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Non-alcoholic fatty liver disease (NAFLD) is a common disease, which is characterized
by the accumulation of triglycerides in the hepatocytes without excess alcohol intake.
Circadian rhythms can participate in lipid, glucose, and cholesterol metabolism and are
closely related to metabolism seen in this disease. Circadian clock genes can modulate
liver lipid metabolism. Desynchrony of circadian rhythms and the influences imparted
by external environmental stimuli can increase morbidity. By contrast, synchronizing
circadian rhythms can help to alleviate the metabolic disturbance seen in NAFLD. In
this review, we have discussed the current research connections that exist between the
circadian clock and the metabolism of NAFLD, and we have specifically focused on
the key circadian clock genes, Bmal1, Clock, Rev-Erbs, Rors, Pers, Crys, Nocturnin,
and DECs.

Keywords: circadian rhythm, circadian clock, non-alcoholic fatty liver disease (NAFLD), circadian clock gene,
metabolism

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a form of triglyceride (TG) accumulation at or
exceeding 5% of the liver weight without excess alcohol intake (Andronescu et al., 2018).
The histological classification distinguishes a range of conditions within NAFLD that vary
from hepatic steatosis to non-alcoholic steatohepatitis (NASH), which might evolve to many
subsequent conditions that include fibrosis, cirrhosis, liver failure, and hepatocellular carcinoma
(Ipsen et al., 2018).

The global prevalence of NAFLD has dramatically increased during the past three decades, as a
result of a global epidemic in the incidence of metabolic disorders. The current prevalence rates of
NAFLD vary from 17 to 51% in western countries and 25% in Asian countries (Stern and Castera,
2017; Wong et al., 2018). In China, the prevalence varies from 15 to 30%.

In our study, we have revealed that the prevalence of NAFLD in employees of the city of
Shanghai, China was 38.17%; a rate that was much higher than we had previously appreciated
(Hu et al., 2012; Sherif et al., 2016). Furthermore, it was reported that the prevalence of NAFLD
in children is increasing, and although putative mechanisms have received broad discussion,
biological reasons accounting for the prevalence and contributions to NAFLD remain an enigma
(Friedman et al., 2018).

Multiple factors lead to abnormal accumulation of triglycerides (TGs) in hepatocytes, among
which, insulin resistance (IR) is the most essential pathogenesis. The role of insulin in inhibiting
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the decomposition of fat cells is weakened where IR is seen,
resulting in lipolysis from the adipose tissue, and increased
uptake of free fatty acids into the liver. At the same time, the
utilization of TGs by the liver is inhibited, which provokes
lipid deposition in the liver (Asrih and Jornayvaz, 2015).
Fat accumulation in the liver can be traced by an increased
incidence of de novo lipogenesis. In addition, mitochondrial
dysfunction could impair fatty acid beta-oxidation and cause
lipid accumulation, which usually precedes NAFLD. Excessive
TG is transported out of the cell by binding to intra-hepatic
synthesis of VLDL (Ipsen et al., 2018). With impaired fatty acid
beta-oxidation or TG transport, the capacity of the liver to clear
lipids efficiently is reduced, which might ultimately lead to the
development of NAFLD (Figure 1).

Circadian rhythms in mammals are hard-wired biological
systems that follow the 24-h cycle of the day, which serve to
precisely regulate many of the major physiological activities,
including sleep/wake cycles, feeding/fasting cycles, endocrine
rhythms and of course metabolic rhythms (Bass and Takahashi,
2010). Studies provide a strong link between circadian rhythm
disruption and the onset of a variety of human diseases.
Desynchrony of circadian rhythms and the external environment,
such as shift work, chronic jet lag, intentional sleep restriction,
deprivation and night eating can markedly contribute to
increased morbidity. Shift workers for example, exhibit a
higher prevalence of obesity and associated disorders, such as
NAFLD (Johnston, 2014). By contrast, restoration of normal
circadian rhythms can improve overall health and alleviate the
observed morbidity (Oosterman et al., 2015). The circadian
rhythm system thus plays a key role in human physiology and
disease systems.

A connection between the circadian rhythm and NAFLD
has relatively recently been proposed (Gnocchi et al., 2015).
Circadian rhythms are closely related to metabolic diseases and
can participate in lipid, glucose, and cholesterol metabolism.
Resynchronizing circadian rhythms can help alleviate this
observed metabolic disturbance (Mazzoccoli et al., 2018).

In this review, we will discuss current research connections
between the circadian clock and the metabolism seen in NAFLD,
with a particular focus on key circadian clock genes.

THE MOLECULAR NETWORK OF
CIRCADIAN CLOCK

The molecular circadian clock network is composed of four
transcriptional-translational feedback loops. The core loop,
which includes Clock (circadian locomotor output cycles kaput)
and Bmal1 (brain and muscle-ARNT-like 1, also known as
ARNTL1), generates the autonomous circadian rhythm (Yoo
et al., 2017) (Figure 2). Clock and Bmal1 heterodimerize and
induce the transcription of clock-controlled genes (CCGs) in
a process that involves binding with E-box (5′-CACGTG-
3′). The heterodimers also direct the transcription of their
functional repressors that include period (Per1, 2, and 3) and
cryptochrome (Cry1 and 2), with the ultimate formation of
a self-regulated loop (Gerber et al., 2015). When the protein

expression levels of Pers and Crys achieve a high level, they
dimerize and translocate to the nucleus to repress Clock:
Bmal1-mediated transcription. Pers and Crys undergo post-
translational modifications that induce their degradation in
biological readiness for a new circadian cycle. In the second
loop, Clock: Bmal1 heterodimers regulate the transcription of the
DNA-binding orphan nuclear receptor reverse erythroblastosis
virus-α/β (Rev-Erb-α/β, Rev-Erbs), and the retinoid-related
orphan receptor-α, -β, and -γ (Ror-α, -β, -γ, and Rors). Rors
activate, while Rev-Erbs repress, the transcriptional expression
of Bmal1 (Orozco-Solis and Sassone-Corsi, 2014). The Rev-
Erbα/b proteins, whose levels increase during the day, bind
specific responsive promoter elements (RRE) and inhibit Bmal1
transcription (Guillaumond et al., 2005). At night, Rev-
Erbα protein levels are low, allowing for the transcription
of Bmal1. Recently, the expression of DECs, which include
DEC1 (Bhlhe40/Stra13/Sharp2) and DEC2 (Bhlhe41/Sharp1)
have been found to function as clock genes that can form the
third autonomous feedback loop. DECs can repress their own
transcription by binding to Bmal1 or by binding to E-box sites by
competing with Clock: Bmal1 (Sato et al., 2018). DECs can also
repress the transcription of Per1 and DBP (albumin d-element
binding protein) (Kawamoto et al., 2004). Furthermore, DBP
and E4BP4 can bind D-box, activate and suppress transcription
to stabilize and fine-tune the Per/Cry feedback loop, and thus
promote the formation of the fourth loop (Yamajuku et al.,
2011). In the liver, the sex of animals is a pivotal regulator of
circadian clock genes that include Rev-Erbα, Rorγ, and Cry1
(Doi, 2012).

CIRCADIAN CLOCK GENES AND
METABOLISM IN THE SETTING OF
NAFLD

NAFLD is essentially an imbalance of lipogenesis between free
fatty acid (FFA) supply, formation, utilization, and disposal.
The circadian clock is also closely associated with metabolism.
Circadian clock genes tightly modulate the metabolism of
liver lipids, and disruption of the biological circadian rhythms
induces lipid accumulation in the liver (Mazzoccoli et al.,
2014; Shi et al., 2014). However, the exact mechanisms
remain obscure and unresolved at this time. Targeting the
clock genes in the mouse model will benefit our improved
understanding of how circadian rhythms interact with a
variety of metabolic disorders (Sahar and Sassone-Corsi, 2012)
(Table 1).

Bmal1
Bmal1 plays an important role in the modulation of fat
storage, utilization and adipocyte differentiation. Up-
regulation of Bmal1 increases lipid synthesis activity in
adipocytes (Tong and Yin, 2013). Bmal1−/− knock-out
mice show glucose intolerance, hypoinsulinemia, reduced fat
storage, increased circulating fatty acids, increased ectopic
fat formation in the liver and muscle, and hepatic steatosis
even with regular chow-feeding (McDearmon et al., 2006;
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FIGURE 1 | Multiple metabolic disorders involved in the pathogenesis of hepatic steatosis. Hepatic steatosis can be stimulated via increased adipose tissue lipolysis,
increased de novo lipogenesis, increased dietary fatty acid uptake, impaired β-oxidation, and reduced VLDL synthesis and secretion. Insulin resistance is particularly
involved in several metabolic pathways. These all lead to hepatic triglyceride accumulation and ultimately NAFLD.

FIGURE 2 | The Molecular Network of Circadian clock. CLOCK and BMAL1 dimerize to stimulate the expression of CCGs with E-box promoter. CLOCK: BMAL1
also activate the expression of the PERS and CRYS. When PERs and CRYs protein levels become high, they dimerize and translocate to the nucleus to repress
CLOCK: BMAL1-mediated transcription. PERs and CRYs undergo post-translational modifications that induce their degradation, prepared a new circadian cycle.
Proteins REV-ERBα/b, whose levels increase during the day, bind specific responsive promoter elements (RRE) and inhibit BMAL1 transcription. At night, REV-ERBα

proteins levels are low, allowing BMAL1’s transcription. DECs also can form an additional loop. DECs repress their own transcription by directly binding to BMAL1
and/or E-box sites. DECs can also repress the transcription of PER1 and DBP. Furthermore, DBP and E4BP4 can bind D-box, activate and suppress transcription to
stabilize and fine-tune the PER/CRY feedback loop, and thus promote the formation of the fourth loop. Adopted with modification from Masao Doi.

Landgraf et al., 2017). Liver-specific Bmal1−/− knock-out
mice exhibit hypoglycemia during fasting, and greater
glucose clearance despite normal insulin production and
dyslipidemia, including high circulating FFA levels and high
hepatic TGs (Pan et al., 2016). Pancreas-specific Bmal1−/−

knockout mice show severe glucose intolerance, despite

intact behavioral circadian rhythms and normal adiposity.
Skeletal muscle-specific Bmal1−/− knockout mice show
impaired insulin-stimulated glucose uptake in the muscles,
while fasting blood glucose and glucose tolerance activities
appear normal. Adipose-specific Bmal1−/− knockout mice
show increased weight gain and adipose tissue mass, which
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might be due to increased food consumption during the
daytime hours. Heart-specific Bmal1−/− knockout mice
show decreased heart function, systemic insulin resistance
and decreased insulin-induced AKT phosphorylation in
the liver (Nakao et al., 2018). By contrast, global and liver-
specific Bmal1−/− knockout and APOE−/− knockout mice
show increased hyperlipidemia and atherosclerosis. Hepatic
overexpression of Bmal1 in liver-specific Bmal1−/− knockout
and APOE−/− knockout mice can reduce hyperlipidemia and
atherosclerosis. Mouse embryonic fibroblasts lacking Bmal1
cannot differentiate into adipocytes (Grechez-Cassiau et al.,
2008). Furthermore, tissue-specific (i.e., liver, skeletal muscle,
fat, bone, spleen, kidney, testis, heart, and lung) Bmal1−/−

knockout mice show an age-dependent reduction in size, and
do so consistently with elevated levels of ROS (Nakahata et al.,
2018). Germline overexpression of Bmal2 can rescue Bmal1−/−

knockout mice (Reinke and Asher, 2016). Muscle-specific
overexpression of Bmal1 can rescue low body weight and
early death phenotypes that are seen in Bmal1 knockout mice
(Gooley, 2016).

Bmal1: Clock cooperates with SREBP-1c, and downstream
genes like fatty acid synthase (FASN), 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR), and fatty acid
elongase family members (ELOVL), the low-density lipoprotein
receptor (LDLr), and acetoacetyl-CoA synthetase (AACS) to
modulate daily lipid metabolism in the liver (Friedrichs et al.,
2018). Bmal1 can function as a cAMP-responsive coactivator
of HDAC5 to regulate hepatic gluconeogenesis (Li et al., 2018).
Bmal1 can drive PPARs transcription, while in turn, PPARs
can activate the transcription of Bmal1, which drives PPARα

and activates PPARα targeted gene expression. PPARα can
directly bind PPAR response elements (PPRE), which are
located upstream of the transcription initiation site in the
Bmal1 promoter where they serve to regulate Bmal1 expression
(Matsusue et al., 2014). PPARγ positively acts on Bmal1
expression by binding the same PPRE site (Pettersson-Klein
et al., 2018). Further, in the mouse liver, Bmal1 expression is
transcriptionally repressed by the member of three-zinc finger
family of Kruppel-like transcription factors (KLF). KLF10
(also known as TGFb inducible early gene-1, or TIEG1) can
sense intracellular glucose levels and bind two juxtaposed GC
boxes that spatially located near the Bmal1 gene transcription
promotor site. Bmal1 regulates the 24-h periodic expression
of KLF10, which in the mouse liver, modulates variations in
circadian gene expression in lipogenesis, gluconeogenesis,
and glycolysis. Reciprocal control between PPARα/Bmal1,
PPARγ/Bmal1 and KLF10/Bmal1 provides fine metabolic
regulation in accord with the circadian rhythms system
(Guillaumond et al., 2010).

Interestingly, sex dimorphism can modulate the acrophase
of hepatic Bmal1, and can do so because of differential
androgenic and estrogenic hormonal circadian regulation. The
daily expression of hepatic Bmal1 in lean male mice (LM) is
similar to that found in other studies. Acrophase occurs during
the transition from dark to light cycles in LM, while in lean
female mice (LF), acrophase is found during the transition from
light to dark (Pérez-Mendoza et al., 2018). Increased lipogenic

gene expression is observed in obese males with reduced levels
of hepatic Bmal1 are found at the end of the light phase, while
the same observations were found in Bmal1−/− knockout mice
(Soeda et al., 2017).

Clock
Similarly, Clock is closely associated with NAFLD.
Clock−/− knockout mice display a reduced hepatic triglyceride
accumulation under HFD conditions. Clock mutant mice with
HFD show a clearly increased TG in the liver. Contrary to
observations seen in wild-type mice, Clock119/119 double-
mutant mice, are characterized by hepatic steatosis, obesity,
hypertriglyceridemia and hyperglycemia, and show increased
absorption of lipids throughout the day. The levels of plasma
triglyceride in Clock119/119 double-mutant mice do not
show circadian rhythms and are high at all times of the
day. Other aberrant expressions of metabolism-regulating
genes have also been observed, including fatty acid binding
protein1 (FABP1), acyl-CoA synthetase 4 (ACS4), HMGCR,
and of the low-density lipoprotein receptor (LDLr) (Pérez-
Mendoza et al., 2014). Clock119/119 double-mutant mice
show reduced expression of Pdia3, which can bind the
E-box motif, which is transcriptionally regulated by Bmal1:
Clock. Inhibiting Pdia3 can activate the PERK-mediated
signaling pathway and induces activation of oxidative stress
and apoptosis. In addition, the PERK signaling pathway,
appears to be the key pathway that is predominantly
regulated by Clock.

Clock119/119 ApoE−/− knockout and Clock119/119

LDLr−/− knockout mice show higher levels of incidences
of atherosclerosis. Physiologic studies indicate that such
mice assemble and secrete more chylomicrons and have
higher lipid levels. Moreover, macrophages of Clock119/11

ApoE−/− knockout mice are defective in cholesterol efflux
(Sookoian et al., 2008).

Neuronal PAS domain-containing protein 2 (Npas2),
paralogous to Clock, is mainly expressed in the brain with
lower levels in the peripheral tissues, while Clock is mainly
expressed in the peripheral tissues (Reick et al., 2001). Naps2
can also sense the cellular metabolic state. Most likely due to
the function of Clock in SCN neurons, loss of Npas2 does not
affect feeding patterns or weight gain. Npas2−/− knockout
mice adapt slowly to restricted feeding (Schleicher et al., 2015).
The orphan nuclear receptor small heterodimer partner (SHP)
can inhibit Npas2 gene transcription and promoter activity,
while Npas2 can bind to the SHP promoter rhythmically and
promote its circadian expression while elevating levels of NAD+.
Npas2 deficiency in SHP−/− knockout mice can lead to severe
hepatic steatosis because of disrupted lipoprotein metabolism
(Lee et al., 2015).

Rev-Erbs and Rors
Rev-Erbα and its close homolog Rev-Erbβ (also known as nuclear
receptor subfamily1, group D, member 1; NR1D1) are heme-
dependent transcriptional repressors, whereas Ror -α, -β, and
-γ (Rors) are transcriptional activators. Rev-Erbs and Rors can
recognize the same DNA binding sites (Ror response elements,
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RREs) and perform opposing regulatory biological functions
(Hu et al., 2012).

Rev-Erbs
Rev-Erbα can epigenetically modulate liver lipid metabolism
that subsequently recruits histone deacetylase 3 (HDAC3), and
induces chromatin remodeling and histone modification. Rev-
Erbα/HDAC3−/− knockout mice display hepatic steatosis. Liver-
specific HDAC3−/− knockout mice show severe hepatic steatosis
that is associated with increased de novo lipogenesis and higher
insulin sensitivity. Low Rev-Erbα levels reduce the capacity for
HDAC3 to associate with the liver genome during the time of
activity/feeding, which permits lipid lipogenesis. By contrast,
elevated Rev-Erbα levels enhance HDAC3 recruitment to liver
metabolic genes during the resting/fasting time, hindering lipid
lipogenesis. Rev-Erbα can promote circadian signaling via the
INSIG2–SREBP pathway and the liver X receptor (LXR), which
participates in bile acid and lipid metabolism. Rev-Erbα−/−

knockout mice show elevated VLDL levels and increased APOC-
III expression in the liver. Both liver Rev-Erbα and Rev-Erbβ

deficient mice display remarkable hepatic steatosis (Fathi Dizaji,
2018). Rev-Erb agonists have been used to treat the circadian
lipidome. Beyond altering circadian behavioral patterns and clock
gene expression, Rev-Erb treatment can induce weight loss and
decrease the levels of plasma TGs, cholesterol and fatty acids in
mice (Liu et al., 2008).

Rors
Rorα and its ligands can induce the expression of SOD2
and GPx1, reduce hepatic oxidative stress and inflammatory
reactions, and can alleviate NASH in mice (Monnier et al.,
2018). The Rorα mutant mouse (Rorαsg/sg; i.e., the staggerer
mouse), though fed with increased quantities of food, has
reduced levels of body fat, visibly smaller fat cells in the
brown and white adipose tissues, and lower liver TGs levels, as
well as decreased susceptibility to hepatic steatosis, contrasted
by evidence of severe atherosclerosis (Solt et al., 2012).
Moreover, a prior published study found that Rorα can
enhance M2 polarization in liver macrophages, which protects
hepatocytes from injury by secreting the anti-inflammatory and
immuno-modulatory cytokine IL-10. Myeloid-specific knockout
of Rorα enhances liver susceptibility to HFD-induced NASH.
In addition, the Rorα activator induces an M2 polarity switch
in Kuepfer cells and protects the liver progressing to NASH
(Han et al., 2014, 2017).

Pers
Through histone H3 acetylation, the promoter regions of Per1
and Per2 undergo circadian fluctuation. Beyond binding core
clock genes, Per2 can particularly regulate lipid metabolism by
directly blocking PPARα, PPARγ, and Rev-Erbα transcription
in white adipose and liver tissue. Whole body Per2−/−

knockout mice showed decreased levels of TGs and non-
esterified fatty acids. Compared to wild-type mice, white
adipose tissue, and TG is reduced, while levels of saturated
and mono-unsaturated very-long-chain fatty acids are elevated
in Per2−/− knockout mice (Grimaldi et al., 2010). AMPK,

which is a cell sensitive sensor of a low energetic and
nutritional state, manages the degradation of expressed Per
and CYR proteins. Both Per1 and Per2 deficient mice show
impaired glucose tolerance. Per3 can regulate the clock of
adipocyte precursor cells (APC), and can modulate adipogenesis
in vivo. In addition, both Per3 and Bmal1 can directly regulate
KLF15 expression. By contrast, deleting Per3 expression can
promote adipogenesis.

Crys
Crys link the circadian clock, Janus kinase (JAK) and JAK-
signal transducer and activator of transcription (STAT)
signaling by regulating STAT5B phosphorylation. By their
action on G protein-coupled receptor signaling, Crys can
regulate hepatic gluconeogenesis, block cAMP accumulation
and activate the transcription of gluconeogenic genes that are
regulated by CREB (Zhang et al., 2010). Crys can also repress
gene transcription that encode the glucocorticoid receptor
and phosphoenol pyruvate carboxykinase. Glucocorticoids
induce Per2 expression and affect glucose metabolism under
hyperglycemic conditions. In addition, Cry deficient mice have
smaller body and organ sizes. Cry1/Cry2 double knockout
mice show abnormal TGs levels in the serum and liver,
glucose intolerance and chronically elevated circulating
corticosterone levels with augmented glucocorticoid-dependent
transactivation in the liver. Furthermore, Cry1/Cry2 double
knockout mice display an additional metabolic phenotype
of salt-sensitive hypertension (Chaudhari et al., 2017). In
diabetic mice, liver-specific overexpression of Cry1 can lower
blood glucose and increase insulin sensitivity. HFD can
accelerate the degradation of Cry1 and induce obesity-associated
hyperglycemia. Autophagic pathways can degrade Cry1 and
regulate the liver clock and glucose metabolism by modulating
the expression of light chain3 (LC3)-interacting region (LIR)
motifs (Toledo et al., 2018).

Nocturnin
Nocturnin (also known as Noct, formerly known as Ccrn4l)
displays a vigorous circadian rhythm at both the mRNA
and protein levels. Nocturnin encodes a deadenylase that
is involved in the removal of polyA tails from mRNAs
(Green et al., 2007). Nocturnin is not only directly involve
in lipid absorption but also appears to be important in
regulating unknown reduced lipid trafficking in the small
intestine. The exact mechanism responsible for Nocturnin-
mediated promotion of lipid secretion remains unknown.
Nocturnin has also been confirmed to participate in adipogenesis,
glucose homeostasis, osteogenesis and immune functions.
Nocturnin in Per2−/− knockout mice have normal circadian
mechanisms, although they display resistance to HFD-induced
obesity and hepatic steatosis, which indicates that Nocturnin
is downstream of the core circadian clock (Stubblefield
et al., 2018). During the daily circadian cycle and acute
nutritional challenges, Nocturnin in Per2−/− knockout mice
have markedly elevated metabolism of cholesterol and TG
(Stubblefield et al., 2012).
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DECs
DECs, which encode the bHLH transcription factors, can
regulate the circadian rhythm and metabolism. DEC1 in
Per2−/− knockout mice show decreased lipid levels, reduced
oxidative stress, and increased fibroblast growth factor 21
(FGF21) expression levels (Fujita et al., 2016). In DEC2
in Per2−/− knockout mice livers, phosphorylation of AMP-
activated protein kinase (pAMPK) is remarkably increased.
Insulin and glucose can induce DEC1 and DEC2 expression,
while under conditions of depleted glucose, the expression of
both DEC1 and DEC2 is decreased (Sato et al., 2016). Liver
X receptor (LXR) can induce DEC1 expression by binding its
promoter. Blocking phosphoinositide 3-kinase, protein kinase
C, or the mammalian target of rapamycin can also inhibit
insulin-induced DEC1 and DEC2 expression. Both DEC1 and
DEC2 can regulate adipogenesis by repressing the transcription
of PPARγ. Furthermore, over-expressing DEC1 suppresses
adipocyte differentiation. It has also been found that DEC1 can
interact with the DNA-bound CCAAT/enhancer binding protein
and repress PPARγ expression (Park and Park, 2012).

THE CIRCADIAN CLOCK GENES AND
THE PROGRESS OF NAFLD

The classic “two-hit hypothesis” proposes that the progression of
NAFLD is initiated by hepatic fat accumulation (the first hit), and
subsequent hits by a combination of oxidative stress, cytokines,
bacterial endotoxin or stress at the level of the endoplasmic
reticulum (ER) (the second hit). Recently, the coordinated
interactions of autophagy and the host gut-microbiota has been
identified as also representing additional biological insults (Nseir
et al., 2014). We have already discussed above circadian clock
genes that can induce hepatic steatosis. Moreover, studies have
shown that circadian clock genes induce the progression of
NAFLD (Froy, 2017).

Two investigations have suggested a protective effect of PER2
protein expression in acute liver injury and fibrosis. In the carbon
tetrachloride-induced hepatitis model, Per2−/− knockout mice
progressed to a more severe form of hepatic fibrosis with hepatic
stellate cell activation (Chen et al., 2010). In the cholestatic
hepatitis model, lack of PER2 expression could also cause more
severe fibrotic injury and the accumulation of extra cellular
matrix (Chen et al., 2013).

In the context of a progression of liver tumorigenesis,
growing evidence suggests that circadian clock genes play
key roles in cell cycle regulation, checkpoint determination,
genomic stability, and DNA repair. In Cry1/2 double knockout
and Clock mutant mice models, Wee1, which monitors cell-
cycle progression from the G2 to M transition, exhibits
a disrupted circadian expression (Stevenson, 2017). NPAS2
can be overexpressed in hepatocellular carcinoma (HCC)
and induces cell survival by promoting cell proliferation
and inhibiting mitochondria-related intrinsic apoptosis both
in vitro and in vivo. Transcriptionally upregulating CDC25A
phosphatase can stimulate NPAS2 expression. Moreover, Bmal1
can heterodimerize with NPAS2, bind to the E-box element in the

promoter region of CDC25A and participate in NPAS2-mediated
tumor cell survival in HCC (Yuan et al., 2017). Per−/− or Cry−/−

knockout mice can form fewer but larger HCCs that are first
detected at the age of 50 weeks, while Albcre; Bmal1fl/fl mice
form increased numbers but smaller HCCs that are first detected
at the age of 70 weeks. Chronic jet lag can increase both the
numbers and size of HCCs in Per−/− or Cry−/− knockout mice
and the size of HCCs in Albcre; Bmal1fl/fl mice. Both sexes of
mutant mice have an increased risk of HCC, while males show
a comparatively greater risk of developing HCC than do females
(Kettner et al., 2016).

THE CIRCADIAN CLOCK GENES AND
NAFLD IN HUMANS

Genomic variants in circadian clock genes are closely associated
with hepatic steatosis, and predispose to NAFLD development. In
humans, the clinical conditions of obesity, NAFLD and metabolic
syndrome are associated with polymorphisms present in the
Clock gene. Clock gene variants that include rs11932595 and
rs6843722 show a close connection to NAFLD. A remarkable
association is also found between the clinical or histologic
spectrum of NAFLD and the presence of rs1554483, rs6843722,
and rs6850524, and between the fibrosis score and the presence
of rs1554483, rs6843722, and rs4864548.

Haplotypic association analyses show that Clock gene variant
haplotype frequencies in NAFLD are quite different from those
in controls (Sookoian et al., 2007). Clock rs3749474 is associated
with total energy intake that might also be influenced by specific
cytokine [e.g., monocyte chemotactic protein 1(MCP1), IL-6
and adiponectin] alterations (Ando et al., 2009). The Clock
3111T/C single-nucleotide polymorphism in women correlates
with being overweight, the presence of circadian abnormalities
and is characterized by “evening-type” subjects. Recognizing
Clock type genotypes can help manage the causal roots of the
metabolic problem (Bandín et al., 2013).

The Bmal2 rs7958822 genotype shows a significant association
with type 2 diabetes (T2DM) among obese Japanese individuals
(Yamaguchi et al., 2015). The mRNA expression patterns of
Bmal1, Per1, Per2, and Per3 are 24 h rhythmic and lower
expression levels in the peripheral leucocytes of T2DM patients,
while the transcriptional expression patterns are inversely
correlated with HbA1c levels. Clock gene (Per2, Bmal1, and
Cry1) expression patterns are sex dependent in human adipose
tissues derived from morbidly obese subjects. In addition, the
three clock genes are remarkably and negatively associated with
the level of total cholesterol and low density lipoprotein (LDL)
levels. Per2 expression in the visceral depot is inversely associated
with waist circumference (Gomez-Abellan et al., 2008; Garaulet
et al., 2010). The methylation status of CpG sites located in
clock genes (Clock, Bmal1, and Per2) is associated with obesity,
metabolic syndrome and weight loss. The differential methylation
of a variety of CpG sites in Clock and Per2 indicates the
success of weight-loss, especially in the context of Clock CPGs
5–6 (Milagro et al., 2012). The methylation of several CpGs in
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the PER3 is indicating the development of childhood obesity
(Samblas et al., 2018).

In the Nocturnin gene, rs9684900 is closely related to the body
mass index (BMI) among a study of 1, 510 non-diabetic Chinese
subjects in Taiwan. Nocturnin mRNA levels in human abdominal
adipose tissues are also elevated in obese as compared with non-
obese subjects (Chang et al., 2013). Here, we only list a few closely
related circadian clock genes, and indeed, we recognize that there
are many other genes related to lipid metabolism, which are
also controlled by circadian oscillators, which can react to the
molecular networks of the circadian clock (Li et al., 2017).

In addition to circadian gene polymorphisms, feeding/fasting
cycles, feeding time, sleep deprivation, and sleep quality all have
prominent effects on circadian clocks. They can disrupt the
circadian rhythms and interfere the metabolism. The optimal
feeding time and the optimal sleep duration may decrease the risk
of metabolism syndrome and NAFLD (Shetty et al., 2018).

CONCLUSION

During the past several decades, an understanding of the
circadian clock and metabolism has made significant advances.
Moreover, environments that include cycles of rest and activity,
feeding/fasting times and social stressors, have tremendous
impacts on human physiology and metabolism (Angelousi et al.,
2018). NAFLD, which is recognized as a lipid metabolic disease is
closely connected with the circadian clock. Indeed, an increasing
number of circadian rhythm studies have provided important
insights that have enabled correlating expression of the circadian

clock gene with metabolism in NAFLD within the holistic
understanding of the involved molecular mechanisms. However,
research investigators in the field of circadian metabolism are
only beginning to understand the systems and mechanism, and
clearly require additional experimentation to further broaden
our comprehension of lipid metabolism in the liver (Wright
et al., 2013; Sun et al., 2015). Clinical studies of circadian
clock genes remain scarce in NAFLD patients. Hence, new
insights that target key circadian clock genes with the intention
of treating NAFLD may provide more effective strategies,
pharmacological approaches, and improved guidance for specific
nutrient components in the human diet.
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