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Stroke is a leading cause of disability worldwide. Motor impairments occur in most of

the patients with stroke in the acute phase and contribute substantially to disability.

Diffusion tensor imaging (DTI) biomarkers such as fractional anisotropy (FA) measured

at an early phase after stroke have emerged as potential predictors of motor recovery. In

this narrative review, we: (1) review key concepts of diffusion MRI (dMRI); (2) present

an overview of state-of-art methodological aspects of data collection, analysis and

reporting; and (3) critically review challenges of DTI in stroke as well as results of

studies that investigated the correlation between DTI metrics within the corticospinal

tract and motor outcomes at different stages after stroke. We reviewed studies published

between January, 2008 and December, 2018, that reported correlations between DTI

metrics collected within the first 24 h (hyperacute), 2–7 days (acute), and >7–90 days

(early subacute) after stroke. Nineteen studies were included. Our review shows that

there is no consensus about gold standards for DTI data collection or processing.

We found great methodological differences across studies that evaluated DTI metrics

within the corticospinal tract. Despite heterogeneity in stroke lesions and analysis

approaches, the majority of studies reported significant correlations between DTI

biomarkers and motor impairments. It remains to be determined whether DTI results

could enhance the predictive value of motor disability models based on clinical and

neurophysiological variables.

Keywords: diffusion MRI (dMRI), diffusion tensor imaging (DTI), corticospinal tract (CST), motor stroke, stroke

recovery, white matter (WM)

INTRODUCTION

Stroke is the second cause of death and the third leading cause of loss of DALYs (Disability-Adjusted
Life Years) worldwide. Despite substantial advances in prevention and treatment, the global burden
of this condition remains massive (1). In ischemic stroke (IS; 80–85% of the cases), hypoperfusion
leads to cell death and tissue loss while in hemorrhagic stroke (HS), primary injury derives from
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hematoma formation and secondary injury, from a cascade
of events resulting in edema and cellular death (2). In IS,
cytotoxic edema is a result of glucose and oxygen deprivation,
leading to a failure of ion pumps in the cell membranes and
consequently to collapse of osmotic regulation, when water shifts
from the extracellular to the intracellular compartment (3). In
HS, heme degradation products are the primary cytotoxic event
and secondarily, an inflammatory process based on degradation
of the hematoma takes place (4).

Diffusion MRI (dMRI) is a powerful diagnostic tool in
acute IS (5) and is widely used in clinical practice (6). dMRI
sequences are sensitive to water displacement. Acute infarcts
appear hyperintense on diffusion-weighted imaging (DWI)
reflecting the decrease in the apparent diffusion coefficient
of water molecules. DWI can be acquired and interpreted
over a few minutes. It provides key information for eligibility
to reperfusion therapies from 6 to 24 h after onset of
symptoms (DAWN study) (7) and in wake-up strokes (8). A
search on MEDLINE using the terms “stroke” and “diffusion
MRI” yielded 1 article in 1991 and 279, in 2018. Diffusion
tensor imaging (DTI) involves more complex post-processing,
mathematical modeling of the DW signal (9) and provides
measures associated with white matter (WM) microstructural
properties (10).

Stroke can directly injure WM tracts and also lead to
Wallerian degeneration, the anterograde distal degeneration of
injured axons accompanied by demyelination (11). DTI metrics
have been studied as biomarkers of recovery or responsiveness
to rehabilitation interventions (12–14). The bulk of DTI studies
addressed specifically the corticospinal tract (CST), crucial for
motor performance or recovery (12, 15), and frequently affected
by stroke lesions. Paresis occurs in the majority of the subjects in
the acute phase and contributes substantially to disability (16). It
is thus understandable that the CST is in the spotlight of research
in the field.

Two meta-analyses included from six to eight studies and
reported strong correlations between DTI metrics and upper-
limb motor recovery in IS and HS (17, 18). In both meta-
analyses, heterogeneity between the studies was moderate. In
addition, the quality of the evidence of DTI as a predictor of
motor recovery was considered only moderate by a systematic
review of potential biomarkers (19). The main limitations
of the reviewed studies were the lack of cross-validation
and evaluation of minimal clinically important differences
for motor outcomes as well as the small sample sizes.
Heterogeneity in DTI data collection and analysis strategies
may also contribute to inconsistencies and hinder comparisons
between studies.

In this narrative review, first we review the key
concepts of dMRI. Second, we present an overview of
state-of-art methodological practices in DTI processing.
Third, we critically review challenges of DTI in stroke
and results of studies that investigated the correlation
between DTI metrics in the CST and motor outcomes at
different stages after stroke, according to recommendations
of the Stroke Recovery and Rehabilitation Roundtable
taskforce (20).

CONCEPTS OF DIFFUSION MRI

Different MRI paradigms address WM qualitatively and
quantitatively (i.e., volume, contrast as signal hyperintensities),
but only dMRI allows indirect inferences about WM
microstructure by providing information about the underlying
organization of the tissue. In regions of little restriction of water
displacement (such as the ventricles), water molecules tend
to move almost freely (randomly). On the other hand, within
tracts, the environment tends to be organized within sets of
axons aligned in parallel orientation. Water movement usually
follows a specific orientation near axons compactly organized
and constrained by the myelin packing (21).

The diffusion tensor is themost commonly usedmathematical
modeling of the diffusion signal and can be decomposed into
its eigenvalues (λ) and eigenvectors (ε), required to characterize
the signal of water displacement within a voxel. Each eigenvector
represents an axis of dominant diffusion with the magnitude of
diffusion determined by the corresponding eigenvalues. If the
diffusion is isotropic (the same along each orientation), then the
eigenvalues have approximately the same magnitude (λ1 ≈ λ2 ≈

λ3), which can be depicted by a sphere. By contrast, if there is a
preferential orientation of the diffusion, then the first eigenvalue
is bigger than the other two, which can be visualized typically by
an ellipsoid (λ1 >> λ2, λ3) (Figure 1).

Hence, the tensor calculation is typically based on a 3 × 3
symmetric matrix, in which the eigenvalues derived from each
combination of directions provide different metrics. At least
one b0 (non-diffusion-weighted) and 6 non-collinear directions
of diffusion-weighted acquisitions are required to minimally
describe water displacement with DTI (10). Generally, the more
directions, the better.

The most widely used DTI metrics are: fractional anisotropy
(FA), mean diffusivity (MD), radial diffusivity (RD), and
axial diffusivity (AD). FA describes the degree of anisotropy
(represented as an ellipsoid), a value between 0 (isotropic) and
1 (the most anisotropic). Anisotropy tends to increase in the
presence of highly oriented fibers (Figure 1). The biggest value is
supposed to be found in the center of the tracts. In particular, for
CST analysis in stroke or other focal brain lesions, FA results can
be reported as ratios between FA extracted from the ipsilesional
and the contralesional hemispheres (rFA = FA ipsilesional/FA
contralesional). Alternatively, asymmetry in FA can be described
(aFA = (FA ipsilesional – FA contralesional)/(FA ipsilesional +
FA contralesional).

MD describes the magnitude of diffusion and the biggest value
is supposed to be found in the ventricles. RD represents the
average diffusivity perpendicular to the first eigenvector and AD
is the first eigenvalue (λ1) representing the diffusivity along the
dominant diffusion direction.

Many studies have focused exclusively on FA. The proper
interpretation of FA often demands knowledge about results
of the other three DTI metrics (22). Changes in anisotropy
may reflect several biological underpinnings, such as axonal
packing density, axonal diameter, myelinization, neurite density,
and orientation distribution (21, 23). FA can be decreased in
conditions that injure the WM but also when multiple crossing
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FIGURE 1 | Model of the tensor showing the eingenvalues. Diffusivities are

depicted in FA representation (λll—parallel or axial diffusivity—AD,

λ⊥perpendicular or radial diffusivity—RD).

fibers are present in the voxel. In case of partial volume effects,
both FA and MDmay be altered (24, 25).

dMRI Acquisition and Processing
DWI is a noise-sensitive and artifact-prone sequence,
emphasizing the need for robust acquisitions and processing
handling to avoid bias (26). Several dMRI sequences and
subsequent post-processing mathematical modeling of the

diffusion signal are available. Choices directly impact accuracy,
reliability, and validity of the results (27).

dMRI acquisitions and analytical strategies are based on the
goal of the study, balancing the pros (i.e., greater reliability
of signal reconstruction) and cons (i.e., time-consuming
acquisition). In addition to constraints related to the number of
subjects with stroke in the studies, criteria to perform a reliable
protocol should be weighted prior to data collection [for a review,
see Price et al. (28)].

Diffusion images are typically acquired with sequences based
on echo planar imaging (EPI) acquisitions. Two high-amplitude
magnetic gradients are applied. The b-value is a scalar that reflects
the degree of diffusion, influenced by the duration, amplitude,
and interval between the gradients. B-values are comparable to
an inverse zoom factor: the higher they are (“high” b-values are
usually above 1,000 s/mm2), the smaller the sampled space (29).

EPI acquisitions are prone to many unexpected distortions
(30), therefore care should be taken during data collection. For
tensor modeling, some suggestions are: parameters to minimize
EPI artifacts; coverage of the entire brain; isotropic voxels;
appropriate number of directions and b0s; to acquire at least
one low b-value (b0 for example), for every 5–6 volumes
with high b-value and leave it interspersed with those with
high values; optimal sampling schemes of the directions in the
sphere of distribution and gradient ordering (28, 31). Optimized
distribution of gradients can be obtained, for example, with
MRtrix software (http://www.mrtrix.org/) or ExploreDTI (http://
www.exploredti.com).

Off-resonance artifacts such as eddy currents and magnetic
field inhomogeneities are intrinsic to EPI acquisitions and
interfere in the expected signal, causing susceptibility-induced
distortions (32). Acquisition parameters tailored to prevent and
mitigate these artifacts include: parallel imaging; field maps;
phase encoding with opposed gradients to correct a geometrical
mismatch in the antero-posterior axis; multiple b0s (33). These
alternatives demand extra data collection and prolonged scan
time (34). In accordance with the chosen acquisition parameters,
a posteriori corrections are performed in the pre-processing step.

In stroke studies, the duration of scans should be planned
by pondering the risk of fatigue and increased head motion
in patients with neurologic impairments. These impairments
are often not restricted to motor deficits and may involve
executive dysfunction or anxiety that contribute to increase head
motion and hence, artifacts. Again, trade-offs between “optimal”
acquisition parameters, feasibility and noise must be weighted
during study design.

Software embedded in the MRI scanner can perform tensor
calculations but advanced a posteriori processing is strongly
recommended. The most appropriate choice heavily depends on
the objectives of the study and on acquisition limitations such
as: the number of diffusion directions; image resolution; b-values;
number of b-values; number of averages, repetitions to improve
signal in relation to noise and tensor estimation (the number of
excitations, NEX) (31, 35).

Many open-source softwares and pipelines are available to
process diffusion images, each of them showing particular
strengths—a helpful overview can be found in Soares et al. (35).
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A list of softwares is available on the Neuroimaging Informatics
Tools and Resources Clearinghouse (www.nitrc.org). There is
no consensus but some agreement about diffusion imaging
processing. One can decide to use a mix of softwares to process
the data, as long as key steps are completed and a detailed
methodological report is made. Documentation is invariably
available on-line and discussion forums can provide additional
support. It is desirable, to allow reproducibility and comparisons
across studies, to transparently report analytical procedures when
in-house pipelines are employed (36).

Here, we will briefly cite some suggestions for processing
practices, considering an ordinary single-shell acquisition (when
only one single b-value, in addition to the b0 is acquired) with a
b value around 1,000 s/mm2, with subsequent tensor modeling.

Pre-processing
Images must be checked for artifacts, such as susceptibility effects
(signal loss and geometric distortions), eddy currents-induced
distortions and subject motion (31, 37), so that corrections or
exclusions of subjects, volumes or slices are made accordingly.
Preferably, automated, quantitative, and not exclusively visual
inspection should be performed. Soares et al. (35) provide
useful guidelines and a comprehensive list of softwares for
quality control.

A gold-standard pre-processing pipeline does not exist. Pre-
processing is intrinsically dependent on the chosen software.
Users can employ different softwares to perform a miscellaneous
of corrections, but it is mandatory to follow the basic steps
recommended by each developer. Steps of a typical preprocessing
pipeline might be:

1. A procedure frequently required, DICOM or PAR/REC
conversion to NIfTI format (most diffusion processing
softwares use this format).

2. Inspection of DWI images for motion, artifacts (e.g., Gibbs
ringing or signal drift) (38, 39) and structural abnormalities:
different softwares provide visual and quantitative inspection
procedures. It is also important to inspect anatomical images
such as T1, T2, and FLAIR.

3. B-matrix rotation: this notion was first introduced by
Leemans and Jones (40). The rotation involved in registration
of the image must be also applied to the encoding vectors.
Neglecting this step may lead to biases in the estimation
of the principal vector, affecting all the metrics and
tract reconstruction.

4. Brain extraction: an automated segmentation method to
delete non-brain tissue from the whole-head. This optional
but frequently performed procedure improves registration
and normalization.

5. Eddy currents and EPI distortions correction: off-resonance
artifacts (as detailed previously) must be corrected. Tools are
available, for example, in the ExploreDTI software and in
the FSL platform (Topup and Eddy). Further details on how
to acquire data and how to perform corrections can be also
found at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL. It must be
emphasized that an adequate acquisition is required in order
to be able to perform such corrections (41).

6. Tensor estimation in each voxel and generation of maps of FA,
MD, RD, and AD (Figure 2). This estimation can be based
on different methods and a variety of softwares can perform
this calculation but visual inspection of tensor orientation is
highly recommended (42–44). If distortions of the expected
orientation occur, it is necessary to modify the gradient table,
perform reorientation and re-processing, starting over from
the first steps (35).

Post-processing
DTI maps generated in the native space for each subject can be
co-registered so that group-wise comparisons can be performed.
Co-registration refers to intra or inter-subject spatial alignment
of images within or between MRI sequences. Decisions about
co-registration tools must consider the paradigm of study,
assumptions and specific steps of image processing (45–47).
Typical steps of post processing pipeline are highly dependent
on the chosen software, but in general, images are co-registered
and normalized. Normalization of images to a standard space is a
fundamental step to perform comparisons, which is particularly
challenging for diffusion images, since they are highly directional
and topological (35, 48, 49). After that, group-wise statistics can
be performed.

We will review the types of analyses more frequently applied
in DTI studies in stroke: ROI-based analysis, tractography, and
whole-brain analysis.

Region-Specific Analysis
ROI Analysis
ROIs can be drawn on T1, T2, FA, or ADC images. They can
be placed on the abnormal/lesion regions or on predetermined
anatomic regions. In the WM, the homogenous signal and EPI
distortions might impair robust anatomical delimitation of ROI
and reproducibility.

Basic steps of ROI processing are:

1. Registration to improve delineation and to align
corresponding voxels in different datasets.

2. Normalization to allow standardized localization and
comparisons between subjects within a study. For instance,
data from each subject can be transferred to standard space,
using a validated template or atlas (such as MNI or Talairach,
among others) (34). The choice of the atlas involves checking
whether characteristics of the subjects in a given study
(i.e., elderly people) are comparable to those of the subjects
scanned to build the template (50).

3. Definition of the ROI, manually or semi-automatically.
Manual delineation can be achieved by free-hand drawing,
by placement of basic shapes such as circles/squares or by
drawing of the region. In the former, ROI size differs between
subjects while in the latter, it remains constant. Small ROIs
may be more specific, but also more prone to errors while
large ROIs may be less specific for definition of particular
structures and more prone to partial volume effects (inclusion
of structures other than the target area) (34).

4. Manual segmentation has high precision but has
disadvantages such as the risk of low reproducibility
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FIGURE 2 | DTI maps generated as output of tensor estimation. FA maps in two versions, the second depicted in RGB colors. Maps were generated in ExploreDTI.

due to dependence on prior knowledge of the researcher
and the lack of feasibility of use in large datasets (51).
Semi-automated delimitation can be a useful alternative by
combining the automated identification of the ROI with a
manual, interactive selection and modification by the user
(52). Although fully automated delimitation is promising,
such as reported by Koyama et al. (53, 54), more studies with
large datasets in different phases of stroke are advisable to
create a state-of-art automatic method (28, 50–52, 55).

5. Quality control involves: assessment of accuracy of
segmentation and registration; report of intra- and inter-rater
reliabilities of ROI delineation; clarity of criteria for the
location of the ROI (such as anatomical location) - for details,
refer to Froeling et al. (34).

6. Extraction of DTI metrics from the ROI, as absolute values
from the ipsilesional/contralesional site or ratios between
both (56).

7. When more than one ROI is chosen, the correction for
multiple comparisons is recommended to reduce false
positives—for details, refer to Froeling et al. (34).

Tractography
Tractography corresponds to the mathematical reconstruction of
tracts (57, 58). By following the preferred direction of water voxel
by voxel, it is possible to trace the tracts tree-dimensionally and
non-invasively (59, 60). This represents an advantage over ROIs,
allowing qualitative and quantitative investigation along of the
entire tract of interest. DTI metrics can be extracted from the
entire reconstructed tract or from a segment (ROI) of the tract.
There are two main approaches for path reconstruction:

1. Deterministic, following the best-fit pathway (the main
eigenvector λ1), the principal axis of the tensor aligning with
the principal direction of the fibers. It estimates the most
likely fiber orientation in each voxel. This method tends to
show the best valid/invalid connection trade-offs, but presents
low spatial bundle coverage in comparison to the probabilistic
method (61).

2. Probabilistic, based on the estimation of uncertainty in fiber
orientation (60, 62). It is frequently considered more robust
and deals better with partial volume averaging effects, crossing
fibers, as well as noise (63). Yet, it is faced with pitfalls, is more
time-consuming and computationally expensive.

Noise and artifacts affect reconstructions. There is no “ground-
truth” solution to validate tracking results (64). Several efforts are
in progress to investigate the ground-truth of diffusion and tracts
trajectory by using phantoms, post-mortem, and histological
information. The trajectory from the initial (“seed”) voxel to the
end point can be represented by a streamline. A streamline refers
to the unitary path of reconstruction within a tract and does not
indicate an actual nerve fiber or tract (64). Streamlines can vary
in different subjects and across experimental paradigms.

Path reconstruction can be constrained by three main steps:
seeding, propagation and termination (35). Usually, streamline
tractography is based on the placement of multiple ROIs: starting
from seed points using a predefined ROI, guiding the path
reconstruction by preserving only streamlines passing through or
touching other predefined ROIs; full brain tractography keeping
the streamlines accordingly with conjunctions, disjunctions, or
exclusions ROIs (65). The seeding strategy can also be performed
on a voxel-wise level across the brain, running a whole-brain
tractography (e.g., Probtrackx or ExploreDTI).
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Termination of streamlines is usually guided by a set of
parameters: FA threshold (between 0.1 and 0.3 for adult
brain), turning angle threshold (depending on the considered
tract anatomy—typically between 40 and 70◦) to avoid
streamlines propagating voxels of high uncertainty, such as the
cerebrospinal fluid (CSF) and gray matter (35). Fully automated
clustering methods can be alternatives to manual ROI-based
approaches (65).

Several methods of CST reconstruction are available with
no consensus. For instance, DTI metrics can be extracted
from the entire tract or from ROIs within these tracts, as
absolute values from the ipsilesional/contralesional site or as
a ratio between both (56). Recently, a DTI challenge of CST
reconstruction with tractography demonstrated a consistent
presence of false-negative and false-positive pathways. Most of
these reconstructions were limited to the medial portion of the
motor strip and few were able to trace lateral projections (such as
hand-related). Generally, improved results depend on strategies,
such as: method of reconstruction, improved signal; sharp
estimations of fiber distribution; priors on spatial smoothness;
seeding strategies. Anatomically, there are a variety of possible
reconstructions, for instance, defined as the pathways coursing
through the cerebral peduncles to the pre- and post-central gyrus
(61). Park et al. (56) provide detailed information about how to
seed and how to confine fibers. Figure 3A shows an example of a
probabilistic and Figure 3B, of a deterministic CST tractography.

One of the weaknesses of tensor-based tractography is the
assumption that the diffusion related to fibers within a voxel
follows a Gaussian distribution, represented by a single direction.
This assumption is violated by the presence of crossing fibers and
multiple axonal orientations (estimated as ∼90% of WM voxels)
(66) (Figure 4A). It was hypothesized that increasing the number
of directions in the MRI acquisition (such as at least 28 directions
in low b-values - b ∼1,000 mm/s2) would solve this problem
(26, 67). However, it became clear that more advanced models
were needed (26, 66).

Beyond DTI-Based Tractography: HARDI Models
High angular resolution diffusion imaging (HARDI) uses a larger
number of diffusion gradient directions, often in combination
with multiple b-values, to measure the diffusion signal (68).
By doing so, a more reliable reconstruction of the underlying
diffusion and fiber orientation distribution can be obtained,
overcoming pitfalls such as crossing fibers (Figure 4B). To reach
a deeper understanding of the evolution of HARDI models, we
refer to Daducci et al. and to Descoteaux et al. (29, 69). HARDI
models are superior to DTI to reconstruct the CST (70, 71).
However, the higher angular resolution in combination with
higher b-values is frequently more time-costly and noisy.

Another approach to model the fiber orientation distribution
is Constrained Spherical Deconvolution (CSD) (Figure 4B),
typically relying on a single-shell HARDI acquisition and even
“low” b values in the range of 1,000 s/mm2 (72, 73). CSD
has medium requirements of acquisition and computation as
well as has higher accuracy in fiber orientation estimates
than DTI (74). It has been demonstrated that CSD-based
tractography consistently reconstructs the fan-shaped CST

within the sensorimotor cortex, whereas DTI-based tractography
does not (75). Excellent inter-rater and test-retest reliability were
reported for FA extracted from CSD-based reconstructions of the
CST (76).

Whole-Brain Analysis
Whole-brain analysis is an exploratory approach that can be
applied to investigate global WM changes or whether such
changes are heterogeneous across patients within a study.
Analyses can be performed and measures can be extracted using
different approaches, such as:

1. Histogram analysis of all voxels in the brain. Histograms that
express the frequencies of voxels with a specific value for a
DTI metric such as FA can be built. Median, mean, peak
height, and peak location of DTImetrics can thus be estimated
(59, 77).

2. Brain or WM voxels defined by a mask created from either
segmentation of an anatomical MRI or by whole brain
tractography. If the former strategy is chosen, DTI values in
the voxels can be extracted after registration of anatomical
MRI to the non-diffusion weighted image by means of
an affine transformation. If whole-brain tractography is
performed, then DTI measures can be extracted from voxels
that are part of the streamlines.

3. The most popular approach is voxel-based analysis (VBA)
and compares DTI metrics in every voxel of the brain
(59). This strategy has high reproducibility, is time-efficient
and provides excellent spatially localized information, based
on the atlases coordinates (78). It provides conservative
corrections for multiple comparisons throughout all voxels in
the brain, enhancing type II error. Still, it is recommended
that corrected results be presented. An alternative is running
a cluster-based analysis and correcting them instead of
correcting voxel-by-voxel. In addition, novel cluster-based
approaches are available to avoid the arbitrary choice of a
threshold. TFCE (Threshold-Free Cluster Enhancement) (79)
embedded in the tract-based spatial statistics (TBSS - FSL),
offers a more robust approach to find significant clusters.
TBSS overcomes issues about alignment and smoothing in
voxel-based analysis by focusing registration and statistical
testing exclusively on the center of the tracts (80). TBSS
reduces type II error, at the expense of ignoring findings in the
periphery of the tracts. However, TBSS is known to suffer from
several methodological limitations that complicate outcome
interpretation [for details, see Bach et al. (81)].

CHALLENGES OF DTI IN STROKE

Major Challenge: Heterogeneity of Lesions
The main challenge of DTI in stroke is heterogeneity of lesions—
for a review, see de Haan and Karnath (50). Lesion location and
size vary across subjects and large lesions often disrupt tracts (80)
or promote shifts that impact registration and normalization. In
the chronic phase after stroke, loss of brain tissue and secondary
dilation of CSF-filled spaces represent an extra-challenge for
normalization (82). Special care is advised when inferences are
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FIGURE 3 | Commonly used seeds, inclusion and exclusions masks for corticospinal tract (CST) DTI-based tractography: (A) probabilistic of corticospinal tract (CST)

showing commonly chosen masks/ROIs. (B) deterministic, showing streamlines. The pons was an inclusion mask in this example. Extraction of metrics can also be

performed from this ROI in the pons, in the internal capsule, the entire CST or other parts of the tract.

FIGURE 4 | (A) Tensor in a region of crossing fibers, when two populations of fibers cross (in this particularly case, at 90 degrees), the tensor fails in the

interpretation of the diffusion signal, suggesting low FA (approximately isotropic diffusion). (B) Crossing fibers at the centrum semiovale, the ‘ground truth’ signal within

a voxel. Constrained Spherical Deconvolution (CSD) depicts two populations of fibers while DTI depicts a single population of fibers.

based on large lesions (28). Lesions influence eligibility criteria
(so that reliable statistical comparisons between subjects can be
made) and impact image processing, demanding a variety of
techniques to overcome distortions of the typical anatomy.

The mismatch between images from patients and templates
in atlases based on brains from healthy subjects affects
normalization (50). Two possible solutions to overcome this
mismatch are cost function masking and enantiomorphic
normalization. The first approach, which involves masking out
voxels of the lesions, may be more useful for small and bilateral
lesions. The second approach “replaces” the lesion with brain
homolog tissue from the contralesional hemisphere, being useful
for large and unilateral lesions placed in symmetric regions, for
example as performed by Moulton et al. (83).

Lesion masks can be created by changing the intensity
of pixels inside or outside the segmented lesion and hence,

obtaining binary images (zero-one intensity). Lesion masks can
be manually drawn [for details, see Liew et al. (51)], but several
efforts are in course to improve machine-learning algorithms for
automatically and accurately segment lesions. Recently, the large
open-source T1-weighted dataset ATLAS (Anatomical Tracings
of Lesions After Stroke) was released (51). Also, PALS (Pipeline
for Analyzing Lesions after Stroke) was developed as a specific
tool to improve similarity between manually delimitated lesions.
It consists of image reorientation, lesion correction for WM
voxels and load calculation, as well as visual inspection of the
automated output (84).

Masking out lesions may require large deformations,
particularly in WM regions adjacent to gray matter and
cerebrospinal fluid. An interesting approach to deal with
this problem is DR-TAMAS (Diffeomorphic Registration for
Tensor Accurate alignMent of Anatomical Structures) (85) that
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optimizes normalization by including information not only of
FA maps, but of anatomical T1 and T2 images. DR-TAMAS
allows creation of atlases based on the diffusion tensor or
anatomical images provided by the user. Recently, group-wise
registrations without masking lesions were reliably performed
on fiber-oriented distribution (FOD)-based algorithms that
exclusively rely on diffusion images (CSD-based acquisitions)
(83). This approach increased sensitivity to capture FA changes
in the CST.

Challenges for ROI-Based Analysis
The low resolution of DTI images can hinder delineation of
the ROI. Registration of the DTI dataset to anatomical T1/T2
images can improve spatial resolution and facilitate ROI drawing.
However, misregistration/misalignment can occur, mainly driven
by the different distortions in the two types of images and the
lower resolution of DTI images resulting in partial volume effects
(34, 78). Slight shifts could lead to extraction of metrics from
different anatomic regions other than the ROI.

Furthermore, the best choice for ROI placement within the
CST remains an open question. According to Koyama et al. (53),
outcome prediction is more accurate when fully automated ROIs
are placed in the cerebral peduncle. According to Park et al.
(56), the extraction of DTI measures from the posterior limb of
internal capsule (PLIC) is reliable. Tang et al. (86) reported that
ROIs in the brain stem are more subjected to partial volumes
problems (caused by the proximity with CSF) than at the PLIC.

Challenges for Tractography
In stroke, tractography may be used to reconstruct a tract
of interest based on a prior hypothesis, to obtain qualitative
anatomical information (visual evidence of disruption of the
tract), extract quantitative measures (volumetric and diffusion
metrics) or make inferences about connectivity (87).

To track the CST, a standard template based on healthy
subjects can be reliably used to extract metrics from the whole-
tract or from a section of it, such as within the PLIC (56). In
strokes that affect the CST, tractography may not be feasible
because of the loss of normal pathway of axons within the tract,
leading to an unreliable morphology of the tracts (64). In turn,
the placement of individual ROIs can be problematic because
it is operator-depending biased, time-consuming, limited in
feasibility and generalizability. For this reason, the use of a
template from healthy volunteers to guide extraction is a possible
alternative (56). Limitations regarding anatomical accuracy and
quantitative evaluation of tractography in stroke should be
considered [for details, please see Jbabdi and Johansen-Berg (88);
Thomas et al. (89)].

Challenges for Whole-Brain Analysis
Typical steps of whole-brain processing pipeline involve co-
registration and normalization so that group-wise statistical
comparisons can be made. Stroke lesions can be obstacles for
automatic whole-brain voxel-wise analysis such as TBSS. The
cost function masking and enantiomorphic normalization can be
used as alternatives to overcome lesion deformations.

Challenges for Replicability
Results are dependent on the adoption of good practices
regarding acquisition parameters, pre and post-processing.
Researchers may tend to use their own tools or manual methods
(84), but guidelines to improve repeatability and reproducibility
are available, such as those made available by the Quantitative
Imaging Biomarkers Alliance (QIBA) http://qibawiki.rsna.org/
index.php/Main_Page. Also, it is crucial to use the same package
and software version within the same study and while processing
longitudinal datasets. Whenever possible, the most updated
version should be chosen (64).

dMRI AS A BIOMARKER OF RECOVERY IN
STROKE

In this section, we review studies that assessed correlations
between DTI measures on the CST to predict motor recovery.

LMM and RL searched MEDLINE (Medical Literature
Analysis and Retrieval System Online; through the PubMed
interface) and Web of Science, using the following keywords:
motor (stroke or infarct or infarction or hemorrhage) and
corticospinal tract and diffusion (imaging or tensor imaging). A
complementary search was made using the first two keywords
combination and tractography or FA. Studies were selected
according to the following criteria.

Inclusion criteria: evaluation of patients with IS or HS;
publication from January, 2008 until December 5th, 2018;
collection of MRI data for DTI metrics in the hyperacute
(<1 day after onset of symptoms) (Table 1), acute (2–7 days)
(Table 2), or early subacute (7 days−3 months) (Table 3) phases
after stroke, according to definitions of the Stroke Recovery
and Rehabilitation Roundtable taskforce (20); original articles;
evaluation of at least one DTI metric (FA, AD, RD, or MD) in
the CST; prospective assessment of motor outcomes (at least 4
weeks after stroke) with measures of body structure and function
(such as the Medical Research Council Scale, NIH Stroke Scale,
Motricity Index of Arm and Leg, Fugl-Meyer Motor Assessment,
among others) or with measures of activity (such as the Action
Research Arm Test, or Wolf Motor Function Test), according
to the International Classification of Functioning, Disability and
Health (ICF)—WHO 2001—http://www.who.int/classification/
icf/en/ (90); evaluation of correlations between DTI metric(s),
andmotor outcomes (but not changes inmotor outcomes relative
to baseline); minimal sample size, 10 patients; post-processing of
images performed with whole-brain, ROI (region-of-interest) or
tractography strategies. Studies that performed tractography but
did not report DTImetrics were excluded. Cross-sectional studies
were not included in the review.

The following information was retrieved from the
manuscripts (Tables 1–3): type of stroke; lesion site or affected
arterial territory; number of subjects; age; gender; MRI field;
number of directions/b0; b value (s/mm²); methods of analysis
(technique/software/metrics); whether lesion masks were
mentioned; whether ipsilesional and contralesional CST were
assessed; when motor evaluation was performed (time from
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stroke); motor outcome; whether DTI correlated with outcome
and correlation coefficients.

A total of 425 manuscripts were retrieved and 354 were
excluded based on the title or abstract (Supplementary File
and Supplementary Figure); 71 manuscripts were read, 52
were excluded and 19, included in the review. The results
are summarized according to the phase after stroke in which
MRIs were performed: hyperacute (<12 h, Table 1), acute (2–7
days, Table 2), and early subacute (>7–90 days, Table 3). One
study (Puig et al., n = 60) (93) performed measures in the
hyperacute and acute, and two—Groisser et al., n = 10 (94);
Wang et al., n = 27 (95) in the acute and subacute phases.
A total of 570 subjects were included in the selected studies:
three (n = 101) in hyperacute, six (n = 172) in the acute and
nine (n = 297), in the early subacute phase after stroke. A
total of 667 scans were performed. Ages ranged from 19 to
99 years and 56.5% of the patients were men. 62.8% of the
patients had IS and 37.2%, HS. 36.8% of the studies reported
that patients received rehabilitation during the time between
the MRI scan and the evaluation of motor outcomes. All of
the studies reported at least one metric of body structure and
function and 47.4%, at least onemetric of activity according to the
ICF. The Motricity Index, an ordinal measure of limb strength
(1–100) (96), was the most widely used scales for assessment of
motor performance.

MRI scans were performed on 3T scanners in 57.9% of the
studies. The number of directions during diffusion acquisitions
ranged from 6 to 64 and the number of b0, from 1 to 10. 83.3% of
the studies used b values of 1,000 s/mm2.

Only 15.8% of the studies explicitly mentioned lesion
masks during pre-processing and 18 different softwares
were used for data analysis. 52.6% measured DTI metrics
according to ROI-based methods, 36.8%, according to ROI in
tractographies, and 10.5% within the entire CST according to
tractography; 10.5% extracted the entire CST as a ROI based
in whole-brain processing in TBSS (97). The most commonly
chosen ROIs were the cerebral peduncle (61%) and the
pons (33%).

Despite great heterogeneity in methods of collecting and
analyzing the data, the majority of studies reported statistically
significant correlations between DTI biomarkers and motor
outcomes: 66.7% in the hyperacute, 83.3% in the acute,
and 92.3% in the early subacute phases after stroke. Motor
impairments were evaluated from 4 weeks to up to 6 months
later in the hyperacute/acute studies, and up to 2 years in
the subacute studies. DTI results closer to normal, from the
1 day up to 3 months after stroke, were correlated with less
severe impairments.

FA, rFA, or aFA were measured in 100% of the studies. At
least one of these metrics was significantly correlated with motor
outcomes in 66.7% of hyperacute or acute, and in 92.3% of
early subacute studies. FA values vary across subjects and are
influenced not only by the stroke, but also by subclinical white
matter lesions that are frequent in patients with vascular disease
in the ipsilesional as well as in the contralesional hemisphere
(98, 99). However, the changes in FA values in the CST due
to chronic white matter lesions is expected to be less severe
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than those caused by stroke. None of the identified studies
reported discrepant results in regard to correlations between
clinical outcomes and FA metrics (for instance, correlation of
outcomes with rFA but not with FA). Two studies (93, 100)
reported absences of correlations between clinical outcomes and
FA or rFA. Other studies that described correlations between
rFA or aFA and motor outcomes did not mention whether
correlations were also present between ipsilesional FA and
outcomes (Tables 1–3). Therefore, it is not possible to define
whether measures of asymmetry are more strongly correlated
to motor outcomes, when compared to absolute ipsilesional
FA values.

Puig et al., Groisser et al., and Jang et al. did not find significant
correlations between FA metrics and motor outcomes at some of
the stages (93, 94, 100).

Puig et al. (93) assessed FA and did not find a significant
correlation between this measure <12 h or at 3 days, or
impairments at 3 months, in 60 patients after stroke. In this
study, there was no significant asymmetry in FA values for the
CST (ROI: pons) measured hyperacutely or at 3 days post-
stroke, but there was a significant asymmetry 1 month later. FA
abnormalities at 1month correlated withmotor performance also
assessed at 1 month. Only MCA infarcts were included, and it is
possible that measurements extracted from the CST at the pons,
away from the infarcts at a time when Wallerian degeneration
might not yet fully ensued, may have contributed to this negative
finding (93).

Groisser et al. measured not only FA, but also AD, MD,
and RD in 10 patients at 3–7 days and 1–2 months post-
stroke. Only asymmetries in AD at 3–7 days correlated with
hand grip and the Motricity Index at 1–2 months, but not
with performance in the nine-hole peg test. In contrast with
other studies, the authors performed tractography and evaluated
DTI measurements in the 10 voxels with the highest CST
density ipsilesionally. This methodological difference may have
contributed to the discrepant result, particularly in subjects
with large lesions: 70% of the patients had large infarcts (>1/3
middle cerebral artery territory) (94). DTI analysis can be
challenging in subjects with large lesions, especially in the
acute phase when edema and MD reduction are at a peak
(3). Only another study included patients with MCA infarcts
at this stage (103): 58 subjects were tested, with a mean
infarct volume of 39ml, and a significant correlation was found
between FA asymmetry measured at 2 days and the Fugl-Meyer
Motor Assessment measured at 3 months, when measurements
were made at the nearest-5-slices ROI, but not at the
cerebral peduncle.

On the other hand, Groisser et al. found that changes in FA
measured at a later stage (1–2 months) correlated with hand grip,
Motricity Index and nine-hole peg test measured at 6 months,
in line with other studies that assessed DTI at the early subacute
phase post-stroke (94).

Jang et al. were the only authors who did not report
correlations between FA or rFA at the early subacute phase, and
motor impairments. Only subjects with pontine infarcts were
included, and measures were made at the pons, from 7 to 28 days
post-stroke, according to tractography. The authors hypothesized

that lack of a significant difference in the directionality of
the residual CST at this level may have contributed to this
finding (100).

Few of the selected studies measured AD, MD, and RD (83,
111, 112). FA is a highly sensitive, but quite non-specific measure
(22, 113). Nevertheless, the results of this narrative review suggest
a consistent relation between FA measured in the CST at early
stages after stroke, and motor impairments, in line with results of
meta-analyses (17–19). However, studies included in this review
predominantly assessed motor impairments, rather than activity
(disability) according to the ICF. It remains to be clarified if
DTI measures within the first hours to 3 months after stroke can
predict long-term disability.

A key question is whether DTI results enhance the predictive
value of models of motor disability based on clinical information
such as age and motor impairments, and neurophysiological
testing. For instance, Stinear et al. reviewed data from 207
patients clinically assessed for upper limb impairments (SAFE
score: shoulder abduction and wrist extension) and overall
neurological impairments (NIH stroke scale) within 3 days
post-stroke. The patients underwent transcranial magnetic
stimulation to determine the presence of upper limb motor
evoked potentials contralateral to the lesion, and MRI at 10–
14 days to assess: FA asymmetry (ROI: posterior limb of the
internal capsule), lesion load evaluated with tractography in
the CST and in sensorimotor tracts. The primary upper limb
motor outcome was the Action Research Arm Test, a measure
of upper limb activity according to the ICF. Different prediction
models were tested and the authors concluded that the PREP2
score, that includes age, SAFE and NIHSS scores as well as
transcranial magnetic stimulation results, without any MRI
biomarker, made correct predictions for 75% of the patients
(114). DTI results were not included in the model because
prediction accuracies of decision trees remained equivalent,
whether or not these results were included. In order to build
robust predictive models testing the magnitude of effect of
different variables on upper limb motor outcomes, large samples
of subjects are required.

The analysis of large sets of data, such as the ongoing
ENIGMA project (http://enigma.ini.usc.edu/ongoing/
enigma-stroke-recovery/) is expected to help in closing
the gap in knowledge about the relevance of DTI
biomarkers in research and clinical practice, to define
motor prognosis. At the moment, DTI is not routinely
performed in clinical practice for motor prognostication
in stroke.

This study has some limitations. First, for the purpose of the
review, we excluded studies not reportingmetrics, such as: myelin
quantification, apparent diffusion coefficients, WM volume or
qualitative tractography-based information. We also excluded
studies not based on the tensor, such as kurtosis or HARDI
modeling, as well as microstructural-directed sequences, such as
CHARMED/NODDI. All of them may convey complementary,
critical information about the underlying WM alterations in
the CST in stroke. Second, the choice of keywords may have
led to non-inclusion of studies that addressed the aims of
this review.
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CONCLUSIONS AND FUTURE
DIRECTIONS

FA in the CST, measured within the first hours to 3 months
after stroke, has emerged as a potential DTI biomarker of motor
recovery. Further research about its relevance, involving analysis
of large sets of data from multiple centers, will benefit from
definition of minimal standards and optimal pipelines for data
acquisition, analysis, and reporting.

To perform whole-brain voxel wise and ROI analysis,
according to the published studies in the field, it is suggested to:
(1) acquire at least 30 non-collinear directions, as more accurate
sampling reduces orientational dependence and enhances
accuracy and precision of DTI metrics (10); (2) use at least 6
interspersed low b-value images (such as zero), reducing the risk
of systematic errors due to subject motion (10); (3) use an optimal
b-value (around 1,000 s/mm2), depending on the other physical
parameters (28, 31, 33); (4) report parameters of acquisition
employed for correction of EPI distortions (31, 115, 116); (5)
whenever possible, opt for a HARDI protocol if the goal is
to perform tractography. The suggested steps of pre and post-
processing discussed in this review should take into consideration
the limitations of the acquisition. Clear information about
acquisition parameters and methodological choices of processing
strategies should be provided—if necessary, due to limits in the
number of words according to guidelines of different journals, as
on-line supplemental material.

The decrease in methodological heterogeneity and
enhancement of reproducibility will advance the field by
setting the stage for large studies with good-quality data in order
to define the clinical relevance of DTI in prediction of motor
disability from stroke.

Finally, in the revised studies, the goal was not to test
comprehensive predictive models that included DTI results.
In order to determine whether DTI will have a role on
prediction of motor recovery after stroke, it is necessary to
test different models in large sets of data. DTI may reach a
place in clinical practice if accuracy of a model is enhanced
by this imaging tool, compared to models that only include
variables that can be quickly and easily obtained such as bedside
clinical evaluation.
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