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Abstract. In the present study, CPT is modelled by static elastic-plastic small strain finite element method (FEM) 
analysis of axi-symmetric problem. Undrained soil properties and Tresca yield criterion is used for determining cone 
resistance of clay. Sand is modelled by using drained soil properties and Mohr-Coulomb yield criterion. Cone penetra
tion problem is formulated as a collapse load problem. Associated and non-associated flow rules were used for model
ling. 

A number of numerical experiments were performed to determine rational size of discrete region. Received dimen
sions of region were used for further research. 

Cone factor Nc for clay was obtained and the comparison of Nc values with other theoretical solutions is presented. 
A conclusion may be made that the limit of the validity of geometrically linear systems has been reached. The evalua
tion of the effect of cone penetration requires the analysis of large strains to be made. 
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1. Introduction 

The design of tall structures for buildings and brid
ges has resulted in many challenges to structural engine
ers. Development of steel materials and structures has 
made significant strides to the forefront of the construc
tional area. A review of recent developments in steel sec
tions and structural systems may be found in [1-2]. The 
development of higher-strength steels allowed to reduce 
sectional dimensions, as well as weight and cost of the 
entire structure, therefore composite structures with hig
her-strength steel have been extensively used. However, 
reduction of dimensions is limited by buckling, structu
ral and technological requirements. 

The main research and practical development du
ring the last decade was mainly focused on the composi
tion of higher-strength steel and concrete [3-4]. Other 
possibilities to produce more efficient structures without 
losses of their load carrying capacity include composi
tions of different steels. Perhaps, the simplest idea of 
bisteel composition is based on built-up members to inc
rease the load carrying capacity of structures under loa
ding. The built-up technique consists in strengthening 
flanges, and details of different covering technologies may 
be found in [5-9]. 

Similar technology has been also used for develop-

ment of bisteel members and may be implemented in 
different ways: arrangement of higher-strength steel sec
tion in the regions of maximum moments [ 1 0], construc
tion of hybrid beams fabricated by using a higher-strength 
steel for flanges, then in the web [8-11] and composi
tion of higher-strength steel inclusions for flanges in the 
region of maximum stresses [8-9, 11-14]. 

The present paper is focused on higher-strength ste
el inclusions in the flanges of simple !-section beams. 
The aim of the paper is to develop and verity the expli
cit analytical model suitable for describing and investi
gating the load carrying capacity of simply supported !
section bisteel beams subjected to uniformly distributed 
quasistatic load in respect of plastic deformation. A par
ticular case of perfect plasticity has been already pre
sented in [14], while this paper is mainly focused on 
general case, including strain hardening. The load carry
ing capacity condition is expressed here in terms of ben
ding moment. The variation of plastic penetration and 
different mechanical properties of higher-strength steels 
is taken into account. 

The proposed analytical model has been also tested 
numerically by the finite element method. The ANSYS 
code and tetrahedral elements have been used for this 
purpose. The results of numerical experiments are used 
to verity the proposed analytical model. 
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2. Geometry and materials 

The bisteel beam presents a composition of higher
strength steel inclusions for the flanges in the region of 
maximum stresses and of lower-strength steel for remai
ning volume of the beam (Fig 1 ). The term "higher 
strength steel" is meant to describe structural steel of 
over 260 MPa nominal yield strength in tension. 

The beam geometry described in Cartesian coordi
nates Oxyz with longitudinal coordinate z and is defined 
by span length I (Fig 1 ). Due to technological reasons 
the cross-section remains constant and is defined by cross
section height h. Geometry of flanges is defined by b1 
and t1 while the geometry of web is defined by dimen
sions hw and tw. In order to avoid local instabilities or 
construction of the stiffeners, the dimensions of cross
section are fixed according to well-known proportions, 
for example, those of standard sections. 
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Fig 1. I-section bisteel beam 

Since the bending moment diagram for simply sup
ported beam by uniformly distributed load p is usual a 
parabola with the maximal value at the centre, the higher
strength inclusions are constructed in the central part of 
the beam. The length of flange inclusions is denoted by 
line. 

Material behaviour of both higher-strength flange 
inclusions and lower-strength steel of remaining volume 
of beam is described by bilinear diagrams (Fig 2). 
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Fig 2. Stress-strain diagram 

Elastic branches OA or OC ( cr < crY ) are described 
by linear elastic relation: 

cr = EE, (1) 

where E is elasticity modulus, while plastic branches AB 
and CD ( cr ~crY ) are defined by relation [ 15]: 

cr=cry+aE(E-Ey), (2) 

where a is hardening ratio defined as the ratio of hard
ening and elasticity modulus (a = E h / E ). Elasticity 
modulus E is the same for both materials. Perfectly plas
tic material is considered here as particular case with 
a= 0. The hardening influence is investigated in [16, 
I 7]. While yield stress crY and hardening ratio a are 
different, they are denoted for inclusions as cryf and 
a 1 , and as crY w and aw for remaining volume of the 
beam respectively. Investigation of variation of the yield
ing stress ratio (inhomogeneity ratio) s=cryrjcryw ~1 
as main modelling variables is one of the most importand 
issues considered in this paper. According to the valid 
structural steel standard, the inhomogeneity ratio may 
vary in the range of 1 ~ s ~ 1.8 . 

3. Yielding model 

Elastic plastic analysis of structural members is pre
defined by traditional assumptions used in mechanics of 
solids and structures and by yielding model according to 
which yielding may take place at a cross-section. The 
yielding manner affects final load carrying capacity and 
stiffness of structural member. In the framework of the 
current investigation, geometrically linear two-dimen
sional bending beam is considered as slender beam based 
on Bernoulli hypothesis about straight and undeformed 
section. Consequently, deformations caused by shear 
stresses are neglected, therefore one-dimensional stress
strain state defined by normal stress cr and strain E re
mains and relations (1-2) are valid. This approach does 
not require any discussion about hardening model be
cause work hardening is simply transformed to strain 
hardening. Influence of local contact stresses between 
both materials is also neglected. 

Generally, yielding model is called to fact that yield
ing starts when the yield limit crY reaches in the most 
stressed fibre and extends proportionally to increasing 
loading. Assuming that tensile stress-strain curve (Fig 2) 
is identical with that in compression, distribution of 
stresses and strains in the lower half of the beam is the 
same as in the upper one and neutral axis remains at 
centroid axes. This results in symmetric linear distribu
tion of strains at any section. 

For homogeneous beam the yielding may be pre
defined in a unique way for a given load. Thus yielding 
starts in the outer fibres and causes bilinear stress distri
bution. This is not the case for bisteel beam, where yield
ing may take place both in higher-strength flanges as well 
as in lower-strength web independently, providing 
multilinear stress distribution at section. This distribu-
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Fig ~· Pen~tration .of plastic strain in the bisteel !-section: b) plastic strain in web; c) plastic strain in flanges; d) limited 
plastic stram both m flanges and web; e) full plasticity of flanges 

tion caused different yield limits for both steels. A case 
study of the above-mentioned distribution is presented 
in Fig 3, where notations I-IV indicate different yield
ing models. Initiation of yielding depends on yielding 
stress ratio s and geometry of !-section. For the s < h/ hw , 
yielding starts in outer fibres of the section, while spread
ing of plastic region corresponds to those observed in 
homogeneous section (Fig 3b ). Here elastic core is de
fined by high a 1 and remains inside the flanges. For 
the value s > h/ hw , yielding starts at the outer fibres of 
the web (Fig 3c), where elastic core aw remains inside 
the web. In the most general case, any load increase pro
vides yielding of both the flanges and the web (Fig 3d) 
with two elastic cores a 1 , aw. By increasing load, full 
yielding may be achieved at flanges (Fig 3e). This yield
ing model has to be considered as a particular case of 
general model (III). The increase of loading is limited 
by prescribed value of elastic core alim , where a ;::: a 1im . 

In general case (III), stress diagrams present four differ
ent regions. Stresses in the elastic region of the web 
( IYI :.:; aw ) are defined as cr e1 w (y) and for flanges 
( hw :.:; IYI :.:; a 1 ) they are defined as cr el 1 (y) . In plastic 
regions for web ( aw :.:; IYI :.:; hw ) stresses are defined by 
distribution cr pi w (y), while for flanges (a 1 :.:; IYI :.:; h ) 
they are defined as cr pi 1 (y) . 

Actually plastic stresses are composed of two ad
dends corresponding to perfect plasticity and hardening: 

cr plw(Y) = cr pw(Y )+ crhw(y), 
(3) 

cr pt J(y )= 0 pf(y )+ 0hJ(Y) · 

Explicit expression of the above-mentioned stresses 
are defined by the following formulae: 

(4) 

The above expressions ( 4) present the basis for load 

carrying capacity and stiffness analysis of bisteel !-sec
tion beams. 

4. Investigation of the load carrying capacity 

Different design procedures and criteria are put for
ward to evaluate the load carrying capacity of structural 
members, in general, and of plane bending beams, in 
particular [8, 11, 18]. The elastic plastic approach as
sumes that the beam resists loads from the beginning of 
yielding and development of structural damage to full 
plastic collapse. Particularly, plastic limit moment 
M c (z), which can withstand the action of bending mo
ment M ( z) occuring due to external loading, is the most 
suitable characteristic used to define load carrying ca
pacity of the section. In future, M c is termed here as 
the capacity moment. Longitudinal coordinate z denotes 
the section under consideration. Thus resistance of beam 
in pure bending or load carrying capacity is defined by 
yielding condition in terms of moments: 

(5) 

Evaluation of capacity moment M c (z) is a rather 
sophisticated task. The most popular way of doing this 
(recommended in design codes [II, 18]) is to derive a 
relationship between M c and depth of plastic penetra
tion c or elastic core a . Thus we assume the plastic 
moment M c (z) = M c (a (z )) . For the case, where the 
beam is subjected to the uniformly distributed load p, 
the bending moment is parabola with the equation [19]: 

(6) 

The moment equilibrium between stresses cr and 
bending moment M provides expression for capacity 
moment: 

Mc(z)= J cry(z,y)ydA. (7) 
A 

For general case Ill (Fig 3d), the capacity moment 
M c (z) = M c ph = M c Ill (z) involving hardening may be 
presented as a sum of three components having different 
physical meanings: 

(8) 
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Here the subscripts e, p and h denote different physi
cal origin of the components and reflects the influence 
of elastic, perfectly plastic and hardening stresses. Each 
of the components i ( i = e, p, h) involves capacity mo
ments of stresses in web and flanges: 

(9) 

For perfect elastic plasticity, when a= 0, the mo-
ment M ch vanishes and capacity moment 
Mc(z)=Mcpp contains a simpler expression: 

(10) 

For pure elastic case, when aw = hw, af = h, the 
moments M c P and M c h vanish and capacity moment 
MAz)= Mcel· Here 

Mce/ = Mce· (11) 

It proves convenient to divide section height (Fig 
3) into four segments, and integration of stresses (III) 
within the segments provides separate components of 
capacity moments (8-11 ): 

aw/2 

Mew=2tw Jaelw(y)ydy, 
0 

af/2 

Mef= 2b1 Jaelf(y)ydy. 
hw/2 

hw/2 
M p w = 2 t w f a P w (y) y dy, 

(hw/2)+1 f 

M P f = 2 b f fa P f (y) y dy, 
af/2 

hw/2 

M h w = 2 t w fa h w (y) Y dy, 
aw/2 

(hwl2)+1j 

Mhf = 2 bf f ahf(y) y dy. 
af/2 

(12.a) 

(12.b) 

(12.c) 

Since we deal with capacity moments only, subscript 
c is omitted. In particular cases (for yielding models I, 
II, IV) some of the above moments turn to zero. 

Assuming the geometry of section defined by di
mensional height h, the other dimensions may be defined 
by non-dimensional values [20]. 

hw=hwh, lw=twh, bf=bfh, lf=tfh, )(l
3
) 

aw = aw h, a f = af h, z = z I. 
The moments (6) and (7) may be also expressed in 

terms of non-dimensional variables. The external bend
ing moment is presented as: 

M(z)=M(z)p/ 2
, 

where non-dimensional function 

(14) 

M(-)- 1 (-- 2) z -- z -z 2 . (15) 

Expressing yielding stress crY (z,y) by a single di
mension parameter crY , ( crY = crY w ) the non-dimensional 
capacity moment (7) may be presented in the same man
ner: 

Me (z)=Mc (a(z)) aY h3
, (16) 

where non-dimensional quantity M c is a function of 
the elastic core ( a (z) ) . 

After integration of (12) and in respect of (4) and 
(13), individual components of capacity moments (8-9) 
may be presented explicitly: 

-2 (-) - a z fw _w __ ' 

6 

- [a/ (z) sb1 --
6 

(17a) 
- 3 l hw 

(l7b) 

M - - h w hw aw z) 
[ 

- 3 -2 -2 (-} 

hw (z)=tw aw 6aw(:z)- 4 + --u-

[ [
- 13 - _- 4 hw-

M hf (z)=sbf a! 3af (z) T+tt -
(l7c) 

[
hw -]

2 
a} (z)l -+It +--

2 12 

Expressions ( 17) predicting capacity of individual 
sections have to be applied for evaluating load carrying 
capacity of the entire beam. 

The variation of capacity moment in the middle of 
the beams Mco due to different values of plastic pen
e_!ration c0 for sectio_E with non-dimensional 
hw = 0.87833, lw = 0.04, b f = 0.53333, lf = 0.060833 
is illustrated in Fig 4. The influence of higher-strength 
steel inclusions is expressed in terms of different yield
ing stress ratio (inhomogeneity ratio) s with values 
s = 1.0, 1.2, 1.46, 1.74. Each of the inhomogeneity ratio 
is illustrated for perfect plasticity a= 0 and hardening 
with a= 0.1. 

Here for the sake of convenience the elastic core is 

reverted to the depth of plastic penetration: c0 = h-aw . 
h 

It follows from the longitudinal distribution of bend-
ing moment (6) that the load carrying capacity problem 
(5) may by reduced to capacity of midspan with z = l/2: 
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Fig 4. Diagram M co = f(co) 

(18) 

where subscript 0 will be referred in the future to 
midspan, while the capacity moment M c 0 is controlled 
by the limit height of elastic core a0 . Since the value of 
maximal bending moment M max = M 0 (z = l/2) may be 
obtained according to (15) and equals 1/8 , condition (18) 
may be also presented in non-dimensional form as: 

(19) 

By taking into account (14) and (16), this condition 
may be reversed for evaluating the limit load 

8cry h3 
_ 

P~ 2 Mco(ii'o). 
1 

(20) 

Expressions ( 19) and (20) provide load carrying 
capacity problem of beam explicitly and may be applied 
for design as well as for evaluating the limit load. 

5. Computation of plastic zones 

Evaluation of distribution of capacity moment 
M c (z) requires computation dimensions of plastic zones. 
In the limit case of condition (5) for the distributed 
loading, the capacity moment is shaped by the external 
bending moment (6). Actually, expressions (8-11) de
pend on the depth of elastic core a = a (z), which is 
function of section position z. Plastic deformations ex
tend over the region where the bending moment M (z) 
exceeds the maximum elastic capacity moment M c el (z). 
According to the above statement, the longitudinal dis
tribution of plastic zones presents a picture illustrated in 
Fig 5. It reflects different yielding models presented in 
Fig 3. After submission of bending moment (14-15) and 
capacity moment (8) and (17) the non-dimensional height 
of elastic core a= a(z) can be found by solving cubic 
algebraic equation 

Aa3 +B(z)a +C=O. (21) 

The equation coefficients are expressed as 

B(Z) = B1 (z)- B2 , (22) 

C=C1 +C2 • (23) 

The expressions of variables and coefficients of 
cubic equation (21) reflect the above yielding models 
(Fig 3). As matter of fact two cases are observed. 

For the yielding model I (when a= a 1 ) they are: 

Bl(z)=-
48

M 0 
2 Vz-z 2

), cl =-c; h~. (24) 
cryrbrl 

For the remaining yielding models II-IV (when 
a = aw ) they are: 

h C 
2tw 

were 1 =--. 
bf 

The expressions of coefficients A, B2 and C2 for all 
yielding models I-IV are presented in Table 1. 

The solution of equation (21) using computer alge
bra system is presented in a form 

a= (26) 

where 

D = ( ~(- 27 A
2 

C + ~108 A3 
B(zi + 729 A

4 
C

2 
) r3 

Particularly in the case of perfect plasticity of the 
fourth yielding model (Fig 3) the algebraic equation 21 
takes a quadratic form 

a 2 -B(z)=O, (27) 

the solution of which is presented in a form: 

a = Js(z). (28) 

The explicit solutions (26) or (28) obtained here may 
be applied for evaluating plastic zones along the bisteel 
beam for different yielding models as it is illustrated in 
Fig 5. 

Fig 5. Distribution of plastic zone in a bisteel beam 
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Values of coefficients of cubic equations 

Yielding 
A Bz C2 model 

I l-a1 
hw - hw -l- r r r 12 T+t1 -ar I -z+t1 

-3 h -(- J 2 hw -a f 16 ; + t f 

Ipp 1 12( 11
; +if r 2h3 

w 

- - 3 -z -z 
-3 16bt(h -) II l-aw 3hw- aw3 hw - aw2 hw ---- __:t;_+t f 

tw 2 

- 3 

Ilpp 3h2 16bf ( hw _ ) 
1 w ---- -+tf 

tw 2 

3 J;2 12 s br ( h.... - r +--- --+t - - 3 - 3 - 3 w i 2 f 
a f 16 b f ( jjw - ) b1s b1s w -3 m 1+-_--aw-af---

ar 12s br h... -J -a ... 2h ... - -+tt 
tw tw -2 t... 2 

a,..3h ... - l-+tf 
tw 2 

- 3 

3p I2sbr(h.w - r IIIPP 
b1s 

0 1+-_- +--- --+tf 
tw w tw 2 

-2 12sbr C- -2) 3 hw + --- hwt f + t f -

l-aw 
t ... 

IV 

Jh' a, 12s b, ( 4i} _, l -3 
-aw2hw 

aw w+ - -=-+tf 
fw 3hw 

IV -2 12 s br C - -z) 
Plastic 

0 3hw +-_-- hwtf +tf 0 
tw 

Howewer, the coordinates of plastic regions ze1 w, 

ze1 1 as well as flange inclusions z 1 , may be found di
rectly by solving the equation 

M(z)=Mcel· (29) 

the boundary of plastic zones, the above expressions (30-
31) may be used for designing flange inclusions. There
fore the boundary coordinate of inclusions z 1 may be 
found in the same manner, by solving the equation 29: 

In the case M c el = M ;1 w solution of the above equ
ation presents a boundary coordinate of plastic region in 
the web: 

I 1 ~ 2 • Ze[w =--- (pi) -8pMe/w · 
2 2p 

(30) 

When M c el = M ;1 1 , the solution of equation (29) 
presents a boundary coordinate of plastic region in the 
flanges: 

I 1 I ? • 

Ze[f = 2-
2

p "\l(pft -8pMelf . (31) 

Here the moments M ;1..,. and M ;1 1 are the ben
ding moments, caused maximum elastic stresses in the 
outer fibres of the web and flanges respectively. 

Since the length of flange inclusions is defined by 

(32) 

Here M c el is computed for the case of CJ y = CJ y w • 

Finally, the length of plastic regions and the length 
of flange inclusions may be obtained in a simple man
ner: 

(33) 

1 ~ 2 • [plf =- (pi) -8pMelf 
p ' 

(34) 

(35) 
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6. Variation of the load carrying capacity 

Using the proposed analytical model the variation 
of the load carrying capacity is investigated and presen
ted graphically. Here, the yielding condition (5) expres
sed by moments M (z) and M c (z) has been examined 
numerically. The distribution of capacity moments 
M c (z) defined in (7) has been obtained according to 
(8-12) and ( 17), where boundaries of plastic zones are 
shaped according to general solutions (26) and (28). 

The bisteel !-section beam with length l (! = 1.0 ), 
height h ( h = 0.121) and remaining dimensions 
h\\"=0.87833h, t\\"=0.04h, b1 =0.5333h, 
t 1 = 0.060833 h is considered as an illustrative example. 

Appropriate influence of higher-strength steel inc
lusions to load carrying capacity may be already obser
ved in the elastic stage of the beam. The maximal elas
tic capacity moments M eel with the non-dimensional va
lues Meet I= 0.0332 for monosteel ( s = 1.0) and 
Mcetz = 0.0378 for bisteel beams ( s = 1.2) respective
ly, are presented in Fig 6. Here the l;11c1, l;11cz are the 
length of inclusions obtained, according to inhomoge
neity ratios s = 1.1385 and s > 1.1385 respectively. 

As it follows from the illustration, increasing 
s > 1.1385 produces a higher length of inclusions, but it 
does not increase the beam capacity in the elastic range. 

However, the influence of higher-strength steel inc
lusions expressed in terms of capacity moment M c is 
more significant if the plastic deformation is permitted. 
Here the depth of plastic core a as well as the value of 
inhomogenity ratio s is a very important issue. The ca
pacity moments variation due to different values of in
homogeneity ratio s with limit value of elastic core 

Fig 7. Distribution of capacity moments 

a0 = 0.25 hw for the above-mentioned beam is illustra
ted in Fig 7. 

Maximum values of non-dimensional M co at the 
midspan Mcol = 0.0395, M, 02 = 0.0536 and 
M cO 3 = 0.0623 illustrate possible increasing of the load 
carrying capacity of the beam up to 50% in respect of 
growing of inhomogeneity, which may be reverted by 
(20) to limit load. The capacity moment variation with 
the biggest value of a0 ~ 0.25h"' has the same character. 

7. FEM investigation 

The beam with the above geometry has been solved 
numerically. Higher-strength steel flange inclusions with 
yielding limit cryf = 300 MPa, which produces inhomo
geneity ratio s = 1.2 has been taken for illustration. As
suming the elastic core in the midspan of the beam with 
a 0= 0.575 h ... , the limit load obtained according to (20) 
produces the value p = 151.7 KN/m. The length of hig
her-strength steel inclusions obtained by (35) yields the 
value l;11c/ = 0.49421. 

The aim of numerical experiments is to verify the 
analytical model by checking the distribution of plastic 
zones (26, 28). 

The ANSYS code [21] and tetrahedral elements SO
LID-92 [22] have been used for this purpose. The FEM 
mesh of bisteel beam is presented in Fig 8. 

Fig 9. Distribution of plastic deformation in the bisteel 
beam 
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The distribution of strains (Fig 9) illustrates sprea
ding of plastic zones where the elastic zones are cove
red by green area. The numerically obtained values of 
elastic core a 0= 0.57 hw and the length of plastic zones 
in the flanges lplf =0.2881 and web lplw =0.391 pre
sent a good agreement with analytical solution 
a 0=0.575hw, lplf=0.3051, lp1w=0.3731. Experi
ments with different values of input date show validity 
of analytical solution (30, 31) if the length of the hig
her-strength inclusions does not exceed line/ :S: 0.61 . 

As provided in [14] for longer flange inclusions, 
the character of plastic deformation is changed. The furt
her research is, however, necessary to consider the be
haviour of bisteel beams outside the range of 60% limit 
of relative length of higher-strength steel inclusions. 

7. Remarks and conclusions 

The analytical model for estimating load carrying 
capacity of bisteel beams has been developed. It invol
ves explicit expression for capacity moment M c or li
mit value of distributed load p as a function of admis
sible plastic penetration c and inhomogeneity of the be
am inclusions. The investigation of the model of bisteel 
beam with flange inclusions allows to shape the follo
wing conclusions: 

1. Numerical analysis shows the validity of analy
tical model for short flange inclusions, still line/ :S: 0.61 . 

2. When the inhomogeneity ratio s "" 1.46 the ca
se of limited plastic penetration allowed to increase the 
load carrying capacity up to 1.35 once in respect of mo
nosteel beam. 

3. The influence of material hardening increases 
the load carrying capacity insignificantly, maximally up 
to 3%. 

4. The proposed analytical model may be used for 
further research by solving the problems of analysis and 
optimization of bisteel !-section beams in respect of the 
strength conditions. 

Further research is, however, necessary to consider 
the behaviour of these beams outside the range of 60% 
of relative length of higher-strength steel inclusions. 
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