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Abstract. In this paper, under the consideration of two carbon emissions policies, the issues of optimizing ship speed and 
fleet deployment for container shipping were addressed. A mixed-integer nonlinear programming model of ship speed and 
fleet deployment was established with the objective of minimising total weekly operating costs. A simulated annealing algo-
rithm was proposed to solve the problem. An empirical analysis was conducted with the data selected from the benchmark 
suite. The applicability and effectiveness of the established model and its algorithm are verified by the results. According 
to the results, two policies of the cap-and-trade programme and the carbon tax can better optimize the results of the ship 
speed and fleet deployment problem to achieve the goal of reducing carbon emissions. The research remarks in this paper 
will provide a solution for container shipping companies to make optimized decisions under carbon emissions policies.
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Introduction

Container shipping plays an important role in the ship-
ping industry due to its reliable and regular service to 
ports along routes (Wang et  al. 2013b). Containerships 
have become larger because the container shipping com-
panies aim to take advantage of the economics of scale. 
Therefore, it is important for a container shipping compa-
ny to assign containerships to port rotations in an efficient 
manner to transport containers (Wang, Meng 2017). This 
decision problem is referred to as the Fleet Deployment 
Problem (FDP). The FDP was first addressed in the lit-
erature by Perakis and Jaramillo (1991) and Jaramillo and 
Perakis (1991). The researchers established (integer) linear 
programming models for the planning problem. Consid-
ering the changes in container shipping demand, Meng 
and Wang (2010) extended their study and suggested that 
container shipping demand obeys a normal distribution. 
Because complete probability distributions are hard to ob-
tain in practice, Ng (2015) proposed a new distribution-
free optimization model that only requires the specifica-
tion of the mean, standard deviation and an upper bound 
of the container shipping demand. These studies make the 
study of the FDP more realistic.

Data show that fuel costs accounts for approximately 
three quarters of a large containership’s operating costs 

when the bunker fuel price is approximately 500 $/ton 
(Ronen 2011). The fuel consumption cost of a container-
ship is a nonlinear convex function with respect to the 
ship speed (Gelareh, Meng 2010). Therefore, when the fuel 
market fluctuates, the container shipping company usu-
ally chooses to implement a speed adjustment strategy to 
reduce their costs. Ronen (2011) set costs minimization 
as a goal and studied methods for determining ship speed 
and fleet size. Notteboom and Vernimmen (2009) inves-
tigated the optimal uniform speed on a single ship route. 
Gelareh and Meng (2010) discussed the model develop-
ment for a short-term FDP of container shipping opera-
tions, in which the optimal ship speeds are interpreted as 
their realistic optimal travel times. These studies have sig-
nificantly contributed to the development of mathematical 
programming models of ship speed and fleet deployment 
optimizations.

In recent years, the issue of global climate change 
caused by carbon emissions from shipping has become an 
increasingly popular topic (Corbett et al. 2009). During 
the period of 2007 to 2012, on average, carbon emissions 
from shipping accounted for approximately 3.1% of an-
nual global carbon emissions (IMO 2015). Shipping has 
thus far escaped inclusion in the reduction targets of the 
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Kyoto Protocol, but it is very likely that the era without 
corresponding regulations is ending and that measures 
are coming (Guo et al. 2010). In 2016, a new regulation 
for reducing GreenHouse Gases (GHGs) emissions from 
shipping, called the “IMO roadmap”, was approved, which 
anticipates that an initial GHGs reduction strategy will 
be adopted in 2018 (IAA PortNews 2016). A few studies 
have identified the impacts of carbon emissions policies 
on the shipping industry. There are two main potential 
carbon emissions policies available: the cap-and-trade 
programme and the carbon tax (Aldy, Pizer 2015; Carl, 
Fedor 2016; Yang et al. 2017). Although the cap-and-trade 
programme policy is a promising mechanism to reduce 
CO2 (Miola et al. 2011), an appropriate carbon emissions 
cap is difficult to establish, because the associated CO2 
emissions are uncertain. Under three carbon tax condi-
tions, Wang and Xu (2015) analysed the optimization 
decisions for the ship speed of containerships during a 
voyage. Kim et al. (2012) applied an epsilon-optimal al-
gorithm to optimize a ship’s speed when the carbon tax 
policy was considered. Lee et al. (2013) found that impos-
ing a maritime carbon tax policy on container shipping 
will not lead to a significant economic impact unless the 
tax level is high. It is likely that environmental considera-
tions involving containership carbon emissions have far-
reaching influences on the strategic choices of ship speed 
and fleet deployment. The existing studies have focused on 
the effect caused by the cap-and-trade programme policy 
or by the carbon tax policy, ignoring the condition that 
both of the carbon emissions policies are imposed on the 
shipping sector. These two policies have already used in 
green vendor managed inventory to reduce carbon emis-
sions (Nia et al. 2015). To fill this gap, this paper studies 
the Ship Speed and Fleet Deployment Problem (hereafter 
SSFDP) under the cap-and-trade programme policy and 
the carbon tax policy. These measures will not only impact 
the total weekly operating costs of the container shipping 
company, but will also affect carbon emissions reductions.

Compared with the existing studies, the SSFDP under 
both the cap-and-trade programme and the carbon tax 
has the following three characteristics:

 – Overlap effect. For the cap-and-trade programme 
policy, it faces the obstacles of allocating reasonable 
carbon emissions caps (Miola et  al. 2011), and the 
carbon emissions caps may have an indirect effect 
on the ship speed. For the carbon tax policy, it has 
a direct impact on the ship speed (Wang, Xu 2015). 
Compared to employing one policy in the previous 
studies, the implementation of the cap-and-trade 
programme and carbon tax policies are likely to have 
an overlap effect on the SSFDP, which should be ana-
lysed more deeply;

 – Complex model. Under the condition that the liner 
routes to be serviced are defined and the container 
shipping demands are given, the objective function 
of the ship speed and fleet deployment optimization 
problem is to minimize the total operating costs of 
the shipping company (Christiansen et  al. 2013). 

Carbon emissions are determined by fuel consump-
tion, and fuel consumption is composed of heavy oil 
consumption and light oil consumption. The calcula-
tion methods for these two types of oil consumption 
are different. Heavy oil consumption is proportional 
to the third power of ship speed (Yao et  al. 2012), 
while light oil consumption is inversely proportional 
to the ship’s speed (Corbett et  al. 2009). Fuel con-
sumption and carbon emissions are the integration of 
the above two relationships with nonlinear terms and 
mixed integer terms, which increases the complexity 
of the model;

 – Triple cost trade-off relationship. For the existing 
studies about the SSFDP, there is one trade-off re-
lationship between the operating costs of container-
ships and the fuel costs (Wang, Meng 2012; Ronen 
2011; Wang et al. 2013a). While for the SSFDP under 
both the cap-and-trade programme and the carbon 
tax, there are three trade-off relations. The first rela-
tion exists between the operating costs of contain-
erships and fuel costs. The second relation exists 
between the containerships operating costs and the 
carbon emissions costs. The third relation exists be-
tween the heavy fuel oil costs and the marine diesel 
oil costs. Therefore, more trade-off factors should be 
weighed in the optimization process.

In view of the initial GHGs reduction strategy ap-
proved by International Maritime Organization (IMO), 
which will be adopted in 2018 (IAA PortNews 2016), this 
paper studies the SSFDP under carbon emissions policies. 
The aim of this study is to provide a scientific method 
to optimize speeds of ships, as well as number and types 
of containerships deployed on liner routes for container 
shipping companies. The remainder of this paper is organ-
ized as follows. In Section 1, the problem description is 
provided. In Section 2, the model formulation is present-
ed. A simulated annealing algorithm is designed to solve 
the problem in Section 3. To verify the applicability of the 
model and the effectiveness of the algorithm, numerical 
experiments are conducted in Section 4. The conclusions 
are presented in last section.

1. Problem description

This paper presents a SSFDP under two carbon emissions 
policies in container shipping that optimize the ship speed 
and fleet deployment decision. This tactical planning de-
cision is a major concern for container shipping compa-
nies (Ng 2014), and it remains unchanged for a period of 
3…6 months (Wang, Meng 2012). The length of planning 
horizon is assumed to be 3 months (i.e. 90 working days), 
as is the maximum period, over which the cost parameters 
can be regarded unchanged (Wang, Meng 2012). During 
the planning horizon, it can be regarded that the contain-
er shipping demand is generated evenly, which means on 
each route there is not much variation in the cargo size of 
different voyage. Besides, the container shipping demand 
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over the planning horizon is independent of frequency 
and is a priori known (Gelareh, Meng 2010). Therefore, 
we do not consider the issue of changes in container 
shipping demand. Containers are usually transported by 
container shipping companies with fixed sequence of call-
ing ports at a regular service frequency and a published 
freight rate (Wang, Meng 2017). As the freight rate is of-
ten comparatively constant and the container shipping 
demand is certain, the maximization of the total profit 
is equal to the minimization of the total operating costs 
(Xie et al. 2000). Usually, a container shipping company 
deploys various types of containerships on several routes. 
In order to deploy the appropriate containerships on these 
routes, it is crucial for the decision makers to solve three 
problems: (1) the relationships between ship speed and 
fuel consumption, (2) container shipping demand on legs, 
and (3) the composition of total weekly operating costs.

1.1. Relationships between ship speed  
and fuel consumption

A container shipping company operates various routes by 
set { }1, 2, ..., n , and { }...1, 2, ,r n∈  represents a route. These 
routes are regularly served by a set of containership types 
{ }1, 2, ..., m , and { }...1, 2, ,v m∈  represents a particular con-
tainership type.

Fuel consumption costs account for a large proportion 
of the total operating costs in container shipping, which 
are closely related to ship speed (Ronen 2011). These costs 
can be divided into the heavy fuel oil consumed by the 
main engines and the marine diesel oil consumed by the 
auxiliary engines (IMO 2015). Therefore, it is necessary to 
distinguish between these two types of fuel consumption, 
rather than to just consider heavy fuel oil consumption. 
For the heavy fuel oil, according to the third power rela-
tionship between heavy oil consumption and ship speed 
(Yao et al. 2012), if D

vS  [knot] stands for the designed speed 
of containership type v, and D

vF  [tons] stands for the daily 
main engine fuel consumption of containership type v on 
route r with ship speed svr [knot], the ship speed svr should 
be within the economic sailing interval min max,v vS S  . Let 
binary variable xvr be 1 if containership type v is deployed 
on route r. The heavy fuel consumption of containership 
type v can be calculated by Equation (1):
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Let Lr [n mile] be the distance of route r. The sailing 
time of every voyage of a containership on route r is in-
versely proportional to its speed svr, which can be given 
by Equation (2):
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These two kinds of fuel consumption of all container-
ships equal to the fuel consumption of a voyage for all 

containerships separately. s
vF  [tons/day] stands for the 

fuel consumption rate of the main engine of containership 
type v with ship speed svr. Therefore, the voyage heavy fuel 
oil consumption can be given by Equation (3):
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Therefore, the voyage heavy fuel oil consumption is 
proportional to the second power of the ship’s speed.

The function of the marine diesel oil costs is different 
from the heavy fuel oil costs. The minimal berthing time 

p
rT  [days] stands for the planed port calling time of every 

voyage on the route. The transit time for a containership 
type v to traverse route r includes sailing time and planed 
port calling time, which can be calculated by Equation (4):

( )p s
vr vr r rT x T T= ⋅ + .  (4)

The liner frequency is once a week and the number of 
deployed containerships should be integer values. When 
the number of containerships is a decimal value, a round-up 
function ⋅    is needed. Therefore, the number of contain-
ership type v on route r can be calculated by Equation (5):
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The deployed containerships of each type on all routes 
are limited to the number of containerships Nv owned by 
the container shipping company.

The transit time equals to the number of container-
ships multiplied by the weekly frequency. The actual 
berthing time of every voyage a

rt  [days] on route r should 
be adjusted by the sailing time of the voyage, which can be 
calculated by Equation (6):
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0
vF  [tons] stands for the daily auxiliary engine fuel 

consumption when berthing. For the voyage marine die-
sel oil consumption, it can be calculated by Equation (7):
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Therefore, the voyage marine diesel oil consumption is 
inversely proportional to the ship’s speed.

1.2. Container shipping demand on legs

A container shipping company provides regular shipping 
services on different liner routes once a week. The ports 
of call on every liner route and their sequence have been 
decided in advance. When serving a route, a container-
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ship starts its voyage at the first port of the route, travels 
to successive ports and finishes the voyage at its last port. 
Some port calls on the routes and at the end of the routes 
always loading and discharging cargo. The same type of 
containerships should be deployed on the same route with 
uniform speed (Pantuso et al. 2014). The capacity of the 
deployed containerships should exceed the container ship-
ping demand between any two consecutive ports, which 
need to be calculated indirectly through the container 
shipping demand between any port pairs.

Let Nr be the number of calling ports on route r, and 
the sequence of the calling ports can be expressed as fol-
lows: …1 2 1rN→ → → → . Two consecutive ports on a 
shipping line r constitute a leg (Meng, Wang 2011). When 
a containership sails from port k to port k  + 1 (leg k), 
the containers carried by the containership will include 
the ones loaded from the previously visited ports, which 
may be unloaded at port k + 1 or at subsequent ports, and 
those loaded at port k. ij

rD  [FEUs] denotes the container 
shipping demands from port i to port j on route r, and k

rY  
[FEUs] denotes the container shipping demand of leg k 
on route r. Equation (8) indicates the container shipping 
demand of the first leg on route r:
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The container shipping demand of the subsequent legs 
on route r can be calculated based on the first leg. The 
container shipping demand of leg k on route r equals to 
the shipping demand of leg k  – 1 minus the unloading 
demand of the containers on port k plus the loading de-
mand of the containers on port k. The container shipping 
demand of the leg { }...2, , rk N∈  on route r is given by 
Equation (9):
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1.3. The composition of total weekly operating costs

The SSFDP aims at minimising the total weekly operating 
costs of the container shipping company. It is necessary to 
note that the total weekly operating costs include operat-
ing costs of the deployed containerships, fuel costs, carbon 
emissions costs and port calling costs.

Let Cv [$/day] be the daily operating costs of each con-
tainership of type v. The operating costs of the deployed 
containerships can be calculated by Equation (10):
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P1 [$/ton] denotes the average price of heavy fuel oil 
during the planning period. P2 [$/ton] denotes the aver-
age price of marine diesel oil during the planning period. 
These two types of fuel consumption multiplied by their 
corresponding price equals to the fuel costs separately. Be-
cause these fuels conduce to air pollution in the form of 
sulphur and particulate matter, various international or-

ganisations and institutions impose environment stand-
ards to limit the emission of green gases (Sys et al. 2016). 
In 2008 the IMO decided on more stringent requirements 
for airborne emissions of sulphur dioxide from sea trans-
ports in the Sulphur Emission Control Area (SECA) (Vi-
erth et al. 2015). It means that containerships entering the 
region, which need to adhere to SECA regulation, contain-
erships should only use the more expensive marine gas oil 
with lower sulphur for both the auxiliary power and the 
main engine (Schinas, Stefanakos 2012). Let Lr1 [n mile] 
be the distance in sulphur emission control areas on route 
r. Let Tr1 [days] be the berthing time in sulphur emission 
control areas on route r. P3 [$/ton] denotes the average 
price of marine gas oil during the planning period. Thus, 
fuel costs can be calculated by Equation (11):
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Carbon emissions are produced by fuel consumption. 
A1 [g/gfuel] and A2 [g/gfuel] denote the carbon emissions 
factor of the heavy fuel oil and maritime diesel oil, respec-
tively. A3 [g/gfuel] denotes the carbon emissions factor of 
the marine gas oil. Therefore, total carbon emissions on all 
routes can be given by Equation (12):
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By implementing the carbon tax policy, carbon emis-
sions are transferred to the carbon emissions costs, which 
can be added into the total weekly operating costs func-
tion. E [$/ton] denotes carbon tax per ton. Therefore, the 
carbon emissions costs can be calculated by Equation (13):
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Regarding the cap-and-trade programme policy, car-
bon emissions are controlled at a certain level under car-
bon emissions cap. If the cap of total carbon emissions on 
all routes is Ue [tons], it can be given by Equation (14):
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The port calling costs include the fixed costs and the 
variable costs. The fixed costs are determined by the loca-
tion of the port and the capacity. Let Gri [$] be the fixed 
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cost for visiting port i on route r. The variable costs are 
concerned with the type of containerships in the calling 
ports. Let Ori [$/FEU] be the variable costs for visiting 
port i on route r. Let Bv [FEUs] be the container capacity 
of containership type v. Thus, the port calling costs can be 
calculated by Equation (15):

( )
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2. Model formulation

Based on the assignment of different types of container-
ships for each route, the optimized ship speed and fleet 
deployment should be designed, which should minimize 
the total weekly operating costs of the container shipping 
company. According to the above analysis, the proposed 
SSFDP model under the cap-and-trade programme policy 
and the carbon tax policy can be formulated as follows:
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The objective function (16) minimizes the total weekly 
operating costs. Constraint (17) ensures that the capacity 
of the containerships deployed on route r satisfy the con-
tainer shipping demand of each leg. Constraint (18) states 
the carbon emissions cap of all routes. Constraint (19) 
states the sailing time of every voyage of containerships 
on route r. Constraint (20) determines the transit time 
of a containership type v to traverse route r. Constraint 
(21) determines the number of type v containerships on 
route r, which should meet the weekly service require-
ment. Constraint (22) is the actual port calling time of 
every voyage on route r. Constraint (23) states that the 
number of deployed containerships of each type should 
not exceed the number of containerships owned by the 
container shipping company. Constraint (24) guarantees 
that every route is deployed with only one type of con-
tainership. The range of the ship speed can be ascertained 
from constraint (25). Then, in constraint (26), the binary 
variable xvr is the key to determine whether the container-
ship type v is deployed on route r. Finally, constraint (27) 
ensures the number of the deployed type v containership 
on route r are integers.

3. Algorithm

The above model is a non-linear mixed integer program-
ming model with non-liner terms in its objective func-
tion  (16), which has a quadratic term and a reciprocal 
term. Moreover, constraints (18)–(22) are all non-liner 
terms. It is a hard combinatorial optimization problem 
where the decision variables include continuous vari-
ables, integer variables and binary variables. Besides the 
number of deployed containerships, constraint involves 
rounding issue. Such a mixed-integer nonlinear program-
ming model is not a very well explored field and there is 
no commercial software, which allows to solve this kind 
of problem directly in an efficient way (Teghem et  al. 
1995). Therefore, an effective algorithm should be cho-
sen to tackle this model. The Simulated Annealing Algo-
rithm (SAA) is a process for solving optimization prob-
lems by reducing search space (Kirkpatrick et al. 1983). 
This algorithm is designed to find a global optimal result 
faster than other unsophisticated random search meth-
ods (Ketabchi, Ataie-Ashtiani 2015; Zhao, Zeng 2006). 
It works efficiently on a neighbourhood search within 
solution space, acceptance probability, and inferior so-
lutions to escape from being trapped in a local mini-
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mum energy state (Javadian et  al. 2011). Furthermore, 
the SAA have been proved to be extremely efficient for 
solving the hard combinatorial optimization problems 
(Teghem et al. 1995; Jahangiri et al. 2011). Thus, we em-
ploy this method to solve the proposed model founded 
in this paper. The flowchart of the SAA for the SSFDP 
under carbon emissions policies is described in Figure 1.

The main steps of the SAA are explained as follows.
Step 1: Generating an initial solution. There are m 

types of containerships; sort these containerships by size 
from smallest to largest. The initial solution S1 has two 
parts. Part 1 represents the fleet deployment matrix with 
the number of 1 or 0 with m×n dimension (1 means the 
deployment of containerships on the route, and 0 means 
no deployment). Part 2 represents the ship speed matrix 
with m×n dimension (the non-zero real number repre-
sents the corresponding ship speed on the route). Com-
pare Bv (container capacity of containership type v) with 

k
rY  (the container shipping demand of leg k on route r). 

If k
r vY B< , then the containerships type v and the latter 

containerships can be deployed on this route; these con-
tainership types are deemed viable containerships in the 
following text because the same type of containerships 
should be deployed on the same route. Number 1 only ap-
pears once in each column in the fleet deployment matrix. 
The ship speed matrix columns generate values within the 
ship speed range at the same places corresponding to the 
fleet deployment matrix, whereas the others are coded 
as 0. Figure 2 shows an initial solution for three types of 
containerships with three routes. This method can quickly 
generate the initial solution, which increases the speed of 
the solutions of the following steps.

Step 2: Creating new solutions. Select any column cod-
ed 1 in the fleet deployment matrix for the current solution 
and then change it from 1 to 0. Therefore, the values of the 
corresponding places in the fleet deployment will change 
to 0. Additionally, redeploy the viable containerships on 
this route by changing the position number of this column 
from 0 to 1. Furthermore, the values of the correspond-
ing locations in the ship speed matrix can be generated 
within the ship speed range. Thus, the fleet deployment 
and ship speed matrices constitute a new solution S2.

Step 3: Acceptance criterion of the new solutions. The 
total weekly operating costs ( )C S  can be calculated by 
Equation (16). When the total carbon emissions exceed 
their cap Ue, this can be expressed by Equation (28):

( )1 1

1 1 24

m n s
v r r

vrv r

A F L L
s= =

 ⋅ ⋅ −
+ ⋅

∑∑

( )3 1 0 0
2 1 3 124

s
v r a

v r r v r
vr

A F L
A F t T A F T

s
⋅ ⋅

+ ⋅ ⋅ − + ⋅ ⋅ ×⋅ 
vr ex U> .  (28)

Then, penalty costs H0 should be added to the above 
costs. Thus, the total weekly operating costs function can 
be given by Equation (29):

( ) ( ) 0Z S C S H= + .  (29)

Different solutions obtain a different number of con-
tainership type v on route r. When the number of con-
tainership type v surpasses the number of shipping com-
pany’s owned containerships, this can be expressed by 
Equation (30):

1

n

vr vr v
r

x n N
=

⋅ ≥∑ .  (30)

The excessive containership’s operating costs will be 
added into the penalty costs. The penalty cost of each con-
tainership is M0. Thus, the total weekly operating costs can 
be calculated by Equation (31):

( ) ( ) 0
1

n

vr vr v
r

Z S C S M x n N
=

 
 = + ⋅ ⋅ −
 
 
∑ .  (31)

Therefore, the total weekly operating costs of the initial 
solution is ( )1Z S , and the new solution is ( )2Z S . The costs 
difference are ( ) ( )2 1dZ Z S Z S= − . If 0dZ < , the new so-
lution will be accepted with the probability of 1; otherwise, 

it will be accepted with the probability of exp dZ
T

 − 
 

.

Step 4: Algorithm termination judgement. The algo-
rithm annealing process is controlled by the contempo-
rary temperature. The original temperature is T0, and the 
terminal temperature is Tend. We conduct an iteration L 
times at each temperature and decrease the temperature 

Figure 1. Flow chart of simulated annealing algorithm
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by the cooling rate of q. In other words, the new tempera-
ture is T q T= ⋅ , and the optimization solution is selected 
based on the acceptance criterion of the new solutions. 
The algorithm stops if the final temperature T is smaller 
than the terminal temperature. The last step is to generate 
the final solution.

4. Numerical experiments

In this section, four liner routes from Asia to the west 
coast of the United States were selected to verify the appli-
cability and effectiveness of the established model and the 
algorithm. Data were selected from the benchmark suite 
(Brouer et al. 2014). Table 1 illustrates the parameters of 
the four routes, including the route distance, port calling 
sequence and the minimal berthing time. Table 2 illus-
trates the parameters of the containerships, such as the 
capacity of containerships, the operating cost of each type 
of containership, the containerships owned by the ship-
ping company, etc.

There are 126 pairs of demand for the four routes in 
the benchmark suite. We only show one examples of the 
container shipping demand between port pairs. For exam-
ple, the container shipping demand from the port of Los 
Angeles to Shanghai is 420 FEUs. The fixed costs of the 
calling port are determined by the geographical location 

and the capacity, and the variable costs are related to the 
capacity of the containerships visiting the port. For exam-
ple, the fixed costs of the Los Angeles port are 6876 $/visit, 
and the variable costs are 2 $/FEU.

We do not consider the SECA regulation in this numer-
ical experiments, so Lr1 = 0, Tr1 = 0, { }1, 2, 3, 4r∈ . Accord-
ing to the Third IMO Greenhouse Gas Study 2014 (IMO 
2015) and current market situations. The other parameters 
used in the model are given as follows: 1 fuel3.114 g/gA = , 

2 fuel3.206 g/gA = , 1 300 $/tonP =  and 2 600 $/tonP = . The 
carbon tax is 10 $/tonE =  and the carbon emissions cap 
is 4000 tonseU = .

Computer calculations of the SAA were performed 
with different parameters. To find better parameters, the 
robustness of the proposed SAA was measured for ten 
cases, shown in Table 3. D is the deviation ratio between 
the objective value and the minimum objective value.

The SAA parameters were selected based on the results 
in Table 3: the original temperature is set to be 0 2000T =  , 
the terminal temperature is 410endT −= , iteration per 
temperature is L = 500, and temperature cooling rate is 
q = 0.98. The penalty costs should be set to a large value: 

9
0 10 $M = , 9

0 10 $H = . The model described in Section 3 
and the SAA were implemented with the Windows 7 Oper-
ating system. All numerical experiments were performed 
with a personal computer with an Intel Core i7 processor  

Table 1. Parameters of routes

r Lr [n mile] …1 2 1rN→ → → → p
rT  [days]

1 13224 Dalian  →  Pusan → Tokyo → Vancouver → Seattle → Los Angeles → Yokohama → Shanghai 2.7
2 13144 Hong Kong → Yantian → Kaohsiung → Los Angeles → Oakland → Pusan → Xiamen 3.2
3 13140 Yantian → Fuzhou → Yokohama → Oakland → Los Angeles → Tokyo → Kaohsiung 2.3
4 15849 Singapore → Ho Chi Minh → HongKong → Shanghai → Kobe → Oakland → Seattle → Xiamen 2.0

Table 2. Parameters of fleets

v, v ∈ V Bv [FEUs] Cv [$/day] Nv D
vS  [knot] min

vS  [knot] max
vS  [knot] 0

vF  [tons] D
vF  [tons]

1 7500 55000 15 17.0 12 22 10.0 126.9
2 4200 35000 14 16.5 12 23 7.4 82.2

Table 3. Measuring robustness of the proposed SAA

Number Initial 
temperature

Temperature 
cooling rate

Final 
temperature

Number of 
iterations

Objective value
[million $] D [%]

1 2000 0.99 0.0001 400 11.770 0.07
2 1000 0.99 0.0001 300 11.765 0.03
3 2000 0.98 0.0001 500 11.762 0.00
4 1000 0.98 0.0001 300 11.764 0.02
5 1000 0.98 0.001 500 11.766 0.03
6 1000 0.97 0.001 300 11.767 0.04
7 2000 0.97 0.001 500 11.769 0.06
8 2000 0.96 0.0001 400 11.772 0.09
9 1000 0.96 0.0001 300 11.775 0.11

10 1000 0.96 0.001 500 11.778 0.14
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having 3.6 GHz CPU, 8 GB RAM. The optimization re-
sults obtained by SAA indicate Route 1 and Route 4 are 
deployed with 4200 FEUs containerships and Route 2 and 
Route 3 are deployed with 7500 FEUs containerships. The 
ship speeds of containerships on four liner routes are 14.1, 
14.2, 13.8 and 14.1 knots, respectively. The corresponding 
numbers of containerships are 6, 6, 6 and 7. Total week-
ly operating costs are 11.762 million $ and total carbon 
emissions are 31298 tons.

In order to further validate the effectiveness and ef-
ficiency of SAA, we refer to the Discretization Method 
(hereafter DM) (Wang et al. 2013a, 2013b; Gelareh, Meng 
2010; Yao et al. 2012) used in recent researches on solving 
ship speed optimization problems. The solution obtained 
by DM can be regarded as an approximate exact solution. 
This method takes the reciprocal of ship speed as a new 
decision variable and then discretize the new variable 
(Wang et al. 2013a, 2013b). Therefore, the nonlinear pro-
gramming model is transformed into a linear program-
ming model, which can be solved by CPLEX. The detailed 
solving process of DM is given in the Appendix.

After traversing all the values of xvr, the optimization 
results of SSFDP obtained by CPLEX are shown in Table 4.

Table 4 shows that the optimization results obtained 
by the DM are consistent with the results obtained by the 
SAA. It can be seen that the optimization effects of these 
two methods are the same. Since the DM is a method that 
generates approximate exact solution, it indirectly indi-
cates that the SAA is effective.

However, using the DM on the proposed model needs 
a relatively long solving time. That is because the nonlinear 
model has to be transformed to an integer linear program-
ming model in advance. This transformation process adds 
a large number of integer variables, which poses consider-
able computational difficulties. Furthermore, when there 
is a large number of liner routes and containership types, 
the model transformation should consider different com-
binations of containership types and liner routes. The DM 
needs a lot of human-computer interaction. Therefore, the 
DM is not easy to apply in practice. Comparing with the 
DM, the SAA is relatively simpler and faster. It illustrates 
widely that the SAA is efficient in solving the proposed 
model in this paper.

The following sections analysed the optimization re-
sults from three perspectives: under the consideration of 
either the cap-and-trade programme policy or the carbon 
tax policy and with both of the policies.

4.1. Results analysis under different  
carbon emissions caps

To study the impact of the carbon emissions caps, we ig-
nore the carbon tax (E = 0). When the total weekly op-
erating costs reaches the lowest value, carbon emissions 
are U = =31298 tonsU . For the SSDFP model, containerships 
sailing at the lowest speed would achieve the lowest car-
bon emissions, or conversely. Therefore, there is a mini-
mum value of min 23245 tonseU =  and a maximum value 
of max 80 467 tonseU =  of carbon emissions on all routes. 
Take a special condition as an example, there is no car-
bon emissions cap on total carbon emissions, so eU = ∞ . 
Therefore, the carbon emissions caps are divided into four 
intervals. Table 5 shows the SSFDP optimization results 
under different carbon emissions intervals.

It is obvious that the smaller the carbon emissions cap 
is, the smaller the range of the feasible solutions. Table 5 
shows that for the first case, there is no viable solution 
if the carbon emissions cap is less than 23245 tons, be-
cause carbon emissions cannot be less than its minimum 
value. For the second case, when the carbon emissions 
cap is set between 23245 and 31298 tons, the SSFDP op-
timization results depend on the carbon emissions cap. 

Table 4. The optimization results of SSFDP

Route number

Parameter
1 2 3 4

s1r 14.2 13.8
s2r 14.1 14.1
n1r 6 6
n2r 6 7
Total weekly operating costs 
[million $] 11.762

Carbon emissions [tons] 31298

Table 5. SSFDP results under different carbon emissions intervals

)0, 23245eU ∈ )23245, 31298eU ∈ )31298, 80467eU ∈ )80467,eU ∈ +∞
Route number Route number Route number Route number

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
s1r

no solution results depend on Ue 

14.2 13.8 14.2 13.8
s2r 14.1 14.1 14.1 14.1
n1r 7 6 7 6
n2r 6 7 6 7
Total weekly operating 
costs [million $] >11.449 11.449 11.449

Carbon emissions 
[tons] depend on Ue 31298 31298
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It is certain that the higher the carbon cap is, the lower 
the total weekly operating costs. If the carbon emissions 
cap is close to the lower limit of this interval, container-
ships sail at a low speed close to its minimum speed with 
more containerships. Only in this case does the container 
shipping company need to adjust its ship speed and fleet 
deployment decision based on the carbon emissions caps. 
The third case obtains the minimum total weekly operat-
ing costs of 11.449 million $, and the carbon emissions are 
31298 tons. In addition, the number of containerships de-
creases as the ship speed increases. The results of the last 
case it the same with the third one. Comparing the second 
case with the last two cases, carbon emissions could be 
better controlled, but the total weekly operating costs will 
increase. The last two cases have the same optimization 
results; thus, the carbon emissions cap has no impact on 
controlling the carbon emissions if the cap value is too 
large. Consequently, once the carbon emissions cap is set 
at an unreasonable level, a cap-and-trade policy will not 
restrict carbon emissions. In other words, container ship-
ping companies could optimize the ship speed and fleet 
deployment strategy only on the basis of minimising the 
total weekly operating costs without regarding the carbon 
emission cap.

4.2. Results analysis under different carbon taxes

When we study the impact of different carbon taxes, 
the carbon emissions cap is also ignored in this condi-
tion ( )eU = ∞ . The carbon taxes were selected from 0 to 
40  $/ ton at 10 $/ton interval. Table 6 shows the SSFDP 
optimization results under different carbon taxes.

Table 6 shows that the capacity of containerships are 
4200 FEUs on Route 1 and Route 4, and the capacity of 
containerships are 7500 FEUs on Route 2 and Route 3. As 
carbon taxes increases, the liner ship speed has a declin-
ing trend while the number of deployed containerships 
increases. The higher the carbon taxes are, the closer the 
ship’s speed is to its minimum speed. Obviously, the to-
tal weekly operating costs increase from 11.449 million 
dollars to 12.866 million dollars, but the rate of growth 
is gradually reduced. Carbon emissions are relatively 
large with no carbon tax imposed. When carbon tax is 
10 $/ ton, ship speed and the number of deployed contain-

erships remain unchanged. Therefore, if the carbon tax is 
set relatively low, there is no impact on reducing carbon 
emissions. Ship speed and fleet deployment decision has 
not changed, while total weekly operating costs for con-
tainer shipping companies has increased. When carbon 
taxes increase to 20 $/ton and 30 $/ton, carbon emissions 
decrease to 27797 tons and 23245 tons, respectively. Thus, 
the carbon tax policy will lead to a moderate reduction of 
carbon emissions and a growth of total weekly operating 
costs. In conclusion, with the increase of carbon taxes, car-
bon emissions will show a ladder form of declining trend 
instead of a continuous one. Considering the carbon tax 
policy, the target-oriented goal is to minimize the total 
weekly operating costs, so the amount of carbon emissions 
cannot be effectively control.

4.3. Results analysis under different carbon 
emissions caps and carbon taxes

In this section, sensitivity analysis was performed to 
explore the impact of changes on the ship speed and fleet 
deployment when both the cap-and-trade programme 
policy and the carbon tax policy are imposed. Once the 
ship speeds on each route are determined, the number of 
deployed containerships is easy to obtain. The four routes 
with different ship speed are shown by three-dimensional 
graphics in Figure 3.

According to Figure 3, Route 1 and Route 4 have simi-
lar graphic trends, because these two routes have the same 
type of containerships, and so do Route 2 and Route 3. 
Therefore, the impact of the two policies on the same type 
of containership is similar. In addition, reducing carbon 
emissions caps and increasing carbon taxes can reduce 
the ship speeds on Route 1 and Route 4. For Route 2 and 
Route 3, reducing carbon emissions caps can reduce ship 
speeds, while increasing the carbon tax has little effect on 
ship speed changes. This result is due to the deployment 
containerships on Route 2 and Route 3 being the larger 
ones, with higher operating costs, and reducing speed may 
increase the number of containerships, resulting in a sharp 
increase in the total weekly operating costs. The optimi-
zation results not only reduce the total weekly operating 
costs but also reduce carbon emissions, which makes the 
overlap effect of the two policies more obvious.

Table 6. SSFDP optimization results under different carbon taxes

0 $/tonE = 10 $/tonE = 20 $/tonE = 30 $/tonE = 40 $/tonE =

Route number Route number Route number Route number Route number

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
s1r 14.2 13.8 14.2 13.8 14.2 13.8 12.0 12.0 12.0 12.0
s2r 14.1 14.1 14.1 14.1 12.0 12.3 12.0 12.3 12.0 12.3
n1r 6 6 6 6 6 6 7 7 7 7
n2r 6 7 6 7 7 8 7 8 7 8
Total weekly operating 
costs [million $] 11.449 11.762 12.158 12.634 12.866

Carbon emissions [tons] 31298 31298 27797 23245 23245
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Figure 3. Changes in ship speeds under different carbon taxes and the carbon emissions caps

Figure 4. Changes in total weekly operating costs under different carbon emissions caps and different carbon taxes
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In addition, based on the sensitivity analysis, the re-
lationship between total weekly operating costs increased 
under the different carbon emission caps and different 
carbon taxes on the four routes, as shown in Figure 4.

Figure 4 shows that with the increase of carbon taxes 
and the decrease of carbon emissions caps, there is a sig-
nificant growth in the total weekly operating costs. There 
is no doubt that increasing carbon taxes and decreasing 
the carbon emissions caps will lead to a dramatic increase 
in the carbon emissions costs than only one policy, which 
is the main factor contributing to the increase in the to-
tal weekly operating costs. Meanwhile, as mentioned, 
the increasing carbon taxes and the decreasing carbon 
emissions caps will induce a sharp ship speed reduction. 
However, if the carbon taxes are higher or the carbon 
emissions caps are lower, the result will not necessarily be 
better. Because each containership has its own minimum 
ship speed, when the ship speed is close to its minimum 
speed, carbon emissions policies do not achieve the effect 
of reducing carbon emissions.

Maintaining the original ship speed and the number 
of deployed containerships does not achieve the minimi-
zation of the total weekly operating costs under carbon 
emissions policies. With the development of a low-carbon 
economy, the container shipping company should not only 
emphasize operating costs minimization, but also take the 
related environmental issues into consideration. Therefore, 
the optimization results of the SSFDP should be adjusted 
accordingly once the GHGs reduction strategy approved 
by IMO is adopted. This paper also provided a scientific 
basis for container shipping companies to implement a 
ship speed and fleet deployment optimization strategy 
under carbon emissions policies.

Conclusions

This paper studied the optimization of ship speed and fleet 
deployment under two carbon emissions policies, the cap-
and-trade programme and the carbon tax. A non-linear 
mixed integer programming model was formulated. In 
view of its convex and non-linear properties, a simulated 
annealing algorithm was designed to solve the problem. 
Numerical experiments have been carried out to verify 
the applicability and effectiveness of the proposed mod-
el and the algorithm. The computational results showed 
that the increasing of carbon taxes and the decreasing of 
carbon emissions caps will induce a sharp ship speed re-
duction and an increment of the containership number. 
Meanwhile, it will lead to a significant growth in the to-
tal weekly operating costs and a dramatic decrease in the 
carbon emissions. To achieve the goal of reducing carbon 
emissions, the implementation of the two carbon emis-
sions policies can better deal with the ship speed optimi-
zation and FDP.

The contributions of this paper are three-fold. First, 
this paper takes the initiative to study the effect of impos-
ing the cap-and-trade programme policy and the carbon 
tax policy simultaneously on the SSFDP, which is likely 
to match the practical development trend of the shipping 

industry. Second, this study calculates the heavy fuel oil 
consumption and the marine diesel oil consumption sepa-
rately. Therefore, the fuel consumption results are more 
accurate. Third, managerial insights from the numerical 
experiments are obtained, providing significant guidelines 
for container shipping companies.

Future research directions are as follows: First, aver-
age fuel prices in this paper are regarded as constant in 
the planning period. With two carbon emission policies, 
changes in average fuel prices may also affect the opti-
mization results of the ship speed and fleet deployment. 
Since the average fuel price may be different during dif-
ferent planning period, it should be re-valued in the next 
planning period. Second, the freight rate fluctuation is not 
considered in our model. In this paper, the freight rate 
between any two ports is regarded stable during the plan-
ning period. But it is possible that customers seek fast de-
livery and are willing to pay higher prices for saving time. 
Then total profit will be affected. In such a case, container 
shipping companies should regard the maximization of 
total profit as an objective function rather than the mini-
mization of total operating costs. These two points can be 
further studied.
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APPENDIX

In order to solve the proposed model by the DM, we ex-
pand this model with all relevant variables as follows:
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This model is a mixed-integer nonlinear programming 
model with nonlinear terms in its objective function (1) 
and constraints (3)–(7). The binary variable xvr increases 
the complexity of the model. In order to solve this prob-
lem, we can first determine which type of containerships 
is deployed on the route r. Due to the decision of the ship 
type on each route, we remove all the subscripts of con-
tainership type v from the parameters and variables. For 
example, the ship speed svr of type v on route r can be 
expressed as sr. The above model can be simplified as fol-
lows:
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It should be pointed out that there is a quantitative con-
straint on each type of containerships, so constraint (20) 
contains the subscripts of containership type v. It is obvi-
ous that both the objective function and the constraints 
contain the reciprocal of ship speed sr as the main fac-
tor that causes the non-linearization of the model. We 
define new decision variables: 1
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Though nonlinear constraints (16)–(19) are trans-
formed into linear constraints, this model is still a mixed-
integer nonlinear programming model. The objective 
function (23) and constraint (25) have nonlinear terms 
owing to the new decision variables wr, r ∈ R. If each wr 
is given a specific value, all the nonlinear terms could be-
come linear. Therefore, we discretize the decision variables 
wr at a certain interval and choose one of them for each 
route. The discretization value of wr should correspond 
to the ship speed sr, because the value of sr is of practi-
cal significance. Usually, the optimization results of ship 
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speed retain to the first decimal place in the unit of knots 
(Wang, Meng 2012; Ronen 2011). Thus, the range of sr 
can be divided into Qr segments at 0.1 knot intervals. The 

number of segments on route r is 
max min
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r r
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Then, the above model can be transformed into an 
equivalent integer programming model as follows:
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Constraint (41) indicates that only one single ship 
speed value is adopted to each liner route. Finally, the 
transformed model can be efficiently solved by the opti-
mization solver such as CPLEX.


