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ABSTRACT: 
 
The overwhelming majority of known image models are varieties of random fields defined on rectangular two-dimensional grids or 
grids of higher dimension, for example. In some practical situations, the images have an annular, radial or radial-circular structure. 
For example, images of the facies (thin film) of dried biological fluid, eyes, cut of a tree trunk or a fruit, blood vessel, erythrocyte, 
blast pattern, end face detail, etc. In addition, radar and other images are physically obtained in polar or spherical coordinates. These 
features of images require their consideration in their mathematical models. In this paper, an autoregressive models of homogeneous 
and inhomogeneous random fields defined on a circle or oval are considered as representations of images with radial or radial-
circular structure. 
 
 

1. INTRODUCTION 

At present, the overwhelming majority of known image models 
are varieties of random fields defined on rectangular two-
dimensional grids or grids of higher dimension (Duda et al., 
2000, Gonzalez et al., 2017, Jähne, 2005, Pratt, 2001). Among 
these models there are autoregressive, polynomial, Gibbs, 
canonical decompositions, and so on (Gimel’farb, 1999, Soifer, 
2009, Vizilter et al., 2015, Woods, 1981).  There are also works 
on fields defined on a sphere and other curved surfaces 
(Krasheninnikov et al., 2017). In some practical situations, the 
images have a circular, radial or radial-circular structure. For 
example, images of the facies (thin film) of dried biological 
fluid (Figure 1, a), an eye (Figure 1, b), a virus (Figure 1, c), cut 
of a tree trunk (Figure 1, d), sunflower (Figure 1, e), fireworks 
(Figure 1, f), etc. In addition, radar and other images are 
physically obtained in polar or spherical coordinates. These 
features of images require their consideration in random field 
models, which is necessary for the formulation and solution of 
problems of processing such images. 
Let’s consider, for example Habibi model (Habibi, 1972) with 
autoregressive equation on rectangular grid 
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where  lkx ,  is a value at node (k, l), 

 lk ,[  are independent standard random variables. 
The covariance function (CF) of this model is 
 
  )(),( ||||2

,,
mn

nlmklk baxxMnmV V  �� , (2) 
 
where  ))1)(1/(( 2222 bac �� V is the variance. The 
isocovariation lines ConstnmV  ),( are rhombus. 
If a circle is cut from some two-dimensional image, then a 
radial-circular structure will not be desirable in the resulting 
image. Therefore, these images require special models. 

 
2. AUTOREGRESSIVE MODEL ON A CIRCUL 

Let’s consider the cylindrical model that will be the base for the 
circular image. If a cylindrical image (for example, image of a 
rotation shaft) is cut lengthwise and expanded, then it is 

transformed into a rectangular image. Points along the cross 
sections are close to each other on the original cylindrical image 
that is why their values are highly correlated. In the cut image, 
these points are located at the opposite ends. Thus, the line ends 
are highly correlated. However, such images cannot be 
described by usual models on the rectangles because the 
correlations in these models are weakening, when the distances 
between pixels increases. Thus, the image points at the line ends 
do not possess the necessary high correlation.  

       
   a)            b) 

   
 c)            d) 
 

    
 e)            f) 

Figure 1. Examples of images with a radial-circular structure:  
a) facies, b) an eye, c) a virus, d) cut of a tree trunk,  

e) sunflower, f) fireworks 
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Let’s consider, for example, an image (Figure 2) simulated by 
Habibi model (1). This figure shows that the first and the last 
columns of the rectangular image are significantly different. 
Thus, when pasting this image into a cylinder, one will observe 
great jumps in brightness at the junction. 

 

 
  a)               b) 

Figure 2. Simulated images: a) image simulated by Habibi 
model (1), b) the first and the last five columns of this image 

To approximate the model to real cylindrical images, consider a 
spiral grid on the cylinder shown in Figure 3. Grid lines 
represent spiral turns. To describe an image set on this grid, let 
us apply the analog (Krasheninnikov et al., 2001) of Habibi 
model  
 
 lklklklklk cxbaxbxax ,1,1,11,,      [��� ����  (3) 
 
where   k is a spiral turn number; 
  l is a node number Tl ...,,0 ; 
 Tlklk xx �� ,1,  when Tl t ; 
T is the period, i.e. the number of points in one turn; 

lk , ξ  are independent standard random variables. 
The next value on the turn of this spiral depends on the 
immediately previous one and on the values from the previous 
turn. It should be pointed out that in model (3) the grid can be 
also regarded a simple cylindrical grid, i.e. as a sequence of 
circles. 
This model can be represented in an equivalent form  
 

 nTnTnnn cxbaxbxax ξ     11 ��� ���� ,    (4) 
 
(where lkTn � ) as a model of a random process, which is 
an image scan along the spiral. 
Obviously, if b value is close to 1, then the neighboring image 
lines (spiral turns) will be slightly different from each other. 
Thus, this model can be used to describe and simulate 
cylindrical images. 
 

 
Figure 3. Spiral grid of a cylindrical image 

The scanning of image implementation obtained by use of 
model (4) is shown in Figure 4, a. It is obvious that the values at 
the line ends are strongly correlated (Figure 4, b), as it should 

be for a cylindrical image, obtained by image pasting as in 
Figure 4, a. 
 

 
            a)                 b) 

Figure 4. Simulated images: a) image simulated by model (4), 
b) the first and the last five columns of this image 

The characteristic equation of model (4) is 
 
 0   1  ���� bazbzaz TT

 
or 

 0) () (  �� azbzT , 
 
therefore, the CF of random process ,...}1,0,{  nxn is 
expressed through the roots of this equation. as follows  
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where )/2exp( Tkibz T

k S and Tas  . In particular, when 
kTn   we obtain 
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and the variance, when 0 k : 
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To reduce the calculations, it is possible to calculate only V(0), 
V(1),..., V(T) by formula (5), and for the rest of values, use 
recurrent formula 
 
 ).1(  )( )1( )( ������ TnVbaTnVbnVanV  
 
View of the graph of normalized covariance function (NCF) is 
shown in Figure 5. The correlation decreases with increasing 
distance n, but at distances divisible by period T, it is high.  

 
Figure 5. The graph of NCF 
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Now consider view of NCF 2/][),( σnlmk xxMnmC rr  on a 
cylindrical image. The values of this function and its 
isocorrelation lines ConstnmC  ),(  are shown in Figure 6. 
The lighter areas correspond to larger values. Isolines are shown 
in black. Figure 6, a shows the values of NCF relative to the 
central pixel of this figure. Each column corresponds to one 
turn, that is, values 2/,...,0,...,2/),,( TTnnmC �  are shown. 
It is noticeable that at short distances the NCF isolines are close 
to rhombuses, which is typical property of Habibi model, in 
which all isolines are rhombuses. As the distance increases, the 
isolines are bent. Figure 6, b shows the NCF relative to the 
central pixel of the lower border of this figure (it is marked with 
a short line). Each column corresponds to one turn, that is, 
values TnnmC ,...,1,0),,(   are shown. Noticeable that 

),(),( TnmCnmC �| . 
 

 
a 

 
b 

Figure 6. Normalized correlation function of cylindrical image: 
a) relative to the central pixel, b) relative to the lower border. 

 
A polar coordinate system ),( φr  is convenient for circular 
images representation. To do this, we will consider the turns of 
the cylindrical spiral of model (3) as turns of a circle. In other 
words, index k is converted into a polar radius, and index l - 
into a polar angle. Thus, the value lkx ,  in the pixel (k, l) of the 
cylindrical image is converted to the same value in the pixel 

),( φΔΔ lrk  of the circular image (Figure 7, a). When using 
model (4), it is also convenient to use a spiral grid (Figure 5, b), 
similar to the cylindrical spiral in Figure 3. 

   
                       a                           b 

Figure 7. Grids on a circle: a) circular, b) spiral 

The parameters a and b of model (3) set the degree of 
correlation in the radial and circular direction. If the 
autoregressive coefficient a of the previous pixel is relatively 
large, then the image will have a high circular correlation 
(Figure 8). If the autoregression coefficients b from the previous 

coil of the spiral prevail, the image will be more correlated in 
the radial direction (Figure 9). If ba |  then the image is 
equally correlated in both directions  (Figure 10).  

 

    
Figure 8. The image with circular correlation 

 

   
Figure 9. The image with radial correlation 

 

 
Figure 10. The images with uniform correlation 

 
Let’s consider the NCF view of circular image. The circular 
image in this model is actually a geometric transformation of a 
cylindrical one, so its NCF can be obtained from the NCF of a 
cylindrical image. Figure 11, a shows the values of NCF relative 
to the central pixel of this figure. It is natural that the isolines 
are circles. Figure 11, b shows the values of NCF and its 
isocorrelation lines relative to the pixel in the middle of a radius 
(maximum brightness). Isolines at short distances are close to 
rhombuses, as in Figure 6, a. 
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 a                          b 

 
Figure 11. Normalized correlation function of circular image: 
a) relative to the center, b) relative to the middle of a radius 

 
The images represented by the models described are uniform. In 
[10], doubly stochastic models were used to represent 
inhomogeneous images with random inhomogeneities. In these 
models, some random field sets the parameters of the resulting 
random field. The same method can be used to represent 
inhomogeneous circular images. Figure 12 shows the process of 
forming such an image. Figure 12, a shows a simulated control 
image. Its threshold section is shown in Figure 12, b. Dark areas 
correspond to low brightness of image (a). Image 12, a sets the 
autoregression coefficients of the resulting image 12, c. High 
brightness of the image 12, a correspond to large values of the 
autoregression coefficient a in (3) along a circul, and small 
brightness sets large values b along a radius. As a result, on the 
resulting image there are areas with a predominance of circular 
or radial correlation. 

 
  a)                   b) 

   
                            c) 
Figure 12. Simulation of inhomogeneous images: a) the control 

image, b) its threshold section, c) the resulting image 
 
The images in Figure 1, d and Figure 1, f have only 
approximately a radial-circular structure. To represent such 
images, random fluctuations of the polar radius and angle can 
be introduced into the model (3). Figure 13, a shows an image 
with a random angle fluctuation with a regular change in radius. 
In this case, the overall shape of the image is circular. In Figure 
13, b the radial coordinate is also random. As a result, the image 
is generally different from the circle. 

   
a) 

   
 b) 

Figure 13. Simulation of deformed images: a) random angle, 
b) random angle and radius 

 
3. IDENTIFICATION AND FILTRATION 

For convenience, we assume that the circular image is converted 
into a sequence. Let the observed image }{ nzZ   be an 
additive mixture of the informative image }{ nxX  defined by 
autoregressive model (4) and white Gaussian noise }{ nθ Θ : 
 
 nnn xz T� .      (6) 
 

The parameters of the model (4) and noise dispersion 2
TV  in 

observation model (6) are unknown and, possibly, vary. In the 
latter case, this variation is assumed to be fairly smooth. It is 
required to evaluate the informative image X using observations 
Z. To solve this problem, we apply following adaptive pseudo-
gradient analogue of Kalman filter (Krasheninnikov et al., 
2017): 

 
 nnnnnnnn sxxzsxx '� �� ~)~(~ˆ ,  (7) 

 ,~
11 ���� �� TnnnTnnnnn xrxrxx ��� UU        (8) 

 
where nx

~  is the extrapolated estimate and nx̂  is the corrected 
estimate. Variable parameter vector ),,( nnnn srρα   of this 
algorithm is calculated using a pseudo-gradient procedure 
 

 nnnn βμαα � �1 ,      (9) 
 
where 1�nα  is the next vector approximation after nα ;  
 
 ])~[(][ 22

nnnn xz �� '� E   (10) 
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 is pseudo-gradient of the quality functional 
])~[(][)( 22

nnnn xzMMJ �  Δα , that is, a random vector, the 
mean of which makes an acute angle with the gradient )( nJ α� ; 

nμ  is a sequence of positive coefficients affecting values of the 
steps of the procedure. Thus, 
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Figures 13 show examples of the application of the described 
algorithm. Figure 13 (top left) shows an image simulated using 
model (4) with parameters 995.0,95.0   ba , 800 T  and 
unit variance 12  Xσ . This image has a predominantly radial 
structure. In Figure 13 (top right) is an image of a ring structure 
with parameters 1,1,800,95.0,995.0 22      θσσ XTba . 
These images were distorted by white Gaussian noise with 
variance 12  θσ  (the middle of Figure 13). The result of the 
filtering is shown in the bottom of Figure 13. In both examples, 
the variance of filtering errors was 065,02 |εσ , that is, as a 
result of processing the noise/signal ratio decreased by about 16 
times. 
Note that during the filtering process the image model is also 
identified, since the procedures (11) actually estimate the model 
parameters (4). 
 

         
 

Figure 13. Filtration of circular images: (top) informative 
images, (middle) noisy images, (bottom) filtered images 

 

CONCLUSIONS 

This paper presented autoregressive models of circular images 
that have a radial, circular or radial-circular structure. These 
models are obtained on the basis of autoregressive models of 
cylindrical images. By varying the parameters of these models, 
it is possible to obtain images with a predominance of an 
annular or radial structure. Expressions and graphs of the 
covariance function of these images are obtained. Models of 
homogeneous and inhomogeneous images are presented. 
Heterogeneity is achieved by randomly changing the parameters 
of the model. An adaptive pseudogradient filtering algorithm for 
circular images is presented. This algorithm, along with 
filtering, allows you to identify the image model, that is, to 
evaluate its parameters. 
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