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ABSTRACT: 

 

In this study, we present a segmentation algorithm based on ray casting and border point detection. The algorithm’s main parameter is 

the number of emitted rays, which defines the resolution of the object’s boundary. The value of this parameter depends on the shape 

of the target region. For instance, 8 rays are enough to segment the left ventricle with the average Dice similarity coefficient 

approximately equal to 85%. Having gathered the data of rays, the training datasets had a relatively high level of class imbalance (up 

to 90%). To cope with this issue, ensemble-based classifiers used to manage imbalanced datasets such as AdaBoost.M2, RUSBoost, 

UnderBagging, SMOTEBagging, SMOTEBoost were used for border detection. For estimation of the accuracy and processing time, 

the proposed algorithm used a cardiac MRI dataset of the University of York and brain tumour dataset of Southern Medical University. 

The highest Dice similarity coefficients for the heart and brain tumour segmentation, equal to 86.5±6.9% and 89.5±6.7%, respectively, 

were achieved by the proposed algorithm. The segmentation time of a cardiac frame equals 4.1±2.3 ms and 20.2±23.6 ms for 8 and 64 

rays, respectively. Brain tumour segmentation took 5.1±1.1 ms and 16.0±3.0 ms for 8 and 64 rays respectively. By testing the different 

medical imaging cases, the proposed algorithm is not time-consuming and highly accurate for convex and closed objects. The 

scalability of the algorithm allows implementing different border detection techniques working in parallel. 

 

1. INTRODUCTION 

Image segmentation entails dividing up a digital image into one 

or more meaningful regions. Active research on this problem has 

been conducted for over four decades (Cremers et al., 2007). This 

fundamental problem in computer vision can be solved by a 

variety of algorithms. Each algorithm has its own advantages and 

disadvantages. Some of the widely used algorithms were 

considered in (Danilov et al., 2018, 2017; Noble and Boukerroui, 

2006; Pham et al., 2000). In several contexts, there is often a need 

to obtain segmented images. In medicine, there is an interest in 

obtaining digital 3D models of organs. The latter is linked with 

analysis and surgery planning (Dey et al., 2009; Lynch et al., 

2008). Some segmentation algorithms depend only on image 

intensities, for instance, thresholding (Lee et al., 1990; Sankur, 

2004) or k-means clustering algorithms (Ng et al., 2006). Other 

methods use spatial information, such as region growing, 

deformable models, and watershed segmentation. Finally, some 

approaches to image segmentation algorithms use statistical 

parameters, the first/second raw/central moments (mean and 

variance), and experimental distributions combined with 

statistical distances such as the Bhattacharyya distance, the 

Mahalanobis distance, total variation distance, Kullback–Leibler 

divergence and Jensen–Shannon divergence (Hu et al., 2010; 

Katatbeh et al., 2015; Li et al., 2013; Reyes-Aldasoro and 

Bhalerao, 2006). Some papers consider the global histograms, 

shape gradients and information theory to segment the region of 

interest (Herbulot et al., 2006; Junmo Kim et al., 2005). This class 

of segmentation techniques involves shape gradient and 

mathematical computations for the level set equations.  This class 

of approaches leads to non-convex methods. The latter means 

they are sensitive to the initialization choice and only compute a 

local minimizer of the energy. 

                                                                 
*  Corresponding author 

 

Graph-based algorithms represent other class of segmentation 

(Ayed et al., 2010; Gorelick et al., 2012). These algorithms are 

used for computing the accurate global minima without level set 

representation. One of the main disadvantages of these 

algorithms is the restriction by different distances such as χ2 

distance, Bhattacharyya distance or L2 norm.  

 

Several segmentation methods are based on machine learning 

(Gorelick et al., 2012; Noble and Boukerroui, 2006). Such 

methods have several restrictions, and one of them is manually 

labeled data. The amount of this data should be relatively big and 

heterogeneous, to train a classifier/network with a high level of 

accuracy and absence of overfitting.   

The image segmentation techniques can be applied to both three-

dimension and two-dimension domains. Recently, 3D modalities 

have become popular in medicine. A large number of non-

invasive cardiac and other diagnoses are performed by MRI 

(magnetic resonance imaging) and CT (computed tomography) 

(Katatbeh et al., 2015). The output data of these modalities has a 

three-dimensional format. However, two-dimensional image 

processing is still relevant. In some cases, 3D segmentation 

problems can be dealt with efficiently as multiple 2D problems 

(so-called 2.5D analysis) as, for instance, in the cardiac chamber 

or brain tumour segmentation.  

 

In this paper, we describe a 2D automatic segmentation algorithm 

based on the spatial generation of rays used as detectors of the 

border point for the target region. The proposed algorithm 

requires minimal user interaction since it has only one global 

parameter – several emitted rays. The algorithm can be easily 

implemented in the image processing systems, including medical 

imaging systems, due to its efficiency, simplicity and execution 

speed. The latter allows using the algorithm in real-time for two-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019 
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W12-37-2019 | © Authors 2019. CC BY 4.0 License.

 
37

mailto:viachelsav.v.danilov@gmail.com
mailto:V.Danilov@leeds.ac.uk


 

dimensional imaging. If the region of interest has a circular shape 

with an eccentricity value close to zero, then the small number of 

rays are required to perform segmentation for a relatively short 

time. Another advantage of the algorithm is its low sensitivity to 

noise due to the analysis of the ray data, rather than the whole 

image. The algorithm is practically insensitive to contour breaks, 

which is a crucial feature of segmentation algorithms. 

 

2. SYSTEMS AND DATA 

As a source of data for the heart chambers segmentation, we used 

short-axis cardiac MR images, which were acquired for 33 

patients with different diagnoses (Andreopoulos and Tsotsos, 

2008) by courtesy of York University (York, United Kingdom). 

Each patient’s dataset consists of 20 frames and 8-15 slices along 

the long axis. The size of each frame is 256*256 pixels. To test 

the proposed segmentation algorithm, we chose 3 subjects with 

different diagnosis (a 17-year-old patient with no cardiac 

disorders, a 16-year-old patient with Marfan syndrome, and a 9-

year-old patient with severe aortic insufficiency). The dataset 

images were manually segmented where both the endocardium 

and epicardium of the left ventricle (LV) were visible. The 

ground truth of left ventricles' endocardial and epicardial was 

performed by two clinicians (Radiologist-in-Chief and Cardiac 

Radiologist). 

 

As a source of data for the brain tumour segmentation, we used 

brain tumour dataset T1-weighted contrast-enhanced images 

from 233 patients with three kinds of brain tumour: meningioma, 

glioma, and pituitary tumour (Cheng et al., 2016, 2015). This 

dataset was acquired at Southern Medical University 

(Guangzhou, China). The size of each frame is 512*512 pixels. 

 

Patient records and information were anonymized and de-

identified prior to analysis. The brain tumour dataset was 

approved by the Ethics Committees of Nanfang Hospital and 

Tianjin Medical University. The cardiac dataset provided by the 

Department of Diagnostic Imaging of the Hospital for Sick 

Children in Toronto and the University of York. It is publicly 

available and provided for research purposes only. 

 

The data were pre-processed on a computer, equipped with an 

Intel Core i7-4790K CPU (4.0 GHz) and NVIDIA GeForce 960 

GT graphics card, using MATLAB 2018a on Windows 10. All 

classifiers were trained on a C5 instance (C5 High-CPU 

Quadruple Extra Large) of Amazon Web Services using R 3.5 on 

Linux Ubuntu 16.04. 

  

3. METHODS 

The main idea behind the proposed approach is to distinguish two 

classes based on a ray profile. The ray profile represents a one-

dimensional array. Using one-dimensional input data (rather than 

two-dimensional or three-dimensional input arrays) allows 

decreasing the complexity of the classifier. An intensity profile 

of a ray is shown in Figure 1. 

 

 
(a) 

 
(b) 

Figure 1. Data acquisition along the ray: an emitted ray (a) and 

its intensity profile (b) 

 

The common workflow of the proposed algorithm is reflected 

below in Table 1. 

Step Training Inference 

1 Pre-processing and 

normalization 

Pre-processing and 

normalization 

2 Truncated ray emission Full ray emission 

3 Data gathering Data gathering 

4 Classifier training Classifier inference 

5 – Post-processing 

Table 1. Algorithm workflow for training and inference 

 

3.1 Pre-processing  

For the proposed approach there are no limitations for application 

of pre-processing techniques. No pre-processing can also be 

applied. In our case, we used a bimodal Gaussian function as a 

general filtering method since it depends on the histogram of the 

input image. This method of adaptive equalization presented by 

Pizer et al. (Pizer et al., 1987) is considered universal. After 

implementation of this step, the dynamic range of the image was 

expanded, which allows displaying previously unseen details 

(Figure 2). And a cardiac MR image of this section is only used 

for the explanation of the main concept of the proposed 

algorithm. 

 

3.2 Ray emission 

The next step involves the generation of ray sets and gathering 

the data along the rays. To get training and testing datasets, we 

gather five ray sets for each image. This number is data-specific 

and depends on a certain case. Coordinates of starting points for 

each ray set are assigned randomly within an image. We have 

experimentally found out that the closer initial point is to the 

centroid of the region, the higher border detection accuracy is 

obtained. For instance, MATLAB regionprops function can 
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return a centroid (centre of mass of the region) and/or a weighted 

centroid (centre of the region based on location and intensity 

value). As for ray generation, we used the polar coordinate 

system with the origin at the starting point. The rays were 

propagated in all directions with a different change of angular 

steps ∆φ. The optimal angle change, which is equal to π/16, was 

chosen experimentally since it maintains a balance between the 

processing time of the algorithm and the output segmentation 

accuracy. Ray emission is shown in Figure 3. The angular step in 

this figure equals to π/4 and is only used for simplicity. 

 

  
(a) (b) 

Figure 3. Visual representation of ray emission: pre-processed 

source image (a) and manually labeled mask (b) 

 

There is a difference between gathering the ray data during 

training and inference steps. The data for the training step is 

acquired within the area restricted by a mask (blue rays of Figure 

3) going a little beyond the borders. The inference step assumes 

collecting the data along the entire length of the rays (red rays of 

Figure 3). 

Once the rays are obtained, we can apply any binary classifier to 

border detection. However, the length of each ray varies. The 

latter imposes a restriction on the classifier since almost every 

machine learning technique requires fixed-length input data. To 

manage this problem, we divide each ray into fixed-length one-

dimensional patches. We used different kernels and strides for 

the rays to figure out which set of parameters is best to apply. The 

generation of the fixed-length patch-based dataset is reflected in 

Figure 4. The upper row represents a ray mask, while the lower 

row is the grayscale normalized ray data. The values in blue 

boxes refer to the labels, representing border existence (stepwise 

increase/decrease). For simplicity, we used kernel size equal to 3 

in Figure 4. However, for the experiments, we used kernels sizes 

of 5, 7, 9, and 11. As for stride, its value varies from 1 to 7 namely 

1, 3, 5 and 7. The higher the kernel and stride values are, the 

fewer samples the dataset has. For instance, a dataset with     

kernel = 5 and stride = 1 has 955,726 samples. A dataset with 

kernel = 11 and stride = 7 has 151,251 samples. It worth noticing 

that lower values of kernel and stride tend to stronger dataset 

imbalance. The dataset with kernel = 5 and stride = 1 has 87:13 

class ratio, while the dataset with kernel = 11 and stride = 7 has 

70:30 class ratio. 

 

 
Figure 4. Example of gathering fixed-length one-dimensional 

patches with their labels. 

 

  

(a) (b) 

  

(c) (d) 

Figure 2. Image enhancement using the bimodal Gaussian function: source image (a) and its histogram (b), enhanced image (c) and its 

histogram (d) 
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3.3 Classifiers 

As described before the acquired datasets are class imbalanced. 

In some cases, the negative class is 8 times more frequent than a 

positive one. The classifier’s goal is to identify the minority class 

i.e. the border. One of the efficient ways to manage imbalanced 

datasets is to balance them either by oversampling instances of 

the minority class or under-sampling instances of the majority 

class. However, such simple sampling approaches have 

drawbacks. Oversampling the minority class can lead to model 

overfitting, since it will introduce duplicate instances, drawing 

from a pool of instances already small. Similarly, under-sampling 

the majority class can leave out important instances that provide 

important differences between the two classes. However, there 

exist more powerful sampling methods that go beyond usual 

oversampling or under-sampling techniques. The most well-

known example of such methods is Synthetic Minority Over-

sampling Technique (SMOTE), which actually creates new 

instances of the minority class by forming convex combinations 

of neighboring instances (Chawla et al., 2010; Galar et al., 2012). 

As Figure 5 below shows, it efficiently draws lines between 

minority points in the feature space and samples along these 

lines. This allows balancing a dataset without as much 

overfitting, as it creates new synthetic examples rather than using 

duplicates. Nevertheless, this method does not prevent all 

overfitting, as these are still created from existing data points. 

 

 
Figure 5. Visualization of SMOTE technique 

 

Another popular sampling technique is the Random 

Undersampling algorithm (RUS). It creates a new dataset 

comprising of all instances from the minority class and a random 

selection of instances from the majority class. 

To manage the problem of border classification based on 

imbalanced datasets, we chose the following ensemble-based 

classifiers:  

1. AdaBoost.M2. This is an extension of AdaBoost, 

introducing pseudo-loss, which is a more sophisticated 

method to estimate error and update instance weight in 

each iteration compared to regular AdaBoost and 

AdaBoost.M1 (Galar et al., 2012). 

2. RUSBoost. This method is based on AdaBoost.M2 and 

it uses random under-sampling to reduce majority 

instances in each iteration of training weak learners. A 

1:1 under-sampling ratio (i.e. equal numbers of the 

majority and minority instances) is used (Galar et al., 

2012; Seiffert et al., 2010). 

3. UnderBagging. This method uses random under-

sampling to reduce majority instances in each bag of 

bagging in order to rebalance class distribution. A 1:1 

under-sampling ratio (i.e. equal numbers of the 

majority and minority instances) is used (Galar et al., 

2012; Lu et al., 2016). 

4. SMOTEBagging. This method uses both SMOTE and 

Random Over-Sampling (ROS) to increase minority 

instances in each bag of bagging in order to rebalance 

class distribution. The manipulated training sets 

contain equal numbers of the majority and minority 

instances, but the proportions of minority instances 

from SMOTE and ROS vary for different bags, 

determined by an assigned re-sampling rate (Galar et 

al., 2012; Wang and Yao, 2009). 

5. SMOTEBoost. This method is based on AdaBoost.M2 

and it uses SMOTE to increase minority instances in 

each iteration of training weak learners (Chawla et al., 

2010; Galar et al., 2012). 

  

All aforementioned methods are originally implemented with 

decision trees; however, we used other supervised learning 

algorithms to build weak learners within ensemble models. The 

learning algorithms used to train weak learners within the 

ensemble models are Classification and Regression Tree 

(CART), C5.0 Decision Tree (C50), Random Forest (RF), and 

Naive Bayes (NB). If the classifier finds no border point within a 

ray, then this ray will be ignored. 

 

3.4 Metrics 

The problem of classification deals with the trade-off between 

recall (percent of positive instances classified as such) and 

precision (percent of positive classifications truly positive). 

However, when instances of a minority class are detected, we are 

usually concerned more so with recall than precision, as in 

detection, it is usually more costly to miss a positive instance than 

to falsely label a negative instance. When comparing approaches 

to imbalanced classification problems, it is better to consider 

using metrics beyond binary accuracy such as recall and 

precision. Such metrics as accuracy and specificity become 

inefficient since they achieve high values because of the strong 

predominance of the minority class. In addition, we estimated the 

harmonic mean of precision and recall – F1 score. It should be 

additionally noted that it is preferable to assess the ROC curve 

when there is a need to give equal weight to both classes’ 

prediction ability. 

 

3.5 Post-processing 

Once the border points are detected, the algorithm connects them 

smoothly. To perform this step more accurately, the periodic 

interpolating cubic spline curve is applied (Lee, 1989). A mask 

is obtained based on a received contour. An example of 16-ray 

segmentation is shown below in Figure 6. 

 

  
(a) (b) 

Figure 6. Set of border points obtained by the classifier (a) and a 

mask obtained after post-processing step (b) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019 
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W12-37-2019 | © Authors 2019. CC BY 4.0 License.

 
40



 

4. RESULTS 

In this section, we describe the results obtained both for border 

detection and following segmentation task. As described before, 

recall, precision, and F1-score are used to estimate border 

detection accuracy. Additionally, we studied how the accuracy 

and processing time change regarding the different values of ∆φ 

and a different number of emitted rays. The Dice similarity 

coefficient (DSC) was the main metric for segmentation accuracy 

estimation. We have also analyzed the dependence of 

segmentation results on the shape of a region. 

 

4.1 Border detection 

 

To estimate border detection performance, 5 classifies were used 

(AdaBoost.M2, RUSBoost, UnderBagging, SMOTEBagging, 

and SMOTEBoost). Each classifier has been trained on 16 

datasets, where each dataset varied between four kernels (5, 7, 9, 

and 11) and four strides (1, 3, 5, and 7). However, stride change 

did not influence the performance while kernel change affected 

the border detection accuracy. Performance is visualized for 

different kernel values and stride equal to 1. Classifiers trained 

on stride of 1 have the highest performance in comparison with 

the ones using a stride of 3, 5, and 7. Performance of the studied 

classifiers is reflected in Figure 7–11. 

 
Figure 7. Performance of AdaBoost.M2 

 

 
Figure 8. Performance of RUSBoost 

 

 
Figure 9. Performance of UnderBagging 

 

 
Figure 10. Performance of SMOTEBagging 

 

 
Figure 11. Performance of SMOTEBoost 

 

All classifiers with kernel size equal to 11 showed a relatively 

high level of performance. While 5 features are not enough for 

classifiers to have a good quality of prediction. It should be also 

noted that RUSBoost, UnderBagging, and SMOTEBagging have 

a high value of precision and relatively low level of recall with 

kernel equal to 5. These classifiers manage well with the majority 

class (background pixels) and badly with minority class (border 

pixels). AdaBoost.M2 with pseudo-loss and SMOTEBoost 

perform classification task better and more reliably. 

 

As an additional performance metric, training time was 

estimated. Estimated training time for the classifiers is shown in 

Table 2. Only reduced versions of datasets containing 50,000 

samples were used for testing. The machine for algorithm time 

testing was based on C5 instance of Amazon Web Services and 

is described in more detail in section 2. 
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CART C50 RF NB 

AdaBoost.M2 30±9 85±21 80±15 211±42 

RUSBoost 13±7 54±19 35±14 211±46 

UnderBagging 8±4 23±11 29±15 42±9 

SMOTEBagging 57±20 104±30 144±31 70±23 

SMOTEBoost 568±452 647±471 610±431 709±440 

Table 2. Training time for the classifiers in seconds (mean ± 

standard deviation) 

  

As seen, the most time-consuming classifier is SMOTEBoost. It 

should be additionally noted that the Naive Bayes learning 

algorithm increases the training time for all classifiers. The least 

time-consuming combination is UnderBagging based on the 

Classification and Regression Tree learning algorithm. The most 

accurate combination, AdaBoost.M2 based on Random Forest, 

took an intermediate position in the training time ranking.  

 

4.2 Heart segmentation 

 

As described in Section 2, the data acquired at the University of 

York was used to test the proposed algorithm. The examples of 

the left ventricle segmentation are presented below in Figure 12. 

  

  
Figure 12. Segmentation of the LV performed by the proposed 

algorithm (blue) and manual delineation (red) 

 

To test the accuracy and processing time of the heart 

segmentation, we used a dataset, which included 156 slices. 

Segmentation accuracy for different parameters is shown in 

Table 3. In our case, the target anatomical structure (left 

ventricle) for heart segmentation has a circular shape with an 

eccentricity value close to 0. It means that in such a case, a few 

rays (large value of angle change ∆φ) are enough for obtaining 

the relatively high value of accuracy. If the target object has an 

elongated shape with an eccentricity value close 1, then the 

number of rays should be increased, to improve the output 

segmentation accuracy.  

 

 π/4 π/8 π/16 π/32 

Mean±STD, % 84.7±8.3 85.0±8.0 84.7±8.9 84.2±9.1 

Table 3. Heart segmentation accuracy for different ∆φ (number 

of rays) 

 

Processing time, presented in Table 4 and Figure 13, generally 

depends on the number of emitted rays. We found out 

experimentally that doubling the number of rays leads to a 1.5/2-

fold increase in the processing time. Typically, the angle change 

∆φ equal to π/8 allows obtaining relatively high values of the 

Dice similarity coefficient and low values of processing time. 

The processing time depends on different parameters, for 

instance on the data, noise, and the size of images. 

 

 
Figure 13. Processing time of the heart segmentation (in 

milliseconds) of the proposed algorithm for different ∆φ 

(number of rays) 

 

 π/4 π/8 π/16 π/32 

Mean± STD, ms 4.1±2.3 5.5±0.9 12.0±9.5 20.2±23.6 

Table 4. Processing time of the heart segmentation for different 

∆φ (number of rays) 

 

4.3 Brain segmentation 

 

The data acquired at Southern Medical University was used to 

test the proposed algorithm for brain tumour segmentation. The 

examples of the tumour segmentation are presented in Figure 14. 

  

  
Figure 14. Segmentation of the brain tumour performed by the 

proposed algorithm (blue) and manual delineation (red) 

 

To estimate the accuracy and processing time of the brain tumour 

segmentation, we used a dataset included 200 slices. The results 

describing the quantitative metrics of the algorithm are shown in 

Table 5, Table 6 and Figure 15. Table 5 confirms the value of the 

angle (number of rays) does not significantly affect the accuracy 

of the algorithm for the regions of circular shape.  

 

 π/4 π/8 π/16 π/32 

Mean±STD, % 82.2±11.8 83.0±11.4 82.5±11.6 82.7±11.2 

Table 5. Brain tumour segmentation accuracy for different ∆φ 

(number of rays) 

 

Similarly to segmentation of the left ventricle, the average 

accuracy remains at a sufficiently high level in the brain tumour 

segmentation. The average accuracy value varies within 83%. 
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Figure 15. Processing time of the brain tumour segmentation (in 

milliseconds) of the proposed algorithm for different ∆φ 

(number of rays) 

 π/4 π/8 π/16 π/32 

Mean±STD, ms 5.1±1.1 6.9±1.4 11.8±4.2 16.0±3.0 

Table 6. Processing time of the brain tumour segmentation for 

different ∆φ (number of rays) 

 

The processing time of left ventricle segmentation strongly 

depends on the number of rays and the image dimensions. Such 

a tendency can be observed when comparing processing time for 

the heart segmentation (Figure 13) and the brain tumour 

segmentation (Figure 15). 

 

5. DISCUSSION 

An important feature of the algorithm is an opportunity to obtain 

a relatively high level of accuracy varying ∆φ and, hence, the 

number of emitted rays. For instance, Figure 16 and Figure 17 

reflect two extreme cases for obtaining a good quality of 

segmentation. The algorithm can provide the best accuracy using 

different angle change ∆φ. Sometimes, a value of ∆φ = π/32 (64 

rays) can provide a high level of segmentation. Such a case is 

reflected in Figure 17 for the left ventricle segmentation, where 

the accuracy reached 91.8% with ∆φ = π/32. However, high 

segmentation accuracy can be achieved with the relatively large 

value of ∆φ. For instance, brain tumour segmentation accuracy 

of 89.0% was obtained using ∆φ = π/4 and is depicted in Figure 

16. Sufficiently high accuracy of the algorithm was achieved due 

to the relatively simple shape of the regions under examination. 

When an object has a more complex, curved shape, the accuracy 

may have a lower value of the Dice similarity coefficient. To 

avoid this issue, the number of emitted rays should be increased 

significantly. But the main restriction of the proposed algorithm 

is the object shape. Objects with sophisticated non-convex shape 

will probably be segmented improperly or inaccurately. In this 

regard, this algorithm is better to apply to convex and closed 

objects. However, many organs of the human’s body have an 

elliptical or circular elongated shape. This allows the proposed 

algorithm to be applied to brain, lung, liver and heart 

segmentation. 

 

One of the important features of the proposed algorithm is its 

scalability. The latter means that several algorithms can be used 

for border detection. We used the ensemble-based classifiers. As 

an additional method, one-dimensional neural networks can also 

be applied. Another key feature of the algorithm is an opportunity 

to use it for three-dimensional imaging. The latter can be solved 

using a spherical or cylindrical coordinate system. 

 

 

  
DSC = 89.0% 

(a) 

DSC = 81.1% 

(b) 

  
DSC = 82.3% 

(c) 

DSC = 80.4% 

(d) 

Figure 16. Brain tumour segmentation with different ∆φ: π/4 

(a), π/8 (b), π/16 (c) and π/32 (d) 
 

  
DSC = 85.7% 

(a) 

DSC = 87.9% 

(b) 

  
DSC = 90.7% 

(c) 

DSC = 91.8% 

(d) 

Figure 17. Heart segmentation with different ∆φ: π/4 (a), π/8 

(b), π/16 (c) and π/32 (d) 
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According to the obtained results of segmentation (Table 3 and 

Table 5), there is a tendency of large spread for accuracy values. 

Such spread is related to the ray generation. The first ray of any 

object is always propagated in the same direction, not considering 

the features of the contour. If the first and subsequent rays fall 

into recesses or cavities of the contour, the accuracy of the 

contour decreases significantly. This disadvantage can be 

compensated by increasing the number of emitted rays. However, 

the random nature of the rays and their detachment from the 

peculiar properties of the contour are the drawbacks of the 

algorithm. A ray, falling into the contoured gap, deforms the 

resulting contour and reduces the final segmentation accuracy. It 

should be also noted the position of the initial point is important 

for the algorithm. When the starting point falls into a convex 

ejection, the accuracy of the algorithm decreases. This problem 

can partly be solved by increasing the number of generated rays. 

Ideally, the initial point should lie within the center of mass of 

the object. 

 

6. CONCLUSION 

The proposed algorithm is devoted to the segmentation of 

medical images. The algorithm assumes emitting rays to detect 

border pixels lying on the rays. Thus, the task is reduced to one-

dimensional operations, which allows segmentation to be 

performed faster. The algorithm was tested on the cardiac MRI 

dataset consisting of 156 MRI images and brain tumour dataset 

consisting of 200 MRI images. The cardiac dataset included three 

patients with different diagnoses including Marfan syndrome, 

severe aortic insufficiency and a patient with no cardiac 

disorders. In turn, the brain tumour dataset included patients with 

meningioma, glioma, and a pituitary tumour. The highest 

similarity Dice coefficients for the heart and brain tumour 

segmentation, equal to 86.5±6.9% and 89.5±6.7% respectively, 

were achieved by the proposed algorithm. Regarding the 

processing time for this study, we have established that the 

relationship between processing time and the number of rays is 

quasi-proportional. The lowest processing time for the heart and 

the brain tumour segmentation, equal to 4.1±2.3 ms and 5.1±1.1 

ms per slice respectively, were reached with 8 emitted rays. In 

addition, the algorithm can be accelerated using GPU-based 

computing because ray data processing can be performed in 

parallel. 
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