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The communication of neurons is primarily maintained by synapses, which play a crucial
role in the functioning of the nervous system. Therefore, synaptic failure may critically
impair information processing in the brain and may underlie many neurodegenerative
diseases. A number of studies have suggested that synaptic failure may preferentially
target neurons with high connectivity (i.e., network hubs). As a result, the activity of
these highly connected neurons can be significantly affected. It has been speculated
that anesthetics regulate conscious state by affecting synaptic transmission at these
network hubs and subsequently reducing overall coherence in the network activity.
In addition, hubs in cortical networks are shown to be more vulnerable to amyloid
deposition because of their higher activity within the network, causing decrease in
coherence patterns and eventually Alzheimer’s disease (AD). Here, we investigate how
synaptic failure can affect spatio-temporal dynamics of scale free networks, having a
power law scaling of number of connections per neuron – a relatively few neurons (hubs)
with a lot of emanating or incoming connections and many cells with low connectivity.
We studied two types of synaptic failure: activity-independent and targeted, activity-
dependent synaptic failure. We defined scale-free network structures based on the
dominating direction of the connections at the hub neurons: incoming and outgoing.
We found that the two structures have significantly different dynamical properties. We
show that synaptic failure may not only lead to the loss of coherence but unintuitively also
can facilitate its emergence. We show that this is because activity-dependent synaptic
failure homogenizes the activity levels in the network creating a dynamical substrate for
the observed coherence increase. Obtained results may lead to better understanding
of changes in large-scale pattern formation during progression of neuro-degenerative
diseases targeting synaptic transmission.

Keywords: synaptic transmission failure, network dynamics, network synchrony, spatio-temporal pattern
formation, scale-free networks

INTRODUCTION

Neurons transmit signals to communicate predominantly via synapses. The synapses may fail to
transmit signals due to the depletion of neurotransmitters or external changes in membrane/ion
channel activity. The examples of the latter, include interaction of oligomeric Aß or misfolded tau
with cell surface receptors, intracellular signaling molecules or scaffold proteins, which leads to

Frontiers in Neural Circuits | www.frontiersin.org 1 May 2019 | Volume 13 | Article 31

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2019.00031
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncir.2019.00031
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2019.00031&domain=pdf&date_stamp=2019-05-08
https://www.frontiersin.org/articles/10.3389/fncir.2019.00031/full
http://loop.frontiersin.org/people/644271/overview
http://loop.frontiersin.org/people/2947/overview
https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-13-00031 May 7, 2019 Time: 16:50 # 2

Budak and Zochowski Network Dynamics With Synaptic Failure

the deterioration of synaptic structure and function causing
Alzheimer’s disease (AD) (Chen et al., 2019). Another example
is an interaction of anesthetics with GABAA or NMDA
receptors, or K+ channels, causing hyperpolarization, glutamate
desensitization or increase in K+ conductance at the postsynaptic
neuron, respectively (Franks, 2008).

Subsequently it is no surprise that synaptic failure can change
functional network connectivity and consequently information
processing leading to devastating outcomes. For instance,
synaptic failure is part of the cause of most neurodegenerative
diseases including AD, Huntington, ALS, and ischemic cerebral
damage. In fact, it is the first pathologic event to occur
in these diseases, even before the loss of neurons (Wishart
et al., 2006). However, synaptic transmission failure may target
different components of the network and lead to different
consequences in terms of changes of spatio-temporal patterning
in the network. Buckner et al. (2009) provided evidence that
cortical hubs (i.e., regions that integrate and transmit information
from/to many other parts of the brain) in humans are the
most vulnerable areas to amyloid deposition, which results in
atrophy and eventually AD. Moreover, another study on mice
showed that amyloid deposition is caused by excessive neuronal
and synaptic activity in vivo (Bero et al., 2011). de Haan et al.
(2012) hypothesized that hubs are the most active regions
in the brain, resulting in “activity dependent degeneration”.
Consequently, they showed that the hubs are the most active
regions in the brain and activity dependent degeneration results
in hub vulnerability as well as macro-scale disruption of brain
connectivity, as observed in AD.

Another hypothetical consequence of synaptic failure is the
loss of consciousness via application of anesthetics. Anesthetics
are thought to act through ion channel blockage and/or changes
in cellular membrane dynamics which lead to synaptic failure
(Diao et al., 2014). One of the observed outcomes of anesthetics
on a macro-network scale is a decrease in the large-scale
functional connectivity between different parts of the brain.
In particular, it was postulated that the hub regions of the
brain are primarily affected by anesthetics and lead to the loss
of the global functional connectivity which is followed by the
loss of consciousness (Lee et al., 2013). In a similar spirit,
another study investigated directionality of information flow
in the network by simulating simple oscillatory models in a
human anatomical network. They found the directionality of
a network is determined by its topology (Moon et al., 2015).
Since the hub nodes phase lag and peripheral nodes phase lead,
they concluded that connections are from less to more degree
nodes. Further, they perturbed the hub structure to simulate
unconscious state, leading to the elimination of the directionality
in the neuroanatomical network, which is consistent with
anesthetic administered human data, where anterior (less hubs)-
to-posterior (more hubs) directionality was lost.

Previously, a theoretical study was done to investigate how
the topology of neuronal networks influences their dynamics
when they suffer from synaptic loss. In this study, synapses
were removed with a given probability, and they observed
that bimodal networks are more robust than random ones
(Mirzakhalili et al., 2017).

Here, we systematically studied the effects of gradual,
stochastic synaptic failure on a functional network connectivity
in scale-free networks. The aim of this study is to investigate
the universal patterns of changes in functional connectivity
based on the pattern and degree of synaptic failure. We
specifically, wanted to know how the network responds when
neurons having different number of connections (i.e., playing
different roles in the network) are targeted. We investigate
two modes of synaptic transmission loss: (1) in activity-
independent case, transmission probability remains constant for
all synapses in the network throughout the simulation, and
(2) in activity-dependent case, synapses are more likely to fail,
if the postsynaptic neuron has fired more recently. Further,
we used both incoming (i.e., hubs predominantly receive the
signals) and outgoing (i.e., hubs send signals) networks, since
a recent study showed that direction of information flow is
not always into the hubs, but can be bi-directional depending
on the frequency of the signal (Hillebrand et al., 2016). We
assessed the network-wide activity patterns through the degree
of synchrony or coherence among the networks. We show
that the two studied modes of synaptic failure can lead to
non-trivial behavior of the network, which in turn can affect
information processing.

MATERIALS AND METHODS

Network Structure and Connectivity
We used Barabasi – Albert algorithm (Barabasi et al., 1999) on
a population of 1000 neurons to create a scale-free connectivity.
We started with an all-to-all connected network of n neurons,
and then expanded the network continuously by connecting new
neurons to n pre-existing ones using preferential attachment
principle: neurons with more connections have a higher chance
to receive new connections. This results in a bidirectionally
connected network with n

10 % connectivity. Unless otherwise
stated, we used n = 16 (1.6% connectivity) in our simulations.
Then, we proceeded to make the connections unidirectional
and defined two network transmission directions: incoming and
outgoing. For that purpose, we first enumerated the neurons 1
to 1000 based on the time step they are added to the network.
The earlier the neurons were added to the network, the higher
chance they had to get new connections. Therefore, the neurons
being assigned smaller numbers would eventually be more likely
to have more connections. Then, we defined two different
network structures according to the predominant directions of
the connections at the hubs, i.e., nodes having a lot of connections
to many other nodes (Boccaletti et al., 2006). We defined
incoming networks as networks with hubs having majority of
incoming connections. Therefore, we changed all bidirectional
connections of the network into unidirectional connections from
bigger to smaller-numbered neurons. Conversely, in outgoing
networks, the hubs are dominated by outgoing connections.
Therefore, the connections were directed from the neurons with
smaller numbers to the ones with bigger numbers. Below, we
will refer to these connectivity structures as “incoming” and
“outgoing” networks, respectively (Figure 1A).
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FIGURE 1 | Modeling different scale-free network structures depending on the directionality at the hubs. (A) Scale- free networks are defined as “outgoing,” if the
hubs have predominantly outgoing connections, and “incoming,” if the hubs have predominantly incoming connections. Total, incoming and outgoing degrees in
both (B) incoming and (C) outgoing networks exhibit power-law distributions. Degree distributions are averaged over 5 different network realizations.

Finally, to obtain feedback connectivity, we randomly chose
m% of all connections to change their directions. We defined
this proportion (m%) as “direction ratio” in the paper. As a
result, each neuron has 100

m − 1 times more incoming than
outgoing connections on average in incoming networks, and
vice versa in outgoing networks. Unless otherwise stated, we
used 17% direction ratio in both network structures in our
simulations. Consequently, the resulting networks have power-
law degree distribution for their total, incoming and outgoing
connections (Figures 1B,C).

We used integrate-and-fire excitatory neuron model to
describe dynamics of each node. The current-balance equation
of this neuron model for i-th neuron is

∂Vi (t)
∂t

= −αVi (t)+ γ
∑
j

JijSj (t, ts)+ βIrand, (1)

where Vi (t) is the membrane potential of the i-th neuron,
J denotes the adjacency matrix, γ = 0.25V/s is the synaptic

strength, α = 0.3ms−1 is the inverse of the passive membrane
time constant. The Irand is a random term, which is a 0.1 ms-
wide rectangular current with an amplitude of 1, perturbing the
neuronal dynamics with 100 Hz frequency; β = 6V/s is a term to
modify the amplitude.

A neuron spikes when its membrane potential reaches
Vi (t) = 1. At the time of the spike, the voltage of the spiking
neuron is reset to 0, and the neuron enters the refractory period
of 5 ms (tref ). During this period, the neuron cannot receive any
signals from its presynaptic connections (Burkitt, 2006).

There are no delays in the synaptic transmission. The
postsynaptic signal arriving at each neuron is described by a
double-exponential

Si (t, ts) = e
−(t−tsi)
Tdecay − e

−(t−tsi)
Trise , (2)

where ts is the last spike time of the i-th presynaptic excitatory
neuron, Trise = 0.3ms and Tdecay = 3ms are rise and decay time
constants, respectively.
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For one set of our simulations (Figure 11), we added a
population of inhibitory neurons consisting of 1000 neurons to
the network. This population is randomly and unidirectionally
wired with the same mean connectivity as excitatory population
(1.6%). Moreover, inhibitory population sends connections to the
excitatory one with 1.6% random connectivity, and vice versa.
All parameters governing dynamics of inhibitory neurons are the
same, except the sign in signal Si:

Si (t, ts) = −

(
e
−(t−tsi)
Tdecay − e

−(t−tsi)
Trise

)
(3)

Implementation of Synaptic
Transmission Failure
We defined a parameter, transmission probability ptrans that
provides a probability of a synapse passing (or failing to
transmit) the signal, i.e., each synapse independently can
pass (or fail) a presynaptic spike to a postsynaptic neuron.
Here, we studied two realizations of this process: (1) activity-
independent one, where transmission probability is constant
(and the same for every synapse), and (2) activity-dependent
one, where the probability of the synapse to succeed or fail
depends on the time elapsed from the last spike of the
postsynaptic neuron:

ptrans (t) = 1− psyn × e
−

(
t−tlast−tref

)
T , (4)

where psyn is the base failure probability, T is the failure recovery
time constant and tlast is the last spike time of that neuron.
Therefore, the term t − tlast − tref denotes for the time passed
after the last spike time and its corresponding refractory period.

Measures and Statistics
For all realizations of the network and its dynamics, we measured
the MPC (mean phase coherence) between the neurons and the
degree of the synchrony. The first measure allows us to assess the
stability of the spatio-temporal pattern irrespective whether it is
synchronous or asynchronous. Briefly, the instantaneous phase
between two neurons is defined as

φk = 2π

(
t2,k − t1,k
t1,k+1 − t1,k

)
, (5)

where t1, k is the time of the last spike of the neuron 1 before
that of the neuron 2

(
t2, k

)
and t1, k+1 is the time of the first

spike of the neuron 1 after t2, k. Then the MPC between two
neurons σ1,2 is

σ1,2 =

∣∣∣∣∣ 1
N

N∑
k=1

eiφk

∣∣∣∣∣ , (6)

where N is the number of spike combinations at the two cells.
The network measure of MPC, 〈σ〉, is the average of all pairs
(Mormann et al., 2000).

The second measure indicates to what extent the neurons
form synchronized pattern of activity. Here, the measure we used
depends on the time-averaged fluctuations of the global voltage

(σV) over an extended period of time, normalized to the average
of N individual neurons’ time-averaged fluctuations:

λ =

√
[σv]2

1
N
∑N

i=1[σvi ]
2
. (7)

It is in the range of (0,1), increasing with synchronous activity
(Golomb and Rinzel, 1993). The simulations were repeated
5 times, we calculated mean and its standard error to establish
significance of the obtained results.

RESULTS

We used scale-free network structures, which are thought to
represent functional network connectivity in the brain (Bullmore
and Sporns, 2009). Scale-free connectivity provides a power-
law distribution of nodal degrees resulting in a heterogeneous
population of interconnected cells (Barabasi et al., 1999).
We further differentiated network types by establishing hub
directionality, in the sense that the highly interconnected cells
(the hubs) may predominantly receive inputs from other parts
of the network, or send outputs to other cells (Figure 1A). The
example statistics of the connectivity for both of these cases are
provided on Figures 1B,C, where the direction ratio is being
established at 17%.

First, to establish a baseline, we investigated pattern formation
in the networks without failure, as a function of the mean
connectivity (Figures 2A,B) and direction ratio (Figures 2C,D)
in both incoming (Figures 2A,C), and outgoing (Figures 2B,D)
networks. In incoming networks, the histograms of average MPC
(〈σ〉) as a function of neuron degrees, suggest that low degree
neurons always have relatively lower MPC than the rest of
the network, regardless of the connectivity and direction ratio
of the network, because of the lack of common input they
get. However, this difference is more pronounced for higher
connectivities (Figure 2A). Generally, we observe that for low
connectivity the network has relatively few connections and thus
it remains less heterogeneous in terms of nodal degree. As the
connectivity is increased, two competing mechanisms emerge –
the networks become more heterogeneous, but at the same time
stronger connectivity leads to more synchronous dynamics, as is
commonly observed. However, even though nodal contributions
exhibit different patterns for different connectivities, these
differences are only minimal in incoming networks.

Connectivity has a bigger impact on outgoing networks
(Figure 2B). Higher connectivities result in more significant
increases in MPC for all degrees. That is not surprising as hubs
are the synchronizing agent to the rest of the network when they
drive network activity. Unlike incoming networks, outgoing ones
have the highest MPC for the neurons with lowest degrees, for
0.8, and 1.6% connectivities. The reason is that in these type of
networks, neurons with lowest degrees receive signals from hubs
and form synchronized clusters. This trend disappears for 3.2%
connectivity though, since the network is saturated and neurons
with all degrees are coherent. The bigger fluctuations for highest

Frontiers in Neural Circuits | www.frontiersin.org 4 May 2019 | Volume 13 | Article 31

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-13-00031 May 7, 2019 Time: 16:50 # 5

Budak and Zochowski Network Dynamics With Synaptic Failure

degrees at 3.2% connectivity might be due to the lower input they
get from the network.

We then investigated how direction ratio (as defined in
methods) affects network coherence. In incoming networks,
MPC for all degrees is increased overall for lower direction ratios
(more incoming connections at the hubs), although the change
is not very significant (Figure 2C). However; there is a more
substantial rise in the case of outgoing networks, when hubs send
more outgoing connections (Figure 2D). These results point in
the direction that the overall synchrony of the network is strongly
dependent on the number of outgoing connections emanating
from the hubs, rather than incoming ones. For the rest of our
simulations, unless stated otherwise, we decided to use incoming
and outgoing network structures with 1.6% connectivity, 17%
direction ratio.

Finally, we varied the frequency of random external kick
Irand. In case all neurons are disconnected (ptrans = 0.0), spike
frequency increases with increasing Irand frequency, as expected.
At the same time, as expected, the MPC decreases with
more frequent Irand. When all the connections are present

(
ptrans = 1.0

)
, both spike frequencies and MPCs are only

minimally increased for higher frequencies of Irand, since
network connections dominate pattern formation. For the rest
of our simulations, we chose the frequency as 100 Hz. This
value results in a spike frequency lower than 200 Hz, the
maximum frequency the network can fire due to the 5 ms
refractory period, when ptrans = 1.0. Also, it introduces enough
randomness to the network to make them spike less coherently
when ptrans = 0.0. These results are briefly summarized in
Supplementary Figure S1.

Activity – Independent Synaptic Failure
We first investigated the history-independent transmission
probability, where ptrans is constant. We compared the pattern
formation (i.e., the MPC and synchrony) for the outgoing and
incoming networks as we gradually varied ptrans between 0 and
1 for both network types. We observed that outgoing networks
are more sensitive to synaptic failure than incoming ones, as they
become more coherent and synchronous with increasing synaptic
transmission (Figures 3A,B).

FIGURE 2 | Nodal contribution to network-wide mean phase coherence (MPC) as a function of its degree for incoming (A,C) and outgoing (B,D) networks for
different connectivities (A,B), and direction ratios at the hubs (C,D). In incoming networks, (A) increasing connectivity causes a bigger gap between coherences of
high- and moderate-degree neurons, whereas (C) increasing direction ratio decreases MPC of all degrees. In outgoing networks, MPC of all degrees increases with
(B) increasing connectivity and (D) decreasing direction ratio. MPCs are averaged over 5 degrees and results are averaged over 5 randomized network realizations.
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FIGURE 3 | Continued
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FIGURE 3 | Pattern formation in the networks with activity-independent synaptic failure shows that outgoing networks become more coherent and synchronous due
to a more uniform spike frequency distribution throughout the network. Signals are transmitted through synapses of a neuronal network with a constant probability
ptrans. (A) MPC and (B) synchrony measure for incoming (black line) and outgoing (gray line) networks. (C,D) Participation in pattern formation as a function of nodal
degree for activity-independent transmission failure. Histograms of MPC as a function of degree of neurons for incoming (C) and outgoing (D) networks, averaged
over 5 degrees. (E,F) Spike frequencies of different degrees in incoming (E) and outgoing (F) networks, averaged over 5 degrees. Raster plots for incoming (G,I) and
outgoing (H,J) networks for parameter values indicated on panels (A) and (B) [Points G–J correspond to panels (G–J)]. Lower neuron ID means higher degrees and
vice versa (see Figures 12A,E for degrees corresponding to neuron IDs). Results are averaged over 5 simulations.

FIGURE 4 | Nodal contribution to network-wide MPC as a function of its degree for incoming networks show an increased coherence of hubs, when they fail to
receive signals. Neurons in the network are grouped according to their degrees. Groups are assigned such that neurons in each group has equal total number of
connections. Neurons with degrees 1–23 constitute group 1 [left of the first dashed line in panels (A–C)], neurons with degrees 24–47 constitute group 2 (between
dashed lines), and neurons with degrees >48 constitute group 3 (right of the second dashed line). Signals are transmitted to group 1 (A), group 2 (B), and group 3
(C) with the probability ptrans, while the rest of the network receives signals without failure. Raster plots for the cases in (A–C) are shown in (D–G), (E–H), and (F–I),
respectively, for two values of ptrans. Lower neuron ID means higher degrees and vice versa (see Figures 12A,E for degrees corresponding to neuron IDs).

We then investigated how the MPC and synchrony forms
within the network as a function of degree number of
constituent neurons. The histogram of the average MPC
constructed as a function of connection number for varying
degrees of incoming networks (Figure 3C) suggests that, for
full transmission

(
ptrans = 1.0

)
, moderate-degree neurons of

incoming networks have higher average MPC values than
low-degree or high-degree neurons. This seems intuitive as
the neurons with very few connections don’t get enough
input to form stable patterns, whereas a few cells with

a large number of inputs cannot synchronize with the
rest of the population, as their frequency is significantly
different due to widely varying number of excitatory inputs
(Figure 3E). This trend is reversed for higher failure rate(
ptrans = 0.2

)
, with hubs being more coherent than the

rest of the network.
Moreover, for ptrans = 0.6, neurons fire more coherently than

when ptrans = 1.0 for all degrees. This provides evidence that
failure can promote more coherent behavior, as the input received
by different degrees becomes more uniform with failure.
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FIGURE 5 | Nodal contribution to network-wide MPC as a function of its degree for outgoing networks show an increased coherence of hubs for ptrans ≥ 0.4 than
when there’s no failure. Neurons in the network are grouped according to their degree. Groups are assigned such that neurons in each group has equal total number
of connections. Neurons with degrees 1–23 constitute group 1 [left of first dashed line in panels (A–C)], neurons with degrees 24–47 constitute group 2 (between
dashed lines), and neurons with degrees >48 constitute group 3 (right of second dashed line). Signals are transmitted to group 1 (A), group 2 (B), and group 3 (C)
with the probability ptrans, while the rest of the network receive signals without failure. Raster plots for the cases in (A–C) are shown in (D–G), (E–H), and (F–I),
respectively, for two values of ptrans. Lower neuron ID corresponds to cells with higher degrees (see Figures 12A,E for degrees corresponding to neuron IDs).

The same histogram for outgoing networks (Figure 3D) shows
that, for the same ptrans, the average MPC values are higher than
the incoming case. This is due to a more balanced input levels
across the neurons in the network, i.e., a more balanced frequency
distribution throughout different degrees (Figure 3F). In general,
higher-degree neurons have lower average MPC in the outgoing
case, and this effect is the most pronounced for higher values
of ptrans. The example raster plots of the observed dynamics are
presented on Figures 3G–J, with the corresponding values of
ptrans marked on Figures 3A,B.

To assess better the specific role of neurons having different
degree numbers (i.e., number of connections) on pattern
formation, we divided the neurons in each network into 3 groups
depending on their total degree (i.e., the sum of their incoming
and outgoing connections). The groups were formed so that the
total number of the connections in each group is equal. Thus, the
number of neurons in each group is inversely proportional to the
average degree of individual neurons in the groups, resulting in
equal number of connections per group; neurons with degrees

less than 24 are in “Group 1,” between 24 and 48 degrees are in
“Group 2”, and with more than 48 degrees are in “Group 3.” In
terms of number of neurons, the groups consist on average of
533, 342, 125 neurons, respectively. The signals coming through
the incoming connections to a given group are tested against
different transmission probabilities ptrans, while the rest of the
connections don’t fail at all

(
ptrans = 1.0

)
, to see the individual

effects of the failure of signals coming to different degrees on
overall pattern formation.

In incoming networks, the response of MPC to the network
manipulations is generally small. Interestingly we observe that
the failing signals coming to Group 1 (Figure 4A, example
raster plots on Figures 4D,G) and Group2 (Figure 4B, example
raster plots on Figures 4E,H) result in an overall increase in
MPC values of the unaffected groups, with Group 1 having a
bigger effect than Group 2. The reason is that preventing lower
degree groups from receiving signals make them fire only as
a result of Irand, decreasing their overall firing frequency as
the synapses fail. Lowering the frequency in these two groups
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reduced the frequency in all other groups leading to observable
increase of coherence.

The progressive failure of incoming connections to Group 3
has a more complicated effect. We observe a higher coherence
of that group than the rest of the network for 0.0 < ptrans < 1.0
(Figure 4C, example raster plots on Figures 4F,I). This increase
as a function of reduction of the transmission probability in
the hub group brings the magnitude of the incoming signal to
the hub cells to be similar to that of the intermediate group,
increasing effectively the coherent backbone of the network. For
ptrans = 0.1, we observe that the MPC of hubs are equal and
higher than no failure case

(
ptrans = 1.0

)
, and this equalizing

effect disappears with increasing ptrans. This effect is further
confirmed through observation which neurons from Group
3 show increased synchronization as a function of increased
failure – for lower transmission rates the neurons within that
group with higher degrees exhibit increased coherence, whereas
for higher transmission, the cells with lower degrees show
increase of coherence.

In outgoing networks, even moderate increase in failure of
Group 1 decreases Group 1 and Group 2’s MPC significantly, but
hubs (Group 3) are not affected. When ptrans = 0.0, we observe
overall decrease in frequency which leads to increase in reported
coherence (Figure 5A). The same holds for the case when Group
2 fails to receive signals (Figure 5B). However, when Group
3 is disconnected, the same reversal effect is observed as in
incoming case (Figure 5C), but with significantly higher observed
changes in MPC. This is again due to the homogenization of the
received signals by neurons having different degree. As before,
Figures 5D–I show example raster plots for two transmission
values: ptrans = 0.2 and ptrans = 1.0.

Activity – Dependent Case
The second case we studied is when the transmission probability
depends on the spiking history of the postsynaptic neurons,

i.e., the signal coming to the postsynaptic neuron, which
more recently fired, has a higher chance to fail due to the
postsynaptic receptor sensitivity. This case may be biologically
more relevant, since it is known that neurodegenerative
diseases, such as AD and Parkinson’s, have lower levels of
postsynaptic ionotropic receptors (Dinamarca et al., 2012; Xu
et al., 2012). As a result, this may cause a more effective
desensitization of the neurotransmitter-gated ion channels in
case of higher frequency stimulation via spiking presynaptic
neurons (Rosenmund and Mansour, 2002; Papke et al., 2011).
Moreover, higher activity is shown to result in regional
vulnerability to amyloid-β deposition in AD, which causes
synaptic failure (Bero et al., 2011).

In this case, we vary two parameters; the base failure
probability psyn and failure recovery time constant T. Here,
psyn = 1 indicates the possibility of complete failure of the
synapse. We vary T between 0 ms and 5000 ms, with psyn = 1
and T = 5000ms being a disconnected network.

As before, we first assessed the overall degree of pattern
formation in both types of networks. In incoming networks, we
didn’t see any significant changes in MPC and synchrony for
various T and psyn values (Figures 6A,C). However; for outgoing
networks, we observed an overall decrease in the network
coherence for increasing psyn. For fast synaptic recovery, this
decrease is significantly smaller (Figures 6B,D). Interestingly,
however, for T = 0.5ms, we observed a dramatic increase of both
MPC and synchrony as psyn tends to unity.

A more systematic scan of time constants T reveals that for
incoming networks, the network starts getting disconnected for
T > 5ms. When T = 5000ms, the MPC and synchrony values are
the same as activity-independent case, meaning that T is large
enough that ptrans ≈ 1− psyn (Figures 7A,B; the corresponding
raster plots are displayed on Figures 7C,D).

The behavior of outgoing networks is similar to the one
described above except for T = 0.5ms, where we observed a

FIGURE 6 | Pattern formation in the incoming and outgoing networks with activity-dependent synaptic failure. (A,B) MPC and (C,D) synchrony for incoming (A,C),
and outgoing (B,D) networks as a function of psyn for three different values of failure recovery time constants T. There is a dramatic increase in MPC and synchrony
with increasing synaptic failure (psyn) for a moderate T in outgoing networks.
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large peak in both MPC and synchrony, as psyn tends to one
(Figures 8A,B; the corresponding raster plots are displayed on
Figures 8C–F).

We then have investigated how synaptic failure interacts with
neurons with specific nodal degree to form activity pattern
within the network (Figure 9). For incoming networks and
for large T (Figures 9A–C) the degree dependence is largely
similar to that of constant ptrans, described in the previous
section. The group with the largest coherence is the group having
intermediate degree values. For small T, as expected, psyn does
not influence the overall coherence levels as the transmission
probability rapidly recovers and ptrans ≈ 1.0. For larger time
constants, the overall level of coherence depends on the psyn,
as in the case of activity-independent case (Figure 3C). For

a moderate time constant (T = 5ms), however, we observe
that hubs have higher coherence when psyn 6= 0.0 than when
psyn = 0.0, which means that failure of spikes results in a
more coherent behavior of hubs, even though globally there’s
no significant change in the network’s MPC. This is driven
by synaptic failure capacity to equalize input to the cells
across the network.

For outgoing networks, generally the same is true for low
and high values of T (Figures 9D,F) as in incoming case.
However, for the value T = 0.5ms (Figure 9E), we observe a
complete reversal of the overall network coherence, with the
largest coherence happening for the largest psyn and approaching
to one. The MPC is then largely independent of the neuronal
degrees, except the highest ones, where MPC starts dropping.

FIGURE 7 | Pattern formation in the incoming networks with activity-dependent synaptic failure as a function of failure recovery time constant T. (A) MPC and (B)
synchrony as a function of time constant T for different values of psyn. (C,D) Raster plots depicting network activity for parameter values marked on (A,B) [Points C
and D correspond to panels (C,D)]. The specific parameter values of T and psyn are listed on top of each raster plot. Lower neuron ID corresponds to cells with
higher degrees (see Figures 12A,E for degrees corresponding to neuron IDs).
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FIGURE 8 | Pattern formation in the outgoing networks with activity-dependent synaptic failure as a function of failure recovery time constant T. (A) MPC and (B)
synchrony as a function of time constant T for different values of psyn. (C–F) Raster plots depicting network activity for parameter values marked on (A,B) [Points
C–F correspond to panels (C–F)]. The specific parameter values of T and psyn are listed on top of each raster plot. Lower neuron ID corresponds to cells with
higher degrees.
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FIGURE 9 | Histograms of MPC as a function of degree of neurons of incoming (A–C) and outgoing (D–F) networks for varying failure recovery time constants T
(denoted on top of each panel). Participation in pattern formation as a function of nodal degree for activity-dependent transmission failure shows an increased
coherence with increased failure for moderate T in both networks.

FIGURE 10 | Average input magnitude to a neuron as a function of nodal degree for activity-dependent synaptic failure. Histograms of average number of signals
transmitted as a function of incoming degree of neurons of incoming (A–C) and outgoing (D–F) networks for varying failure recovery time constants T (denoted on
top of each panel) show that for T = 0.5ms and psyn = 1.0, outgoing networks receive the same amount of signals, and independent from their degrees.

To understand the reason behind this sudden increase, we
measured the average number of signals transmitted to each
neuron as a function of its incoming degree. The histograms
(Figure 10) suggest, that for low T, for both incoming and
outgoing networks, there is a linear proportionality between the
input and the incoming degree number (Figures 10A,D). For
larger values of T, the signal curves depend directly on the value
of psyn and for large psyn they saturate for large degree values
(Figures 10B,C,E,F), making the amount of signal received
by neurons largely independent of degree. However, only for

outgoing networks and T = 0.5ms, all neurons, independent
from their incoming degrees, receive the same number of the
signals, which is significantly different from zero (Figure 10E).
This suggest that at this specific T range, all cells in the network
receive about the same input magnitude allowing them to
synchronize across the entire system.

To see if similar results would be observed with different
connectivities and direction ratios, we simulated various
connectivity fractions and direction ratios for different time
constants (T = 0.05, 5, 500ms for incoming networks and
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FIGURE 11 | Participation in pattern formation as a function of nodal degree
for activity-dependent transmission failure for mixed excitatory-inhibitory
networks. Histograms of MPC as a function of degree of neurons for
T = 0.5 ms and varying psyn levels show emergence of highly synchronous
state for high values. The networks is composed of 1000 excitatory and 1000
inhibitory neurons. Excitatory neurons are wired as outgoing scale-free
networks, while inhibitory neurons have random connections to both inhibitory
and excitatory population with the same connectivity as the one within
excitatory population (1.6%).

T = 0.05, 0.5, 500ms for outgoing networks). In incoming
case, the reversal effect of MPC increase of hubs for higher
psyn at a moderate time constant (T = 5ms) is not observed
for lower or higher connectivities (Supplementary Figure S2).
However, increasing direction ratio makes this effect more
pronounced, since increasing outgoing connections at hubs
makes the network more balanced overall (Supplementary

Figure S3). In outgoing networks, this dramatic increase of
overall coherence is still observed, and it is more pronounced
for higher connectivities (Supplementary Figure S4)
and lower direction ratios (Supplementary Figure S5),
since the amount of outgoing connections from hubs
is increased in both cases, resulting in a more coherent
network overall.

Lastly, we included inhibitory neurons to the network, since
they are known to have significant effects on pattern formation
in cortical networks (Vreeswijk and Sompolinsky, 1996). We
simulated outgoing networks with an inhibitory population for
T = 0.5ms and various psyn. Our results (Figure 11) suggest
that there’s still that reversal effect as we’ve seen in Figure 9E,
i.e., increasing psyn eventually increases the overall network
coherence, when psyn approaches to 1.

DISCUSSION

In this study, we systematically analyzed how synaptic failure
affects two complementary (incoming and outgoing) scale-
free network structures. We studied the cases when synaptic
transmission probability is activity-independent and activity-
dependent. In the first case, we have found that targeted
synaptic failure to neuronal population having different nodal
degrees, has differential effects on pattern formation in the
network. When synaptic failure was activity dependent, we
observed that structural features of networks don’t map
onto functional connectivity (Figure 12), but rather, synaptic

FIGURE 12 | Emergence of coherence patterns in scale-free networks. Heatmaps of degrees (A,E) and MPC [(B–D) and (F–H)] for incoming (A–D), and outgoing
(E–H) networks show dependence of network-wide pattern formation on parameters of activity-dependent synaptic failure (T and psyn). Each color is an average of
the values for 100 neurons.
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failure may result in differential spatio-temporal patterning
dependent on failure recovery time constant T and
base failure probability psyn. Moreover, the two network
structures, (incoming and outgoing) behave differently, with
outgoing networks displaying overall a larger degree of
coherence/synchrony and a higher dependence on transmission
probability. This is especially evident for the activity-dependent
transmission probability, where the outgoing networks exhibit
an increased level of coherence for a large base failure
probability (psyn) for a specific value of the failure recovery time
constant (T = 0.5ms).

This abrupt increase in synchrony and coherence as a
result of synaptic failure is unexpected and possibly paints a
more complex picture of possible network interactions in the
brain. It was hypothesized that anesthetics act predominantly
on the network hubs and overall decrease the level of
coherence across brain networks, leading to the loss of
consciousness (Lee et al., 2013). Similarly, hubs are shown to
be more vulnerable to amyloid deposition due to their high
activity rate, causing the disruption of large-scale coherence
in the brain and eventually AD (Buckner et al., 2009). In
addition, numerical studies on scale-free networks suggest that
they are robust against the random removal of nodes and
the change in their synchronization process is insignificant
in case 5% of their total nodes are randomly removed.
However, when hubs are targeted, only the removal of 1%
of the total nodes is enough to divide the network into
subnetworks and to disrupt network synchronization (Albert
et al., 2000; Jinhu and Guanrong, 2005; Boccaletti et al.,
2006; Li et al., 2011). We, however, show that, depending
on the network type, preferential deactivation of hubs and
activity-dependent degeneration might lead to increased phase
coherence and synchrony. Further investigation on human
brain networks may be necessary to determine whether there’s
an overall increased coherence phase before the decrease
of large-scale coherence in such cases as application of
anesthetics or AD. That may be a useful biomarker for AD
as well as a significant contribution to explain impact on
anesthetics on human brain.
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FIGURE S1 | Network spike frequency (A,C) and mean phase coherence (B,D)
for various frequencies of random input Irand , for incoming (A,B) and outgoing
(C,D) networks. Results are averaged over 5 randomized network realizations.

FIGURE S2 | Nodal contribution to network-wide MPC as a function of its degree
for incoming networks for different connectivities and failure recovery time
constant T. The increase in MPC of hubs with higher failure cannot be observed
for lower or higher connectivities for T = 5 ms. MPCs are averaged over 5 degrees
and results are averaged over 5 randomized network realizations.

FIGURE S3 | Nodal contribution to network-wide MPC as a function of its degree
for incoming networks for different direction ratios and failure recovery time
constant T. Higher direction ratios result in a more obvious increase in MPC of
hubs for T = 5 ms when there’s more failure. MPCs are averaged over 5 degrees
and results are averaged over 5 randomized network realizations.

FIGURE S4 | Nodal contribution to network-wide MPC as a function of its degree
for outgoing networks for different connectivities and failure recovery time
constant. Higher connectivities result in a bigger increase in MPC for T=0.5 ms
with higher failure psyn. MPCs are averaged over 5 degrees and results are
averaged over 5 randomized network realizations.

FIGURE S5 | Nodal contribution to network-wide MPC as a function of its degree
for outgoing networks for different direction ratios and failure recovery time
constant T. For T = 0.5 ms, the increase in MPC values of psyn = 1.0 is more
pronounced for lower direction ratios. MPCs are averaged over 5 degrees and
results are averaged over 5 randomized network realizations.
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