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Abstract. Due to the paucity of well-established modelling approaches or well-accepted travel time distributions, the exist-
ing travel time models are often assumed to follow certain popular distributions, such as normal or lognormal, which may 
lead to results deviating from actual ones. This paper proposes a modelling approach for travel times using distribution 
fitting methods based on the data collected by Automatic Vehicle Location (AVL) systems. By this proposed approach, a 
compound travel time model can be built, which consists of the best distribution models for the travel times in each period 
of a day. Applying to stochastic vehicle scheduling, the influence of different travel time models is further studied. Results 
show that the compound model can fit more precisely to the actual travel times under various traffic situations, whilst the 
on-time performance of resulting vehicle schedules can be improved. The research findings have also potential benefit for 
the other research based on travel time models in public transport including timetabling, service planning and reliability 
measurement.
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Introduction

In public transport (e.g. bus, tram and train), a service 
line contains a series of intermediate stops between two 
termini (or with one terminal in a circle line). The service 
from a terminal to another is called a trip, of which the 
duration is called a trip time and consists of a set of seg-
ment travel time between two consecutive stops and a set 
of dwell time at each intermediate stop. The travel time at 
each route segment usually varies dramatically in different 
(e.g. peak- or off-peak) periods through a day due to fickle 
traffic, uncertain passenger demands and vehicle malfunc-
tion, etc. It is well known that the travel time is hard to be 
precisely measured and predicted (Chakroborty, Kikuchi 
2004; Vu, Khan 2010; Ng et al. 2011). However, the travel 
times and their distributions are essential and fundamen-
tal for the research in different areas of public transport, 
including, for example, the bus route design (Kuo et al. 
2013), service planning (Furth, Muller 2007), reliability 
measurement (Van Lint et al. 2008; Mazloumi et al. 2010), 

timetable optimization (Yan et al. 2012), bus dispatching 
(Dessouky et al. 1999), and vehicle scheduling (Zhao et al. 
2006; Xu, Shen 2012). Moreover, the travel time is also the 
concern of passengers, which is one of key criteria for bus 
service quality (Abkowitz, Tozzi 1987; Uniman et al. 2010; 
Van Oort et al. 2012; Mori et al. 2015). Therefore, model-
ling the travel times properly has great significance to the 
research and practice in public transport.

Since the distribution of travel times can reflect the 
nature and shape of the travel time variability, it has been 
increasingly applied as a measurement of travel times 
(Srinivasan et al. 2014). Various distribution models have 
been suggested for travel times, amongst which the nor-
mal and lognormal distributions are the most popular. 
For instance, in the study of travel time reliability meas-
urement, Mazloumi et al. (2010) suggested that the travel 
time tended toward a normal distribution in peak time 
and a lognormal distribution in off-peak time. In the 
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study of the timetable optimization problem, Yan et  al. 
(2012) aimed to minimize the early and late arrival times, 
in which stochastic bus travel times were assumed to fol-
low the lognormal distribution. Dessouky et  al. (1999) 
summarized the travel time distribution models applied 
in thirteen studies on dispatching problems, in which the 
normal, lognormal and gamma distributions were mostly 
used. Kieu et al. (2015) proposed a comprehensive hybrid 
approach to investigate the travel time distribution, in 
which lognormal was finally selected from 23 candidate 
distribution models to describe the travel time variabil-
ity, and then was applied to set the recovery times in a 
timetable. Taylor and Susilawati (2012) found that the 
Burr distribution was better fit to the bus travel times in 
a real-world instance, since it had a flexible shape with 
the ability to describe the data with significant skewness. 
Generally, the research based on the assumed travel time 
distributions has been active in many areas for decades. 
However, it is still hard to judge, which of these commonly 
assumed models fit generally to actual travel time distri-
butions, since the observed travel time distributions vary 
dramatically in different scenarios.

Amongst the application areas of travel time distribu-
tion in public transport, vehicle scheduling can be selected 
to demonstrate the significance of modelling travel time 
distributions, since the travel times are essential for ve-
hicle scheduling and affect the on-time performance and 
operating cost of vehicle schedules (Ceder 2007). The 
Vehicle Scheduling Problem (VSP) is concerned with 
the allocation of a set of predetermined service trips to 
a fleet of vehicles in such a way that the total number 
of vehicles and operating cost are minimized (Huisman 
et al. 2004). In a resulting schedule, the daily work of a 
vehicle starts from a pull-out from a depot, followed by 
a sequence of service trips, and ends at a pull-in to the 
depot. In traditional VSPs, the travel time for each ser-
vice trip (i.e. scheduled trip time) is assumed to be fixed, 
which is set deterministically in advance. The scheduled 
trip time profoundly affects the on-time performance and 
cost of vehicle schedules (Zhao et al. 2006). Early practice 
of setting scheduled trip times is normally based on hu-
man experiences (Furth, Muller 2007), which results in 
lack of accuracy.

In the past decades, the transport systems are increas-
ingly equipped with Automatic Vehicle Location (AVL) 
systems. Large amounts of AVL data recorded by these 
systems have facilitated the setting of scheduled trip times 
for vehicle scheduling. Various methods have been devel-
oped for setting fixed scheduled trip times more accu-
rately (Muller, Furth 2000; TRB 2003; Furth et al. 2006; 
Salicrú et al. 2011) based on the AVL data.

To achieve better on-time performance and cost ef-
ficiency of vehicle schedules, stochastic, instead of fixed 
scheduled trip times are considered in vehicle schedul-
ing. In such vehicle scheduling methods, a set of scenarios 

of the trip time probability is generally applied, which is 
derived from the AVL data in advance. For example, Hu-
isman et al. (2004) proposed a robust solution approach 
to the dynamic VSP, in which a stochastic programming 
problem was solved periodically with the consideration 
of future travel times in multiple scenarios. Each scenario 
provided the travel time probability based on historical 
data. Later, using these scenarios, Naumann et al. (2011) 
proposed a stochastic approach for vehicle scheduling 
aiming to reduce planned costs and disruption costs 
caused by delays.

Obviously, introducing the stochastic trip times to the 
VSP has increased the reliance on travel time distribu-
tions. However, the quantity and quality of the AVL data 
may be unreliable since these systems are often designed 
and deployed for monitoring uses. Such shortcoming 
would bring inaccuracy into the scenarios derived from 
the data without calibration and hinder the application of 
the scenarios to the VSP. Consequently, either these sce-
narios or the commonly assumed travel time distributions 
(e.g. normal or lognormal) may deviate from actual travel 
time distributions and influence the accuracy of compu-
tational results.

Different from the common practice of using assumed 
distribution models, this paper proposes a modelling ap-
proach for travel times using distribution fitting methods 
based on AVL data. The proposed modelling approach 
aims to build a compound travel time model consist-
ing of the best distribution models for the travel times 
in each period of a day. The detail of the approach will 
be presented in Section 1. To demonstrate its value and 
efficiency, an application to the Stochastic Vehicle Sched-
uling Problem (SVSP) is carried out and the VSP model 
is described in Section 2. Experiments are displayed in 
Section 3, where results show that the compound model 
can fit more precisely to the actual travel times under vari-
ous traffic situations, whilst the on-time performance of 
resulting vehicle schedules can be improved. Finally, the 
concluding remarks are given in last section.

1. Modelling travel time distributions  
using distribution fitting methods

To obtain a compound model fitting to actual travel time 
distributions, a series of basic statistical tools are integrat-
edly employed in our travel time modelling approach. The 
basic idea is as follows: an empirical travel time distribu-
tion for each period during a day is firstly obtained based 
on AVL data; then a set of candidate distribution models 
are suggested in light of the normality of the empirical 
distributions; finally, the model fitting best to actual travel 
times is decided for each period during a day using distri-
bution methods, and then a compound travel time model 
is constituted of these best distribution models for each 
period.
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1.1. Obtain the empirical distributions  
of travel times based on AVL data

With the data pre-processing method introduced in re-
search by Xu and Shen (2012), the observed travel time 
samples are firstly abstracted from the AVL data. Con-
sidering the factors that can distort travel times, the AVL 
data, corresponding to different days, such as workday, 
weekends, holiday seasons and the periods with seasonal 
climatic conditions and long-term construction projects 
etc., is normally classified into different sample sets. 
Moreover, some missing or wrong AVL records may exist 
due to the errors in the recording or matching procedure; 
therefore, these incorrect or missing records will be cor-
rected, filtered out or made up in advance.

Given a set of pre-generated samples, an empirical dis-
tribution can be produced by counting up the frequency 
of occurrences for each travel time value. However, the 
travel time on a service line, especially on a bus line, var-
ies dramatically between different periods (e.g. peak and 
off-peak periods) throughout a day. Therefore, to model 
the travel time distribution, it would be better to partition 
the service span of a day into a series of Homogeneous 
Travel Time (HTT) bands, and then to build the empirical 
distribution model for each HTT band. 

In practice, the HTT bands are often simply decided 
by human schedulers according to the distinct peak and 
off-peak periods. To get more precise HTT bands, Xu 
and Shen (2012) propose a heuristic partitioning method 
and Shen et al. (2014) propose a k-means based cluster-
ing method for partitioning the HTT bands based on a 
sample set of travel times derived from original AVL data. 
To avoid very short HTT bands, the resulting HTT bands 
can be adjusted manually and finally decided by operators 
in practice. Figure 1 gives an example, where the service 
span is partitioned into seven HTT bands based on the 
observed travel times.

Having identified the HTT bands, the empirical dis-
tribution of travel times for each HTT band can be cal-
culated based on the corresponding sample set. From the 
empirical distribution, the shortest travel time (i.e. a lower 

bound) and the longest travel time (i.e. an upper bound) 
can be easily justified, which represent the free-flow speed 
and the slowest speed of vehicles respectively. Figure 2 il-
lustrates an example of two distinct empirical distribu-
tions of the travel time associated to 2 HTT bands.

1.2. Check the normality

Given a HTT band, the travel times are frequently as-
sumed to follow a Normal distribution or a lognormal 
distribution when a skewed distribution is considered ap-
propriate (Li et al. 2006; Pu 2011). However, by observing 
the empirical distributions of travel times (Figure 2), it 
can be found that the patterns and shapes of the distribu-
tions can vary considerably, even at different HTT bands 
on the same line.

To select a set of proper candidate distributions, quan-
titative information on how much an empirical distribu-
tion is close to a Normal distribution is to be obtained by 
checking its normality. The skewness and kurtosis should 
be firstly computed, which are the measures of the asym-
metry and the peakedness/flatness of the distribution re-
spectively.

Evidences provided in Van Lint et  al. (2008) have 
shown that the difference in the shapes of travel time dis-
tributions significantly affects travel time reliability. Spe-
cifically, a skew and wide distribution can result in worse 

Figure 1. Identification of HTT bands based on observed travel times

Figure 2. An example of travel time distributions  
by HTT bands
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travel time reliability. Therefore, it is helpful for better 
characterizing the travel time reliability of the bus line to 
quantify the shape of the empirical distribution in view of 
the skewness and kurtosis in each HTT band.

For instance, given two empirical distributions in 
Figure 2, it can be seen that the distribution at AM peak 
(7:30…11:30) appears more peaked than that at Day 
(11:30…16:30) and both distributions are recognizably 
left skewed with long right tails. The computational re-
sults show that the kurtosis for AM peak and Day are 5.93 
and 3.45 respectively and the skewness are 1.17 and 0.58 
respectively.

Based on the skewness and kurtosis, the Jarque–Bera 
(J–B) test is then carried out to examine whether the em-
pirical distribution has the skewness and kurtosis match-
ing a normal distribution, in, e.g., the usually adopted sig-
nificant level 0.05. This indicates that the test will reject the 
null hypothesis (of normality) at the 5% significance level 
if its p-value is less than 0.05. According to the J–B test, 
the two empirical distributions in Figure 2 reject the hy-
pothesis of normality. Skewed distribution models would 
be better fit. Using this approach, the normality of the dis-
tributions for all HTT bands can be tested. Experiments 
have shown that the left skewed empirical distributions are 
mostly observed, while in some cases, either symmetric 
or slightly right skewed distributions exist. Therefore, the 
commonly used symmetric and left skewed distribution 
models, such as normal, lognormal, gamma and Weibull, 
are to be selected as the candidate distribution models for 

the fitting. Moreover, the Burr distribution should also be 
an appropriate candidate as it can be either left skewed or 
right skewed. The Probability Density Functions (PDFs) 
and parameters of the candidate distribution models are 
given in Table 1, where the normal distribution is a trun-
cated normal distribution.

1.3. Distribution fitting for candidate  
distribution models
Given a set of candidate distribution models, a distribu-
tion fitting method is devised to select the most suitable 
distribution model from the candidates. The main steps 
include: firstly the maximum likelihood estimation meth-
od is adopted to compute the distribution parameters 
for each candidate; secondly, each candidate distribution 
model is truncated with the lower and upper bounds 
corresponding to the empirical distribution; thirdly, the 
Goodness-Of-Fit (GOF) is tested by the Kolmogorov–
Smirnov (K–S) test. For any candidate model, if the p-
value of K–S test is larger than the pre-defined significance 
level a (say a = 0.05), then such a model is considered 
as significantly fitted with the data and being accepted. 
Fourthly, to compare the models further using Akaike’s 
Information Criterion (AIC) (Akaike 1974), which is a 
measure of the relative quality of a candidate model by 
trading off the GOF and the number of the parameters of 
the model. As a result, the best fitted distribution for each 
HTT band can be decided, and they together constitute a 
compound model for the travel times during an entire day.

Table 1. PDFs and parameters of candidate distribution models
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2. Modelling the SVSP

The model of traditional VSP is firstly given as follows: let 
(i, j) denote any arc between two trips or between a depot 
and a trip. Given a set of depots D, Ad denotes the set of all 
arcs corresponding to the depot d ∈ D, P  d and Q d denote 
the sets of pull-out arcs from and pull-in arcs to the depot 
d ∈ D respectively. The traditional VSP can be presented 
as a network flow model in Equations (1)–(5). An over-
view of vehicle scheduling models can refer to research by 
Bunte and Kliewer (2009).

( ) ( ), ,

min
d d

veh dj ij ij
d D d Dd j P i j A

C x C x
∈ ∈∈ ∈

⋅ + ⋅∑ ∑ ∑ ∑   (1)

subject to:

( ) ( ): , : ,

0
d d

ij ji
i i j A i j i A

x x
∈ ∈

− =∑ ∑ , j T∀ ∈ , d D∀ ∈ ;         (2)

( ) ( ): , : ,

0
d d

dj id
j d j P i i d Q

x x
∈ ∈

− =∑ ∑ , d D∀ ∈ ;                   (3)

( ): ,

1
d

ij
d D i i j A

x
∈ ∈

=∑ ∑ , j T∀ ∈ ;                  (4)

{ }0,1ijx ∈ , ( ),i j A∀ ∈ ,  (5)

where: xij is a decision variable and xij = 1 if the arc (i, j) 
is selected; otherwise xij = 0. In the objective function (1), 
Cij is the operating cost associated to the arc (i, j), Cveh is 
a large constant to penalize the utilization of an additional 
vehicle. Constraints (2) and (3) are the flow-conservation 
constraints. Constraint (4) guarantees that each trip is 
covered exactly by one vehicle, and constraint (5) is the 
0–1 constraint for decision variables.

In the traditional VSP, a trip-link arc (i, j), as illustrated 
in Figure 3a, is defined if any pair of trips i and j are time 
feasible, i.e. e s

i ij jT DH T+ ≤ , where s
jT  and e

iT  denote the 
scheduled departure time and arrival time of trip i, re-
spectively, and DHij denotes the deadhead time from the 
arrival point of trip i to the departure point of trip j. The 
operating cost of the arc (i, j), denoted by Cij consists of 
the idle time and the deadhead, where the idle time and the 

deadhead refer to the waiting time and empty movement 
between any two consecutive trips respectively. In the tra-
ditional VSP model, the trip times are fixed, therefore, the 
idle time is calculated as:

s e
ij j i ijID T T DH= − − .  (6)

Different from the traditional VSP model, the SVSP 
model is proposed in research by Shen et al. (2016), where 
each trip has a stochastic trip time. In the SVSP model, 
the idle time IDij of any trip-link arc (i, j), as illustrated 
in Figure 3b, is determined by the trip time distribution, 
where s

iT  and e
it  denote the scheduled departure time 

and the arrival time of trip i respectively, fi(t) denotes the 
trip time distribution of trip i, which is given in advance. 
Consequently, the arrival time distribution of trip i is rep-
resented by ( ) ( )e s

i i if t f t T= −  and the operating cost of 
the trip-link arc (i, j) is defined as ( )ij ij ijC DH E ID= + , 
where the deadhead DHij is assumed to be a determinis-
tic value, ( )ijE ID  is the expectation of the stochastic idle 
time IDij and Cij is formulated as:

( )ij ij ij ijC DH E ID DH= + = +

( ) ( )
0

s s
ijijT T DH

s s
j i ij iT T t DH f t dt

− −

− − − ⋅∫
 

.  (7)

Moreover, while stochastic trip times are considered, 
the feasibility of any two trips i and j is no longer deter-
ministic. Therefore, e s

ij i j ijIF t T DH= − +  is defined as the 
infeasible time of the arc (i, j) and IFij = 0 if the arc is time 
feasible. The larger the infeasible time is, the more possibly 
delay occurs which indicates the worse on-time perfor-
mance the trip has. Hence, the penalty of the infeasible 
time Pij is defined as:

( )2ij ijP E IF= =

( ) ( )
2

s s
ijij

s s
i j ij i

T T DH

T t T DH f t dt
+∞

− −

+ − + ⋅∫ .   (8)

Based on Equations (7) and (8), the SVSP is established 
by adapting the objective function as Equation (9), while 

Figure 3. Illustration of trip-links in traditional VSP (a) and in SVSP (b)
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the constraints remain the same as Constraints (2)–(5):

( ) ( ), ,

min
d d

veh dj ij ij
d D d Dd j P i j A

C x C x
∈ ∈∈ ∈

⋅ + ⋅ +∑ ∑ ∑ ∑

( ), d
ij ij

d D i j A

P x
∈ ∈

a ⋅ ⋅∑ ∑ ,  (9)

where: a is a non-negative coefficient to balance the con-
flict objectives: minimizing the cost and maximizing the 
on-time performance. In light of this objective function, 
any vehicle schedule can be evaluated in views of the cost 
and the penalty of infeasible time based on trip time dis-
tributions. 

3. Experimental results

The proposed modelling approach has been implemented. 
The experiments on the Route 4 in Haikou Bus (HKB4 for 
short) in China have been carried out, in which the AVL 
data was recorded from May to September 2010. In this 
instance, only workdays are considered. Furthermore, the 
data recorded during the first week of September is ex-
cluded since HKB4 passes by three schools and the travel 
times on school open days may vary dramatically from 
those at normal workdays. In this section, the data set of 
HKB4 is first to be analysed, after which three groups of 
experiments are to be displayed in this section. One is on 
modelling trip time distributions. The second is on evalua-
tion of vehicle schedule based on the different distribution 
models. The third is on applying the established distribu-
tion model to the SVSP, which aims to demonstrate the 
significant value of our proposed modelling approach.

3.1. Analysis of the trip time distributions of HKB4

The service span of a day is partitioned into 7 and 6 HTT 
bands for outbound and inbound directions respectively. 
The empirical distributions and the median trip times for 
each HTT band on the outbound and inbound are shown 
in Figures 4 and 5 respectively.

Based on the shapes of the empirical distributions in 
Figures 4 and 5, the following three traffic situations can 
be distinguished:

1) As shown in the Figures 4a, 4c, 4e, 4g, 5a, 5f, the 
trip time distributions are approximately symmetric 
and the median trip times are low, which indicate 
that the traffic conditions are mostly free-flow. This 
situation is called the free flow situation;

2) As shown in Figures 4b, 5b, 5c, 5d, 5e, the median 
trip times are low and the distributions are sig-
nificantly left skewed, which reflects that the traffic 
conditions are free-flow in most cases while conges-
tion occurs in some cases. This situation is called 
the mixed traffic situation;

3) As shown in Figures 4d, 4f, the median trip times 
are high, and the distributions are slightly right 
skewed. This shape indicates that the traffic condi-
tions are mostly congested, while in few cases, bus-
es experience smoother traffic, which is consistent 
with the conclusion described in research by Van 
Lint et al. (2008). This situation is called the heavily 
congested situation.

Figure 4. Empirical distributions of HKB4 outbound
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3.2. Experiments of modelling the trip  
time distributions of HKB4

Before the distribution fitting, the normality checking is 
carried out respectively for each HTT band. The results 
show that the trip times follow left skewed distributions 
at most HTT bands and follow normal or right skewed 
distributions in rare situations. In light of this finding, five 
distributions have been revealed as the candidate distri-
butions, including: normal, lognormal, gamma, Weibull 

and Burr. Amongst them, the gamma and lognormal dis-
tributions are two commonly used left skewed distribu-
tions, while the Burr distribution is flexible, which can be 
left or right skewed by adjusting the parameters (it can 
also resort back to a normal distribution). Based on these 
five candidate distributions, the trip time distributions of 
HKB4 are modelled for each HTT band, the correspond-
ing fitted parameters are obtained as shown in Table 2, 
while the results of the normality checking and K–S tests 
are listed in Table 3.

Figure 5. Empirical distributions of HKB4 inbound

Fr
eq

ue
nc

y

0

0.05

0.10

40 60
40

a) AM early (5:45...7:30) b) AM peak (7:00...8:00) c) Day (8:00...16:30)

Trip time
30 50 70

Fr
eq

ue
nc

y

0

0.05

0.10

40 60
49

Trip time
30 50 70

Fr
eq

ue
nc

y

0

0.05

0.10

40 60
47

Trip time
30 50 70

d) PM peak (16:30...18:00) e) Eve (18:00...21:30) f) Night (21:30...23:30)

Fr
eq

ue
nc

y

0

0.05

0.10

40 60
Trip time

30 50 70

Fr
eq

ue
nc

y

0

0.05

0.10

40 60
Trip time

30 50 70

Fr
eq

ue
nc

y

0

0.05

0.10

40 60
Trip time

30 50 70
51 46 41

Empirical distribution 

Median trip time

Table 2. Fitted parameters of candidate distribution models on each HTT band

HTT band
Estimated values of the distribution parameters

Normal Lognormal Gamma Burr Weibull
s m s m a b g a b k a b g

O
ut

bo
un

d

AM early 3.56 44.69 0.08 3.8 193.9 0.26 –5.34 18.25 47.11 2.05 4.46 15.45 30.59
AM peak 4.02 52.29 0.07 3.95 8.72 1.31 40.82 38.48 49.72 0.42 2.45 10.69 42.79
Day 3.72 55.34 0.07 4.01 16.67 0.9 40.31 33.61 53.85 0.64 2.57 10.26 46.2
PM peak 3.99 62.69 0.06 4.14 173.15 0.31 8.77 19.54 70.84 6.96 5.81 21.45 42.84
Eve 4.32 55.03 0.07 4.00 14.34 1.14 38.73 26.3 53.55 0.71 2.61 11.96 44.40
Eve peak 4.14 60.75 0.07 4.10 146.09 0.35 10.28 22.34 62.43 1.57 4.13 16.87 45.42
Night 5.62 55.8 0.1 4.02 105.54 0.55 –2.67 14.45 59.58 2.04 3.79 21.00 36.82

In
bo

un
d

AM early 6.90 41.02 0.15 3.70 3.92 3.14 28.71 19.22 37.14 0.45 1.75 12.68 29.76
AM peak 5.47 50.06 0.11 3.91 19.41 1.22 26.3 21.39 47.75 0.62 2.85 16.7 35.13
Day 6.09 48.00 0.12 3.86 8.31 2.05 30.99 22.56 44.16 0.44 2.59 16.98 32.92
PM peak 5.90 52.42 0.11 3.95 4.71 2.71 39.66 27.95 47.74 0.35 2.08 13.14 40.8
Eve 6.48 48.28 0.13 3.87 6.36 2.47 32.56 25.00 43.51 0.35 2.34 16.28 33.87
Night 5.53 41.53 0.13 3.72 8.29 1.86 26.10 16.73 39.54 0.69 2.39 14.37 28.77
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It can be seen from Table 3 that the Burr distribution 
has been accepted for 12 out of 13 HTT bands. This re-
sult is slightly different from that in research by Kieu et al. 
(2015), where the lognormal was suggested as best-fitted. 
However, Kieu et  al. (2015) also indicate that the Burr 
distribution is the best-fitted if the bus travel time is aver-
agely long with long-tailed and left skewed distribution. In 
the case of HKB4, the trip time pattern fits this description 
since this bus line passes through the downtown of the city, 
and the delay occurs frequently. Consequently, the Burr 
distribution shows adaptation at the most of HTT bands. 

Table 3 also shows that the normal and lognormal 
distributions are accepted for 6 HTT bands respective-
ly, while the gamma distribution is accepted for 5 HTT 
bands. However, the Weibull distribution is rejected for 
all the HTT bands.

To demonstrate the fitting of the distribution models 
to the empirical distributions with different shapes, 3 HTT 
bands corresponding to each distinguished traffic situa-

tion (i.e. the free flow, mixed traffic and heavily congested 
situation) are given as examples. As shown in Figures 6a, 
6b, 6c, respectively, the empirical distribution at AM peak 
outbound has a typical left skewed shape, while it has an 
approximately symmetric shape at Day outbound and a 
slight right skewed shape at PM peak outbound.

It can be seen from Figure 6a that the normal and 
lognormal distributions are obviously flatter than the em-
pirical distribution, while the Burr distribution can well 
match the data. In Figures 6b, 6c, the difference amongst 
the three distribution models is not obvious. The Burr dis-
tribution shows good adaptation, which retrieves to an ap-
proximately symmetric shape, although it is slightly more 
peaked than the other two distribution models. 

Next, the AIC provides further comparison of these 
distributions. The best fitted distributions in terms of AIC 
index for each HTT band are listed in Table 4.

From Table 4, we can see that for the outbound of 
HKB4, normal distribution is the best model for 3 HTT 

Table 3. Results of the K–S test for fitting trip time distributions of HKB4

HTT 
band

Sample 
size

Normality checking Normal Lognormal Gamma Burr Weibull
Skewness Kurtosis J–B test p-value H0 p-value H0 p-value H0 p-value H0 p-value H0

O
ut

bo
un

d

AM early 357 –0.45 3.44 0.02 0.05 1 0.01 0 0.02 0 0.04 0 0.01 0
AM peak 1019 1.17 5.93 0.001 0.02 0 0.04 0 0.03 0 0.48 1 0.01 0
Day 1367 0.60 3.43 0.001 0.46 1 0.58 1 0.61 1 0.51 1 0.04 0
PM peak 332 –0.38 2.78 0.03 0.01 0 0.01 0 0.01 0 0.05 1 0.02 0
Eve 620 0.58 3.49 0.001 0.55 1 0.76 1 0.68 1 0.67 1 0.04 0
Eve peak 235 –0.04 2.83 0.50 0.21 1 0.31 1 0.33 1 0.08 1 0.01 0
Night 244 0.006 2.72 0.50 0.05 1 0.01 0 0.01 0 0.16 1 0.01 0

In
bo

un
d

AM early 86 2.006 8.0 0.001 0.01 0 0.06 1 0.02 0 0.55 1 0.01 0
AM peak 239 4.02 0.74 0.001 0.01 0 0.01 0 0.01 0 0.14 1 0.01 0
Day 2090 4.12 1.04 0.001 0.02 0 0.10 1 0.06 1 0.73 1 0.01 0
PM peak 338 3.29 0.82 0.001 0.01 0 0.01 0 0.01 0 0.10 1 0.01 0
Eve 857 4.04 1.1 0.001 0.01 0 0.04 0 0.02 0 0.83 1 0.01 0
Night 385 6.3 1.25 0.001 0.17 1 0.48 1 0.30 1 0.58 1 0.02 0
SUM – – – – 6 – 6 – 5 – 12 – 0

Figure 6. Fitting the trip times at AM peak (a), Day (b) and PM peak (c) of HKB4 outbound
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bands at AM early, Eve peak and Night. The Burr distribu-
tion best fits the AM and PM peaks, and the lognormal 
fits the HTT bands following the AM and PM peaks. The 
situation for inbound is quite different, where the Burr 
distribution is the best fitted model for every HTT bands. 
Consisting of the best fitted distributions for each HTT 
band, the compound travel time model is established for 
the entire day.

3.3. Experiment of evaluating the vehicle schedule 
using different trip time distributions

3.3.1. Evaluation results of a given vehicle schedule

As described in Formulae (7) and (8), the operating cost 
and the penalty of infeasible time are two measures intro-
duced in the SVSP model, which are functions of the trip 
time distribution. Therefore, any vehicle schedule can be 
evaluated based on a given trip time distribution model. 
In this experiment, a pre-compiled vehicle schedule S0 is 
first given, then evaluated based on five different distribu-
tion models: empirical, normal, lognormal, Burr, and the 
compound model respectively. The evaluation results are 
displayed in Table 5, where the RPD denotes the Relative 
Percentage Deviation over the evaluation result of the em-
pirical distribution.

It can be seen from Table 5 that based on different 
trip time models, the evaluation results, especially the to-

tal penalties, vary significantly. Compared with the pen-
alty measured by the empirical distribution, the results of 
the normal and lognormal distributions are significantly 
lower, while results of the Burr distribution and the com-
pound model are slightly higher. To provide insight into 
the measurement of the cost and penalty based on differ-
ent distribution models, a further analysis is carried out 
and presented as follows.

3.3.2. Analysis on the cost and penalty  
of the trip-link arcs
To further see the influence of different trip time distri-
bution models over the operating cost and penalty of a 
schedule, this section is to analyse the influence on the 
cost and penalty of a trip-link, since the operating cost of 
a schedule is usually defined as the sum of the costs of all 
the links in the schedule.

Firstly, we take typical trip-links from AM peak, Day 
and PM peak of HKB4 outbound respectively as exam-
ples for the measurement of cost and penalty. Figures 7–9 
show their costs and penalties calculated based on differ-
ent trip time models, where the deadhead time is assumed 
to be zero to make the figures be clearer. The generality is 
not lost with such an assumption since the deadhead time 
is deterministic. Moreover, it should be noticed that in our 
proposed VSP model, a trip has not a fixed duration as 

Table 4. AIC indexes for fitting the trip time distributions of HKB4

HTT band Time period Sample 
size

AIC index Best fitted 
distributionNormal Lognormal Gamma Burr

O
ut

bo
un

d

AM early 5:45…7:30 357 1922.3 1929.9 1926.5 1924.6 normal
AM peak 7:30…11:30 1019 5729.2 5652.7 5677.2 5523.4 Burr
Day 11:30…17:00 1367 8020.1 7964.5 7980.4 7989.7 lognormal
PM peak 17:00…18:30 332 1864.5 1873.4 1870.1 1863.1 Burr
Eve 18:30…21:00 620 3576.8 3554.9 3560.9 3556.0 lognormal
Eve peak 21:00…22:00 235 1337.6 1339.8 1338.7 1344.5 normal
Night 22:00…23:30 244 1538.0 1543.7 1541.1 1540.9 normal

In
bo

un
d

AM early 5:45…7:00 86 495.7 479.9 492.1 474.7 Burr
AM peak 7:00…8:00 239 1450.5 1440.6 1443.8 1430.6 Burr
Day 8:00…16:30 2090 13485.5 13269.1 13335.8 13071.4 Burr
PM peak 16:30…18:00 338 2162.6 2136.6 2144.6 2123.8 Burr
Eve 18:00…21:30 857 5638.4 5536.4 8499.6 5431.6 Burr
Night 21:30…23:30 385 2413.0 2368.7 2381.8 2350.3 Burr

Table 5. Evaluation results of schedule S0 based on different trip time models 

Evaluation result No Trip time model for evaluation Fleet size
Operating cost Total penalty

Value RPD [%] Value RPD [%]
1 empirical 28 6537 – 560 –
2 normal 28 6543 0.09 197 –64.82
3 lognormal 28 6608 1.09 242 –56.79
4 Burr 28 6647 1.68 587 4.82
5 compound 28 6641 1.59 563 0.54
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usually predetermined in the traditional VSP, therefore, 
we define a max trip allowance for any trip to measure the 
feasibility of a trip-link, which is defined as the difference 
of the departure times of the two trips in the link. 

It can be seen from Figures 7a, 8a, 9a that the costs 
obtained based on different distribution models are very 
close. In contrast, as shown in Figure 7b referring to AM 
peak (mixed traffic situation), the penalties obtained based 
on the normal and lognormal distributions are recogniz-
ably underestimated comparing to the empirical distribu-
tion and Burr distribution, which drops nearly to 0 when 
the max trip allowance approaches 60 min. Figure 8b, 
referring to Day (free flow situation), shows that the pen-
alties obtained based on the normal and lognormal dis-
tributions are closer to the empirical distribution and the 
Burr distribution causes slight overestimation. Figurer 9b 
referring to PM peak (heavily congested situation), shows 

that the penalties obtained based on different distribution 
models are close, and meanwhile, the Burr distribution 
causes slight overestimation and underestimation respec-
tively when the max trip allowance is smaller than 65 min 
and during 65 to 70 min. Therefore, this illustrates that the 
Burr distribution fits considerably better to the empirical 
distribution than the normal and lognormal distributions 
in the mixed traffic situation, where the empirical distri-
bution is heavily left skewed, and the three distributions 
are all close to the empirical distribution in the other two 
traffic situations. From Figures 7–9, we can find that under 
different traffic situations, different trip time models have 
different degrees of proximity to the empirical distribution 
in views of the cost and penalty. Hence, we believe that it 
might be necessary to use a compound instead of single 
model to better characterize the travel time in various traf-
fic situations.

Figure 7. Cost (a) and penalty (b) at AM peak of HKB4 outbound

Figure 8. Cost (a) and penalty (b) at Day of HKB4 outbound
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3.3.3. Analysis on the discontinuous  
distribution during off-peak periods
Moreover, we found that during off-peak periods, e.g. AM 
early, the empirical distributions may be discontinuous. 
For instance, the value of the empirical distribution at AM 
early as shown in Figure 10a, is 0 when the trip times are 
36, 52, 53 and 54 min. This phenomenon, not caused by 
missing data, may be caused by low frequency and high 
on-time performance during off-peak periods.

To gain an insight into the travel time distribution dur-
ing off-peak periods, we take a typical trip-link arc from 
the AM early as an example for the measurement of penal-
ty. Figure 10 shows the distribution fitting to the empirical 
distribution and the penalty of a trip-link arc calculated 
based on different trip time models at the AM early.

Figure 10b illustrates the penalties calculated based on 
the fitted distribution models (Burr and normal distribu-
tions respectively) and the empirical distribution. It can 
be seen that the penalty calculated based on the empiri-

cal distribution is obviously lower than that of the fitted 
distribution models, and it decreases to nearly 0 when 
the maximum trip allowance reaches 50 min. In contrast, 
the penalties calculated based on the Burr and normal 
distributions descend more smoothly to the right tail. 
However, the Burr and normal distributions both cause 
overestimation of the penalty in comparison with the em-
pirical distribution. From Figure 10, we can find that the 
distribution fitting can be used as a tool to make up the 
discontinuous empirical distributions, however, the fitted 
distribution might overestimate the possibilities of travel 
times corresponding to the discontinuous parts.

3.4. Experiment of applying different trip  
time distributions to the SVSP model 

To validate the efficiency of the proposed approach, the 
compound model is applied to the SVSP presented in Sec-
tion 2. Meanwhile, to reveal the impact of using differ-
ent distribution models in SVSP, other four models (i.e. 

Figure 9. Cost (a) and penalty (b) at PM peak of HKB4 outbound
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Figure 10. Fitting the trip times at AM early of HKB4 outbound: a – distribution fitting; b – penalty
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empirical, normal, lognormal, and Burr distributions) are 
also applied to the SVSP. The SVSP is solved using CPLEX, 
which is a well-known commercial optimization software. 
The coefficient a∙in the SVSP model is set to 1.5 based 
on the experiments presented in (Shen et al. 2016). The 
resulting schedules are given in Table 6. 

Five schedules S1…S5 have been produced as shown 
in Table 6, where S1 is produced based on the empiri-
cal distribution to be served as a benchmark schedule, 
S2 … S4 are produced based on the normal, lognormal and 
Burr distributions respectively, S5 is produced based on 
the compound model established before. To compare the 
schedules consistently, the empirical distribution is now 
served as the identical distribution for measuring the cost 
and penalty of all the schedules, where the evaluation val-
ue is defined as the sum of its cost and weighted penalty, 
and the RPD denotes the relative percentage deviation 
over the benchmark schedule S1.

As shown in Table 6, S2 and S3 have lower costs and 
much higher penalties than S1, which means the on-time 
performance of S2 and S3 are much worse than S1. There-
fore, the normal and lognormal distributions are not suit-
able to be used as the trip time distribution models for 
SVSP in this case. The costs of S4 and S5 are close to S1, 
however, their on-time performance are better than S1 as 
they have lower penalties.

The conclusion of this experiment is twofold. First, the 
Burr distribution and the compound model are both suit-
able to be applied to the SVSP in this case. In view of the 
evaluation value, the compound model is a bit better than 
the Burr distribution. Second, the Normal and Lognormal 
distributions can lead to significantly worse on-time per-
formance comparing to the empirical distribution due to 
their underestimation of the penalties.

Concluding remarks

Modelling travel time distributions has great significance 
for the researchers and practitioners in public transport. 
However, currently there is a paucity of a well-established 
modelling approach and well-accepted travel time distri-
butions for this purpose. This paper has proposed a mod-
elling approach for travel times using distribution fitting 
methods based on AVL data. In this approach, a series of 
basic statistical tools are integratedly employed to build a 
compound travel time model, which consists of the best 
distribution models for the travel times in each period of 

a day. Although these statistical tools are traditional, the 
integrated utilization of them to build a compound travel 
time model has great practical significance. The traditional 
research related to or based on travel time distributions 
will benefit by using this proposed modelling approach 
instead of based on a single pre-assumed travel time dis-
tribution.

A series of experiments have been carried out based 
on the AVL data of HKB4. The empirical distributions and 
the corresponding HTT bands are firstly obtained from 
the raw AVL data of HKB4, where three traffic situations 
have revealed. Afterward, three groups of experiments 
have been carried out. One is on building a compound 
model with the proposed modelling approach. The sec-
ond is on the evaluation of vehicle schedules and the third 
is on stochastic vehicle scheduling based on the different 
distribution models. 

Experimental results have shown that different distri-
bution models have little impacts on the measurement of 
cost. In contrast, the normal and lognormal distributions 
can lead to underestimation on the penalty in the cases 
where the travel time is significantly left skewed, which 
would consequently cause low on-time performance to 
vehicle schedules. Moreover, the compound model can 
fit more precisely to the actual travel times under various 
traffic situations. In the experiments on the SVSP model, it 
has been found that the cost and on-time performance of 
compiled vehicle schedules can be improved by using the 
compound model, and the Burr distribution is the second-
best choice. 

Although the modelling approach for travel time dis-
tributions is tested based on the historical trip time sam-
ples derived from AVL data, it can be also applied to the 
travel times in route segment level, or when the histori-
cal data are insufficient or incomplete. In light of this, the 
vehicle scheduling for a newly open bus line can poten-
tially benefit from this proposed travel time modelling 
approach. Moreover, the proposed approach would be of 
benefit to the research and practice of public transit plan-
ning, timetabling and service reliability measurement, etc.
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Table 6. Schedules produced by SVSP model based on different trip time models

Schedule 
No

Trip time model  
for SVSP

Fleet Operating cost Total penalty Evaluation value

size Value RPD [%] Value RPD [%] Value RPD [%]
S1 empirical 28 6537 – 560 – 7377 –
S2 normal 28 6278 –3.96 742 32.50 7391 0.19
S3 lognormal 28 6282 –3.90 741 32.32 7393.5 0.22
S4 Burr 28 6533 –0.06 531 –5.18 7329.5 –0.64
S5 compound 28 6481 –0.86 557 –0.54 7316.5 –0.82
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