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Effect of Surface Layers in Sliding
Contact of Viscoelastic Solids (3-D
Model of Material)
Elena V. Torskaya* and Fedor I. Stepanov

Ishlinsky Institute for Problems in Mechanics of RAS (IPMech RAS), Russian Academy of Sciences, Moscow, Russia

Sliding contact of a smooth indenter and a two-layered half-space is considered to

take rheological properties of materials into account. A viscoelastic layer bonded with

a rigid half-space is analyzed as well as the opposite viscoelastic half-space covered by

a rigid layer. The problem is formulated as quasi-static. A numerical-analytical method

of solution is based on a boundary element method and an iteration procedure. A new

analytical solution is used to calculate the influence of coefficients for the computation

procedure. Contact pressure, energy dissipation and internal stresses are analyzed

depending on sliding velocity, layer thickness and Poisson’s ratio.

Keywords: sliding contact, two-layered half-space, viscoelasticity, friction, hysteresis losses, internal stresses

INTRODUCTION

Rubbers and other polymers are often used as coatings to provide damping, anti-noise and other
effects during friction. In many cases the materials are much more compliant than the substrates.
A friction interaction of such coatings can be considered when using the model of the viscoelastic
layer bonded to a rigid half-space.

A one-dimensional model of the viscoelastic layer is widely used for a 3-D contact problem
solution, for example, in Klüppel and Heinrich (2000), Persson (2001), Morozov andMakhovskaya
(2007), Lyubicheva (2008), Goryacheva et al. (2014), and Soldatenkov (2015). It allows not only
to obtain an analytical solution but also to consider the additional effects such as an adhesive
interaction of surfaces (Goryacheva et al., 2014) or multiple contact (Klüppel and Heinrich, 2000;
Persson, 2001; Lyubicheva, 2008; Soldatenkov, 2015).

2-D contact problems for a layer with rheological properties and constant Poisson ratio have
been formulated and solved inMark (2008) and Aleksandrov andMark (2009); the contact pressure
and sliding resistance, caused by energy dissipation, is analyzed based on the solutions.

3-D quasi-static contact problems for indenters sliding over a viscoelastic half-space were
developed in Aleksandrov et al. (2010), Goryacheva et al. (2015, 2016), Koumi et al. (2015),
Stepanov and Torskaya (2016). Contact problems considering the material model specified by a
spectrum of relaxation times are considered in Aleksandrov et al. (2010). The effect of the adhesive
friction component on energy dissipation was analyzed in Goryacheva et al. (2015, 2016). A
viscoelastic material with an inclusion was considered in Koumi et al. (2015). The contact problem
solution can be used to calculate and analyze internal stresses in viscoelastic material (Stepanov and
Torskaya, 2016). The method developed for the viscoelastic half-space was also used to construct
an approximation for the viscoelastic layer (Menga et al., 2016).

For the case of coated viscoelastic materials, we could not find analytical or semi-analytical
models that calculate the pressure distribution and energy dissipation in sliding contact. Relatively
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FIGURE 1 | Scheme of contact.

hard coatings are used to improve friction and wear resistance
of rubbers (Bai et al., 2018) or to protect the materials from
chemical degradation.

In this paper, a quasi-static problem solution for a smooth
indenter sliding over a linear-viscoelastic layer (or viscoelastic
half-space covered by a rigid coating) is based on the
development of classical methods for layered structures. The
analysis of stresses is a relevant task, which is important to predict
the fatigue wear and material fracture.

PROBLEM FORMULATION

Let us consider a contact problem for a rigid smooth slider
and a layer with thickness h bonded with a half-space. Indenter
slides with a constant velocity V along the Ox axis; loaded with
vertical forceQ (Figure 1). An origin of coordinate system (x,y,z)
is placed at the center of the indenter, the Oz axis is directed
normally to the unloaded surface of the layer. The origin of
the coordinate system is located at the point of initial layer-
indenter contact.

The following boundary conditions are considered at the
surface (z = 0):

w(x, y) = f (x, y)+ D, (x, y) ∈ �

σz = 0, (x, y) /∈ �

τxz = 0, τyz = 0
(1)

Here � is the contact zone, w(x,y) is the vertical displacement
of the upper layer boundary, D – is the indentation depth of the
indenter, σz , τxz , τyz are normal and tangential stresses. The shape
of the indenter is specified by a smooth function f(x,y).

Contact pressure p(x, y) = −σz(x, y) and contact area are to
be found. The equilibrium condition is as follows:

Q =

∫∫

�

p(x, y)dxdy (2)

We also used the condition of zero normal stresses at the
boundary of the contact zones.

Conditions at the layer-substrate interface (z = −h) satisfy
the case of perfect adhesion. For the case of a rigid plate,
which bends on the viscoelastic substrate, we have equal
boundary displacements:

w(1) = w(2), u(1)x = u(2)x , u(1)y = u(2)y (3)

Here ux and uy are tangential displacements. Indexes (1) and
(2) correspond to the layer and the substrate, respectively. For
the case of the rigid substrate, condition (3) transforms to
the following

w = 0, ux = 0, uy = 0 (4)

Viscoelastic material is used as a coating or as a substrate in
combination with essentially more hard material, which can be
modeled as a rigid half-space or as a plate with flexural stiffness.
Mechanical properties of linear viscoelastic material are defined
by the following stress-strain relations (Goryacheva et al., 2015):

γ(t) = 1
Gτ(t)+ 1

G

t
∫

−∞

τ(t)K(t −τ)dτ;

ex(t) =
1
E

[

σx(t)−ν(σy(t)+σz(t))
]

+ 1
E

t
∫

−∞

[

σx(t)−ν(σy(t)+σz(t))
]

K(t −τ)dτ;

ey(t) =
1
E

[

σy(t)−ν(σx(t)+σz(t))
]

+ 1
E

t
∫

−∞

[

σy(t)−ν(σx(t)+σz(t))
]

K(t −τ)dτ;

ez(t) =
1
E

[

σz(t)−ν(σy(t)+σx(t))
]

+ 1
E

t
∫

−∞

[

σz(t)−ν(σy(t)+σx(t))
]

K(t −τ)dτ;

K(t) = k exp
(

− t
ω

)

(5)

Here ν is Poisson’s ratio, E and G are Young’s modulus
and shear modulus, respectively. The creep kernel is an
exponential function which depends on relaxation time 1/k and
retardation time ω.

METHOD OF SOLUTION

First let us consider a load distributed uniformly within the
square with side 2a, which moves over the viscoelastic layer.
Conditions at the surface are as follows:

σ
(1)
z = −q, |x| ≤ a, |y| ≤ a

σ
(1)
z = 0, |x| > a, |y| > a

τ
(1)
xz = 0, τ

(1)
yz = 0

(6)
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In the case of a layered elastic half-space, the problem of
determining stresses and displacements is solved using methods
based on double integral Fourier transforms (Nikishin and
Shapiro, 1970).

It is shown that the normal displacements of the upper layer
boundary are determined by the following expression:

w′(x′, y′, 0) = −
1

2G

π/2
∫

0

∞
∫

0

1(γ ,ϕ, λ,χ)

cos(x′γ cosϕ) cos(y′γ sinϕ)dγ dϕ (7)

Here x′, y′,w′ are dimensionless coordinates and normal
displacements of the surface related to the half-side a of the
square, χ = E1(1 + ν2)/E2(1 + ν1), γ ,ϕ are the coordinates in
the space of the double integral Fourier transforms, λ = h/a is
a dimensionless thickness of the layer, 1(γ ,ϕ, λ,χ) is obtained
during solution of the system of linear functional equations,
derived from boundary conditions (1–3) using the biharmonic
functions for the definition of the stresses and displacements.
An expression that defines the 1(γ ,ϕ, λ,χ) is very complex
(Nikishin and Shapiro, 1970), but in the case of a layer
bonded with a rigid half-space (χ = 0) it is simplified as follows:

1(γ ,ϕ, λ) = q̄

(

−24ν2e−4γ λ − 8ν2 + 26νe−4γ λ + 0.4νγ λ(e−4γ λ + 1)

−e−2γ λ(16ν2 + 4γ 2λ2 + 10)+ e−4γ λ(1+ 24ν)+ 4ν − 3
+

+
8νe−2γ λ(γ λ + 1)+ 14ν − 6− 0.3γ λe−4γ λ − 0.2γ λe−2γ λ − 0.3γ λ − 6e−4γ λ − 4e−2γ λ

−e−2γ λ(16ν2 + 4γ 2λ2 + 10)+ e−4γ λ(1+ 24ν)+ 4ν − 3

)

q̄ = q
4

π2

sin(γ cosϕ) sin(γ sinϕ)

γ 2 sinϕ cosϕ
,

(8)

Here q̄ is the result of an application of the double integral Fourier
transforms to the pressure distribution given by Equation (6).

For the case of a rigid plate, which is bonded to an elastic half-
space (χ = ∞ ), it is also possible to derive 1(γ ,ϕ, λ), though
the expression would be more cumbersome than (8).

The case of the distributed load moving with constant velocity
over a viscoelastic half-space was considered in Aleksandrov and
Goryacheva (2005) with the assumption that the shear modulus
is a time-dependent operator and the Poisson ratio is a constant.
Following (Aleksandrov and Goryacheva, 2005) we obtained
normal displacements of the surface of the viscoelastic layer from
(7) in the coordinate system, related to the center of the square
containing the distributed load:

w′(x′, y′, 0) = − 1
2G

π/2
∫

0

∞
∫

0

1(γ ,ϕ, λ) cos(y′γ sinϕ)×

×

(

cos(x′γ cosϕ)+
0
∫

−∞

K(−τ ) cos((x′ + V ′τ )γ cosϕ)dτ

)

dγ dϕ,

(9)

here K(t) is the creep kernel (5), V ′ is the sliding velocity divided
by a (V ′ = V/a ), G is the instantaneous shear modulus.

For the exponential creep kernel introduced in Equation (5),
the time integral in Equation (9) can be analytically calculated. As
a result, we obtain the following relation:

w′(x′, y′, 0) = − 1
2G

π/2
∫

0

∞
∫

0

1(γ ,ϕ, λ) cos(y′γ sinϕ)×

×

(

cos(x′γ cosϕ)+ cωV ′γ cosϕ sin(x′γ cosϕ)+cos(x′γ cosϕ)

1+(V ′ωγ cosϕ)2

)

dγ dϕ,

(10)

Here c = k · ω. Due to constant pressure q appearing linearly in
function 1(γ ,ϕ, λ), (10) may be used to calculate the influence
of coefficients in the boundary elements method, when contact
pressure p(x,y) is obtained as a piecewise function.

Expressions (1) and (2) lead to the following system of
linear equations:

FIGURE 2 | Contact pressure distribution within the contact area (V∗ = 1/3 (A), V∗ = 10 (B), h∗ = 0.1, c = 5, ν = 0.3, Q∗ = 0.15).
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FIGURE 3 | Dependence of friction coefficient on sliding velocity [h∗ = 0.1

(solid line), h∗ = ∞ (dashed line), c = 5, ν = 0.3, Q∗ = 0.05].

FIGURE 4 | Contact pressure distribution within central section of indenter

and plane Oy. h∗ = 0.03, 0.1,∞(curves 1-3 respectively), c = 5, ν = 0.3,

Q∗ = 0.1, V∗ = 0.05.
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, (11)

where p1...pN are unknown constant pressures in each of the
N elements, values f1...fN are defined by the indenter shape.

Coefficients k
j
i are obtained from (10):

κ
j
i = − 1

2G

π/2
∫

0

∞
∫

0

1′(γ ,ϕ, λ) cos(yijγ sinϕ)×

×

(

cos(xijγ cosϕ)+ c
ωV ′γ cosϕ sin(xijγ cosϕ)+cos(xijγ cosϕ)

1+(V ′ωγ cosϕ)2

)

dγ dϕ,

(12)

FIGURE 5 | Dependence of maximum pressure value on layer thickness

(c = 5, ν = 0.3, Q∗ = 0.1, V∗ = 1/60).

Here (x2ij + y2ij)
1/2

is a distance between square elements,

1′(γ ,ϕ, λ) = 1(γ ,ϕ, λ)/q. For the first step of the iteration
procedure we chose a contact area, which is known to be
larger than the actual one. For this area solution, Equation (11)
contains some elements with negative pressure. In the next step
of iteration, the values of negative elements are set to null and
therefore the value of N decreases. As a result of the iteration
procedure, we obtained the contact pressure distribution p(x,y)
and the contact area �.

Contact pressure distributions are used to calculate internal
stresses in the viscoelastic layer or substrate. Expressions for
such calculations were obtained for elastic layered half-space
by (Nikishin and Shapiro, 1970):

σx =
π/2
∫

0

∞
∫

0

(

1x(ν, γ ,ϕ, λ)− cos2ϕ 1u(ν, γ ,ϕ, λ)
)

×

× cos(x′γ cosϕ) cos(y′γ sinϕ)γ dγ dϕ,

σy =
π/2
∫

0

∞
∫

0

(

1y(ν, γ ,ϕ, λ)− sin2ϕ 1u(ν, γ ,ϕ, λ)
)

×

× cos(x′γ cosϕ) cos(y′γ sinϕ)γ dγ dϕ,

σz =
π/2
∫

0

∞
∫

0

1z(ν, γ ,ϕ, λ) cos(x
′γ cosϕ) cos(y′γ sinϕ)γ dγ dϕ,

τxy =
π/2
∫

0

∞
∫

0

1xy(ν, γ ,ϕ, λ) sin(x
′γ cosϕ) sin(y′γ sinϕ)γ dγ

sinϕ cosϕdϕ,

τxz =
π/2
∫

0

∞
∫

0

1xz(ν, γ ,ϕ, λ) sin(x
′γ cosϕ) cos(y′γ sinϕ)γ dγ

cosϕdϕ,

τyz =
π/2
∫

0

∞
∫

0

1yz(ν, γ ,ϕ, λ) cos(x
′γ cosϕ) sin(y′γ sinϕ)γ

dγ sinϕdϕ

(13)

As the presented expressions (13) depend only on the Poisson
ratio, they may be used to calculate the internal stresses in
the viscoelastic material, which is characterized by a constant
Poisson ratio.
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RESULTS

The method described above, was used to consider a sliding
contact of a spherical indenter (with radius R) and a layered

FIGURE 6 | Dependence of friction coefficient on layer thickness (c = 5;

ν = 0.3; Q′ = 0.01).

half-space with the viscoelastic material used as a layer or as a
substrate. The following dimensionless parameters were used for
analysis: dimensionless coordinates (x∗, y∗) = (x, y)/R, velocity
V∗ = Vω/R = V ′ω · a/R, layer thickness h∗ = h/R, load
Q′ = Q/R2Gl (hereGl is longitudinal shearmodulus) and contact
pressure p∗(x, y) = p(x, y)/Gl.

Viscoelastic Layer and Rigid Substrate
Figure 2 presents the contact pressure distribution for two values
of the velocity: V∗ = 1/3 (Figure 2A) and V∗ = 10 (Figure 2B).
The first case corresponds to sufficient asymmetry, which is
caused by the rheological properties of the material. Therefore,
a force M∗ that is opposite to the sliding direction arises. It
is the deformation component of the friction force (or sliding
resistance). Problems under consideration are without tangential
stresses at the surface, and the friction coefficient is defined as
follows (Goryacheva et al., 2016):

µ∗ =
M∗

Q∗
=

∫∫

�

x∗p∗(x∗, y∗)dx∗dy∗

∫∫

�

p∗(x∗, y∗)dx∗dy∗
, (14)

FIGURE 7 | Contact pressure distribution for different velocities and Poisson ratio: V∗ = 1/60 (A), V∗ = 0.3 (B), V∗ = 10 (C), ν = 0.45; 0.3; 0.2 (curves 1-3

respectively), c = 5, h∗ = 0.1, Q∗ = 0.1.
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FIGURE 8 | Surface tensile-compressive stc = 5ress distribution [V∗ = 0.333

(curves 1,2,4,5), V∗ = 1.666 (curve 3); c = 5 (curves 1, 3-5), c = 20 (curve 2);

h∗ = 0.1 (curves 1-4), h∗ = 0.033 (curve 5); ν = 0.3 (curves 1-3, 5), ν = 0.45

(curve 4); Q′ = 0.1 (curves 1, 3-5), Q′ = 0.035 (curve 2)].

FIGURE 9 | Distribution of stresses τ *xz at the layer-substrate interface

[V∗ = 0.333 (curves 1,2,4,5), V∗ = 1.666 (curve 3); c = 5 (curves 1, 3-5),

c = 20 (curve 2); h∗ = 0.1 (curves 1-4), h∗ = 0.033 (curve 5); ν = 0.3 (curves

1-3,V∗ = 0.333 5), ν = 0.45 (curve 4); (curves 1, 3-5), Q′ = 0.035 (curve 2)].

Together with an increase of sliding velocity (Figure 2B),
the size of the contact area decreases, and the maximum
value of the contact pressure increases; and the pressure

FIGURE 10 | Dependence of principal shear stresses on layer thickness

[V∗ = 0.333;c = 5;ν = 0.3;Q′ = 0.1;h∗ = 0.033 (A), h∗ = 0.166 (B)].

distribution becomes almost symmetrical. Similar
phenomenon was observed earlier for 1-D models
of viscoelastic layer bonded with a rigid half-space
(Lyubicheva, 2008), and also for viscoelastic half-
space (Aleksandrov et al., 2010; Goryacheva et al.,
2015, 2016).

The dependence of friction coefficient µ∗ on sliding velocity
is presented in Figure 3. The dependencies are non-monotonic.
Together with an increase in sliding velocity, the energy
dissipation first increases and then decreases. By comparing
results for the layer and for the half-space, we conclude that
generally maximum values of µ∗ are greater for the half-space,
but at low sliding velocities the dissipation losses are higher for
the layer.

The effect of layer thickness on contact characteristics may
be analyzed using results presented in Figures 4, 5. Contact
pressure distribution within the central section of the indenter
and plane Oy (Figure 4) were calculated using three values
of layer thickness: (curves 1-3, respectively). The value of the
sliding velocity was chosen so that the rheological properties
of the material have a significant effect on the contact pressure
distribution. It should be noted that the curve which corresponds
to the case of the half-space, has specific bends. Similar results
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FIGURE 11 | Contact pressure distribution within the contact area [c = 6; h∗ = 0.0133; ν = 0.4; Q′ = 2.0; V∗ = 0.05 (A); V∗ = 0.2 (B)].

FIGURE 12 | Contact pressure distribution for different velocities and layer thickness [c = 6; ν = 0.4; Q′ = 2.0; V∗ = 0.05 (A); V∗ = 0.2 (B), h∗ = 0.05 (curve 1),

h∗ = 0.02 (curve 2), h∗ = 0.0133 (curve 3), h∗ = 0.0066 (curve 4)].

FIGURE 13 | Dependence of friction coefficient on layer thickness. [c = 6;

ν = 0.4; Q′ = 2.0; V∗ = 0.05(curve 1); V∗ = 0.2 (curve 2)].

were previously obtained in Koumi et al. (2015), Goryacheva et al.
(2015, 2016). For a relatively thin layer the shape of the curve is
similar to the results obtained for the 1-D model of viscoelastic
layer (Lyubicheva, 2008). The dependence of pressure maximum
on layer thickness (Figure 5) was calculated for a relatively small
value of the sliding velocity V∗ = 1/60 in which case the

rheological properties of the material are poorly manifested. The
dependence monotonically decreases.

The influence of thickness of the viscoelastic layer on
the friction coefficient was analyzed with the velocity, which
provided a relatively large value friction coefficient (see Figure 6).
The increase of thicker layers was predictable. It is interesting to
note, that there was a 15% increase in the friction coefficient vs.
the four time increase of thickness.

As the viscoelastic materials often are weakly compressible
an important characteristic for analysis is the Poisson ratio
(Figure 7).

The following values of the Poisson ratio were used in
calculations: ν = 0.45; 0.3; 0.2 (lines 1–3, respectively). Also,
three values of sliding velocities V∗ = 1/60 (Figure 7A),
V∗ = 0.3 (Figure 7B), V∗ = 10 (Figure 7C) were considered.
The presented results show that the Poisson ratio sufficiently
influences the pressure distribution, both at small and at
high velocities, when the pressure distribution is close to the
elastic case (Figures 7A,C). This appears also in the case of a
non-symmetric pressure distribution (Figure 7B). In the latter
case it is interesting to analyze the effect of the Poisson
ratio on the value. Curve 1 in Figure 7B corresponds to
µ*=0.1013; other values areµ*=0.1357 (curve 2), andµ*=0.1439
(curve 3).
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FIGURE 14 | Normal stresses at the layer-substrate interface [c = 6; ν = 0.4; Q′ = 2.0; V∗ = 0.05; (A); V∗ = 0.2 (B); h∗ = 0.0066 (curve 1), h∗ = 0.0165 (curve 2),

h∗ = 0.05 (curve 3)].

FIGURE 15 | Tangential stresses at the layer-substrate interface [c = 6; ν = 0.4; Q′ = 2.0; V∗ = 0.05 (A); V∗ = 0.2 (B); h∗ = 0.0066 (curve 1), h∗ = 0.0165 (curve 2),

h∗ = 0.05 (curve 3)].

The resulting contact pressure distributions were used for
analysis of internal stresses in the viscoelastic layer. Figure 8
represents surface tensile-compressive stress distribution.
Concentration of the tensile stresses may cause material damage.
The maximum of the tensile-compressive stresses is located at
the surface for all considered input parameters. Negative values
of stresses are compressive, while positive values are tensile.
The maximum of compressive stresses is located at the point
of maximal contact pressure. The front of the contact area has
stresses that are sharply differential from the positive to negative
or zero values. Behind the contact zone local maxima of tension
occurs. It was shown that tensile stresses mostly depend on the
Poisson ratio and layer thickness. An essential decrease of tensile
stresses in front of the contact area occurs due to an increase of
the Poisson ratio and due to a decrease of the layer thickness.

Figure 9 represents the calculation results for the distribution
of stresses τ ∗xz at the layer-substrate interface. The stresses
are equal to zero at the layer surface and reach a maximum

at the interface. Stress concentration may be a reason for
layer delamination. Here only absolute values of stresses are
considered because positive and negative signs define the
direction of stress action. The stress maximum is located under
the surface boundary. The absolute maximum of stresses appears
under the front side of the contact area. The effect of the Poisson
ratio is most significant for shear stresses: curves 1 and 4 are
calculated for ν = 0.3 and 0.45, respectively, and the shear
stress maxima are more than two times greater for a large
Poisson ratio.

Analysis of effect of layer thickness on principal shear
stresses is presented in Figure 10 for different layer thicknesses.
An almost symmetrical stress distribution was obtained for
a relatively thick layer; which means that the layer thickness
influences the detection of the rheological properties of the
material in sliding contact. A layer thickness increase of five
times, leads to a decrease of the maximum of the principal shear
stress inside the layer by almost three times.
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Viscoelastic Half-Space Coated by a
Rigid Plate
Figure 11 represents the contact pressure distribution obtained
for two different sliding velocities V∗ = 0.05 (Figure 11A);
V∗ = 0.2 (Figure 11B). Both figures demonstrate the effect of
rheology of the substrate which results in sufficient asymmetry
of the contact area and pressure distribution. Here one can
observe a “chair shape” effect in the pressure distribution in
Figure 11A which occurs due to coating bend and substrate
rheological properties. Figure 12 shows the contact pressure
distribution at two different sliding velocities and four values
of layer thickness. Here, the decrement of pressure in a
center of a contact zone can be observed more explicitly.
It is worth noting that this phenomenon occurs at relatively
small values of layer thickness, while at thicker layers the
pressure distribution tends to be more Hertz-like, which
is foreseeable.

The effect of layer thickness on the friction coefficient
was also analyzed. The results are presented in Figure 13

for two values of the sliding velocity. Curves 1 and 2
are almost of the same shape and arranged one above
the other. Some non-monotonic dependence of sliding
resistance on the coating thickness in the range of thin
coatings can be observed. Herewith, generally the smaller
value of sliding velocity shows the bigger amplitude of the
friction coefficient.

Analysis of internal stresses due to contact interaction
in an elastic substrate covered by essentially more hard
coating (Goryacheva, 1998) leads to the conclusion, that
stress at the coating-substrate interface is usually greater
than in other points of the substrate. The results presented
below (Figures 14, 15) illustrate the influence of the rigid
plate thickness on the normal and tangential stresses at the
interface for two different velocities. It can be noted, that
for the thickest coating the normal stress distribution is
the most uniform, but for the thin layer the distribution
is closer to the contact pressure. It can explain the effect
of a decrease in hysteretic losses with an increase in the
coating thickness. The influence of the layer thickness on
the interface tangential stresses is almost the same as for
the viscoelastic layer bonded with a rigid substrate, which is
described above.

DISCUSSION

In this study, two cases were considered:

- a quasistatic sliding of a smooth indenter over a viscoelastic
layer bonded with a rigid half-space as well as

- a quasistatic sliding of a smooth indenter over a rigid plate
bonded with viscoelastic half-space.

A new numerical-analytical method of a solution based on the
double integral Fourier transform was developed and used in
both cases. Contact pressure distribution, friction coefficient, and
stresses inside the viscoelastic layer or viscoelastic substrate were
analyzed depending on input parameters.

In the case of viscoelastic half-space, the velocity, at which
the maximum sliding resistance is observed, is dependent on
the combination of the elastic, rheological properties of the
material and on the normal load. For a viscoelastic coating (or
coated viscoelastic substrate) the thickness of the layer must be
added to this set. We found that for low velocities, the hysteretic
losses in a layered system are higher than those in the case
of the half-space with the same rheology. At higher sliding
velocities, the dependency on the layer thickness is the opposite.
Generally, the thicker the layer, the higher the maximum value
of the friction coefficient is due to hysteretic losses. The opposite
effect is obtained for the combination of a rigid coating and a
viscoelastic substrate.

The effect of the Poisson ratio on the contact pressure
is partially apparent: for elastic solids, higher values of
contact pressure are found for low-compressive materials.
More interesting is the finding that for low-compressible
materials, large values of tangential stresses at the
layer-substrate interface take place; which may cause a
delamination process.

In the case of thin layers with a relatively low Poisson
ratio, stresses are found to be weakly dependent on the
coordinate z, therefore a 1-D model of the viscoelastic layer
should provide a good approximation for the contact problem
solution, with the exception of the stress distribution. An
analysis of stresses inside the layer, or in the viscoelastic
substrate, can be used to predict the coating fracture due
to sliding.
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