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Today, daylight saving time is observed in nearly 80 countries around the world, including

the European Union, the USA, Canada, and Russia. The benefits of daylight saving time in

energymanagement have been questioned since it was first introduced duringWorldWar

I and the latest research has led to varying results. Meanwhile, adverse effects of seasonal

time shifts on human biology have been postulated and the European Union is planning

to abandon the biannual clock change completely. Medical studies have revealed a

correlation of seasonal time shifts with increased incidences of several diseases including

stroke, myocardial infarction, and unipolar depressive episodes. Moreover, studies in

mice have provided convincing evidence, that circadian rhythm disruption may be

involved in the pathogenesis of inflammatory bowel diseases, mainly by disturbing the

intestinal barrier integrity. Here, we present previously unpublished data from a large

German cohort indicating a correlation of seasonal clock changes and medical leaves

due to ulcerative colitis and Crohn’s disease. Furthermore, we discuss the health risks

of clock changes and the current attempts on reforming daylight saving time from a

medical perspective.

Keywords: daylight saving time, seasonal clock changes, circadian rhythm disruption, inflammatory bowel

diseases, ulcerative colitis, Crohn’s disease, European Union

POLITICAL DISCOURSE ON DAYLIGHT SAVING TIME

Biannual clock changes due to summer time/daylight saving time (DST) are common procedures
in most European and North American countries, as well as in parts of South America, Australia,
and in New Zealand (1). Historically, George VernonHudson, a British/New Zealand entomologist
and astronomer, was supposedly the first scientist publicly proposing advantages of a seasonal clock
change in 1898 (2). In 1784 however, Benjamin Franklin already discussed a waste of candles due
to an extended nightlife in Paris in a curious letter to the Journal du Paris suggesting that Parisians
need to rise earlier. Although characterized by satiric elements his letter seems to follow the serious
purpose of saving candles and decreasing energy expenditure (3). Mainly in an attempt to save
resources during World War I, the German Empire and Austria-Hungary were the first countries
to introduce DST on 30 April of 1916. Until the end of the war most European countries, Russia,
and the US joined them in an unusual case of mutual agreement (4).

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2019.00103
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2019.00103&domain=pdf&date_stamp=2019-05-09
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bandik.foeh@uksh.de
https://doi.org/10.3389/fmed.2019.00103
https://www.frontiersin.org/articles/10.3389/fmed.2019.00103/full
http://loop.frontiersin.org/people/571507/overview
http://loop.frontiersin.org/people/110430/overview


Föh et al. Health Risks of Seasonal Clock Changes

In recent years the proposed benefits of DST are being
critically discussed. Scientific approaches to evaluate the
advantages or disadvantages of DST in terms of energy
management have come to inconsistent results. Indeed, there
are studies showing minor energy savings due to reduced use of
electrical lighting (5–7), whereas others find increased electricity
demands for cooling and heating to surpass these savings (8, 9).
A 2017 meta-analysis of 44 studies comprehensively states that
DST saves ∼0.34% of energy in respective countries. As could
be expected, there are differences depending on the latitudes of
the countries and a larger distance to the equator leads to a
higher efficacy of DST (10). Regarding energy management, it
may therefore be reasonable to keep seasonal clock changes in
countries with high variation of daylight hours, but to abandon
them in other regions.

The European Union (EU) has recently conducted a poll
asking their citizens whether to maintain or abandon biannual
clock changes (11). Reportedly, 4.6 million participants gave
their vote setting a record high for public consultations by the
EU (12). It is no surprise, that there is public interest in this
subject, because seasonal time shifts affect every inhabitant of
concerned countries and force them to adjust their biorhythm
twice a year. A study from 2015 attempted to measure the
welfare effects of time shifts in Germany and Great Britain and
reported reduced life satisfaction after the shift to summer time
(13). On 31 August of 2018 the European Commission issued
a press release stating that 76% of respondents considered the
time shifts due to DST a negative or very negative experience
corresponding to the aforementioned study. Moreover, 84% of
respondents voted for abolishing biannual clock change (14).
Although no other public consultation by the European Union
generated as many responses, it may still be biased by an overall
low participation rate ranging from 0.02% of the population in
the United Kingdom (likely reduced by the upcoming Brexit)
to 3.79% in Germany. Nevertheless, the European Commission
proposed the abandonment of biannual clock changes in favor
of permanent summer time to the European Parliament and the
Council (14). Very recently, the European Parliament has voted
for discontinuing seasonal clock changes. However, before this
decision will be executed, negotiations with the responsible EU
ministers represented in the Council of the European Union need
to be conducted (15).

HEALTH RISKS OF BIANNUAL CLOCK
CHANGES

Circadian rhythm disruption (CRD), as frequently present in
our modern 24-h societies, has been suggested to contribute

Abbreviations:ARNTL/BMAL1, Aryl hydrocarbon receptor nuclear translocator-

like protein 1; CKIε, casein kinase Iε; CLOCK, Circadian Locomotor Output

Cycles Kaput; CD, Crohn’s disease; CRD, circadian rhythm disruption; CRY1,

cryptochrome 1; DBP, D-site binding protein; DST, daylight saving time/summer

time; GSK3, glycogen synthase kinase-3; IBD, inflammatory bowel diseases;

NR1D1/2 (REV-ERBα/β), nuclear receptor subfamily 1, group D, member 1/2;

NR1F1/2 (RORα), nuclear receptor subfamily 1, group F, member 1/2 (RAR-

related orphan receptor alpha/beta); PER1-3, period circadian protein homolog

1; TTFL, transcriptional-translational feedback loop; UC, ulcerative colitis.

to various diseases. Among them are metabolic (16, 17),
cardiovascular (18) and neuropsychiatric disorders (19), as well
as different types of cancer (16, 20, 21). More surprisingly,
clock changes due to DST are associated with exacerbation of
some medical conditions, even though the time shift is only 1 h.
Incidences of myocardial infarction were significantly increased
on the first 3 days after clock change to summer time in a
large Swedish cohort taking into account a time span of 15
years (22). Importantly, this result was later reproduced in five
independent studies from Scandinavia, Croatia, Germany, and
the USA (23) with a maximum increase of acute infarctions of
24% on Mondays following time shift in spring (24).

Circadian variation in the onset of strokes has been established
since the early 1990s by several studies showing increased
incidences in the morning (25). More recently, a Finnish study
showed elevated hospitalizations due to ischemic stroke in the
first 2 days after DST transitions from 2004 to 2013 further
supporting time transition-related effects on cardiovascular
diseases (26).

Finally, data from the Danish Psychiatric Central Registry
show that the transition from summer time to standard time is
associated with increased rates of unipolar depressive episodes in
the course of 10 weeks (27), implicating that negative effects—at
least for depression—might be present for a longer period of time.

As a side note, there is also an ongoing controversy about
a possible impact of seasonal time shifts on the rate of traffic
accidents. In 1996 Stanley Coren published a Correspondence
article in the New England Journal of Medicine reporting
increased numbers of traffic accidents on Mondays following the
spring time shift in Canada (28). Coren’s results are supported by
a 2001 study, which reported slightly but significantly increased
fatal accidents in the USA following spring time shifts in a data
set of 21 years (29). Coren speculated that the loss of 1 h of
sleep was the underlying cause, because the autumn time shift
conversely showed reduced traffic incidents. However, numerous
other studies do not support Coren’s data. Overall, these studies
even suggest the seasonal time shift to reduce traffic incidents in
the long run, possibly by providing an extra hour of daylight in
busier evening traffic hours (30–34).

CIRCADIAN RHYTHMS AND THE
GASTROINTESTINAL TRACT

The two main mechanisms by which circadian regulation of the
intestine takes place are vagal afferents from the suprachiasmatic
nucleus and intestinal expression of clock genes (35–37). These
include, among others, CLOCK (Circadian Locomotor Output
Cycles Kaput), BMAL1 (=ARNTL, Aryl hydrocarbon receptor
nuclear translocator-like protein 1), CRY1/2 (cryptochrome
1/2), PER1-3 (period circadian protein homolog 1–3) and
DBP (D-site binding protein), which are key factors in self-
sustaining transcriptional-translational feedback loops (TTFL)
that constitute the foundation of circadian regulation on a
molecular level within mammalian cells (38–41). In brief,
CLOCK and BMAL1 proteins form a heterodimeric transcription
factor inducing the expression of their own negative regulators
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PER1-3 and CRY1-2 in a negative TTFL. PER and CRY
proteins accumulate in the cytoplasm and are phosphorylated by
casein kinase Iε (CKIε) and glycogen synthase kinase-3 (GSK3).
Subsequently, they translocate back to the nucleus, where they
repress transcriptional activation by their own activators CLOCK
and BMAL1. Gradually, PER and CRY proteins are degraded
closing the loop and allowing the cycle to start anew (42). An
accessory feedback loop depends on REV-ERBα/ß (=NR1D1/2,
nuclear receptor subfamily 1, group D,member 1/2) and RORα/ß
(=NR1F1/2, nuclear receptor subfamily 1, group F, member 1/2),
which are expressed in a circadian rhythm in intestinal tissue as
well, regulating transcription of BMAL1 (38).

These circadian clock gene/protein oscillations need to be
relayed to the expression of effector genes in order to exert
functional effects in peripheral organs. DBP is considered a
prototypic local transducer of these signals, which was shown
in liver tissue, where it affects the circadian expression of
cytochrome P450 enzymes (43, 44). In recent years, it has
become evident that post-translational modification of the
aforementioned gene products is an additional key factor in
regulating cellular clock rhythms (42). In the intestinal tract,
several clock genes are preferentially expressed in epithelial cells
and in the enteric nervous system implying a relevant role in the
coordination of intestinal functions (39, 45). Microarray analysis
show that ∼4% of all distal colonic genes are expressed with
circadian rhythms many of which are involved in cell signaling,
proliferation, inflammation, intestinal motility, and secretion
(46). Indeed, gastrointestinal motility (45), gastric acid secretion
(47), intestinal regeneration (48), activity of mucosal enzymes
and carbohydrate as well as peptide absorption have been shown
to be regulated in a circadian manner (37, 49–52).

Additionally, the host’s circadian rhythm regulates diurnal
variations of gut microbiota (53). Microbial cues, on the other
hand, are transformed into rhythmic downstream signals by
oscillating expression of Toll-like receptors in intestinal epithelial
cells. These signals result in a tightly regulated circadian

expression profile of various genes with crucial functions for
metabolic and immunologic homeostasis in the intestine (41, 54),
representing a novel facet in bidirectional communication of host
and gut microbiota. Disruption of the host’s circadian rhythm by
varying mechanisms can lead to intestinal dysbiosis, symptoms
of irritable bowel syndrome, metabolic dysregulation, increased
glucose tolerance, and obesity among others (45, 53–58).

Notably, circadian rhythm disruption (CRD) also induces
increased intestinal permeability—a major culprit in metabolic
liver and inflammatory bowel diseases (IBD) (59). An early study
by Preuss et al. providing limited mechanistic insight showed
that shifting the light-dark cycle exacerbates experimental
colitis dramatically (60). Accordingly, genetic ablation of
one of the key factors of the accessory TTFL, REV-ERBα,
leads to increased susceptibility to experimental colitis in
mice, whereas mice with increased REV-ERBα activation
are protected (61). Moreover, we have recently shown that
both genetically (Per1/Per2-mutant mice) and externally
induced CRD exacerbates mucosal inflammation via inhibition
of intestinal epithelial cell proliferation and induction of
necroptosis in a well-established murine model of IBD (62). By
demonstrating that sleep deprivation, which is often linked to
CRD, worsens colonic inflammation, additional evidence for an
important role of the circadian rhythm in intestinal homeostasis
was provided (63).

In human IBD circadian genes are downregulated in
inflamed and non-inflamed mucosal biopsies and systemically in
mononuclear blood cells, correlating with increased markers of
inflammation and disease activity (64). Another study from 2015
shows a deregulation of key circadian genes in the mucosa of IBD
patients including CRY1, PER1, and PER3 using genome-wide
cDNA microarray analysis (65). Accordingly, CRD is suggested
as a possible environmental trigger of IBD activation (66, 67).
This is intriguing, considering that various environmental factors
including psychosomatic disorders, antibiotics, gastrointestinal
and upper respiratory infections and stress have been proposed

FIGURE 1 | Medical leave frequencies due to IBD increase after seasonal clock changes. Medical leaves are shown per 1,000 insurance holders in the 30 days before

and after seasonal clock changes for ulcerative colitis (A) and Crohn’s disease (B) as defined by the International Classification of Diseases (ICD-10). Statistical testing

was performed using One-Way ANOVA followed by Tukey’s honest significant difference test in Prism 6 (GraphPad Software). *P < 0.05; **P < 0.01.
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as major triggers of relapse, but lack consistent correlations in
prospective studies (68–70). To date, the most reliable clinical
predictors for acute flares remain high relapse rates in the past,
a short time since the last relapse and disease severity in general,
providing only limited mechanistic insight (68, 71).

We analyzed medical leave frequencies due to ulcerative
colitis (UC) and Crohn’s disease (CD) 30 days before and after
seasonal time shifts throughout the years 2010 to 2013 in a
large cohort of more than 10 million insurance holders of a
German health insurance company. Strikingly, after the autumn
time shift significantly more UC patients reported sick leaves
(Figure 1A, 12.88/1,000 insurance holders vs. 15.18/1,000, P =

0.0135). Similarly, medical leave frequency for CD patients was
significantly increased in the same period of time (Figure 1B,
15.88/1,000 vs. 18.6/1,000, P = 0.0077). The spring time shift
led to increased medical leave rates for both disease entities
as well, but the differences were not statistically significant
(Figures 1A,B). Although the absolute changes are modest and
medical leave frequencies are only a surrogate parameter for
acute IBD flares, these results indicate a relevant effect of seasonal
clock change on symptom severity of IBD patients forcing them
to take a medical leave.

Previously published data on increases of IBD flares in
the autumn/winter months compared to spring are partially
reproduced by our data, although the surrogate parameters differ
from study to study (68, 71, 72). Climatic differences as well
as sunlight exposure and associated vitamin D activation are
possible causes for these seasonal variations and may partially
explain the here observed increase after the autumn time shift,
but certainly not after the clock change in spring, when sunlight
exposition increases and temperatures rise (73, 74). Notably,
the variations in relapse frequency observed in these studies
are predominantly registered months before the dates of clock
changes and do not coincide with them (68, 72). It is therefore
unlikely that increased medical leave rates after seasonal clock
changes in our data are merely caused by the change of seasons.
Furthermore, it should be noted that several other studies did
not report seasonality or even conversely registered a rise of IBD
flares in spring (75–77). Possible causes for the varying results
include the definition of flares, different geographical and genetic
backgrounds of study populations and environmental factors
such as infections, climate, and food (78).

Many intestinal diseases among them IBD may be heavily
influenced by psychological factors. Therefore, it is important
to consider negative psychosomatic effects of seasonal time
shifts as effectors in our data, as reflected by increased
depressive episodes after autumn time shift (27). Nevertheless,
our data are coherent with abundant experimental evidence

of a crucial role of circadian rhythm in the maintenance
of intestinal homeostasis and barrier function. Although
we are not able to distinguish between immunologic and
psychosomatic mechanisms underlying our results, these data
may ultimately imply socioeconomic costs of biannual clock
changes as increased medical leaves entail fewer working hours.
Future prospective studies measuring hospitalization rates and
disease activity scores of IBD patients are, however, needed to
conclusively support an effect of seasonal clock changes on IBD
relapse rates.

CONCLUSION

DST is a highly polarizing issue, concerning most people in
western civilizations. Data on energy savings due to DST are
inconsistent, but DST appears more favorable in countries
located remote from the equator. Epidemiological data suggest
a link of seasonal time changes to increased incidences of acute
myocardial infarction, ischemic stroke, and depression. We here
provide additional data indicating a correlation of seasonal
clock changes with a surrogate parameter of acute IBD flares,
corroborated by existing experimental evidence on circadian
regulation of the intestinal homeostasis in mice and humans.
Further prospective studies will be needed to further support
these results. From a medical perspective—and setting aside
small energy savings and highly questionable effects on traffic
incidents—the abolishment of biannual clock changes should
be seriously considered. Following a public consultation, the
European Union is currently evaluating a permanent switch to
summer time and it would not be surprising if other regions were
following this example in the years to come.
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