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Abstract Nowadays, there is a remarkable world trend in employing UAVs and drones for diverse applications.
The main reasons are that they may cost fractions of manned aircraft and avoid the exposure of human lives
to risks. Nevertheless, they depend on positioning systems that may be vulnerable. Therefore, it is necessary
to ensure that these systems are as accurate as possible, aiming to improve navigation. In pursuit of this end,
conventional Data Fusion techniques can be employed. However, its computational cost may be prohibitive due
to the low payload of some UAVs. This paper proposes a low-cost Multisensor Data Fusion application based on
Hybrid Adaptive Computational Intelligence (HACI) - the cascaded use of Fuzzy C-Means Clustering (FCM) and
Adaptive-Network-Based Fuzzy Inference System (ANFIS) algorithms - that have been shown able to improve
considerably the accuracy of current positioning estimation systems for real-time UAV autonomous navigation,
reducing the error in approximately 300cm?. In addition, the proposed methodology outperformed two other
Computational Intelligence methodologies — Artificial Neural Networks and Regression Models, with 18 different
tested approaches — in estimating an UAV position considering the Root-Mean-Square Error against the real
trajectory. The generated Fuzzy Inference System has proved to be effective in providing an improved positioning
estimation with a low computational burden, about 600 times faster than the fastest embedded sensor refresh
rate.

Keywords: Data Fusion, Computational Intelligence, Unmanned Aerial Vehicles, Autonomous Navigation, In-
ertial Sensors, Positioning Estimation, ANFIS.

1 Introduction

Several applications are possible for aerospace assets. Among them, one can mention the integration and
logistics for different sectors of the society, the assessment of natural or public calamities, and the moni-
toring of areas of government interest [I]-[3]. Manned aircraft with onboard remote sensing equipment,
such as cameras, sensors, and radars, have been responsible for detailed tracking, data collecting and
help in detecting threats, aiming at protecting and upholding the law [4]-[9].

However, for many applications, the use of manned aircraft is not feasible or desirable since the crew
lives may be exposed to risk scenarios, like situations involving disasters or radiation. In many cases,
this could be avoided. Therefore, an alternative to the use of manned aircraft is the use of Unmanned
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Aerial Vehicles (UAVs) [9], [I0]. Given some factors like their low flying altitude and slow speed, they are
more difficult to be detected by conventional sensors [9]. In addition, some models cost only a fraction
of manned aircraft. According to Cook [J], the UAVs, which historically were thought of as merely
complementary to manned aircraft, have proven to be an excellent power asymmetry tool.

The world trend in the use of UAVs is undeniable. The use of such systems in the military plays an
important role in surveillance, reconnaissance, target prediction, and even combat missions by operating
in a wider range of conditions and scenarios than conventional aircrafts [9]-[12]. Regarding the civilian
scope of aerospace robotics employment, there can be mentioned topographic surveys, mapping of areas
of interest, precision agriculture, surveillance, and access control, remote sensing for geological and cli-
matic research and various utilities [2], [3], [§], [I2]. State-of-the-art applications include detection and
monitoring of sea wildlife [I3], thermographic inspection of photovoltaic plants [15], radiation detection
[14] and identification of helicopter landing zones and airdrop zones in calamity situations [16].

Though, it is known that UAVs require a structured navigation control protocol, such as via Radio
Frequency or via satellite, which makes it vulnerable to interference such as jamming or spoofing [I0].
One solution to this problem is the use of autonomous navigation. However, even the use of Global
Navigation Satellite Systems (GNSS) or Inertial Navigation System (INS) - systems widely covered in
the literature - are not immune to faults or interference [I7]. Ignoring the attitude and trajectory of an
aircraft can cause the loss of the aircraft altogether, so it is essential to ensure the operational reliability,
accuracy, and robustness of their navigation [g].

In this sense, the use of Data Fusion to enable more secure and robust navigation is a good alternative
to the exclusive reliance on the usual navigation systems. The technology of Data Fusion plays an
invaluable role in the search for increased navigational safety [23] [I8]. Therefore, given the reality of
the current applications of aerospace robotics, promoting research and development in the area of Data
Fusion is imperative [I], [§], [12].

Thus, the main objective of this paper is to evaluate a Multisensor Data Fusion application, based on
Hybrid Adaptive Computational Intelligence (HACI), through the fusion and integration of sensed data
obtained by embedded sensors of the UAVs. The proposed approach aims to reduce the imprecision of
current methods of positioning estimation, like GPS and INS, and to deliver solutions in a feasible time
to the problem of real-time navigation of low-performance UAVs. The proposed methodology offers an
improvement in the quality of the positioning estimation information provided as input to its In-flight
Navigation and Attitude Control System — a system responsible for controlling the UAV’s frame attitude
and trajectory and for the Decision-Making process — or simply “control loop”. It is hoped, therefore,
to provide UAVs with safer and more robust navigation given more precise information is being used for
the flight. It should be noted that the control loop modeling is not in the scope of this article.

The referred Fusion has been performed using two Computational Intelligence techniques in a cascaded
way, i.e., Fuzzy C-Means Clustering (FCM) [60] and Adaptive-Network-Based Fuzzy Inference System
(ANFIS) [61]. These techniques have shown to be promising to effectively increase the accuracy of the
positioning estimation of the UAV held by the Global Positioning System (GPS), considering the Root-
Mean-Square Error (RMSE) between the position taken as real and the estimated one. The methodology
proposed in this work was compared with two other Computational Intelligence methodologies — Artificial
Neural Networks and Regression Models — with 18 different tested approaches, outperforming them in
the capability of enhancing the positioning estimation precision considering the RMSE against the real
trajectory, as detailed in the next sections.

2 Data Fusion and related work

The systems most widely employed for the navigation of UAVs are the GNSS. The most known are the
GPS and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) [8], [17], [I9]. Nonetheless,
several studies show that these systems may present vulnerabilities, both from natural factors, such as the
South Atlantic Magnetic Anomaly (SAMA), and human factors, such as jamming, spoofing and malicious
blockages and interference [21]-[26].

Another widely used system in the literature is the INS. The problems involving its use is that low-cost
INS can accumulate drift error that, if not corrected, could result in a substantial divergence between
the estimated position and the real position of the UAV [§], [I7], [24]. Thus, the use of Data Fusion of
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multiple sensors for the positioning estimation has shown to be a feasible option to the dependence on
one or the other system alone [27]-[29].

Along with technological development, the number of available sensors and data has been increasing.
In general, it is seen that there is a need to use different sources of data to obtain more accurate estimates
[8,24]. In this context, Data Fusion techniques can be used to fuse the data originated from various sensors
and thereby generate improved information [23] 24]. Figure [1| shows possible combinations of differences
between data sources.

DIFFERENT
CHARACTERISTICS
AND OBSERVABILITY
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SAMPLING
RATES

DIFFERENT
PHYSICAL
PRINCIPLES

Figure 1: Possible combinations of differences between data sources addressed by Data Fusion.

In the literature, several recent works deal with the improvement of the positioning estimation using
Data Fusion of GPS and INS. The positioning estimation is done through different methods, as seen, for
instance, in [30]-[34], where is shown the fusion of GPS and INS to bridge the period of GPS outages
for vehicular navigation. The authors in [35] use random forest regression to enhance the positioning
estimation of an airplane, whereas [40] employs Kalman filtering to a high-performance ultra-tightly
coupled GPS/INS. In [36]-[39] is seen the use of adaptive networks to perform the Multisensor Data
Fusion. Additionally, [41] [42] apply Fuzzy Inference Systems to perform the fusion. Finally, it is seen in
[43] the use of ANFIS as a sub-remedy system to temporarily replace the GPS positioning estimation used
as input to a Kalman filter during GPS outages. Although, according to the authors, the methodology
implies an average performance improvement of not more than 40%, the great counterpoint to this work
is that the employed methodology is subject to all the problems related to the use of the Kalman filter.
Problems include imprecision about noise information that could lead to position and velocity deviations
and filter divergences due to system linearization, which implies in no guarantee of optimality [45] [48], [44].

The Data Fusion approach has shown to be effective in reducing the imprecision of the positioning
estimation process. Nevertheless, it is worth mentioning that the only papers found regarding the im-
provement of the autonomous navigation of a UAV using ANFIS as the main estimator was published by
the authors in [46] and [47].

With that said, Data Fusion is a process that acts through the detection, association, correlation,
estimation and combination of data of different sensors [I8], [48], [49]. This may be invaluable for the
collection of useful information aiming at the analysis of the various scenarios for Decision-Making [50].
Regarding UAVs, the higher the exposure to an unfamiliar and unstructured scenario, the higher the risk
in its operation due to eventual obstacles that may arise in its trajectory [10].

The use of Data Fusion from several sensors has many advantages, such as improved estimates of
information about the target, such as position and speed, when several identical sensors are used in com-
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bination in an optimized way, acquiring statistical advantages by increasing the number of observations
of the same event; improvement of the observation process using relative data between multiple sensors,
which opens up new possibilities for combining and extracting information; and greater observability,
since a sensor can capture data that another cannot, either by divergences in their physical nature,
position or refresh rate, for example, reducing errors and complementing information [12], [4§].

However, the use of several sensors can imply large volumes of data, sometimes noisy, with different
characteristics, unconjugated sampling rates or even nature and physical principles that are de-correlated
with each other. Therefore, considering the complexity of such a data set, conventional Data Fusion
techniques may not present timely solutions to the navigation problem, given, in general, its high com-
putational cost [48], [50], and also considering the need for real-time processing in the case of an ongoing
flight.

Hence, a Data Fusion application based on HACI is proposed, aiming at making feasible its employ-
ment in real-time flight applied to the problem of navigation, given the mathematical simplicity of the
tool used to estimate the position [51] and its inherent low computational cost.

3 FCM and ANFIS

The tool used to perform the Data Fusion was the Fuzzy logic, which is the representation of uncertainties
in the mathematical form [53]. Regarding aerospace systems, the uncertainties arise mainly from their
complexity and non-linearity, both as a result of inaccuracies in the mathematical model and the number
of variables that interact epistatically in obtaining the results [70]. In the field of multivalued logic,
it is important to emphasize that this logic, considered as of “infinite” values, aims to formalize the
representation of vagueness using linguistic terms [54]. Thus, it is an efficient solution to the fusion of
vague, noisy or partial data [50].

Focusing on the applications, Fuzzy logic is extremely flexible for the most diverse uses since it uses
“membership functions” (MFs) that model and quantify the meaning of the symbols [50] [70] for their
deductive apparatus in an intuitive and close to the natural language way [54], through well-defined “if-
then” relationship rules [70]. A good example of the application of Fuzzy logic is its use to improve the
accuracy of the landing procedure of an UAV [38]. Another is the joint use with Computational Vision
tools for estimating the position of an UAV in real-time flight, based on landmark recognition, as seen in
52].

Fuzzy logic fits into the Soft Computing area, which refers to the use of computational tools to find
approximate solutions to approximately formulated problems, creating some tolerance for imprecision and
uncertainties aiming at modeling systems in a more treatable, robust and cost-effective way, with greater
computational power saving and communication bandwidth [70]. Thus, Soft Computing is a good choice
for the implementation of intelligent control of complex systems, such as aerospace systems. Other areas
of Artificial Intelligence are also covered by Soft-Computing, among them: Artificial Neural Networks,
Probabilistic Reasoning, Expert Systems, and Genetic Algorithms [70].

In the case of neural networks, Kothari and Bhattacharjee [56] state that it is a stochastic and
heuristic tool that learns the relation between the parameters and their responses when trained with a
finite number of input data and predicts the values of a new set of independent variables based on their
training (learning) experience. It should be noted that, from the optimization point of view, “learning”
is equivalent to minimize the global error function [58]. With that said, neural networks are interesting
because they can handle some complex problems through a powerful and flexible framework [59].

According to Teodorovié¢ [57], the chosen structure of a neural network model can influence the con-
vergence rate of a training algorithm and even determine the type of learning to be used. Also according
to the author, the training algorithms are very simple mechanisms that adapt the weights of the branches
of a network, requiring for each node only locally available data. For this reason, he concludes that its
implementation generally does not involve complex calculations and, thereby, powerful computational
configurations are not necessary. For this work, the chosen architecture was the Multi-Layer Perceptron
(PMC), one of the most used in the literature [55].

In this paper, two techniques of Computational Intelligence were applied sequentially: Fuzzy C-Means
Clustering (FCM) and Adaptive-Network-Based Fuzzy Inference System (ANFIS). The first one aims to
group a data set in centroids according to a non-crystalline similarity from Fuzzy sets [60], while the
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second one is an Adaptive Network — a class of feed-forward Neural Networks with supervised learning
capability — that emulates the behavior of a Fuzzy Inference System (FIS) System [61].

In the case of a flight data (log) containing real data captured from embedded sensors, such as the
one used in this work, there is a significant amount available for extracting information. This is a task
that is not trivial [62]. Consequently, techniques that use methods that combine knowledge areas such
as machine learning, pattern recognition, and information retrieval can be employed towards a better
analysis of the data [62].

3.1 The Fuzzy C-Means Clustering (FCM) algorithm

Like any clustering technique, the FCM assists in obtaining an intuition about data whose volume makes
the analysis by humans difficult. For this reason, algorithms such as FCM are widely used for exploratory
data analysis in the sense that they act as meta-learning tools [62].

According to Saxena et al. [63], clustering techniques can be divided into Hierarchical, such as BIRCH,
CURE, ROCK, and CHAMELEON, or Partitional, such as k-means, PAM, CLARA, CLARANS, FCM,
EM, DBSCAN, and CLICK. As stated in [64], clustering techniques can be divided, according to the sta-
tistical point of view, into a probabilistic approach, based on a model that uses probability distributions,
or in a non-parametric approach, which essentially employs methods based on objective functions of sim-
ilarity or dissimilarity. Also according to Yang and Nataliani [64], the best-known probabilistic algorithm
is the Expectation-Maximization (EM), while the k-means is the most famous among the non-parametric.
Another example of a non-parametric algorithm is the FCM, used in this work.

Crisp clustering algorithms consider that each sample may belong to one, and only one centroid. This
prevails in the fact that such algorithms present difficulties in modeling systems that exhibit uncertainties
of non-statistical nature, such as noises [60]. Thus, the Fuzzy Set Theory proves to be substantially useful
since it formalizes the mathematical representation of vagueness/uncertainty [65], which can be applied
to the clustering problem.

Unlike crisp clustering techniques, such as k-means and z-means, the FCM allows one sample to belong
to a greater or lesser degree to more than one centroid, determined by a Fuzzy membership function [63].
This expands both the ability of differentiation and of agglomeration between samples and allows, for
example, the identification of noises in regions of overlapping membership [60]. A simple illustration of
the fact is depicted in Figure

. k-means

A 4
v

Figure 2: Simplified representation on how FCM and k-means algorithms cluster the data.

Furthermore, the FCM algorithm is based on the minimization of the following objective function [63]:
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N ¢
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where N is the number of samples, ¢ the number of centroids, m a real number that controls the degree of
overlap between the centroids, u;; (Fuzzy Partition Matrix) the level at which an observation z; belongs
to a cluster j, v; the j-th cluster’s centroid, and || * || represents any norm that expresses the similarity
between the measured data and the centroids, such as the Euclidian norm in (1).

Thus, the FCM algorithm is comprised of the following steps [60], [63], [66]:

1. The initial values of the u;; membership functions of the centroids (c) are randomly adjusted;

2. Calculate the prototype centroids (j = 1, ... ,¢):

N m
Zi:l UjjLi

YT
i=1 Uij

3. Calculate u;; according to:

k=1
4. Calculate Objective Function J,, (1); and

5. Repeat steps 2 to 4 until J,, reaches the desired convergence or the iteration number exceeds a
stipulated limit.

In this paper, the centroids calculated by the FCM algorithm are then used as the starting point for
the generation of initial membership functions that will be optimized by the ANFIS algorithm.

3.2 The Adaptive-Network-Based Fuzzy Inference System (ANFIS) algo-
rithm

The ANFIS algorithm, developed by Jang [61], uses a hybrid learning scheme and can construct an input-
output type mapping based on human knowledge, represented by if-then rules and associated pairs of
inputs and outputs. In this sense, it is able to learn to map highly nonlinear functions [61], [67]. Briefly,
this algorithm can be seen as a flexible mathematical structure that can address the approximation of a
large class of complex nonlinear systems with a desirable level of accuracy [67], without, however, losing
the mathematical rigor [51], [65].

Concerning the Fuzzy Logic, it should be emphasized that there is no standard methodology for
transforming human knowledge or experience into a rule base for a FIS. In addition, there is a need to make
adjustments to the established membership functions to both improving performance and minimizing
systems’ errors [61]. Hence, finding appropriate rules and applying appropriate adjustment methods are
key issues [68], and the adequate representation of these rules is crucial.

Thus, the form of treatment of if-then rules proposed by Takagi and Sugeno (T-S) is particularly inter-
esting since it employs parameters of mathematical functions in place of the classic linguistic expressions
[51], [68] and has fuzzy sets involved only in the part of the premises [61]. Here is an example of T-S
type fuzzy reasoning:

Rule 1:IF xis Ay AND yis By, THEN fi=pix+ qy+r

Rule 2: IF x is Ay AND yis By, THEN fo =pox+ qoy+ 12

being = and y the inputs, A; and B; fuzzy sets, f; the outputs of same Universe of Discourse as the input
variables and p; , ¢; and r; calculated parameters during the learning.
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In this approach, the consequent part is described by non-fuzzy equations of fuzzy input variables
(antecedents) [6I]. This particular fact allows its application in several machine learning algorithms,

among which is the ANFIS algorithm.

By using a hybrid scheme of Fuzzy Logic and Neural Networks such as Adaptive Networks, an ANFIS
Network harnesses advantages of these two large areas of Computational Intelligence [69]. While Fuzzy
Logic can handle uncertainty in inputs and outputs, Adaptive Networks can address the uncertainty of
the model and thus, when employed synergistically, can be applied to a wide variety of complex problems
[70]. Figure [3|illustrates the complementarity of these two paradigms.

Neural Networks

Input

Fuzzy Logic

If/then
rules

Figure 3: Neural Networks and Fuzzy Logic and how they deal with uncertainty (clouds).

The complementarity depicted in Figure [3| is achieved by means of an Adaptive Network structure,

according to Figure [4] [61], [71]:

Output

Layer 1

Layer 4

Figure 4: Structural model of an ANFIS Network. The arrows indicate the direction of the hybrid

learning scheme. Source: Adapted from [71].

Each layer of the structure has the following constitution:
1. Fuzzy sets that determine the degree of membership of inputs z and y : pa, (x) and up, (y) .

2. T-norm operator, such as the product w; = pa, (x)-up, (y) , these being the membership functions

of each fuzzy variable as a function of the inputs.
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3. Normalization of activations, according to:

wi = 11)1’%);11)2 (4)

4. Defuzzification according to consequent’s parameters p; , ¢; and 7; .

5. Output as a function of the sum of activation of all the rules (composition):

f=Y wifi = Xl (5)

Once the structure of the Adaptive Network was detailed, the steps of the ANFIS algorithm applied
to the context of this work are as follows:

1. Load the training and validation data and determine the input parameters and number of epochs;
2. Generate initial membership functions (antecedents);

3. Perform the training of the ANFIS System by means of a hybrid optimization of the FIS model
(Figure 4) until a predetermined stop criterion is reached (maximum error, for example):

(a) Antecedents: Fixed in the forward pass (forth) of the algorithm and optimized in the backward
pass (back) by the Gradient Descent method, based on the outputs of the model; and

(b) Consequents: Optimized on the forward pass (forth) by the Least Square Optimization (LSE),
based on error rates (e), and fixed at the backward pass (back)

4. Validate training results - trained ANFIS systems - according to validation data; and

5. Verify the efficiency of the trained model by measuring the degree of accuracy of the model in
predicting the output, given certain inputs, through RMSE.

The use of the ANFIS Networks proposed in this work is performed with real data obtained in flight
as explained below. Several configurations were tested for four dimensions, namely: number of inputs
(sensors used); number of membership functions for each input; number of training epochs; and data
division for training. The results are discussed in section 5.

4 Materials and methods

The methodology chosen for this scientific work - which is now detailed - promotes the Data Fusion
through HACI, using real measured data of several embedded sensors from flight logs. These logs were
generated in real-time. Once the data is presented, the chosen algorithms perform a non-linear mapping
from the input data (coordinate and chosen sensors) to the output data (real position), generating trained
Fuzzy Inference Systems. The trained FIS are then used to perform the positioning estimation of the
UAV, as shown in Figure Several tests presented at section 5 show the evaluation of the proposed
methodology effectiveness.

The Real-Time Kinetic GPS sensor data, treated by a Kalman filter (KF-GPS-RTK), was used as
ground truth. Given its notorious precision, this data makes it possible to measure the errors of the
positioning estimates generated by the Data Fusion System. It should be noted that the dataset of a
flight log refers to all samples taken between takeoff and landing with a given sampling rate.

According to Al-Hmouz et al [71], the choice of training data is of paramount importance. However,
given the complexity of data such as those recorded in flight logs of an UAV, choosing the training,
validation, and generalization data sets that provide the best results is not trivial. Thus, Cross-Validation
(CV) techniques can be employed to minimize the risk - or error - in the choice of data groups, bearing
in mind that the data groups are chosen in order to be independent of each other [73].

This popular algorithm selection strategy [73] works with a data division that aims to measure the
generalization power of a given model, that is, how good is its ability to make predictions on newly
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Figure 5: Illustration of the methodology applied to the improvement of the positioning estimation of a
UAV using Hybrid Adaptive Computational Intelligence.

presented data. According to Varoquaux [74], CV is the best tool available in this assignment, since
it is the only nonparametric method for the generalization capability test. Therefore, once the ANFIS
Networks trained in this work are aimed at the real-time flights, it is hoped that such capacity will be as
high as possible.

The chosen technique was a modified version of the K-fold Cross-Validation (KFCV), which, in ad-
dition to presenting a mild computational cost, divides the data into K sub-samples of approximately
equal cardinality [76l [73]. This way, each sub-sample successively exerts the role of the validation set
[73] and generalization set, when present. The common use of cross-validation techniques considers a set
of K — 1 sub-samples for training and 1 for validation. The modification proposed in this work consists
that now K — 2 sub-samples are used for the training set, 1 is used for the validation set, and another 1
sub-sample is used for the generalization set.

In the literature, optimal values for K are commonly chosen between 5 and 10 [74], [75]. However, a
small number of samples may imply bad results [74]. Considering that in the literature it is commonly
seen that something about 70% to 80% of data is used for training, the number 7 was chosen for the K
value since the training set will have 5/7 of the sub-samples, or about 71,4% of the data being used as
training set as well. With that said, the chosen technique will be henceforth called TFCV in this work.

The whole dataset was permutated, and the data samples assigned to each sub-sample randomly
taken. Then 5 of the 7 sub-samples are chosen to compose the training set; 1 to the validation set; and 1
to the generalization set. This way, CY x C? (42) independent combinations (groups) of the 7 sub-samples
were generated for the application of the proposed methodology, numbered from 1 to 42. The 7TFCV data
division scheme is used only from the fourth series of experiments and on, once the first three series of
experiments have their own peculiarities regarding the data division, as demonstrated in section 5.

4.1 Methodology phases

The proposed methodology is implemented in two phases: the first generates a Fuzzy Inference System
through Data Fusion while the second uses the trained FIS to fuse new data presented to it. For the
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latter, the data can be presented in real-time flight or simulated flight time, in the case of previous flights
(logs). Regarding previous flights, it is assumed that the next position to be provided for the Data Fusion
System has already been duly corrected by the In-flight Navigation and Attitude Control System. The
flowcharts of each phase are shown in Figures [0 and [7} It is stated, however, that the red items in the
flowcharts are outside the scope of this study and, therefore, will not be detailed.

4.1.1 Training phase

The training phase (Figure @ aims to generate a FIS that can be used for the Data Fusion positioning
estimation once new data is presented to it. Thus, the flight log will provide the dataset to be used for
the training, which includes the data of all embedded sensors. Hence, sensor data such as GPS estimates
are taken to provide the estimated positions at each instant of time. KF-GPS-RTK sensor data supplies
the true position and other sensors data that will be used for the fusion are taken as well. The data is
loaded in batches that correspond to the entire flight time, from takeoff to landing.

Embedded
Positioning
sensor
estimation
data

Data
treatment &
selection

Trained
FIS

Test

Figure 6: Flowchart of the training phase of the proposed methodology.
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Then the cross-validation scheme 7FCV is responsible - when present - for generating the 42 combina-
tions of the 7 different sub-samples at this time. After that, the data is presented to the FCM algorithm
for the initial FIS creation. For the FCM stage, the degree of centroid overlapping (m) was empirically
adjusted at about 1.2 for the significant majority of the tests. The initial FIS generated by the FCM
algorithm is then optimized by the ANFIS algorithm, beaconed by the validation sub-sample. Once
trained, the FIS is subjected to efficiency and efficacy tests in the positioning estimation of an UAV -
generally with the generalization sub-sample data. The results are then recorded for performance control
and eventual re-use. This ends the training phase.

4.1.2 Employment phase

The employment phase (Figure E[) intends to apply the FIS trained in the previous phase in a real or
simulated flight, in order to improve the accuracy of positioning estimation of an UAV. Thus, from the
point at which a flying UAV generates positioning and embedded sensors data, such data is processed
and selected. It is worth mentioning that, unlike the training phase, where the data is loaded in batches,
in the case of real-time use the data is processed timely at each given instant of time. Then, the chosen
data is provided as input to the trained FIS to perform the Data Fusion, as seen in Figure [5| where a

more accurate positioning estimate is obtained.
No

v Y
e Embedded
Positioning
L sensor
estimation
data

treatment &
selection

Trained Improved
FIS positioning
estimation

Figure 7: Flowchart of the employment phase in real or simulated time of the proposed methodology.
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The improved positioning estimation is then used to feed in the In-flight Navigation and Attitude
Control System. Such a system - which will not be treated within the scope of this Work - will carry out
the necessary corrections in real flight time and will feedback the shown flowchart given the flight end
was not reached. Thereafter, the UAV flight follows normally with a corrected positioning estimation at
each new iteration until landing.

Once the proposed methodology is shown, the details of the flight data used for practical experimen-
tation will be explored.

4.2 WITAS Dataset

A flight was performed by the WITAS Project [72] in an area centered at the coordinates 58° 29’ 41.58.6” N
and 15° 06’ 09.0” E, in Sweden. The UAV used is based on the commercial model “Yamaha Rmax UAV”,
equipped with avionics developed at the Department of Computer & Information Science - Linkoping
University [72].

In Figure |8| the flight path of the UAV is presented, recorded with a Real-Time Kinetic GPS and
refined by a Kalman Filter (KF-GPS-RTK), with sub-meter accuracy. The path was recorded in three
dimensions: Latitude, Longitude, and Altitude. The scale to the right of the graph reflects the Altitude
values, in order to make it easier to understand the graph. The starting and endpoints are shown as well.
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Figure 8: Trajectory of the flight performed by the WITAS Project UAV.

The UAV avionics has captured 139 different types of real-time flight data, including data from
embedded sensors such as compass, barometer, GPS, and INS (Accelerometer and Gyroscope), among
others. For this work, the data listed in Table [1| were extracted.

The data, arranged in 66483 lines (interpolated temporal samples by the maximum update rate
between all sensors) by 11 columns (measured variables), were organized as files, and those specified in
Table [1] were accessed directly from these files. Only for the two last series, this work used a dataset of
3319 non-interpolated temporal samples (cropped at the least update rate between all sensors), also with
11 columns. For all experiment series, the samples were randomly permutated.
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Table 1: Data used in this work.

SENSOR REFRESH RATE EXTRACTED DATA  NO. OF VARIABLES
Clock, Latitude
Embedded GPS 10 Hz (GPS-Lat) and 4

Longitude (GPS-Lon)

Embedded ]
Accelerometor 66 Tz Acceleration ﬁel(.is - X, 4
(ACCEL) Y and Z axis
Angular rates relative
Embedcéegiﬂz({}groscope 200 Hz to %uler angles (Roll, 4
( ) Pitch and Yaw rates)
Reference/truth for
KF-GPS-RTK 50 Hz both Latitude and 3
Longitude
Table 2: Detail of data use according to each series of experiment.
TY. OF INTERPOLATED
SERIES NO. o o N TFCV NO. OF TESTS
1 66,483 Yes No 4
2 66,483 Yes No 6
3 66,483 Yes No 100
4 66,483 Yes Yes 336
5 3,319 No Yes 672
6 3,319 No Yes 225

Table [2 shows how the data has been used in the experiments series, indicating whether the 7TFCV
scheme was employed or not. In addition, the table indicates the number of tests of each series, the
number of samples considered for training and if the data was interpolated or not. It’s worth mentioning
that the TFCV scheme was not employed at the 3 first series because the main purpose of these series
was to gather information about the general functionalities of the FCM+ANFIS methodology and its
interactions with the flight log data.

5 Experiments and results

In this work, experiments were carried out with different architectures of the ANFIS Network to assess
the effectiveness of the methods studied in this work. Five series were carried out, totaling more than
1,115 different tests. These experiments initially aimed at a better understanding of the data set and also
the way how ANFIS work, to then evaluate the possible improvement in the accuracy of the positioning
estimation by embedded sensors. In the experiments, tests were performed by varying the four dimensions
mentioned before, to gather intuitions about the behavior of the ANFIS Network in each configuration.

A final series was held aiming at the testing of two other Data Fusion methodologies, namely Ar-
tificial Neural Networks (ANNs) and Regression Models (RM), totaling more than 255 tests. Different
approaches for both methodologies were tested. For the ANNs, the chosen training approaches were
Levenberg-Marquardt [81], Bayesian Regularization [80] and Scaled Conjugate Gradient [79]. As for the
RMs, 15 training approaches of four different classes were tested [82]-[87]: for Linear Regressions class,
Linear, Interactions Linear, Robust Linear, and Stepwise Linear; for the Trees class, Fine Tree, Medium
Tree and Coarse Tree; for the Support Vector Machines class, Linear SVM, Quadratic SVM, Cubic SVM,
Fine Gaussian SVM, Medium Gaussian SVM and Coarse Gaussian SVM; and finally, for the Ensembles
class, Boosted Trees and Bagged Trees. The sixth series was performed for the sake of comparison with
the results obtained by the FIS trained by the ANFIS algorithm.

For all experiments, different combinations of fused sensors were tested. The truth used for both
training and evaluating results was the set of data obtained by the KF-GPS-RTK sensor, given its
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notorious accuracy, either for Latitude or for Longitude. Therefore, in relation to KF-GPS-RTK, it was
measured that embedded GPS presents an RMSE of approximately 21.10cm in Latitude and 30.81cm in
Longitude.

Regarding the number of training epochs, some considerations have to be made. The algorithm used is
instructed to generate two FIS: one at the end of the set number of epochs; and another which produced
the least error among all epochs, or best fitness, if not equal to the first FIS. Although the number of
epochs is fixed, the shown results correspond to the least error value found during the training process,
that not necessarily corresponds to the last epoch of training. This fact is not a problem since the fuzzy
inference system that yielded the best results of the entire training process will ever be available for the
next experiments. The information about which epoch corresponds to the best result of a given test is
not relevant to this work.

The experiments were performed on a notebook PC with a Core i7-6500U@2.50GHz processor, 16GB
RAM, and a 64 bit Windows 10 Operating System.

5.1 First experiment series - the influence of the number of training epochs

A first approach was performed to preliminarily assess the impact of the number of training epochs on the
performance of the technique. It is well known that an insufficient number of epochs may not promote
the necessary convergence, whereas a large number of epochs may lead to overfitting [71].

Having fixed the quantities of 2 input membership functions and a training set of 80% of the data,
the number of training epochs was varied for GPS-Lat and ACCEL sensors in 4 tests. The results are
shown in Table Bl

Table 3: Results for the first series — 2 sensors.

Test Epochs Time (s) |RMSE (cm)
1 5 27.00 17.89
2 60 269.43 17.89
3 60 273.10 17.89
4 200 908.77 17.89

From the analysis of Table [3|it is seen that increasing the number of training epochs did not imply a
significant improvement in the performance of the trained network. The computational time, in turn, was
severely affected, indicating that increasing the number of training epochs is not always advantageous.

5.2 Second experiment series - the influence of training percentage

Given the preliminary results regarding the influence of the number of epochs on the achieved result, a
series was performed to understand the influence of the percentage of the data used for the training. It
is commonly seen in the literature the use of high percentages of the data for the training of Adaptive
Networks.

Then, having fixed the quantities of 2 membership functions per input and 50 training epochs, the
training percentage was varied in 6 tests, this time for three sensors: GPS-Lat, ACCEL, and GYRO.
Table @] shows the results.
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Table 4: Results for the second series — 3 sensors.

Test  |Training percentage (%) RMSE (cm)
1 10 258.56
2 30 31.92
3 50 31.66
4 60 22.03
5 70 18.20
6 80 17.24

From these experiments, it was confirmed that the higher the percentage of data used for training,
the better the overall performance of the trained network. The different tested data percentages were
10% , 30% , 50% , 60% , 70% and 80% . Furthermore, it was observed that using data from three
sensors, GPS-Lat, ACCEL, and GYRO, showed better results than using only GPS-Lat and ACCEL,
when comparing the last result of Table [4] with those of Table

5.3 Third experiment series - the influence of the number of membership
functions

Knowing minimally satisfactory parameters for conducting new tests, the third series was performed. The
purpose of this study was to evaluate the impact of the number of membership functions per input to be
optimized by the ANFIS algorithm in the performance of the proposed technique. For this purpose, the
percentage of 70% of the data for the training was adopted, considering the good performance presented
in the previous series.

In this series of 100 tests, the fused sensors were GPS-Lat and ACCEL, an association that presented
relevant results. Both the number of MFs per input (2, 3, 4 e 5 MFs) and the number of epochs (5, 10,
50, 100 and 500 epochs) were combined and tested. For each of the 20 combinations of MFs per input
and epochs, the generalization capability was evaluated by the average of 10 repetitions of the evaluation
of 10,000 points randomly taken from the whole dataset.

Unlike the previous series, here the coordinates are not considered as inputs. That is, the input
variables of the FIS refer only to the other sensors, which are mapped to the difference between the
position estimated by the KF-GPS-RTK and that provided by the embedded GPS. The motivation
arose from the perception that including the coordinates as inputs, besides increasing the processing
time, demand that the direct employment (with no offset) of the FIS is restricted to the window of the
coordinates used for training. This is due to the fact that the maximum and minimum values of each
input variable are used to establish the FIS Universes of Discourse.

Therefore, the strategy of not treating coordinates as inputs — but as a difference — is interesting in
the sense that performing non-linear mapping for a difference, rather than for an absolute value, makes its
application feasible in regions of flight not used for training. It should be noted that, since the proposed
approach concerns only the coordinate, its effectiveness is likely to be greater on flights with similar
conditions, albeit in different regions. That is, issues such as trajectory, velocity, and similar climatic
characteristics are factors that should bring positive contributions to the performance of the Data Fusion.
Thus, A corresponds to the horizontal inaccuracy of the UAV in degrees. A mathematical representation
for determining the difference to be used for training can be found in the Equation [

A= pasout - pasin (4)
where pds,,, represents the vector containing the output coordinate (truth from RTK) and pds;,, rep-
resents the vector containing the input coordinate (measured from GPS). Thus, at a later stage, as for
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example in a new flight, a position estimated by a GPS could be improved by a trained FIS with the
calculation that appears in Equation

POSgut = POSiy, + A+ éa (5)
with the vector pds. , representing the improved position and pds}, the input coordinate estimated by
the GPS, the A is obtained by the Data Fusion promoted by the trained FIS and the vector €a represents
the model error. Such an error is unknown a priori and composes the positioning estimation.

In short, the significant advantage of the strategy used is that both the location of the flight and the
dimensions of the coordinate window used for training are no longer limiting factors for the employment
of the methodology. However, the study of the impact of all other factors besides the coordinates, such as
changes in speed, trajectory, and climatic characteristics, is suggested as future work. Thus, the results
obtained are shown in Figure [9]
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Figure 9: Average error of 10 repetitions of the combinations of the Second series.
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Confirming the hypothesis about the results obtained previously for this dataset, it was seen that
increasing the number of training epochs in many cases proved to be ineffective in the generalization
results, in relation to the RMSE mean. Also, increasing the number of MFs per input indistinctly has
led to a worsening of the results, except for the leap from 2 to 3 MFs per input. Finally, the best results
were achieved with a 5 epoch and 3 MFs per input setting, as seen in Figure [0] However, the use of 2
MFs per input enables a performance comparable to 3 MFs per input, but with shorter processing time.
This fact prevailed in the choice of 2 MFs per input for the next series.

5.4 Fourth experiment series - the influence of the data organization

The fourth series was undertaken with the main purpose of evaluating the impact of data organization
on the performance of the proposed methodology. The values of 5 epochs and 2" rules were adopted,
where 2 is the number of MFs per input and n is the number of input sensors. This variable amount
of rules aims to provide more structural complexity to networks that will handle increased sets of data,
from the addition of data inputs from other sensors. In other words, more sensors used imply more
rules appearing in the structures of the ANFIS networks. Thus, 168 tests were performed for GPS-Lat
associated with other sensors, and other 168 similar tests for GPS-Lon. Also, from this series onwards,
the dataset employed was structured according to the TFCV Cross-Validation technique.

In this series was observed that, indeed, the choice of CV groups combinations exerted great influence
on the performance of ANFIS Networks. As an example, in the fusion of 3 sensors (GPS-Lon, ACCEL, and
GYRO), the worst combination (n° 18) showed an error 73.40% greater than the best combination (n° 10).
The RMSE comparison of the performance of each CV training groups in predicting the corresponding
validation groups is showed in Figure Additionally, it was seen that the average computational time
went from 8.52s (2 rules) to 9.225s (8 rules), until remarkable 644.12s for 64 rules, with worse results,
worth mentioning.

Concerning Figure the bars indicate the concentration of the second quartile results for each CV
group, with the upper and lower limits indicating, respectively, the delimitation of the third and first
quartiles. The “whiskers” indicate the extremes that are not considered outliers. Red and green squares
indicate respectively the best performance in terms of minimum and average of the whole set of tests, for
a given coordinate. Finally, the “target” present in each bar indicates the median of the results for each
CV group and the triangles down and up an indication about the significance of the differences between
the medians.

Through an analysis of the tables of results and a visual inspection of these graphs, the choice of the
training data has shown to have a great impact on the performance of the methodology. Furthermore, it
was seen that there is a certain tendency that groups that perform well for GPS-Lat perform as good as
for GPS-Lon. The best results were achieved with the CV combination n° 10, that yielded the following
results: 17.38cm for GPS-Lat + ACCEL fusion and 24.86cm for GPS-Lon + ACCEL 4+ GYRO fusion,
both results better than the embedded GPS estimation alone. As for the worst results, they are 26.27cm
for GPS-Lat + ACCEL 4+ GYRO and 43.11cm for GPS-Lon + ACCEL + GYRO.

5.5 Fifth experiment series - the impact of using coordinates as inputs

In order to obtain better results and, primarily, to compare the performance of strategies that consider or
not the coordinate as input, this fifth series was undertaken. Thanks to good results obtained previously,
the values of 50 epochs and 16 rules were adopted for all the 672 tests.

Four main experiments were carried out in which the coordinate associated to the other sensors
was varied, namely GPS-Lat; GPS-Lon; A-Lat; and A-Lon. In the “A-coordinate” cases, the FIS input
variables concern only sensors other than GPS, which are mapped to the difference between KF-GPS-RTK
and the embedded GPS data, that is, coordinates are not input. The comparison between the performance
of the various sensors combinations of CV training groups in predicting — now the generalization group
— is demonstrated in Figures[I1] and
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Figure 10: Average performance measured in terms of RMSE (cm) of each CV training group based on
the prediction capability for the validation group - fourth series.
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Figure 12: Performance measured in terms of RMSE (cm) of each CV training group based on the
prediction capability for the generalization group, for each combination of sensors - Longitude and A-
Longitude - fifth series.

The results show that the performance of the networks that consider the coordinates as inputs was
slightly better than those considered “A-coordinate”. However, the latter can be applied quickly on
a broader range of scenarios because they do not use absolute values. Also, was seen that using data
from all available sensors does not always bring improvements to the performance of networks, but results
indicate that, for the given data set, fusing data from two or more sensors is advantageous. The summary
of the best results obtained in the Fifth series is in Table [l

The trained FIS that yielded the best results can be seen in Figures 13| and as well as the ANFIS
structure used for the training at Figure
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Table 5: Comparison of best positioning estimation RMSE according to each combination of the different
sensors, regarding each of the base coordinates.

Base Sensors used at training process - RMSE in cm
coordinate| Coordimate o oy o accEr) €0 FACCEL (60 0d.+ GYRO
only + GYRO
GPS-Lat 18.17 16.60 17.60 17.94
A-Lat - 16.90 17.74 18.11
GPS-Lon 21.76 21.69 21.47 21.54
A-Lon - 22.17 21.87 21.87

5.6 Sixth experiment series - comparison with other methods and final results

In this last series, the fusion was performed using ANNs and RMs, tuned with well-known parameters, in
225 tests, aiming at a comparison with the now fine-tuned FCM+ANFIS. The ANNs were trained with
a two-layer feed-forward architecture with sigmoid hidden neurons and linear output neurons. The input
layer is composed of 4 neurons for both Latitude and Longitude since the best results were obtained with 2
sensors (GPS-Lat/Lon + ACCEL, with ACCEL having 3 variables). The hidden layer has 2,000 neurons
and the output just one, the improved coordinate estimate. A data division was performed, where 70% of
the samples were used for training, 15% for validation and 15% for testing, with samples taken randomly.
The training process had no fixed epoch number, being halted when the generalization capability stopped
improving. Finally, the best results were 17.02cm for Latitude and 24.70cm for Longitude. For the ANNs,
the training algorithm that yielded the best results was the Bayesian Regularization. Table [7] at the
appendix lists the best results for each training method.

Regarding the RMs, the best results were obtained with 3 sensors for Latitude (GPS-Lat + ACCEL
+ GYRO) and 2 for Longitude (GPS-Lon + ACCEL), trained with Interactions Linear and Fine Tree
techniques respectively. All tests were performed with a 7-fold Cross-Validation scheme over the sample
data. It is worth mentioning that the Fine Tree was employed with a minimum leaf size of 4 and maximum
surrogates per node of 10. The best obtained results were 19.15cm for Lat and 24.34cm for Lon. Table
at the appendix presents the best results for each approach.

Based on the estimates of Latitude and Longitude performed by the FIS trained by ANFIS Networks,
a comparison can be made with the estimates made by the GPS, the ANNs and the RMs through the
evaluation of their respective RMSE, which is shown in Table[6] An excerpt of the trajectories estimated
by each Fusion method, the real trajectory provided by the KF-GPS-RTK and the trajectory estimated
by the embedded GPS is shown in Figures [I6] and [I7] as well as the comparison of error between the
methods’ estimates and the truth trajectory for the given coordinate. It is appropriate to mention that
the figures include only short excerpts of such trajectories and that at other regions of the complete plot
the other methods were eventually more precise than the trained ANFIS algorithm.

Table 6: Comparison of positioning estimation systems RMSE and accuracy.

_ - 21,10 30,81 650,10 -
GPS-Lat + Interactions

LAT, LON

LAT ACCEL + GYRO Linear 19,15 24,34 465,92 28,33%
LON GPS-Lont+tACCEL| Fine Tree
LAT GPS-Lat+ACCEL Bayesian
LON GPS-Lont+ACCEL | Regularization
LAT GPS-Lat+ACCEL
GPS-Lon + Hybrid 16,60 21,47 356,31 45,19%
LON ACCEL + GYRO

17,02 24,70 420,35 35,34%
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Figure 17: Comparison of an excerpt of the estimated trajectories and respective errors yielded by the
best results of each Fusion method - Longitude.
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In general, all approaches prevailed in an imprecision reduction of the positioning estimation. After
a thorough visual inspection of the trajectories (Figures [16[ and estimated by the algorithms, it was
perceived that the estimates made by all the fusion methods have some sensitivity to input signal noise.
Such sensitivity can be easily seen in Figure which allows immediate identification of the tendency
of the points estimated by the various methods to follow the original noisy signal (blue line). Due to
the complexity of the data of a real flight log, in the excerpts where noises are present, the estimates
diverge significantly from the actual trajectory. In other words, the proposed methodology showed some
sensitivity to noises tending to follow the GPS’s quick variation noises, indicating that prior treatment of
GPS deviations would bring improvements to the methodology employment. In addition, noises regarding
other sensors might influence the outliers present in excerpts where the blue line shows low variation.
The analysis of all these facts is suggested as future work. Finally, it was observed that the overall
performance of the ANFIS Systems exceeded by 45.19% the accuracy of the estimation performed by the
GPS.
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Figure 18: Excerpt of the trajectories estimated by each method evidencing the influence of noise on the
quality of the estimation.
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5.7 Final remarks

Although no tests of the FIS fusion were conducted on actual UAVs — but on a notebook PC — it was
found that, for a total of 3,319 estimates by fusing the sensors corresponding to the best trained FIS
for each coordinate, the average time of 100 repetitions of the 3,319 estimates was 2.0317s for Lat and
2.7081s for Lon, or about 6.12 x 10°% and 8.16 x 10% seconds per estimation, respectively. This fact
reveals that, indeed, a FIS is of high-speed processing, considering the computational power of the used
notebook PC, with updates occurring at more than 120,000 estimates per second (= 163kHz - Lat e =
122kHz - Lon). A feature like this is of great interest in the application of the developed methodology
to real-time navigation. Tests on real-time flights with the FIS fusion being performed by the embedded
avionics of an UAV are suggested as future work.

6 Conclusions

As demonstrated in the results of the carried-out experiments, the methodology employed in this Mul-
tisensor Data Fusion application, using a HACI methodology, has shown to be effective in increasing
the positioning estimation precision. In the tests, the technique presented a reduction of approximately
300cm? in the area error, compared to the estimation of the position provided by the embedded GPS.
How useful this reduction is, in practice, depends on the selected application. Applications that need
high precision could be undoubtedly benefited. In addition, the proposed methodology outperformed
two other Computational Intelligence methodologies, with 18 different approaches. The obtained results
show that the use of multiple data sources has brought benefits to the solution of the navigation problem,
considering the safety in the operation of the UAV, by offering less uncertainty to the Decision-Making
System.

The main contribution of this work is the development of a Data Fusion application which presents
a desirable level of accuracy and a low computational cost. This can make feasible its use in real-time
autonomous navigation by low-performance UAVs, considering they usually lack computational power
and payload. Once trained, the T-S rules-based FIS system has shown to be indeed agile, considering the
computer used in the tests, to perform positioning estimation based on multidimensional data, about 600
times faster than the fastest sensor refresh rate. However, given the complexity of a flight log, further
analysis of the trained fuzzy rules didn’t bring any new useful knowledge, as expected.

Although the good performance, the proposed methodology still shows some sensitivity to noise in
some parts of the trajectory. An assessment of the impact of noise treatment or reduction is suggested
as future work since it could, theoretically, improve the performance of the employed techniques. In
addition, at this point of the research, there is no guarantee that the proposed methodology will present
comparable performance in flights with completely different trajectories or weather conditions. Studies
in this sense are proposed as future work as well.

Other suggestions for future work include: perform the fusion with sensors other than GPS and INS;
a study of why the other methods were more precise than ANFIS in some particular excerpts of the
trajectory; perform the fusion using other Computational Intelligence Data Fusion methodology, and the
conduction of tests on new flights data.
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Appendix
See tables [7 and
Table 7: Best results for each training method - ANNs.
Supervised Learning Models Best results (cm)
Class Traming method Latitude Longitude
Artificial Neural Networks| Levenberg-Marquardt 17,02 24,70
Artificial Neural Networks| Bayesian Regularization 640,43 1840,78
Artificial Neural Networks| Scaled Conjugate Gradient 1518,32 5894,84
Table 8: Best results for each approach - RMs.
Unsupervised Learning Models Best results (cm)
Class Approach Latitude Longitude
Linear Regression Linear 19,18 25.46
Linear Regression Interactions Linear 19,15 25.45
Linear Regression Robust Linear 19,46 25,44
Linear Regression Stepwise Linear 19,24 25,46
Tree Fine Tree 19,34 2434
Tree Medium Tree 20,53 2594
Tree Coarse Tree 28,41 39,30
Support Vector Machine Linear SVM 32,95 55,99
Support Vector Machine Quadratic SVM 6191 51,75
Support Vector Machine Cubic SVM 119,24 58,98
Support Vector Machine Fine Gaussian SVM 300,97 664,14
Support Vector Machine | Medium Gaussian SVM 52,48 119,63
Support Vector Machine | Coarse Gaussian SVM 34,49 58,37
Ensemble Boosted Trees 2., 76E+07 7,11E+06
Ensemble Bagged Trees 28,96 62,39




	Introduction
	Data Fusion and related work
	FCM and ANFIS
	The Fuzzy C-Means Clustering (FCM) algorithm
	The Adaptive-Network-Based Fuzzy Inference System (ANFIS) algorithm

	Materials and methods
	Methodology phases
	Training phase
	Employment phase

	WITAS Dataset

	Experiments and results
	First experiment series - the influence of the number of training epochs
	Second experiment series - the influence of training percentage
	Third experiment series - the influence of the number of membership functions
	Fourth experiment series - the influence of the data organization
	Fifth experiment series - the impact of using coordinates as inputs
	Sixth experiment series - comparison with other methods and final results
	Final remarks

	Conclusions

