remaining
eight datasets.
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FIGURE 4 | De novo reconstructions of D genes across NAÏVE, HEALTHY, ALLERGY, and HIV datasets. Human D genes that were reconstructed (missed) are shown
by colored (gray) cells. Green and orange cells correspond to reconstructed D genes listed in the IMGT database. Green cells correspond to substrings of known D
genes. Orange cells correspond to substrings that differ from substrings of known D genes by the first or the last nucleotide. Blue cells correspond to novel variants of
D10 (IGHD3-10) and D16 (IGHD3-16) genes. For the Set5, Set7, ALLERGY1–ALLERGY4, ALLERGY17–ALLERGY20, HIV1–HIV13, IgScout inferred two variants
(novel and known) of D10 (IGHD3-10). The NAIVE datasets are listed in the increasing order of the number of consensus CDR3s in them.

Tandem CDR3s
Given strings D and D’, and a parameter k, we say that a
string Target is formed by D and D’ if it contains k-mers
from both D and D’ and a k-mers from D’ starts after a k-
mer from D ends. Since tandem CDR3s represent a small
fraction of all CDR3s, we set the default value k = 11
(rather than k = 15 for all CDR3s) to increase the number
of identified tandem CDR3s. Although a smaller value of
k may lead to identification of pseudo-tandem CDR3s, the
Methods section describes how to filter out such pseudo-
tandem CDR3s.

There exist 187 tandem CDR3s formed by two D genes in
the CDR3∗ dataset (Figure 7). We denote the longest substring
between a tandem CDR3 Target and D (Target and D’) as
Dmatch(D’match) and represent a tandem CDR3 Target as a
concatenate of five strings prefix ∗ Dmatch ∗ middle ∗ D’match ∗

suffix. We define the span of a tandem CDR3 formed by D and

D’ as the substringDmatch ∗ middle ∗ D’match and inter-D insertion
as the substringmiddle (Figure 7).

Briney et al. (29) emphasized that detecting tandem CDR3s
has to be done with caution since they are often confused
with pseudo-tandem CDR3s formed by the standard V(D)J
recombination (Figure 7). The Methods section describes how
IgScout detects pseudo-tandem CDR3s. One hundred and
fourteen out of 187 tandem CDR3s are not pseudo-tandem in the
CDR3∗ dataset.

Tandem Bias
There exists 114 tandem CDR3s in the Set 1 dataset and
1900 tandem CDR3s across all HEALTHY datasets. Figure 7
represents all tandem CDR3s as a tandem matrix and reveals that
the vast majority of them correspond to cells in the upper half of
this matrix. If tandem CDR3s were computational artifacts, we
would expect similar numbers of CDR3s in the upper and lower
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FIGURE 5 | De novo reconstructions of D genes across HEALTHY datasets (top) and allelic variants D10+ and D16+ inferred by IgScout (bottom). (Top) Genes
reconstructed at consecutive steps of IgScout for all HEALTHY datasets. Rows correspond to the datasets and columns correspond to the IgScout steps. Each cell is
marked by a reconstructed D gene (each D gene is assigned a unique color). Cells marked with the “+” sign refer to strings that differ from known D genes by at most
two nucleotides and correspond to putative novel variants (shown in red). (Bottom) Allelic variants D10+ and D16+ inferred by IgScout. Differences from human D
genes and their allelic variants listed in the IMGT database are shown in red.

parts of the tandemmatrix. We define the tandem bias as Nlower /
(Nupper +Nlower), whereNupper , andNlower is the sum of entries in
the upper and lower parts of the tandem matrix, respectively (we
assume that the main diagonal belongs to the lower part of the
matrix). The tandem bias varies from 0.03 to 0.21% across various
datasets (see Supplemental Note: “Analysis of tandem CDR3s).

Since most pairs of D genes in tandem CDR3s contribute
to the upper part of the tandem matrix (and thus follow the
order of D genes in the IGH locus), entries in the lower
part of the tandem matrix likely represents false positives.
However, some of them may reveal possible duplications of
D genes, e.g., the D22 row in the lower part of the tandem
matrix in Figure 7 reveals many tandem CDR3s. Analysis of
the hepatitis patient 1,776 in the PROJECTS10 dataset (44)
revealed particularly many entries in the D22 column in the
lower part of the tandem matrix, suggesting a duplication of
the D22 gene in this patient (see Supplemental Note “Analysis
of tandem CDR3s”). Kidd et al. (23) analyzed biases in the

D-J pairing and also suggested that D22 may be duplicated in
some individuals.

Ultra-Long CDR3s Reveal Unusual
Recombination Events
One thousand nine hundred tandem CDR3s across all
HEALTHY datasets contain 1,081 distinct inter-D insertions,
varying in length from 0 to 153 nucleotides. The two longest
inter-D insertions (denoted I1 and I2) appear in the Set 1 and
have length 153 nucleotides. They are formed by genes D9 and
D10, differ by a single nucleotide, and appear in CDR3s differing
by six nucleotides. Surprisingly, the inter-D insertion I2 coincides
with the sequence of the IGH locus between the D9 and D10
genes. Germline D genes are flanked by recombination signal
sequences (RSSs) with 12-nucleotide long spacer and the inter-D
insertion I2 starts with the right RSS of D9 and ends with the left
RSS of D10 (Supplemental Note “Ultra-long tandem CDR3s”).
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FIGURE 6 | Usage of D genes with known and novel allelic variants across all
HEALTHY datasets. Horizontal black lines sub-partition the matrix into six
sub-matrices corresponding to allelic variants of D2 (IGHD2-2), D3 (IGHD3-3),
D8 (IGHD2-8), D10 (IGHD3-10), D16 (IGHD3-16), and D21 (IGHD2-21). For
each D gene and each dataset, we computed the percentage of usage of
each variant. Values in cells vary from 0 (blue) to 100 (red). White cells
correspond to values ∼50% and likely represent cases when a single individual
carries different variants of a given D genes on two different chromosomes.

Thus, ultra-long tandem CDR3s reveal unusual RSS skipping
events during somatic recombination: skipping the right RSS of
D9 and left RSS of D10 led to a tandem CDR3 representing a
concatenate D9 + I2 + D10. Although the found example is
not productive, we also detected RSS skipping in nine productive
ultra-long CDR3s across all HEALTHY and ALLERGY datasets.
All productive CDR3s are formed by skipping of the right RSS
of D22. Instead of it, somatic recombination uses a cryptic RSS
(CACAGCA + ACCCAAACA) located at the distance 129 nt
from the end of D22 and forms ultra-long CDR3s containing a
genomic fragment of the IGH locus that starts with the right RSS
of D22 (Supplemental Note “Ultra-long CDR3s”). The discovery
of productive ultralong CDR3s challenges the conventional view
of germline genes as non-overlapping substrings of DNA and
reveals the first example of nested D genes, when one D gene is
contained within another D gene.

The existing immunosequencing protocols are likely to miss
ultra-long immunoglobulins since they are not designed to
capture the abnormally long variable regions (exceeding ∼400
nt). We captured reads containing ultra-long tandem CDR3s
because the 300-nucleotide long paired reads (overlapping by
only 50 nucleotides) in the Set 1 and ALLERGY datasets are
longer than reads used in most other immunosequencing
datasets. Thus, even if ultra-long tandem CDR3s were
common, they would likely remain below the radar of most
immunosequencing studies.

Tandem CDR3s Contribute to Adaptive
Immune Response
We investigated whether tandem CDR3s contribute to the
adaptive immune response by analyzing their isotypes. Since IgG,

IgA, and IgE isotypes occur in plasma and memory B cells
subjected to the antibody-antigen interactions, these isotypes
they indicate (in difference from IgM isotypes common in
memory and naïve B cells) that the corresponding antibodies
participate in the adaptive immune response.

We inferred isotypes in the ALLERGY and HIV datasets
using markers described in Levin et al. (31) (Figure 8). The
vast majority of tandem CDR3s from the ALLERGY dataset
correspond to the IgM isotype and thus are produced by memory
and naïve B cells. In contrast,∼60% of tandemCDR3s in the HIV
dataset correspond to the IgG type. This observation suggests
that tandem CDR3s in the HIV-infected patients arise from
immunoglobulins that are produced by plasma cells and thus
might contribute to the immune response against HIV antigens.

DISCUSSION

Since many human germline alleles remain unknown
(particularly for non-European subjects), missing alleles
may mislead clinical decisions (45) and lead to erroneous
derivation of clonal lineages due to misinterpretations of SHMs.
Thus, finding new germline alleles and building personalized
sets of germline genes for each individual is important for
downstream analysis of immunosequencing datasets.

Although there exists a number of tools for inferring V and
J genes (3, 21, 22), a more difficult problem of reconstructing
D genes remains open. IgScout aims to reconstruct all D genes
explaining a large percentage of the VDJ recombination in an
antibody repertoire rather than to reconstruct all D genes. The
IMGT database reflects the genomic diversity of D genes but not
their recombinant diversity (information about rearrangements,
transcription, and translation of D genes). Since assemblies of
the highly repetitive IGH loci are fragmented and error-prone (7,
14, 42, 46) reconstruction of all germline genes from the whole-
genome sequencing data is a difficult problem. Although the
IGH locus is extremely diverse (16), it remains largely unknown
how it varies across the human population. Moreover, even in
the case when the IGH locus is correctly assembled, prediction
of the functional germline genes is a non-trivial problem
(2, 13).

Immunosequencing datasets reflect the recombinant diversity
of antibody repertoires and thus complement the genomic
datasets. If some D genes do not contribute to the VDJ
recombination (e.g., our analysis suggests that genes D1, D14,
D20, D25, and D27 do not significantly contribute to VDJ
recombination in any of the analyzed datasets), they have limited
contribution to immune response. In this paper, we focused on
reconstructing D genes shaping the recombinant diversity rather
than all D genes.

IgScout reconstructed 20 out of 25 human D genes across
multiple datasets and missed genes D1, D14, D20, D25, D27 that
form a small number of CDR3s (<0.1% each) across all analyzed
datasets. It remains unclear whether some of these genes ever
contribute to any CDR3s, for example genes D14 and D25 do not
form any CDR3s in most datasets (few CDR3s formed by these D
genes in some datasets may represent computational artifacts).

Frontiers in Immunology | www.frontiersin.org 9 May 2019 | Volume 10 | Article 987

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Safonova and Pevzner De novo Inference of IGHD Genes

FIGURE 7 | A tandem CDR3 formed by genes D3 (IGHD3-3) and D5 (IGHD5-5) (top), a pseudo-tandem CDR3 formed by genes D10 (IGHD3-10), and D16
(IGHD3-16) (middle), and the tandem matrix for all tandem CDR3s across all HEALTHY datasets (bottom). (Top) A tandem CDR3 with
Dmatch=GTATTAGGATTTTTGGAGTGGTTAT, middle=CAGCCA, and D’match=GTGGATACAGCTATGG. (Middle) The pseudo-tandem CDR3, formed by genes D10
(IGHD3-10) and D16 (IGHD3-16). This CDR3 was formed by a single gene D10 (IGHD3-10) with three mutations (shown in red). IgScout filters out most
pseudo-tandem CDR3s. (Bottom) The number in a cell (i,j) shows the total number of tandem CDR3s formed by genes Di and Dj across all HEALTHY datasets.
Empty cells correspond to pairs of D genes that do not form tandem CDR3s. Genes D4 and D5 appear in two copies in the IGH loci. The second copy of D4
(IGHD4-11) appears between D10 (IGHD3-10) and D12 (IGHD5-12). The second copy of D5 (IGHD5-18) appears between D17 (IGHD4-17) and D19 (IGHD6-19). The
vast majority of tandem CDR3 correspond to cells in the upper half of the matrix. The only populated column in the lower part of the tandem matrix corresponds to the
D5 gene and likely results from tandem CDR3s formed by the second copy of D5 in the IGH locus.

IgScout revealed four new allelic variants (D10+, D10++,
D16+, and D16++), thus increasing the number of known
variants of human D genes from 7 to 11. These new variants
are unlikely to be computational artifacts since they were found
in dozens immunosequencing datasets from distinct individuals
and many whole genome sequencing datasets. The frequency
of the already known Single Nucleotide Polymorphisms (SNPs)
in D genes exceeds the frequency of SNPs in the entire human
genome by two orders of magnitude (12 SNPs for all D genes of
total length only 288 nucleotides).

Although IgScout revealed four novel variants of human
D genes and inferred camel D genes, these genes will not
be included in the IMGT database since they haven’t been
experimentally confirmed yet. Similarly to Gadala-Maria et al.
(20), we argue that, like in other areas of genomics, the time
has come to add such prediction to the IMGT database.

For example, the lion’s share of genes in genomic databases
represent computational predictions that haven never been
experimentally confirmed. We argue that IMGT should classify
alleles with varying levels of supporting evidence, not unlike
classification systems used in other biological databases and
in the recently established Open Germline Receptor Database
(OGRDB), a new repository of germline genes maintained
by The Adaptive Immune Receptor Repertoire (AIRR)
Community (47).

Although IgScout is not specifically designed for
reconstructing V and J genes, it turned out that its
applications are not limited to reconstructing D genes (see
Supplemental Note “De novo reconstruction of human J
genes”). In addition to de novo reconstruction of D genes, it also
detects tandem CDR3s. Briney et al. (29) postulated that tandem
CDR3s mostly appear in naïve B cells and thus do not contribute
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FIGURE 8 | Fractions of IgM, IgG, IgE, and IgA isotypes representing tandem
CDR3s in the repertoires from the ALLERGY and HIV datasets.

to adaptive immune response. In contrast, our analysis revealed
that ∼60% of tandem CDR3s in the HIV dataset correspond to
plasma and memory B cells.

METHODS

Inferring Germline Genes as the Trace
Reconstruction Problem
In information theory, a string S yields a collection of
traces, where each trace is independently obtained from S by
substituting each symbol in S by another symbol from a fixed
alphabet with a given probability δ. Given the traces and the
value δ, the Trace Reconstruction Problem (35) is to reconstruct
the original string S. De novo reconstruction of D genes results
in a more complex version of the Trace Reconstruction Problem
where traces are generated by multiple strings and each trace is
obtained from one of these strings by (i) randomly trimming it
from both sides, (ii) adding a randomly generated prefix in the
front of the string, and (iii) adding a randomly generated suffix
in the end of the string. Given a set of such traces (modeled by
a set of trimmed CDR3s extracted from an immunosequencing
dataset), the goal is to reconstruct the original set of strings.

Extending the Consensus String
IgScout trims all positions of the motif logo with the information
content below IC and computes the consensus string. Afterwards,
it extracts the first k-mer of the consensus string and finds all
CDR3s that contain this k-mer. If the position preceding the

first k-mer in these reads has information content exceeding
a threshold, IgScout adds the most frequent nucleotide at this
position to the consensus and iterates. Afterwards, it applies a
similar procedure to the last k-mer of the consensus string. The
resulting extended consensus is reported as a putative D gene
(Figure 1).

Detecting Pseudo-Tandem CDR3s
Given strings Span and S, we define distancet(Span,Target) as
the minimum Hamming distance between t-mers in Span and
S. Given a parameter 1 (the default value 1 = 5) we define the
1-distance between strings Span and Target as distancet(S,Target)
for t=|Span|-1, where |Span| stands for the length of the string
Span. Finally, we define the1-distance between a string Span and
a set of strings Strings as the minimum 1-distance between Span
and all strings in Strings.

We computed the 1-distance between the spans of all 187
identified tandem CDR3s in CDR3∗ and all string in D-Genes.
Seventy-three out of these 187 CDR3s can be explained as CDR3s
originating from a single D gene (for the 1-distance threshold
three). However, the remaining 114 CDR3s have 1-distance at
least nine. We thus classify a CDR3 sequence Target formed by
genes D and D’ as pseudo-tandem if the 1-distance between
the span of this pseudo-tandem CDR3 and D-Genes does not
exceed a predefined threshold (the default value is three), and
(truly) tandem, otherwise. See Supplementary Note “List of
tandem CDR3s.”
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