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Central precocious puberty (CPP) has been shown to exert significant effects on 
psychosocial development. These early puberty-related hormones and psychosocial 
functional changes are considered to be associated with specific brain development. 
However, the biological mechanisms underlying the sculpting of human brain architecture 
and modulation of psychosocial transformation by puberty-related hormonal maturation 
remain elusive, especially during the early phase of CPP. The current investigation aims to 
specify the brain regions in which early hormone-related maturation effects occur during 
CPP and their relationships with psychological functions. 65 young girls (aged 4.3–8.0 
years) underwent structural imaging on a 3T MR system, completed psychological tests 
and performed the gonadotropin-releasing hormone (GnRH) stimulation test to identify 
hormonal manifestations of hypothalamic–pituitary–gonadal axis (HPG axis) activation. 
Based on the GnRH test, 28 young girls were identified with CPP, whereas the other 37 
girls were identified with non-central precocious puberty (NCPP). Cortical parameters 
were calculated and compared between the two groups after adjusting for age, weight, 
and height. Brain regions showing group differences were extracted and correlated with 
serum hormone levels and psychological parameters. The CPP girls showed thinner 
cortices primarily in the right rostral middle frontal cortex. This morphological difference 
was positively correlated with stimulated estradiol (E2) levels. Further, higher E2 levels were 
significantly associated with higher hyperactivity scores. Premature HPG axis activation 
in CPP girls at an early stage appears to exert remodeling effects on brain anatomy, 
primarily in the prefrontal cortex, which may affect psychological development following 
the emergence of robust changes in sex hormones.

Keywords: central precocious puberty, hypothalamic-pituitary-gonadal axis, cortical thickness, estradiol, 
psychological development 
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INTRODUCTION

Precocious puberty (PP) is an important issue that affects 
approximately 1 in 5,000–10,000 children (1, 2). In addition to 
physical problems, PP has been reported to be related to higher 
rates of psychological problems in patients when compared to 
healthy children (3, 4). A previous longitudinal study of 2,607 girls 
with early menarche showed that early puberty might increase 
the risk of behavioral problems in young adolescent girls. Early 
maturing girls are at risk of persistently higher delinquency and 
stronger negative peer influences (5). These cognitive, behavioral, 
and emotional functioning changes are thought to be associated 
with specific brain development (6–8). However, few studies 
have specified the brain regions where particular maturational 
effects occur during this sensitive period within this special 
group. Identifying brain regions that contribute to psychological 
functioning in PP girls may be critical for interventions to 
prevent later negative outcomes.

From an etiological perspective, PP may be subdivided into 
gonadotropin-releasing hormone (GnRH)-dependent causes, 
which are often called central precocious puberty (CPP), and 
GnRH-independent causes [non-central precocious puberty 
(NCPP)]. The major differences between these causes are the 
hypothalamic mechanism based on hypothalamic–pituitary–
gonadal (HPG) axis activation and corresponding endocrine 
changes, including robust increases in both gonadotropin and sex 
hormones. Since hormone-dependent brain organization occurs 
during normal development in adolescents and variations lead to 
individual differences in cognitive processes, adult behavior and 
sex-biased risks (9, 10), specific hormone-related maturational 
effects on brain morphometry may be related to CPP, which may 
lead to different cognitive or behavioral characteristics between 
CPP and NCPP individuals.

Standard treatment for CPP is based on postponement 
of pubertal development by blockade of the HPG axis with 
gonadotropin-releasing hormone analogs (GnRHa), leading to 
abolition of gonadal sex hormone synthesis (11). Although the 
hormonal and auxological effects of GnRHa are well researched, 
their influences on the brain are largely unknown. Understanding 
the mechanism of abnormal activation of the HPG axis and the 
effects on brain morphometry and cognitive and behavioral 
development may clarify the mechanisms underlying this 
therapeutic effect and help develop targeted treatments or 
preventive measures for undesirable mental changes.

Over the last two decades, some studies have focused on the 
brain changes of CPP individuals, but the findings have mainly 
focused on suprasellar arachnoid cysts and hypothalamic 
hamartomas (12). Most CPP cases in girls do not have a 
detectable CNS lesion and are described as idiopathic CPP 
(13). However, idiopathic CPP girls have been found to have an 
increased pituitary gland height and area (14–16). Recently, more 
automatic and precise neuroimaging analytical methods, such as 
cortical thickness, have been widely used in neurophysiological 
studies of normal neurodevelopment and psychiatric disorders 
(17–19), which have no obvious histological abnormalities 
on MRI plain scans. Since the cerebral cortex can be a highly 
folded outer layer of gray matter tissue that plays a key role 

in cognitive and behavioral functions (20), alterations of the 
brain morphometry, which programs a variety of psychological 
functions during development or disease, can be captured by 
measuring the cortical thickness across the whole brain.

Under these circumstances, we conducted structural MRI 
studies of CPP and NCPP girls with the aim of identifying specific 
HPG axis activation-related influences on brain organization 
during the initiation of PP and determining the extent to 
which these early neuroendocrine changes modulated the brain 
microstructures responsible for the changes (or differences) 
in cognitive function, behaviors, and emotions in CPP girls. 
The goal was to establish a model of “neuroendocrine-brain 
morphology-psychology” and to unveil the influence of early 
activation of the HPG axis on brain morphometry and cognition, 
behaviors, and emotions.

MATERIALS AND METHODS

Participants
The study was approved by the local research ethics committee. 
Written informed consent was obtained from the parents or 
guardians, and study assent was obtained from the girls to 
establish their willingness to participate. Sixty-five right-handed 
girls with PP aged 4.3–8.0 years were recruited via the Second 
Affiliated Hospital of Wenzhou Medical University. The exclusion 
criteria were as follows: 1) an IQ < 70 estimated by the Chinese 
Wechsler Intelligence Scale for Children (C-WISC) (21); 2) a 
history of neurological or psychiatric disorders in the study 
participants or their first-degree relatives, chronic medical illness, 
learning disabilities, or use of medicines known to affect hormone 
levels or central nervous system functioning; 3) born at <37 weeks 
gestational age; 4) having ever menstruated; 5) a history of a head 
injury; or 6) contraindications for MRI scanning. Details of the 
demographics of all subjects are shown in Table 1.

TABLE 1 | Demographics and clinical characteristics of the CPP and NCPP girls.

Characteristic CPP (n = 28) NCPP (n = 37) p

Mean SD Mean SD

Age (years) 7.23 0.78 7.02 0.92 0.33
Weight (kg) 26.08 4.49 26.00 4.49 0.94
Height (m) 1.26 0.06 1.24 0.07 0.45
BMI (kg/m2) 16.36 2.39 16.60 1.78 0.64
LH (IU/L) Peak 9.46 8.12 3.22 1.12 0.00*
FSH (IU/L) Peak 17.13 6.63 14.57 5.35 0.09
E2 (pg/ml) Peak 36.56 20.51 26.79 13.58 0.02*
TES (ng/ml) 0.22 0.05 0.21 0.05 0.61
PRL (ng/ml) 12.89 8.10 10.90 5.92 0.26
COR (µg/ml) 12.71 6.32 11.35 6.00 0.38
IQ (total) 82.82 14.01 92.05 13.98 0.09
CBCL (total) 7.70 8.00 9.39 9.14 0.45
HAMA (total) 3.47 3.55 3.65 3.00 0.87

CPP, central precocious puberty; NCPP, non-central precocious puberty; SD, standard 
deviation; BMI, body mass index (calculated as weight/height2); LH, luteinizing 
hormone; FSH, follicle stimulating hormone; E2, estradiol; TES, testosterone; PRL, 
prolactin; COR, cortisol; IQ, intelligence quotient; CBCL, Child Behavior Checklist; 
HAMA, Hamilton Anxiety Rating Scale. *p < 0.05.
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PP was diagnosed by the chief of the Child Health Care 
Centre in our hospital based on early breast development in 
the girl (Tanner stage 2 breast development) before 8 years of 
age (22, 23). The two subtypes were with versus without HPG 
axis activation (CPP and NCPP) and were distinguished by the 
GnRH-stimulated luteinizing hormone (LH) levels through the 
GnRH stimulation test.

Since it is hard to convince the parents or guardians to let 
their normally developed girls to complete the invasive blood 
collection (especially with the injection of medication) and an 
MRI scan session, we have not got enough normal controls of the 
same age. Thus, we can only choose to examine these younger 
girls with PP specifically.

GnRH Stimulation Test
HPG axis activity increases with the onset of puberty, as evidenced 
by increasing numbers and amplitude pulses of gonadotropins, 
LH, and follicle stimulating hormone (FSH). Based on the pulsatile 
secretion feature, basal gonadotropin measurements poorly 
discriminate between prepubertal and early pubertal children 
(23). The GnRH stimulation test, which is also known as the LH 
releasing hormone (LHRH) stimulation test, uses LHRH (a ten-
peptide bioactive substance secreted from the hypothalamus) 
to stimulate the synthesis and secretion of a large gonadotropin 
pulse and release LH and FSH, which can be evaluated as the 
reserve capacity of pituitary gonadotropin cells (24).

The GnRH stimulation test was performed after imaging 
data acquisition in examiners blinded to the imaging findings. 
The interval between the tests was less than 1 week. Following 
overnight fasting, the participants were asked to arrive at the 
hospital at approximately 8:00 am. LHRH was injected as an 
intravenous bolus of 2.5 μg/kg (maximum dose < 100 μg) (25) 
through an indwelling catheter. Four to five milliliters of blood 
were collected immediately before injection (0-min sample), and 
then 2 ml were collected at 30 and 60 min after the injection.

The blood samples were sent for analysis to the hospital 
clinical laboratory (the 0-min sample was delivered immediately, 
and the 30-min sample was sent with the 60-min sample). 
There, the samples were centrifuged, separated, and assayed. 
We assayed the LH, FSH, estradiol (E2), testosterone (TES), 
prolactin (PRL), and cortisol (COR) concentrations separately. A 
detailed description of this process is provided in the supporting 
information (Supplementary Methods).

The peak GnRH-stimulated gonadotropin concentrations are 
low but measurable in prepubertal girls and markedly increase 
at puberty. The several-fold differential between prepubertal 
and pubertal-stimulated LH levels provides a reasonable 
discrimination. A peak stimulated serum LH level >5 IU/L 
alone is considered adequate evidence of HPG axis activation 
and hormonal maturation (maturing gonadotropin secretion) 
following previously established criteria (26–29).

Psychological Scales
The Hamilton Anxiety Rating Scale (HAMA) was administered 
to evaluate anxiety symptoms on the day of MRI scanning. All 
children were also administered the complete C-WISC to screen 

for low intelligence prior to MR scanning. The primary care-
giving parent or guardian of each child completed the Child 
Behavior Checklist (CBCL) (30), which is a psychological test that 
assesses a number of behavioral and emotional characteristics.

Structural Data Acquisition
The MRI examinations were performed on the 3-T GE HDxt 
scanner (General Electric, Milwaukee, Wisconsin, USA) with an 
eight-channel phase array head coil. High-resolution T1-weighted 
images were acquired with a volumetric three-dimensional fast 
spoiled gradient recall (FSPGR) sequence. The scan parameters 
were as follows: repetition time = 8.89 ms, echo time = 4.02 ms, flip 
angle = 15°, field of view = 24 cm, voxel size = 1×1×1 mm3, and 
160 slices with no gap. T1- and T2-weighted images were inspected 
and screened for scan artifacts and gross brain abnormalities by two 
experienced neuroradiologists.

Image Processing
Surface-Based Analysis
Construction of the cortical surface using structural MRI data 
was performed with the FreeSurfer package (version 5.30, http://
surfer.nmr.mgh.harvard.edu/). This method has been validated 
against histological analysis on postmortem brains (31) and 
manual measurements (17) and has high test–retest reliability 
(32, 33). Computational advances in surface reconstruction (34, 
35) are beneficial to its use (36). During preprocessing, gray/
white matter boundaries and the pia mater were automatically 
delineated. The cortical thickness was defined as the difference 
between equivalent vertices lying between the gray/white 
matter interface and the pia mater (37) using both intensity 
and continuity information from the entire three-dimensional 
MR volume in the segmentation and deformation procedures. 
Following registration of all subjects’ cortical reconstructions to a 
common average surface and the interpolation steps, the surface 
maps are capable of detecting submillimeter differences between 
groups (37). A detailed description of this approach is provided 
in the supporting information Supplementary Methods.

Statistical Analysis
Differences in demographic characteristics [e.g., age and body 
mass index (BMI)], hormone concentrations, and psychological 
scale scores between the CPP and NCPP girls were examined 
using independent sample T-tests. Statistical significance was set 
at an alpha <0.05.

Vertex-wise comparisons of cortical maps between the two 
groups were conducted using a general linear model with age, 
weight and height as covariates. Because all images were aligned 
to a common template, we did not use the intracranial volume 
as a covariate (38). Since IQ has already been shown to influence 
cortical thickness (39), we ran an additional analysis including IQ 
as a covariate. A detailed description of this process is provided 
in the supporting information Supplementary Analysis. Prior 
to this process, a smoothing step with a 10-mm full width at 
half maximum was initiated to average the cortical thickness 
and volume data across participants in a common spherical 
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coordinate system. Nonparametric cluster-wise corrections for 
multiple comparisons were performed using the FreeSurfer false 
discovery rate (FDR) or Monte Carlo simulation tool with a 
corrected cluster-forming threshold of p < 0.05 (18).

The average cortical thickness data were extracted from 
clusters showing significant differences between the groups. 
Associations between regional cortical parameters and the 
stimulated hormone levels were examined using regression 
analyses. To investigate the effect of anatomical maturation 
on psychosocial development, partial correlations were also 
conducted (corrected for age) between the cortical values 
and psychological features, including intellectual abilities and 
behavioral and emotional characteristics. We performed partial 
correlations (corrected for age) for the psychological scores and 
hormone levels, which showed significant correlations with the 
regional cortical parameters.

RESULTS

Descriptive Statistics
No significant differences were found in age, weight, height, and 
BMI between the CPP and NCPP girls. The CPP girls showed 
higher stimulated plasma LH and E2 levels than the NCPP girls 
(Table 1). No significant differences between groups were found 
in the FSH, TES, PRL, and COR levels or the psychosocial features 
(p > 0.05; see supporting information in Supplementary Table 1 
for group comparisons of the C-WISC and CBCL subscales).

Group Differences in Cortical Thickness
Compared to that of the NCPP girls, the CPP girls showed 
less cortical thickness in the right rostral middle frontal cortex  
(p < 0.05, corrected using Monte Carlo simulation with 10,000 
iterations; Figure 1). No significant difference between the 
groups was found in the left hemisphere (p > 0.05, corrected 
using FDR or Monte Carlo simulation).

Associations Between Regional Cortical 
Parameters, Stimulated Hormone Levels, 
and Psychological Features
Among the CPP girls, less cortical thickness in the right rostral 
middle frontal cortex was associated with higher E2 concentrations 
[p = 0.010, r = −0.485; applying a Bonferroni correction at p < 0.025 
(0.05/2); Figure 2]. The significant regression modal is as follows: 
right rostral middle frontal cortex thickness = 3.44-0.018E2 (p = 
0.010). With respect to the partial correlation analysis, higher E2 
concentrations were positively correlated with the hyperactivity 
score [p = 0.000, r = 0.775; Bonferroni correction at p < 0.004 
(0.05/13)], which is a prominent behavioral characteristic of 
CBCL (after removal of one outlier). Among the NCPP girls, no 
significant correlations were found between the cortical thickness 
in regions with group differences and the stimulated hormone 
levels and psychological scores.

DISCUSSION

To the best of our knowledge, this study is the first to investigate the 
impact of premature HPG axis activation on cortical morphometry 
and its associations with cognitive and behavioral development in 
girls undergoing CPP defined by GnRH stimulation testing. Rather 
than finding widespread differences in brain anatomy between the 
CPP and NCPP girls, cortical thickness differences were evident 
specifically in the prefrontal cortex regions. The regression analysis 
revealed significant associations between the E2 levels and the 
cortical thickness in regions within the anterior middle frontal lobe. 
These findings suggest that the early hormonal changes induced by 
the onset of CPP are regionally specific to or more prominent in 
regions in the frontal lobe, which is known to be a cortical region 
with prolonged maturation during adolescence (40). Our findings 
of hormonal relationships with the neocortical structure in CPP 
girls suggest that the neurodevelopmental pattern of this neocortical 
region, which is known to be important for higher cognition and 
behavioral modulation, may be influenced by hormone-related 
changes during PP. Taken together, these results may facilitate the 
understanding of the role of CPP in several psychiatric disorders 
associated with prefrontal dysfunctions and behavior deficits 
occurring in adolescence.

Although the exact neurobiological processes underlying CPP in 
girls cannot be determined, specific cortical thickness differences in 
the prefrontal cortex were apparent. The most prominent cortical 
thinning was observed in the right rostral middle frontal cortex. This 
region is part of Brodmann area 10, which plays an important role 
in managing many executive functions, such as working memory 
and response inhibition (41), and is one of the least well understood 
regions of the human brain despite its involvement in mentalizing, 
personality expression, decision-making, and moderating social 
behavior (42, 43). In fact, previous studies of the cortical thickness 
or volume during normal pubertal development and in many 
teenage neuropsychiatric disorders also found positive results in the 
prefrontal lobe (44, 45). The cortical thickness and volume collectively 
confirmed the vulnerability of the prefrontal cortex (46). Since 
the cortical thickness can provide more details reflecting the size, 
density, and arrangement of neurons, neuroglia, and nerve fibers in 

FIGURE 1 | Differences in cortical thickness between girls with and without 
central precocious puberty. A thinner cortical thickness in the right rostral 
middle frontal cortex in the central precocious puberty (CPP) girls that 
co-varied by age, weight, and height is indicated by a blue/cool color (Monte 
Carlo simulation p < 0.05). R, right hemisphere.
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the cortical columns (47, 48), our findings of changes in the cortical 
thickness in CPP girls can be posited to reflect early pubertal effects 
on these synaptic, dendritic, and axonal developmental processes. 
The thinning cortical thickness observed here may represent early 
modifications, such as cell death and neurite pruning (49). In 
fact, synaptic pruning in the cerebral cortex, including the prefrontal 
areas, generally is accepted to occur at puberty. Overproduction and 
developmental remodeling, including substantial elimination of 
synaptic spines, continue beyond adolescence until they stabilize 
at the adult level (50). However, determining whether any inverse 
influences underlie premature selective elimination of the initially 
overproduced synapses in CPP girls needs further investigation.

Another interesting finding was that a thinner cortical thickness 
of the right prefrontal lobe was positively associated with elevated 
E2 levels as measured by the GnRH stimulation test. Since CPP 
results from premature activation of the HPG axis, elevation of 
gonadotropin may stimulate the production of sex steroids, which 
leads to the production of estrogens in girls. Our result suggests 
that the decrease in the cortical thickness during the early phase of 
CPP may be directly or indirectly mediated by this E2 production 
process. Hormone-related modification of the prefrontal region may 
represent the core pathophysiology during the early course of CPP. 
Indeed, both animal and human studies have found that steroid 
hormones exert a profound influence on the structure and function 
of the nervous system (51, 52), and the prefrontal cortex and its neural 
circuitry have been speculated to be mediators of estrogen (52). All 
key estrogen receptors present throughout the body are also present 

in synapses of the prefrontal cortex (53). However, most studies have 
supported trophic effects of estrogen, inducing neuronal survival, 
spinogenesis and synaptogenesis (54), although many inverse 
influences on the cortex microstructure have also been reported (55, 
56). The underlying hormone-related refinement mechanisms, such 
as triggering selective neuro-anatomical alterations and eliminating 
initially overproduced synapses, await further confirmation.

However, previous studies found certain links between the 
cortical structure and testosterone during early brain development 
(57), but no significant correlation was found in our research. This 
discrepancy may due to the early pubertal phase during which 
CPP girls have not shown significant changes in the testosterone 
concentration; indeed, no differences were found between the CPP 
and NCPP girls in our samples. Moreover, all the girls in this study 
were in the very early pubertal stage without menophania. Without 
the confounding factors of the menstrual cycle, we can obtain 
more stable and representative pubertal hormone concentrations.

The positive correlation between the E2 concentration and 
hyperactivity means that HPG axis activation does have some 
influence on behavioral development. Because CPP girls have 
significantly elevated E2 concentrations, they may have higher 
hyperactivity scores and appear to be vulnerable to relevant behavioral 
symptoms. In fact, previous studies have suggested that CPP is 
associated with an increased risk of development of certain cognitive 
and behavioral problems (11, 58). Early in 1985, a standardized 
behavioral assessment of 33 girls with CPP have already suggested 
that girls with CPP scored high on the externalizing scale and the 

FIGURE 2 | Associations between cortical thickness and stimulated estradiol concentrations in brain regions with significant between-group differences in central 
precocious puberty girls. Among central precocious puberty girls, less cortical thickness in the right rostral middle frontal cortex is associated with higher estradiol 
concentrations (p = 0.010, r = −0.485).
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aggressive and hyperactive scales (59). However, these symptoms 
can be directly or indirectly mediated by biological, psychological, 
social, and environmental variables. Therefore, the extent of the 
association with hormonal changes is unclear. Studies in animals 
have supported the influence of estradiol on central nervous system 
differentiation and observed behavior, although the precise human 
behavioral and psychobiological effects have not been elucidated 
(60). Our findings may increase understanding of the endocrine 
mechanism underlying the developmental psychopathology.

Furthermore, previous studies have presented many cognitive 
and behavioral features that are closely associated with the frontal 
cortex (61). Previous neuroimaging investigations focused on 
separated cognitive elements found distinct frontal systems for 
response inhibition, attentional capture, and error processing (62). 
Animal studies in mice showed that an increase in ionotropic 
glutamate receptors activity in the prefrontal cortex contributed to 
some abnormal behaviors, such as hyperactivity (63). The hormone-
related thinning of the prefrontal cortex found in our study might 
be a pathway to achieve hormone-related behavioral regulation. 
However, in our research, no significant correlation was found 
between the cortical thickness in regions with differences between 
groups and the psychological scores, and no differences in these 
scores were observed between the CPP and NCPP girls. These finding 
may have two explanations. First, the vertex-wise comparison of the 
cortical maps between the two groups has high sensitivity to detect 
small differences and can provide more detailed morphometric 
information, but these psychological scales only represent major 
changes in cognitive or behavioral development; thus, potential 
fine neuropsychological changes may not have been reflected on 
the corresponding scales. Second, since moving from a normal to 
an abnormal psychosocial state may require a conversion process, 
the psychological changes may not be as dramatic as the hormonal 
or morphological changes in early CPP girls. Additionally, some 
neurotransmitters may bridge the morphological and behavioral 
changes.

The current study has certain limitations. First, the present 
study was cross-sectional in nature and thus causality could not 
be asserted regarding whether the early phase of CPP caused brain 
structure alterations. Longitudinal human studies and experimental 
animal work are needed to establish causal effects. Second, the lack 
of measurement of the duration of hormone maturation is another 
potential limitation of this study. Third, other age-related factors 
(e.g., education and other environmental influences, such as social 
and emotional stresses) may impact behavioral correlations with 
our MRI and hormonal data. Fourth, healthy controls were not 
considered in this study because it is hard to convince the parents 
or guardians to let their normally developed girls to complete 
these exams (especially with the injection of medication). Finally, 
although our data show significant effects in girls with early CPP, 
whether similar hormone–neuroanatomy correlations are seen in 
girls at later stages after pubertal onset remains to be determined.

CONCLUSIONS

Taken together, the results of the current study revealed specific 
changes in the prefrontal cortex that were related to hormonal 

changes in girls during premature HPG axis activation. 
This hormone-related modification may represent the core 
neurodevelopment pathophysiology during the early course 
of CPP, and it might be a pathway to achieve hormone-related 
behavioral regulation. These findings indicate an important 
role of hormonal axis activation in brain and psychosocial 
development during this sensitive developmental period.
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