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David Papo*
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Standard neuroimaging techniques provide non-invasive access not only to human
brain anatomy but also to its physiology. The activity recorded with these techniques
is generally called functional imaging, but what is observed per se is an instance
of dynamics, from which functional brain activity should be extracted. Distinguishing
between bare dynamics and genuine function is a highly non-trivial task, but a
crucially important one when comparing experimental observations and interpreting their
significance. Here we illustrate how neuroimaging’s ability to extract genuine functional
brain activity is bounded by functional representations’ structure. To do so, we first
provide a simple definition of functional brain activity from a system-level brain imaging
perspective. We then review how the properties of the space on which brain activity
is represented induce relations on observed imaging data which allow determining
the extent to which two observations are functionally distinguishable and quantifying
how far apart they are. It is also proposed that genuine functional distances would
require defining accessibility, i.e., how a given observed condition can be accessed from
another given one, under the dynamics of some neurophysiological process. We show
how these properties result from the structure defined on dynamical data and dynamics-
to-function projections, and consider some implications that the way and extent to
which these are defined have for the interpretation of experimental data from standard
system-level brain recording techniques.

Keywords: functional brain activity, functional networks, spatial networks, structure, dynamics, geometry,
topology, topological signal processing

INTRODUCTION

System-level neuroimaging techniques such as PET and MRI make it possible to non-invasively
access not only the anatomy of the human brain but also its physiology (Raichle, 2000).
Brain activity recorded with these techniques, and others such as EEG or MEG is generally
called functional imaging. However, observed activity is not genuinely functional per se, and
neuroimaging data should a priori be treated as brain dynamics. Extracting functional brain activity
from bare dynamics represents a non-trivial though often implicit process (Atmanspacher and
Beim Graben, 2007; Allefeld et al., 2009).

Defining functional brain activity and how the brain implements given functions are arduous
tasks. Here we address neither these ontological issues, nor the comparably complex one of state-
space reconstruction from data, but a more circumscribed methodological question: how does
neuroimaging data structure determine our ability to define functional activity?

Experimentalists typically compare representations associated with different recording
sessions from the same individual, different individuals, or experimental conditions,
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addressing questions such as: when are two representations
distinguishable? How far apart are they? What do neighboring
representations look like? Is a transition possible from a given
representation to another?

We illustrate how neuroimaging’s ability to address these
questions is bounded by functional representations’ structure. We
first provide a simple but convenient definition of functional
brain activity from a system-level brain imaging perspective,
a more comprehensive one being beyond the present work’s
scope. We then review how the structure of the space on which
brain activity is represented allows defining relations among
observed instances of the dynamics, and show how these result
from dynamics-to-function projections.

DEFINING FUNCTIONAL
BRAIN ACTIVITY

Function can be defined as the ability to perform a given
cognitive or physiological task. Insofar as individuals’ behavioral
performance results from brain properties, functional activity
refers to both behavior and neural structures reflecting two
complementary goals: understanding how brain anatomical
structure and dynamics control function, and how task
performance’s action produces functional brain subdivisions.
In the former, a space 9 of (typically non-observable) cognitive
or physiological functions

{
ψ1, ψ2, . . . , ψJ

}
is described using

a finite set {ϕ1, ϕ2, . . . , ϕK} ∈ 8Obs of carefully selected
coarse-grained aspects of brain anatomy or physiology (reflecting
at a macroscopic level neurophysiological phenomena 8NObs
not observable when using a given system-level neuroimaging
technique) associated with observable performance measures
{γ1, γ2, . . . , γL} ∈ 0 from subjects at rest or carrying out given
tasks. In the latter, the ability to carry out given tasks is used as a
probe exposing information on brain properties 8.

Defining functional brain activity using system-level
neuroimaging techniques involves partitioning two complex
spaces, respectively made observable by behavior and brain
recording techniques, putting some structure, i.e., a relationship
among the set’s elements, on the set of equivalence classes, and
mapping the corresponding structures.

BRAIN PARCELLATION

Characterizing functional activity is in essence a parcellation
problem. When using 8 to make sense of 9 one ultimately aims
at partitioning the space of cognitive functions f : 9 → 9/<
where9 = 9 (0,8) and9/< is the space of equivalence classes
under the relation <. In the opposite case, 8 is partitioned into
functionally meaningful units g : 8→ 8/<′ using cognitive
tasks as probes. This implies evaluating the sets U = π−1 (V)
where U ⊂ 9, V ⊂ 8/<′, π : 9 → 8/<′ and <′ is a relation
defined on 8 or the equivalent in the opposite case. Since
typically L� K the structure on 8 is finer than that on 0 and
physiology is more often used to define the cognitive space than
the opposite case. Meaningful functional units correspond to

the family of sets Uπ =
{

U = π−1 (V)
}

(or, equivalently, Vπ′ ={
V = π′−1 (U)

}
). How to construct Uπ (or Vπ′ ) what form

the corresponding space may take, and therefore what may be
regarded as functional, depends on the way (9,S9) and (8,S8)
are defined and mapped onto each other through π (orπ′), S
denoting a generic structure.

Classical neuropsychological descriptions map 0 onto the
anatomical orthonormal Euclidean space

(
E; d

)
where d is the

usual metric, so that 8E ⊂ R3. Brain lesions induce a coarse
partition 8E/L. Uπ is extrapolated from the overlap between
lesions and cortical areas, i.e., anatomical space partitions
defined on the basis of cytoarchitecture, histological structure
or organization homogeneity (Brodmann, 1909), associated
with a map 9 → 8E, using double dissociations together
with the assumption of modularity of both 8E and 9
(Dunn and Kirsner, 2003).

System-level neuroimaging maps 9 onto some function
of macroscopic observables ϕi ∈ 8 of brain physiology.
Neuroimaging data are typically treated as (scalar, vector,
or tensor) fields F =

{
fX (Es, t)

}
where Es lives in a subspace

isomorphic to R3 and t ∈ R is the physical time, and described
in terms of some convenient function of this field, in the
spatial (anatomical), temporal, frequency domains or in
phase space, at experimental, developmental or evolutionary
time-scales. On the other hand, while 0 is typically a scalar
or vector field, it can sometimes take the form a complex
function space.

Functional parcellations are defined in a recording technique-
and scale-dependent manner. For fast sensory processes,
functional equivalence classes can be defined by characterizing
the dynamical range, i.e., the range of stimulus intensities
resulting in distinguishable neural responses, while the
dynamical repertoire, i.e., the number of distinguishable
responses, quantifies the functional phase space extension.
How to define distinguishability represents the most crucial
question. For processes with non-trivial temporal scales such
as thinking or reasoning (Papo, 2015) extracting function from
dynamics is conceptually and technically arduous and involves
understanding the structure of brain dynamics and how this can
be used to ultimately define function.

SUPERSTRUCTURE OF BRAIN IMAGING
REPRESENTATIONS

The space on which parcellations are defined is in general
endowed with some superstructure. First, brain anatomy and
dynamics can be endowed with a network structure (Bullmore
and Sporns, 2009), and, as a consequence, with topological
properties (Boccaletti et al., 2006) and symmetries (Pecora et al.,
2014). Network structures indicate that parcellations may not
necessarily be local in the anatomical space.
8 is typically embedded into

(
E; d

)
, and treated as a field(

F; d
)

equipped with d. This translates the fact that, at least at the
temporal scales at which anatomy represents a genuine boundary
condition for brain anatomy and dynamics (Papo, 2017), the
brain can be thought of as a spatial network (Barthélemy,
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2011), submitted to geometric alongside topological constraints
(Robinson P. A., 2013; Stiso and Bassett, 2018).

While 8 should not be regarded as homeomorphic to Rn,
it may be treated as almost everywhere locally isomorphic
to it, and represented as a topological manifold (X, ) i.e., a
paracompact topological space X equipped with an atlas, a
cover of open sets where each C ∈ is homeomorphic to
an open subset D ⊆ Rn through a map ϕC: C→ D called a
chart of (Robinson M., 2013). Whenever data can effectively
be treated as the output of a dynamical system, 8 may
be modeled as a topological dynamical system, i.e., a triple
(8, S,TS) where 8 is a Hausdorff (separable) topological
space, S a topological semigroup prescribing the matching
conditions between overlapping local trivialization charts, and
TS a continuous function TS: S ×8→ 8. For instance, long
time scales fluctuations are characterized by non-trivial scaling
properties such as scale-invariance (Novikov et al., 1997;
Linkenkaer-Hansen et al., 2001; Allegrini et al., 2010; Expert
et al., 2010; Papo, 2013), and the set of associated renormalization
operators has a multiplicative semigroup structure on the time-
scale space (Papo, 2014).
8 can nonetheless be equipped with a geometry in various

ways. First, geometry may be derived from topology. A network
can always be embedded in a surface, provided it has sufficiently
high genus (Aste et al., 2005); continuous space geometry may
also emerge from the discrete network structure at microscopic
scales, as in pregeometric models of quantum gravity (Bianconi
and Rahmede, 2017). Furthermore, time series may be mapped
into geometry, e.g., by representing observed brain activity in
terms of probability distribution functions (Amari and Nagaoka,
2007; Lesne, 2014; Ali et al., 2018). This induces a smooth
manifold whose points are probability distributions defined
on a common probability space (Amari and Nagaoka, 2007).
Fluctuations’ scaling properties may help equipping the space
with a specific geometry. For instance, scale-free distributions
suggest a fractal geometry, for the temporal structure of
spatially local fluctuations (Novikov et al., 1997; Linkenkaer-
Hansen et al., 2001; Allegrini et al., 2010; Expert et al., 2010;
Papo, 2013), but also for network representations of brain
activity (Pasemann, 2002) whereas accounting for the history-
dependence of brain fluctuations may require a non-commutative
one or a quasi-metric space.

GAUGING NEUROIMAGING DATA

Interpreting neuroimaging data requires introducing relations
among experimental conditions and this, in turn, understanding
the implications that given structures have on the definition
of the families Uπ or, equivalently,Vπ′ . Endowing data with
given structural properties induces specific equivalence classes,
e.g., two dynamical systems are dynamically equivalent if they
are topologically conjugate (Xue and Bogdan, 2017). More
generally, observed data may be classified up to a given
property (e.g., homotopy, symmetry, etc) or by obstructions to
one of them. Conversely, comparing experimental conditions
involves comparing their associated (e.g., network) structure,

each structure involving its own set of operations and restrictions,
and sometimes adding further structure (Simas et al., 2015;
Gadiyaram et al., 2016; Schieber et al., 2017).

At the most basic level, comparing experimental conditions
requires evaluating the topological distinguishability of two sets
V1 and V2 in ϕ/<′ and the corresponding U1 and U2 in 9/<.
For the bare field representation, this requires comparing two
fields f X and fY a seemingly tractable task. However, noise,
inter-individual differences and the possible organization of
functional brain activity into patterns with similar meaning
but considerably different anatomical structure (Ganmor et al.,
2015) render distinguishability in terms of pattern similarity in(
E; d

)
misleading.

The extent to which two parcellations can be distinguished
depends on the space’s separation properties (Dodson and Parker,
1997). The functional space is not necessarily separable, even
when8 is embedded in

(
E; d

)
. This is the case for fuzzy relations

(Grzegorzewski, 2017) or overlapping communities (Palla et al.,
2005) for which the manifold’s atlas charts overlap, and transition
functions are needed to resolve these areas.

Observed data can be regarded as instances of an ensemble of
objects with given properties, and equivalence class membership
assessed using maximum entropy methods (Bianconi, 2007;
Cimini et al., 2019). These properties’ meaningfulness can be
gauged by their ability to perform a given task, e.g., classification
or prediction (Zanin et al., 2016).

Often, it is also necessary to quantify how far V1 and
V2 and the corresponding U1 and U2 are from each other.
This implies defining some property intuitively translating
the concept of distance. While the anatomically-embedded
functional space can only locally be considered a Euclidean
metric space, distances may be defined for other structures
in a way that is dictated by the structure itself (Rossi et al.,
2015; De Domenico and Biamonte, 2016). When operating
in a probability distribution space, 8 can be equipped with
the Fisher information metric e.g., by using the covariance
matrix as a metric tensor (Crooks, 2007). This endows the
space with a Riemannian differential manifold structure
( , g, θ), g being the Fisher-Rao information metric and the
parameters θ probability measures representing the manifold’s
coordinates. The Fisher metric can be used to quantify the
informational difference between measurements, and model
predictions’ sensitivity to changes in parameters (Machta et al.,
2013). Whenever neuroimaging data can be treated as a
dynamical system, a dynamical distance can be derived from the
dynamics itself. This distance allows a coarse-graining which in
some sense is optimal with respect to the dynamics (Gaveau and
Schulman, 2005). Finally, whether considering static or dynamic
structures, perturbation methods can induce both a metric and
proximity relations in8 (Peters, 2016).

FROM DYNAMICS TO FUNCTION

To move from dynamical equivalence classes, comprising
identical dynamical properties and symmetries, to functional
equivalence classes, comprising patterns of neural activity that
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can achieve given functional properties (Ma et al., 2009)
requires considering the structure induced by TS9 : 8/0→
8/0. While dynamical properties may sometimes be interpreted
in functional terms, e.g., the co-existence of different attractors
points to a given system’s multi-functionality (Xue and Bogdan,
2017), the dynamical system TS9 : 8/0→ 8/0 may give
rise to non-trivial properties that cannot be anticipated based
on dynamics alone.

While each recording technique’s precision induces specific
a priori parcellations of 8, these are in general not functionally
relevant. To be functionally meaningful, metrics in 8 need to
be appraised in the space 9 made observable through 0. How
properties in one structure are transferred onto those of the other
depends on the map π. Ideally, one seeks the finest topology
in 8/<′ that renders the π: 0→ 8 surjection continuous. This
means endowing 8 with the quotient topology with respect
to π i.e., the family Vπ =

{
V

∣∣ π−1 (V) is open in 0
}

. Thus,
from a neuroimaging view-point, functional brain activity can
be thought of as a fiber bundle, i.e., a quadruple (9,8,π, Uπ),
where 9 is the total space, 8 the base π: 9 → 8 a
continuous surjective function called projection, and Uπ the
fibers. 8 can be identified with a subspace of 9 through a
fiber bundle section, i.e., a continuous right inverse of the
projection function π defined on open sets of 8. 9 is locally
but not necessarily globally isomorphic to a Cartesian product
8× Uπ (see Figure 1).

Before examining the properties of the π: 9 → 8 map,
it is worth recalling that there exists a non-observable map
π̃: 8NObs → 8Obs which can show permutation symmetry
but also combinatorial complexity with respect to more
fine-grained 8NObs configurations (Brezina, 2010). A faithful
representation of the hidden microscopic structure preserving
given properties, e.g., symmetry (Cross and Gilmore, 2010),
and the possibility to obtain a dynamical rule for the
system (Allefeld et al., 2009) requires finding a generating
partition, an arduous task in practice (Kantz and Schreiber,
2004). While macroscopic scale descriptions are stricto sensu
dynamically emergent states only if they correspond to a
Markov coarse-graining of lower-level dynamics (Adler, 1998;
Shalizi and Moore, 2003; Bollt and Skufca, 2005; Gaveau and
Schulman, 2005; Allefeld et al., 2009), both 8Obs and 0
can loosely be thought to emerge from the renormalization
of microscopic neural fluctuations. How microscopic scales
renormalize into macroscopic ones determines the scale
at which the space is locally isomorphic to Rn and can
effectively be treated as a topological manifold. This scale
may be induced by permutation symmetry with respect
to a given property at microscopic scales. On the other
hand, topologically equivalent structures may not have the
same functional meaning in 8Obs and 8NObs For example,
the robust computational properties associated with motifs
in microcircuits (Klemm and Bornholdt, 2005; Gollo and
Breakspear, 2014) do not necessarily characterize structurally
isomorphic macroscopic circuits. Observability may also be
increased by taking into account processes that are not directly
observed when reconstructing the underlying dynamical system
(Gupta et al., 2018).

FIGURE 1 | Representation of system-level functional brain mapping.
(A) Typical neuroimaging experiments are designed to reconstruct a space 9
of cognitive or physiological functions, made behaviorally observable by
performance measures 0 from subjects at rest or carrying out given tasks,
which can be associated, via some mapping π, with a space 8 defined by
some brain property, observed through some neuroimaging technique.
Experiments may also address the somehow dual aim of reconstructing 8 by
using carefully selected cognitive of physiological probes, indirectly reflecting
the space 9. Each neuroimaging technique documents specific
neurophysiological phenomena 8Obs which result from brain activity 8NObs

inaccessible to this particular technique. Note that functional brain activity 8 is
typically identified with the anatomical space with Cartesian coordinates, but
may in principle represent any other brain feature. (B) 8 and 9 both have their
own, usually non-trivial, structure i.e., a collection of elements together with a
relation among them. The crucial point is that what is observed with a
neuroimaging technique is not functional per se. Observed brain activity is
genuinely functional if structure of the neurophysiological space 8 is reflected
by structure in 9. Accordingly, neuroimaging’s goal is to use the structure of
one space to refine the structure of the other, for all the elements of these
spaces. The problem addressed by functional brain imaging can be thought of
as a fiber bundle, in essence a family of spaces (fibers) parameterized by
another space (base). Such a structure can be used to define properties that
are useful when gauging the significance of observed brain activity.

The 8E → 9 map the lesion-based framework is in general
ill-defined, due to fuzzy lesion contour geometry, and global non-
Euclideanity but also to 8′Es lack of temporal dimension and
brain degeneracy (Price and Friston, 2002). However, 8→ 9
maps can sometimes be well-behaved. A notable example is
represented by Kelso’s bimanual finger coordination paradigm
(Kelso, 1995). Once the relative phase φ between the fingers is
chosen as the order parameter describing the dynamics, 8 and
9 are both differentiable and 9 turns out to be diffeomorphic
to the macroscopic velocity field ∇ 8, which in turn can be
thought of as collective modes of underlying neurophysiological
activity (Kelso et al., 1998). Since total space, base and fiber
are all smooth differentiable manifolds and π is surjective,
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the functional space can be considered as a differentiable fiber
bundle. While in most contexts 9 cannot be described in
terms of differential equations or even dynamical rules, relatively
well-behaved mappings may occur in other contexts as well. For
instance, both brain networks (Meunier et al., 2010), and brain
temporal fluctuations (Papo, 2014) display generic hierarchical
structure which may be mirrored by one in 9 , e.g., linguistic
functions may be defined in terms of hierarchical relations,
rules, and operations.

FROM MEASURE TO ACCESSIBILITY

Proximity relations are usually quantified in terms of static
representations, both for truly quasi-static data (e.g., fMRI
images) and for dynamic ones (e.g., EEG recordings).
However, these properties depend on the way one state
in 8/0 may be transformed into another under some
neurophysiological process.

To understand how the functional space inherits 8′s
properties, one may think of neurophysiological processes being
only partially observable at the system level of non-invasive
neuroimaging techniques, as genotype, and of observed behavior
or macroscopic brain activity as the corresponding phenotype,
resulting from coarse-graining of physiological processes. The
crucial question is: what space does the genotype-to-phenotype
map induce?

A smooth genotype-to-phenotype map can sometimes be
ensured. For instance, in Kelso’s paradigm (Kelso et al., 1998),
functional discontinuities in 9 can be explained in terms of
genuine brain dynamics. This results from the simultaneous
fulfillment of various conditions: 8′s differentiable manifold
structure allows for differential calculus on the manifold; function
is defined in terms of dynamical variables, i.e., synchronization
and syncopation; components and collective variables in 9
can both be endowed with explicit differentiable analytical
expressions, and cognitive demands can be construed as their
boundary conditions (Kelso, 1995).

However, 9 → 8 can induce non-trivial structure, and
the phenotype space induced by TS9 may be non-metric,
and even the less stringent notion of topology may not hold
(Stadler et al., 2001; Stadler and Stadler, 2006). Nearness
and neighborhood in the phenotype space should reflect the
structure induced by genotype space’s accessibility, i.e., the
ability to reach a given state x from another given state y,
under the action of some underlying neurophysiological process:
the variation operators establishing which configurations are
accessible from given ones should reflect the dynamics of
physiological processes (see Figure 2).

Ultimately, the phenotype’s properties depend on which
variations are neurophysiologically neutral and which ones
are realizable in the neighborhood of underlying neuronal
variations. Since accessibility lacks symmetry in general, nearness
in the induced space should be non-symmetric. Furthermore,
dynamical patterns including intermittencies, degeneracy,
and redundancy can result from the phenotype’s topological
properties induced by the genotype-to-phenotype map.

FIGURE 2 | Gauging the functional space. Evaluating the significance of brain
activity may require comparing data from different experimental conditions or
subjects. This may involve not only asking whether given data sets are
distinguishable, and quantifying how far apart they are but also establishing
which configurations can be attained from given ones. Rather than the
similarity of neuroimaging data representations, a dynamical definition of
nearness and neighborhood should reflect the structure induced by the
accessibility of given states induced by physiological process dynamics. This
notion can be understood by thinking of 8NObs as genotype, and 8Obs (or
observed behavior) as the corresponding phenotype. Characterizing
accessibility in the phenotype space means understanding which phenotypic
variations (corresponding to genuine functional differences) are realizable and
which dynamical changes or image representation differences (depicted by
networks of different gray shades in the genotype space) are functionally
neutral, i.e., have equivalent function, with respect to underlying
neurophysiological processes.

CONCLUDING REMARKS

Though not necessarily the case, some structures used in
data analysis, viz. in topological data analysis, may reflect
the way function impacts on brain dynamics. The brain
can be thought of as a “geometric engine,” implementing
structures (e.g., fiber bundles) through task-specific functional
architectures, i.e., a hard-wired anatomical apparatus together
with some dynamics (Koenderink and van Doorn, 1987), with
non-random topological properties (Giusti et al., 2015; Curto
et al., 2017), and (possibly non-Euclidean) geometry (Petitot,
2013, 2017). Moreover, representing brain data as probability
distributions allows characterizing function as a perturbation
of brain dynamics’ functional form, amplitude, or frequency
modulations representing a short temporal scales special case
(Papo, 2014). This representation induces a space of functions on
8 straightforwardly mirroring the non-observable space9 .

Topological signal processing tools are consistent with
information locality (in space, time, and frequency, etc)
(Robinson M., 2013). Likewise, despite novel techniques and
high-performance computing, cortical areas are typically defined
based on anatomically local structure-function associations
(Amunts and Zilles, 2015), under the assumption that
information is (locally) compact in E. However, the brain
also shows genuine non-locality, i.e., interaction-induced
emergence, and the role of non-local information cannot be
neglected (Santos et al., 2018).

Representing 8 as a space that does not derive its topology
from a metric (Baruchi and Ben-Jacob, 2004; Petri et al., 2014)
allows treating multiple observables, observation scales and
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geometries, and defining relationships between geometric objects
constructed using different parameter values and continuous
maps relating these objects (Carlsson, 2009).

Endowing 8 with a structure involves discretionary choices
somehow associated with assumptions on what should be
regarded as functional in brain activity, introducing circularity
between definition and quantification of functional brain activity
(Papo et al., 2014b). For instance, there are no criteria to
elect the space to equip with a network structure, or to
define its boundaries, constituent nodes and edges (Papo
et al., 2014a). Brain function “stylized facts,” topological
and geometrical constructs, and thorough behavioral studies
(Krakauer et al., 2017) may all help defining and quantifying brain
function. Finally, whether at the computational, algorithmic
or implementation level (Marr, 1982), genuine mechanistic
descriptions (Illari and Williamson, 2012) will help determining
when the functional space can be endowed with a given
representation and how reproducible it is.
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