RESEARCH PAPER

Existence of solution for some quasi-homogenous and quasi-elliptic Nonlinear Eigenvalue Problems

Fatima M. ABOUD1
${ }^{1}$ Department of Mathematics, College of Science, University of Diyala/Diyala, Iraq.

Abstract

: The existence of solutions for a non linear eigenvalue problems is well studied and proved for n even. In this article we will study the case of odd dimension $n>1$ for the family of quasi-homogeneous and quasi-elliptic operators and we will give some examples for the case $n=3$. We study the conditions for which we can prove the existence of non trivial solution for each case.

KEY WORDS:.Nonlinear eigenvalue problems, spectra, trace, quasi-elliptic operators, quasi-homogeneous operators.
.DOI: http://dx.doi.org/10.21271/ZJPAS.31.s2.9.
ZJPAS (2019), 31(s2);70-80 .

INTRODUCTION :

In this article we study the existence of the non-trivial solutions for a non-linear eigenvalueproblem with some quasi-homogenous and quasi-elliptic operators defined on an odd dimensional space.

In 2003, Helffer, Robert and Wang have proved the existence of eigenvalues for the non-linear eigenvalue problems for every even dimension.

For the case of odd dimension: the case $\mathrm{n}=1$ was studied by [Robert, 2004], [Christ, 1992] and [Aboud, 2009, 2010]. The case odd $\mathrm{n}>1$ was studied in [Aboud, 2009] (doctorate thesis), in which the author proved the existence of nontrivial eigenvalues for some quadratics families of operators for the cases of dimensions $\mathrm{n}=1,3$, 5and 7 and a conjecture was given for the upper odd dimensions.

[^0]In [Aboud, 2018], the existence of the non-trivial solutions for a non-linear eigenvalue problem with a quasi-homogeneous operator defined on an odd dimensional space were proved.

2. Preliminaries

In this section we give some well-known results. LetTbe a compact operator onH, where H is a separable Hilbert space. If $r(T) \neq 0$ (spectral radius) one order the non-zero eigenvalues of T in a decreasing sequence in modulo

$$
\left|\lambda_{1}(T)\right| \geq\left|\lambda_{2}(T)\right| \geq \cdots \geq\left|\lambda_{n}(T)\right| \geq \cdots
$$

every eigenvalue be repeated following its algebraic multiplicity. For proving the existence of non-trivial eigenvalues, we use the following theorem:

Theorem 2.1 Theorem of Lidskii (1958) For every $T \in C^{1}(H)$ we have $\operatorname{Tr}(T)=\sum_{j \geq 1} \quad \lambda_{j}(T)$.

We get directly the following corollary:

SCHMIDT CLASS OF THE SYMBOLS

In the following we give a result which help us to know if the operator is of trace class (or of Hilbert-Schmidt class) by using the formula of the associated symbol. For the proof of the following lemmas see [Rndeaux, 1984] :

Lemma 2.1 Let $^{w}(L)$ be the Weyl symbol of L. One has L is an operator Hilbert Schmidt iff $\sigma^{w}(L) \in L^{2}\left(R^{2 n}\right)$.

Lemma 2.2 Let $^{w}(L)$ be the Weyl symbol of L. One has $L \in C_{p}$ if :

$$
\sum_{0 \leq|\alpha|+|\beta| \leq k(p)}\left(\iint\left|D_{x}^{\alpha} D_{\xi}^{\beta} \sigma(L)\right|^{p} d x d \xi\right)^{\frac{1}{p}}
$$

with $k(p)$ even integer $>2 n\left(\left(\frac{2}{p}\right)-1\right)$ if $p \in[1,2]$, $k(p)$ even integer $>3 n\left(1+\left(\frac{2}{p}\right)\right)$ if $\left.p \in\right] 2, \infty[$.

We recall the following lemma (for the proof see [Aboud, 2009]) we prove the following lemma:

Lemma 2.3 For an operator L the symbol $\sigma(L)$ quasi homogenous of order M and of type
$(\underline{k}, \underline{\ell})=\left(k_{1}, k_{2}, \ell_{1}, \ell_{2}\right)$ such that

$$
\sigma(L)\left(\rho^{k_{1}} x, \rho^{k_{2}} y, \rho^{\ell_{1}} \xi, \rho^{\ell_{2}} \eta\right)=\rho^{M}(x, y, \xi, \eta)
$$

i.e.: $\sigma(L) \in S_{\underline{k}, \underline{\ell},}^{M}$,
where $\quad(x, y) \in R^{n_{1}} \times R^{n_{2}}, \quad(\xi, \eta) \in R^{n_{1}} \times R^{n_{2}}$ and $n_{1}+n_{2}=n$. Then:
i) L is of trace class if $\sigma(L) \in S_{\underline{k}, \underline{\underline{E}}}^{M}$ with the condition: $M+\left(n_{1} k_{1}+n_{2} k_{2}+\ell_{1} n_{1}+\ell_{2} n_{2}\right)<$ 0.
ii) L is of Hilbert-Schmidt class if $\sigma(L) \in S_{\underline{k}, \underline{\ell}}^{M}$ with the condition:

$$
2 M+\left(n_{1} k_{1}+n_{2} k_{2}+\ell_{1} n_{1}+\ell_{2} n_{2}\right)<0
$$

2.1 Conditions of trace class and Hilbert-

Theorem 2.2 (Theorem of Composition)

One suppose that φ, ϕ are weight functions, if $A \in L_{\varphi, \phi}^{\mu_{1}}$ with symbol $a \in S_{\varphi, \phi}^{\mu_{1}}$ and $B \in L_{\varphi, \phi}^{\mu_{2}}$ of symbol $b \in S_{\varphi, \phi}^{\mu_{2}}$, then $A B \in L_{\varphi, \phi}^{\mu_{1}+\mu_{2}}$. Moreover, the symbol $a . b$ of $A B$ admits an asymptotic expression

$$
a . b \approx \sum_{\alpha, \beta} \quad \Gamma(\alpha, \beta)\left(\partial_{\xi}^{\alpha} D_{x}^{\beta} a\right)\left(\partial_{\xi}^{\beta} D_{x}^{\alpha} b\right)
$$

in the following sense:
for an integer number N one has

$$
\begin{gathered}
a . b-\sum_{|\alpha+\beta|<N} \quad \Gamma(\alpha, \beta)\left(\partial_{\xi}^{\alpha} D_{x}^{\beta} a\right)\left(\partial_{\xi}^{\beta} D_{x}^{\alpha} b\right) \\
\in S^{\mu_{1}+\mu_{2}-(N, N)},
\end{gathered}
$$

where $\Gamma(\alpha, \beta)=\left(\frac{1}{2}\right)^{\alpha}\left(-\frac{1}{2}\right)^{\beta} \frac{1}{\alpha!\beta!}$.

3 Functional Analysis of the problem

Let H be a complex Hilbert space and let
$L(\lambda)=H_{0}+\lambda H_{1}+\ldots+\lambda^{m-1} H_{m-1}+\lambda^{m}$,
L is a family of non bounded operators on H, where $\lambda \in C$.

In addition, H_{0} is a closed operator with a dense domain $D\left(H_{0}\right)$. The operators H_{1}, \ldots, H_{m-1} are defined on $D\left(H_{0}\right)$.

We consider the following hypothesis:
Hypothesis (H1): H_{0} is a self-adjoint positive operator of the domain $D\left(H_{0}\right)$ in H.

Hypothesis (H2): For each integer $j, 0 \leq j \leq k-$ 1, the operators $H_{0}^{-1} H_{j}$ and $H_{0}^{-1} H_{j}$ are bounded in H.

To give the third hypothesis, we give the following definition:

Definition 3.1 $\mathrm{LetH}_{1}, \mathrm{H}_{2}$ be two complex Hilbert spaces and $T: H_{1} \rightarrow H_{2}$ a compact operator. We
denote by $\left(\mu_{j}(T)\right)_{j \geq 1}$ the decreasing sequence of eigenvalues of $\left(T^{*} T\right)^{\frac{1}{2}}$ where each eigenvalue repeated corresponding to its multiplicity. Let p strictly positive real number. We say that: $T \in C^{p}\left(H_{1}, H_{2}\right)$ if

$$
\sum_{j=1}^{\infty} \mu_{j}(T)^{p}<+\infty
$$

where C^{p} denote the class of Schatten.
Hypotheses (H3): There exists a real $p>0$ such that: $H_{0}^{\frac{-1}{m}} \in C^{p}(H)$.

So we have the following result:
Proposition 3.1 Under the previous hypothesis one has:
i) $L(\lambda)$ define a closed operator of domain $D\left(H_{0}\right)$.
ii) If $L(\lambda)^{-1}$ exists, then it is compact.
iii) $\forall \lambda \in C, L(\lambda)$ is an operator with index and $\operatorname{Ind}(L(\lambda))=0$.

4 QUASI-ELLIPTIC AND QUASI-HOMOGENOUS OPERATORS
 \subsection*{4.1 ELLIPTIC Symbols}

Definition 4.1 Let A be an operator with the $\operatorname{symbol\sigma }(A)(x, \xi)$ such that:

$$
\sigma(A)(x, \xi)=\sum_{j \geq 0} a_{m-j}(x, \xi)
$$

we say that A is elliptic if $a_{m}(x, \xi) \neq 0$ for $(x, \xi) \in R^{n} \times\left(R^{n} \backslash\{0\}\right)$.

Now, let A be an elliptic operator of order $m>0$, invertible and has minimum
increasing radius (i.e. the radius $\arg \lambda=\theta$ in C is a minimum increasing radius if this radius does not contain any proper value of $a_{m}(x, \xi)$). The symbol of Ais:

$$
\sigma(A)(x, \xi)=\sum_{j=0}^{\infty} \quad a_{m}(x, \xi)
$$

where a_{m-j} is homogenous of order $m-j$.
Definition 4.2 One says that the symbola (x, ξ) is poly-homogenous, if $a(x, \xi)$ of the following form:

$$
a(x, \xi)=\sum_{\ell \in N} a_{M-\ell}(x, \xi)
$$

with $a_{M-\ell}(x, \xi)$ is homogenous of order $M-\ell$.
Definition 4.3 One says that the symbola (x, ξ) is poly-quasi-homogenous, if $a(x, \xi)$ is of the following form: $a(x, \xi)=\sum_{\ell \in N} \quad a_{M-\ell}(x, \xi)$, with $a_{M-\ell}(x, \xi)$ is quasi-homogenous of order $M-\ell$.

Definition 4.4 One says that the symbola (x, ξ) is quasi-elliptic if it is poly- quasi-homogenous with the fact that its principal symbol principal does not vanish out of zero, i.e.: $a_{M}(x, \xi) \neq$ $0, \operatorname{for}(x, \xi) \in R^{2 n} \backslash\{0\}$.

4.2 QUASI ELLIPTIC Symbols

We consider the family of operators: $L_{P}(\lambda)=a\left(D_{x}\right)+(P(x)-\lambda)^{2}, x \in R^{n}$
where $P(x)=P\left(x_{1}, \cdots, x_{n}\right)$ is a positive quasihomogenous polynomial of order M and of type (k_{1}, \cdots, k_{n}) such that:

$$
\begin{gather*}
P\left(\rho^{k_{1}} x_{1}, \cdots, \rho^{k_{n}} x_{n}\right)= \\
\rho^{M} P_{0}\left(x_{1}, \cdots, x_{n}\right)+\rho^{M-\gamma} P_{1}\left(x_{1}, \cdots, x_{n}\right) \tag{5}
\end{gather*}
$$

where $\gamma \geq 1$ and P is quasi-elliptic such that:

$$
P_{0}(x) \neq 0, x \in R^{n} \backslash\{0\},
$$

and $\quad a\left(D_{x}\right)=a\left(D_{x_{1}}, \cdots, D_{x_{n}}\right) \quad$ is a positive pseudodifferential quasi-homogenous operator M^{\prime} and of type $\left(\ell_{1}, \cdots, \ell_{n}\right)$ such that:
$a\left(\rho^{\ell_{1}} D_{x_{1}}, \cdots, \rho^{\ell_{n}} D_{x_{n}}\right)=$
$\rho^{M^{\prime}} a_{0}\left(D_{x_{1}}, \cdots, D_{x_{n}}\right)+\rho^{M^{\prime}-\delta} a_{1}\left(D_{x_{1}}, \cdots, D_{x_{n}}\right)$
where $\delta \geq 1$ and a is quasi-elliptic such that:

$$
a_{0}(\xi) \neq 0, \xi \in R^{n} \backslash\{0\} .
$$

We have associated to L_{P} the non self-adjoint matrix operator on $L^{2}\left(R^{n}\right) \times L^{2}\left(R^{n}\right)$ such that:

$$
\hat{A}=\left(\begin{array}{cc}
0 & 1 \tag{7}\\
-\widehat{H}_{0} & -\widehat{H}_{1}
\end{array}\right)
$$

where

$$
\begin{gathered}
\widehat{H}_{0}=a\left(D_{x}\right)+(P(x))^{2}= \\
a_{0}\left(D_{x}\right)+a_{1}\left(D_{x}\right)+\left(P_{0}(x)+P_{1}(x)\right)^{2}
\end{gathered}
$$

and

$$
\widehat{H}_{1}=-2 P(x)=-2\left(P_{0}(x)+P_{1}(x)\right),
$$

then the symbol of \hat{A} is:

$$
A=A_{0}+A_{1}=\left(\begin{array}{cc}
0 & 1 \\
-H_{0} & -H_{1}
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
-H_{0}^{\prime} & -H_{1}^{\prime}
\end{array}\right)
$$

where

$$
\begin{array}{ccc}
H_{0} & = & a_{0}(\xi)+\left(P_{0}(x)\right)^{2} \\
H_{1} & = & -2\left(P_{0}(x)\right) \\
H_{0}^{\prime} & = & a_{1}(\xi)+2 P_{0}(x) P_{1}(x)+P_{1}^{2}(x) \\
H_{1}^{\prime} & = & -2\left(P_{1}(x)\right)
\end{array}
$$

the principal symbol of \hat{A} is A_{0}, in place of A_{0} we take a matrix equivalent to A_{0} and we call it also A_{0} such that:

$$
A_{0}=\left(\begin{array}{cc}
0 & \sqrt{H_{0}} \\
-\sqrt{H_{0}} & -H_{1}
\end{array}\right)
$$

the principal symbol A_{0} belongs to $S_{\underline{M}, \underline{\underline{M}}}^{1}$, where:

$$
\underline{M}=\left(\frac{k_{1}}{M}, \cdots, \frac{k_{n}}{M}\right), \underline{M^{\prime}}=\left(\frac{\ell_{1}}{M^{\prime}}, \cdots, \frac{\ell_{n}}{M^{\prime}}\right) .
$$

we have

$$
\begin{equation*}
\mu_{\mp}(x, \xi)=P_{0}(x, \xi) \mp \sqrt{a_{0}(x, \xi)} \tag{8}
\end{equation*}
$$

So, we will prove the following proposition:
Proposition 4.1 For the operator \hat{A} in (7) with a symbol $A \in S_{\underline{M}, \underline{M}}^{1}$, such that:

$$
\left(\underline{M}, \underline{M^{\prime}}\right)=\left(\left(\frac{k_{1}}{M}, \cdots, \frac{k_{n}}{M}\right),\left(\frac{2 \ell_{1}}{M^{\prime}}, \cdots, \frac{2 \ell_{n}}{M^{\prime}}\right)\right),
$$

such that there exists $j, j \geq 1$ such that: $\ell_{1}+\cdots+$ $\ell_{n}=M^{\prime} j$.

The parametrix of $\left(\hat{A}_{P}+\lambda\right)^{m}$ have the following symbol:

$$
B(x, \xi, \lambda) \approx \sum_{j \geq 0} b_{j, \lambda}(x, \xi)
$$

Then for:

$$
\begin{aligned}
& m \\
& >\max \left\{\frac{k_{1}+\cdots+k_{n}}{M}\right. \\
& \left.+\frac{2\left(\ell_{1}+\cdots+\ell_{n}\right)}{M^{\prime}}, n, \frac{2\left(\ell_{1}+\cdots+\ell_{n}\right)}{M^{\prime}}+M\right\}
\end{aligned}
$$

the asymptotic form of this parametrix is the following :

$$
\begin{aligned}
& \operatorname{Tr}\left(\hat{A}_{P}+\lambda\right)^{-m} \approx \sum_{j \geq 0} c_{j,-m}(\lambda) \\
& \approx c_{0} \lambda^{\alpha_{0}}+c_{\delta} \lambda^{\alpha_{1}}+\cdots \\
& c_{j,-m}(\lambda)=\int_{R^{n}} \int_{R^{n}} b_{j, \lambda}(x, \xi) d x d \xi
\end{aligned}
$$

with

$$
\begin{array}{ccc}
c_{0} & \left.\left.=\int_{R^{n}}\left(P_{0}(x)+1\right)\right)^{-m-\rho} d x \int_{R^{n}} \sqrt{a_{0}(\xi)}+1\right)^{-m} d \xi \\
& \\
c_{1} & = & 0 \\
\vdots & \vdots
\end{array}
$$

and

$$
\begin{aligned}
c_{\delta,-m}(\lambda) & =\int_{R^{2 n}} \quad b_{\delta, \lambda}(x, \xi) d x d \xi \\
& =\quad \lambda^{\alpha_{\delta}} c_{\delta}
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{0}= \\
& \alpha_{\delta}=-m+\frac{k_{1} n_{1}+k_{2} n_{2}}{M^{\prime}}+\frac{\ell_{1} n_{1}+n_{2} \ell_{2}}{M^{\prime}} \\
& \delta=\quad \alpha_{0}-\delta, \\
& \delta M^{\prime} \cdot \min \left\{\frac{k_{1}}{M}+\frac{2 \ell_{1}}{M^{\prime}}, \cdots, \frac{k_{n}}{M}+\frac{2 \ell_{n}}{M^{\prime}}\right\}, \\
& \rho=\frac{2\left(\ell_{1}+\cdots+\ell_{n}\right)}{M^{\prime}},
\end{aligned}
$$

in addition, we have $c_{0} \neq 0$.
Proof : We apply the condition (1) for a general case of quasi-homogenous operators then the operator $(\hat{A}+\lambda)^{-m}$ is of trace class for m such that :

$$
\begin{equation*}
m \geq \frac{k_{1}}{M}+\cdots+\frac{k_{n}}{M}+\frac{2 \ell_{1}}{M^{\prime}}+\cdots+\frac{2 \ell_{n}}{M^{\prime}}, \tag{9}
\end{equation*}
$$

and for finding the asymptotic form of $\operatorname{Tr}(\hat{A}+$ $\lambda)^{-m}$, when $\lambda \rightarrow+\infty$, we find the asymptotic form of the symbol B of $(A+\lambda)^{-m}$. The symbol B belongs to $S_{\underline{M}, \underline{M}}^{-m}$, such that:

$$
B(x, \xi, \lambda) \approx \sum_{j \geq 0} \quad b_{j, \lambda}(x, \xi),
$$

where
where

$$
\begin{array}{lcc}
\Lambda & = & \left\{\left|\left(\underline{M}+\underline{M}^{\prime}\right) \cdot(\alpha+\beta)\right|+l=j+1, l \leq j\right\} \\
\Lambda^{\prime} & = & \left\{\left|\left(\underline{M}+\underline{M^{\prime}}\right) \cdot(\alpha+\beta)\right|+l+i=j+1, l \leq j, 0 \leq i \leq m\right\}
\end{array}
$$

(11)
$\sum_{s+t=i} \frac{m!}{s \neq m, t \neq 0} 5\left(A_{0}+\lambda\right)^{s} A_{1}^{t}, 0 \leq s, t \leq$ $m, 0 \leq i \leq m$ with

$$
\begin{aligned}
& b_{0, \lambda}(x, \xi)= \\
& \left(A_{0}(x, \xi)+\lambda\right)^{-m}, \\
& b_{j+1, \lambda}(x, \xi)=-b_{0, \lambda}(x, \xi) \sum_{\Lambda} \quad \Gamma(\alpha, \beta) \partial_{\xi}^{\alpha} D_{x}^{\beta}\left(A_{0}(x, \xi)+\lambda\right)^{m} \partial_{\xi}^{\beta} D_{x}^{\alpha} b_{l, \lambda}(x, \xi) \\
& -b_{0, \lambda}(x, \xi) \sum_{\Lambda^{\prime}} \quad \Gamma(\alpha, \beta) \partial_{\xi}^{\alpha} D_{x}^{\beta} A_{i, m}(x, \xi, \lambda) \partial_{\xi}^{\beta} D_{x}^{\alpha} b_{l, \lambda}(x, \xi) \\
& \text { (10) }
\end{aligned}
$$

$$
\begin{aligned}
\mid\left(\underline{M}+\underline{M^{\prime}}\right) \cdot(\alpha & +\beta) \mid \\
& =\left(\frac{k_{1}}{M}+\frac{2 \ell_{1}}{M^{\prime}}\right)\left(\alpha_{1}+\beta_{1}\right)+\cdots+\left(\frac{k_{n}}{M}\right. \\
& \left.+\frac{2 \ell_{n}}{M^{\prime}}\right)\left(\alpha_{n}+\beta_{n}\right) .
\end{aligned}
$$

Then we find the asymptotic form of the trace:
$\operatorname{Tr}(\hat{A}+\lambda)^{-m} \approx \sum_{j \geq 0} \int_{R^{2 n}} \operatorname{tr}\left(b_{j, \lambda}(x, \xi)\right) d x d \xi$,
we $\operatorname{set} c_{j,-m}(\lambda)=\int_{R^{2 n}} \quad \operatorname{tr}\left(b_{j, \lambda}(x, \xi)\right) d x d \xi$
then $\operatorname{Tr}(\hat{A}+\lambda)^{-m} \approx \sum_{j \geq 0} \quad c_{j,-m}(\lambda)$.
We start by calculate the first term:

$$
\begin{aligned}
c_{0,-m} & =\quad \int_{R^{2 n}} \operatorname{tr}\left(b_{0, \lambda}(x, \xi)\right) d x d \xi \\
& \left.=\int_{R^{2 n}} \Re\left(P_{0}(x)+i \sqrt{a_{0}(\xi)}+\lambda\right)^{-m}\right) d x d \xi
\end{aligned}
$$

to calculate the integral we do the changement of variables

$$
\begin{array}{ccccccc}
x_{1} & = & \lambda^{\frac{k_{1}}{M}} x_{1^{\prime}} & \Rightarrow & d x_{1} & = & \lambda^{\frac{k_{1}}{M}} d x_{1^{\prime}} \\
\vdots & & \vdots & & \vdots & & \vdots \\
x_{n} & = & \lambda^{\frac{k_{n}}{M}} x_{n^{\prime}} & \Rightarrow d x_{n} & = & \lambda^{\frac{k_{n}}{M}} d x_{n^{\prime}} \\
& \lambda^{\frac{21_{1}}{M^{\prime}} \xi_{1^{\prime}}} \Rightarrow \quad d \quad d \xi_{1} & = & \lambda^{\frac{21_{1}^{\prime}}{M^{\prime}}} d \xi_{1^{\prime}} \tag{12}\\
\vdots & & \vdots & & \vdots & & \vdots \\
\xi_{n} & = & \lambda^{\frac{2 \ell_{n}^{\prime}}{M^{\prime}} \xi_{n^{\prime}}} \Rightarrow \Rightarrow d \xi_{n}= & \lambda^{\frac{2 n_{n}}{M^{\prime}}} d \xi_{n^{\prime}}
\end{array}
$$

we have:
$c_{0,-m}(\lambda)=\lambda^{\alpha_{0}} \int_{R^{2 n}} \quad \Re\left(P_{0}\left(x^{\prime}\right)+i \sqrt{a_{0}\left(\xi^{\prime}\right)}+\right.$

1) ${ }^{-m} d x^{\prime} d \xi^{\prime}$, where

$$
\alpha_{0}=-m+\frac{k_{1}}{M}+\cdots+\frac{k_{n}}{M}+\frac{2 \ell_{1}}{M^{\prime}}+\cdots+\frac{2 \ell_{n}}{M^{\prime}}
$$

where m satisfy the condition (9).We set

$$
\begin{aligned}
f(\alpha)=\int_{R^{2 n}} & \left(P_{0}\left(x^{\prime}\right)+\alpha \sqrt{a_{0}\left(\xi^{\prime}\right)}\right. \\
& +1)^{-m} d x^{\prime} d \xi^{\prime}
\end{aligned}
$$

then we do the changement of variables:

$\begin{array}{ccc}\vdots & \vdots & \vdots \\ \xi_{n^{\prime}} & =\alpha^{-\frac{2 \ell_{n}}{M^{\prime}} \xi_{n^{\prime}}} \Rightarrow & \Rightarrow d \xi_{n^{\prime}}\end{array}=\alpha^{-\frac{2 n}{M^{\prime}}} d \xi_{n^{\prime \prime}}$
we have

$$
f(\alpha)=\alpha^{\rho} \int_{R^{2 n}}\left(P_{0}\left(x^{\prime}\right)+\sqrt[-m^{\prime \prime}]{\sqrt{a_{0}\left(\xi^{\prime \prime}\right.}}\right.
$$

where $\rho=-\left(\frac{2 \ell_{1}}{M^{\prime}}+\cdots+\frac{2 \ell_{n}}{M^{\prime}}\right)$. Then by doing an analytic extension of $f(\alpha)$ we can take $\alpha=i$ then:

$$
\begin{gathered}
c_{0,-m}(\lambda)=\lambda^{\alpha_{0}} \Re(i)^{\rho} \int_{R^{2 n}}\left(P_{0}\left(x^{\prime}\right)\right. \\
+\quad \sqrt{-m^{\prime \prime}} \sqrt{a_{0}\left(\xi^{\prime \prime}\right.}
\end{gathered}
$$

to have that $\mathfrak{R}\left(i^{\rho}\right) \neq 0$ we must have that ρ is an even number, i.e. there exists j such that:

$$
\ell_{1}+\cdots+\ell_{n}=M^{\prime} j,
$$

so

$$
c_{0,-m}=(-1)^{\frac{\rho}{2}} \int_{R^{2 n}}\left(P_{0}\left(x^{\prime}\right)+-^{-m^{\prime \prime}} \sqrt{a_{0}\left(\xi^{\prime \prime}\right.}\right.
$$

for the integral

$$
\int_{R^{2 n}}\left(P_{0}\left(x^{\prime}\right)+{-m^{\prime \prime}}^{a_{0}\left(\xi^{\prime \prime}\right.}\right.
$$

we have that the previous integral is defined and non-zero for
$m>$
$\max \left\{\frac{k_{1}+\cdots+k_{n}}{M}+\frac{2\left(\ell_{1}+\cdots+\ell_{n}\right)}{M^{\prime}}, n, \frac{2\left(\ell_{1}+\cdots+\ell_{n}\right)}{M^{\prime}}+\right.$
$M\}$
For the second term we set:

$$
\kappa=\min \left\{\frac{k_{1}}{M}+\frac{2 \ell_{1}}{M^{\prime}}, \cdots, \frac{k_{n}}{M}+\frac{2 \ell_{n}}{M^{\prime}}\right\},
$$

we suppose that: $\kappa=\frac{k_{1}}{M}+\frac{2 \ell_{1}}{M^{\prime}}$
then the second term is $b_{\kappa M M^{\prime}}$ we take in consideration the type of homogeneity (c.f. also (11)), so when $l=0, i=0$ and $\alpha_{1}+\beta_{1}=M M^{\prime}$ we have

$$
\begin{gathered}
b_{\kappa M M^{\prime}, \lambda}= \\
-\Gamma\left(M M^{\prime}, 0\right) b_{0, \lambda} \partial_{\xi_{1}}^{M M^{\prime}}\left(A_{P}+\lambda\right)^{m} D_{x_{1}}^{M M^{\prime}} b_{0, \lambda}
\end{gathered}
$$

$$
-\Gamma\left(0, M M^{\prime}\right) b_{0, \lambda} D_{x_{1}}^{M M^{\prime}}\left(A_{P}+\lambda\right)^{m}
$$

$$
\partial_{\xi_{1}}^{M M^{\prime}} b_{0, \lambda}-\Gamma\left(M M^{\prime}-1,1\right)
$$

$$
b_{0, \lambda} \partial_{\xi_{1}}^{M M^{\prime}-1} D_{x_{1}}^{1}\left(A_{P}+\lambda\right)^{m} \partial_{\xi_{1}}^{1} D_{x_{1}}^{M M^{\prime}-1} b_{0, \lambda}
$$

$$
-\Gamma\left(M M^{\prime}-2,2\right) b_{0, \lambda} \partial_{\xi_{1}}^{M M^{\prime}-2} D_{x_{1}}^{2}\left(A_{P}+\lambda\right)^{m}
$$

$$
\partial_{\xi_{1}}^{2} D_{\chi_{1}}^{M M^{\prime}-2} b_{0, \lambda} \cdots-\Gamma\left(1, M M^{\prime}-1\right)
$$

$$
b_{0, \lambda} \partial_{\xi_{1}}^{1} D_{\chi_{1}}^{M M^{\prime}-1}\left(A_{P}+\lambda\right)^{m} \partial_{\xi_{1}}^{M M^{\prime}-1} D_{\chi_{1}}^{1} b_{0, \lambda} .
$$

We do the changement of variables (12) we have:

$$
\begin{aligned}
& \int_{R^{2 n}} \operatorname{tr}\left(b_{\kappa M M^{\prime}, \lambda}(x, \xi)\right) d x d \xi \\
= & \lambda^{\alpha_{1}} \int_{R^{2 n}} \operatorname{tr}\left(b_{\kappa M^{\prime} M}^{\prime}\left(x^{\prime}, \xi^{\prime}\right)\right) d x^{\prime} d \xi^{\prime}
\end{aligned}
$$

where

$$
\begin{gathered}
\alpha_{1}=-m+\frac{k_{1} n_{1}+k_{2} n_{2}}{M}+\frac{n_{1} \ell_{1}+n_{2} \ell_{2}}{M^{\prime}} \\
-\kappa M M^{\prime}=\alpha_{0}-\kappa M M^{\prime},
\end{gathered}
$$

and $b_{K M M^{\prime}}^{\prime}\left(x^{\prime}, \xi^{\prime}\right)$ is the rest of $b_{\kappa M M^{\prime}, \lambda}(x, \xi)$ after the application of the changement of variables and taking λ as a factor.

We use the proposition (4.1) and the theorem of Lidskii we can proving the following theorem:

Theorem 4.1 The operator L_{P} en (4) is defined on $L^{2}\left(R^{n}\right)$ where $P(x)=P\left(x_{1}, \cdots, x_{n}\right)$ is a positive quasi-homogenous polynomial of order M and of type $\left(k_{1}, \cdots, k_{n}\right)$ such that:

$$
P\left(\rho^{k_{1}} x_{1}, \cdots, \rho^{k_{n}} x_{n}\right)=
$$

$\rho^{M} P_{0}\left(x_{1}, \cdots, x_{n}\right)+\rho^{M-\gamma} P_{1}\left(x_{1}, \cdots, x_{n}\right)$
where $\gamma \geq 1$ and P is quasi-elliptic such that:

$$
P_{0}(x) \neq 0, x \in R^{n} \backslash\{0\},
$$

$a\left(D_{x}\right)=a\left(D_{x_{1}}, \cdots, D_{x_{n}}\right) \quad$ is a positive pseudodifferential quasi-homogenous operator of order M^{\prime} and of type $\left(\ell_{1}, \cdots, \ell_{n}\right)$ such that:

$$
\begin{gather*}
a\left(\rho^{\ell_{1}} D_{x_{1}}, \cdots, \rho^{\ell_{n}} D_{x_{n}}\right)= \\
\rho^{M^{\prime}} a_{0}\left(D_{x_{1}}, \cdots, D_{x_{n}}\right)+\rho^{M^{\prime}-\delta} a_{1}\left(D_{x_{1}}, \cdots, D_{x_{n}}\right)(\tag{16}
\end{gather*}
$$

where $\delta \geq 1$ and a is quasi-elliptic such that:

$$
a_{0}(\xi) \neq 0, \xi \in R^{n} \backslash\{0\} .
$$

If there exists j such that:

$$
\ell_{1}+\cdots+\ell_{n}=M^{\prime} j .
$$

Then there exists $\lambda_{0} \in C$ and $u_{0} \in L^{2}\left(R^{n}\right)$, $u_{0} \neq 0$ such that $L_{P}\left(\lambda_{0}\right) u_{0}=0$.

5 QUADRATIC QUASI-HOMOGENOUS FAMILY

We consider the following quadratic family of operators:

$$
\begin{equation*}
L(\lambda)=H_{0}+\lambda H_{1}+\lambda^{2}, \tag{17}
\end{equation*}
$$

where H_{0} and H_{1} are pseudo-differential operators with the symbols H_{0} and H_{1} of order M and $\frac{M}{2}$, respectively and of type (k, ℓ)i.e.:
$H_{0}\left(\rho^{k} x, \rho^{\ell} \xi\right)=\rho^{M} H_{0}(x, \xi), H_{1}\left(\rho^{k} x, \rho^{\ell} \xi\right)=$ $\rho^{\frac{M}{2}} H_{1}(x, \xi)$.
H_{0} and H_{1} satisfy the hypotheses (1),(2) and (3) of the section (3), in addition we suppose that H_{0} and $H_{0}-H_{1}^{2}$ are positive operators.

We associate to $L(\lambda)$, the following non self-adjoint matrix operator:

$$
\hat{A}=\left(\begin{array}{cc}
0 & \widehat{H}_{0}^{\frac{1}{2}} \tag{18}\\
-\widehat{H}_{0}^{\frac{1}{2}} & -\widehat{H}_{1}
\end{array}\right),
$$

with a matrix symbol A which belongs to $S_{\underline{k}, \underline{\ell}}^{1}\left(L^{2}\left(R^{n}\right) \times L^{2}\left(R^{n}\right)\right)$ where

$$
(\underline{k}, \underline{\ell})=\left(\frac{k}{M}, \frac{\ell}{M}\right)
$$

such that:
$A=\left(\begin{array}{cc}0 & H_{0}{ }^{\frac{1}{2}} \\ -H_{0}{ }^{\frac{1}{2}} & -H_{1}\end{array}\right)$,
and $\mu_{\mp}=H_{1} \mp i \sqrt{H_{0}-H_{1}^{2}}$.
We find the asymptotic form of the trace of the operator $(A+\lambda)^{-m}$, for m large enough. The symbol B of $(A+\lambda)^{-m}$ belongs to $S_{\underline{k}, \underline{e}}^{-m}\left(L^{2}\left(R^{n}\right) \times L^{2}\left(R^{n}\right)\right)$ such that

$$
B(x, \xi, \lambda) \approx \sum_{j \geq 0} \quad b_{j, \lambda}(x, \xi)
$$

where

$$
\begin{gathered}
b_{0, \lambda}(x, \xi)=(A(x, \xi)+\lambda)^{-m}, \\
b_{j+1, \lambda}(x, \xi)= \\
-b_{0, \lambda}(x, \xi) \sum_{\Lambda} \Gamma(\alpha, \beta) \partial_{\xi}^{\alpha} D_{x}^{\beta} \\
(A(x, \xi)+\lambda)^{m} \partial_{\xi}^{\beta} D_{x}^{\alpha} b_{l, \lambda}(x, \xi), \\
\Lambda=\{|(\underline{k}+\underline{\ell}) \cdot(\alpha+\beta)|+l=j+1, l \leq j\} .
\end{gathered}
$$

So the trace has the following asymptotic form:

$$
\begin{aligned}
\operatorname{Tr}(\hat{A}+\lambda)^{-m} & \approx \sum_{j \geq 0} \int_{R^{2 n}} \operatorname{tr}\left(b_{j, \lambda}(x, \xi)\right) d x d \xi \\
& \approx \sum_{j \geq 0} c_{j,-m}(\lambda)
\end{aligned}
$$

setting

$$
c_{j,-m}(\lambda)=\int_{R^{2 n}} \operatorname{tr}\left(b_{j, \lambda}(x, \xi)\right) d x d \xi
$$

and

$$
b_{j, \lambda}(x, \xi) \in S_{\underline{k}, \underline{\ell}}^{-m-j}\left(L^{2}\left(R^{n}\right) \times L^{2}\left(R^{n}\right)\right)
$$

Proposition 5.1 The operator \hat{A} in (18) is defined in $L^{2}\left(R^{n}\right) \times L^{2}\left(R^{n}\right)$ where H_{0} and H_{1} are positive pseudo-differential operators of orders M and $\frac{M}{2}$, respectively and are of type (k, ℓ) such that there exists $j, j \geq 1$ with $n(k+\ell)=M j$.

For m large enough and $\lambda \rightarrow+\infty$ we have

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{A}_{P}+\lambda\right)^{-m} & \approx \sum_{j \geq 0} c_{j,-m}(\lambda) \\
& \approx c_{0} \lambda^{\alpha_{0}}+c_{\delta} \lambda^{\alpha_{0}-\delta}+\cdots
\end{aligned}
$$

such that

$$
c_{j,-m}(\lambda)=\int_{R^{2 n}} b_{j, \lambda}(x, y, \xi, \eta) d x d y d \xi d \eta
$$

where $b_{j, \lambda}$ are the terms of the symbol of the parametrix of $\left(\hat{A}_{P}+\lambda\right)^{m}$ and

$$
\alpha_{0}=-m+\frac{2 n(k+\ell)}{M}
$$

$$
\begin{gathered}
c_{0}=(-1)^{-\frac{\rho}{2}} \int_{R^{2 n}}\left(H_{1}(x, \xi)+\right. \\
\left.\sqrt{H_{0}(x, \xi)-H_{1}^{2}(x, \xi)}+1\right)^{-m} d x d \xi, \\
\delta=M \cdot\left\{\frac{k}{M}, \frac{l}{M}\right\}, \\
\rho=\frac{2 n(k+l)}{M},
\end{gathered}
$$

$$
\begin{array}{cc}
c_{0}=(-1)^{-\frac{\rho}{2}} \int_{R^{2 n}}\left(H_{1}(x, \xi)+\sqrt{H_{0}(x, \xi)-H_{1}^{2}(x, \xi)}+1\right)^{-m} d x d \xi, \\
\delta= & \operatorname{M} \cdot \min \left\{\frac{k}{M}, \frac{\ell}{M}\right\}, \\
\rho= & \frac{2 n(k+\ell)}{M},
\end{array}
$$

of plus $c_{0} \neq 0$.
Proof: we have :

$$
\operatorname{tr}\left(b_{0, \lambda}\right)=\Re\left(H_{1}+i \sqrt{H_{0}-H_{1}^{2}}+\lambda\right)^{-m}
$$

then we find the integral

$$
\int_{R^{2 n}}\left(H_{1}+i \sqrt{H_{0}-H_{1}^{2}}+\lambda\right)^{-m} d x d \xi
$$

we do the changement of variables:

$$
\begin{align*}
& x=\lambda^{\frac{2 k}{M}} x^{\prime} \Rightarrow d x=\lambda^{\frac{2 k n}{M}} d x^{\prime} \\
& \xi=\lambda^{\frac{2 \ell}{M}} \xi^{\prime} \Rightarrow d \xi=\lambda^{\frac{2 \ell n}{M}} d \xi^{\prime} \tag{20}
\end{align*}
$$

we have

$$
\begin{aligned}
f(\alpha)=\left(\frac{1}{\alpha}\right)^{\rho} & \int_{R^{2 n}}\left(H_{1}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)\right. \\
& +\sqrt{H_{0}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)-H_{1}^{2}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)} \\
& +1)^{-m} d x^{\prime \prime} d \xi^{\prime \prime}
\end{aligned}
$$

where $\rho=\frac{2 n(k+\ell)}{M}$.

$$
\int_{R^{2 n}} \operatorname{tr}\left(b_{0, \lambda}(x, \xi)\right) d x d \xi
$$

$=\lambda^{\alpha_{0}} \int_{R^{2 n}} \quad \Re\left(H_{1}\left(x^{\prime}, \xi^{\prime}\right)+i \sqrt{H_{0}\left(x^{\prime}, \xi^{\prime}\right)-H_{1}^{2}\left(x^{\prime}, \xi^{\prime}\right)}+1\right)^{\text {surporse that } \alpha} d x^{\prime} d \xi^{\prime}, i$, and we have
where $\alpha_{0}=-m+\frac{2 n(k+\ell)}{M}$,
we set

$$
\begin{aligned}
c_{0}=\int_{R^{2 n}} & \Re\left(H_{1}\left(x^{\prime}, \xi^{\prime}\right)\right. \\
& +i \sqrt{H_{0}\left(x^{\prime}, \xi^{\prime}\right)-H_{1}^{2}\left(x^{\prime}, \xi^{\prime}\right)} \\
& +1)^{-m} d x^{\prime} d \xi^{\prime}
\end{aligned}
$$

i.e. $c_{0,-m}(\lambda)=\lambda^{\alpha_{0}} c_{0}$.

To calculate c_{0} we use the same method of the previous section. we suppose that : $f(\alpha)=$ $\int_{R^{2 n}}\left(H_{1}\left(x^{\prime}, \xi^{\prime}\right)+\alpha \sqrt{H_{0}\left(x^{\prime}, \xi^{\prime}\right)-H_{1}^{2}\left(x^{\prime}, \xi^{\prime}\right)}+\right.$ $1)^{-m} d x^{\prime} d \xi^{\prime}$, by doing the changement of variables :

$$
\begin{aligned}
& x^{\prime}=\left(\frac{1}{\alpha}\right)^{\frac{2 k}{M}} x^{\prime^{\prime}} \Rightarrow d x^{\prime}=\left(\frac{1}{\alpha}\right)^{\frac{2 k n}{M}} d x^{\prime \prime} \\
& \xi^{\prime}=\left(\frac{1}{\alpha}\right)^{\frac{2 \ell}{M}} \xi^{\prime} \Rightarrow d \xi^{\prime}=\left(\frac{1}{\alpha}\right)^{\frac{2 \ell n}{M}} d \xi^{\prime}
\end{aligned}
$$

we get

$$
\begin{aligned}
c_{0}=R(i)^{-\rho} & \int_{R^{2 n}} \\
& \left(H_{1}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)\right. \\
& +\sqrt{H_{0}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)-H_{1}^{2}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)} \\
& +1)^{-m} d x^{\prime \prime} d \xi^{\prime \prime}
\end{aligned}
$$

then $c_{0} \neq 0$, if there exists $j, j \geq 1$ such that

$$
\begin{equation*}
n(k+\ell)=M j \tag{21}
\end{equation*}
$$

For n and M even numbers we must having k and ℓ such that (21) is satisfied. For n odd and M even we must obtain that the sum $k+\ell$ be even and (21) is satisfied. For example, the case $n=3,(k, \ell)=(1,3)$ and $M=6$.

Then we have

$$
\begin{aligned}
c_{0}=(-1)^{-\frac{\rho}{2}} & \int_{R^{2 n}}\left(H_{1}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)\right. \\
& +\sqrt{H_{0}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)-H_{1}^{2}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)} \\
& +1)^{-m} d x^{\prime \prime} d \xi^{\prime \prime}
\end{aligned}
$$

and $c_{0} \neq 0$ because

$$
\begin{gathered}
\left(H_{1}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)+\sqrt{H_{0}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)-H_{1}^{2}\left(x^{\prime \prime}, \xi^{\prime \prime}\right)}\right. \\
+1) d x^{\prime \prime} d \xi^{\prime \prime}
\end{gathered}
$$

is positive.

We find the second term of the trace of $(\hat{A}+\lambda)^{-m}$ we set

$$
\kappa=\min \left\{\frac{k}{M}, \frac{\ell}{M}\right\}
$$

then we take in consideration the type of homogeneity we have $b_{\kappa M, \lambda}$ is the second term when $l=0$ and $\alpha+\beta=M$ i.e.

$$
\left.\begin{array}{rl}
b_{\kappa M, \lambda}(x, \xi)= & - \\
& -\Gamma(M, 0) b_{0, \lambda}(x, \xi) \partial_{\xi}^{M}\left(A_{P}(x, \xi)+\lambda\right)^{m} D_{x}^{M} b_{0, \lambda}(x, \xi) \\
& \left.-\Gamma(M-1,1) b_{0, \lambda}(x, \xi) D_{x}^{M}\left(A_{P}(x, \xi)+\lambda\right)^{m} b_{\xi}^{m}(x, \xi) \partial_{0, \lambda}^{M-1} D_{x}^{1}\left(A_{P}(x, \xi)+\lambda\right)^{m}\right) \\
& \partial_{\xi}^{1} D_{x}^{M-1} b_{0, \lambda}(x, \xi) \\
& -\Gamma(M-2,2) b_{0, \lambda}(x, \xi) \partial_{\xi}^{M-2} D_{x}^{2}\left(A_{P}(x, \xi)+\lambda\right)^{m} \\
& \partial_{\xi}^{2} D_{x}^{M-2} b_{0, \lambda}(x, \xi) \\
\cdots
\end{array}\right)
$$

we have $b_{\kappa M, \lambda} \in S_{\underline{k}, \underline{\ell}}^{-m-(\kappa M)}$ then we do the changement of variables (20) we find :

5.1 Example with $\boldsymbol{n}=3$

We consider for example the operator $L(\lambda)$ in $L^{2}\left(R^{3}\right)$ with H_{0} and H_{1} of order6 and 3 respectively and of type $(1,3)$ such that:

$$
\begin{aligned}
& H_{0}\left(x, D_{x}\right)=|x|^{6}-D_{x}^{2}, \\
& H_{1}\left(x, D_{x}\right)=|x|^{3},
\end{aligned}
$$

Then we have the matrix operator \hat{A} has the symbol Awith :

$$
\begin{aligned}
& H_{0}(x, \xi)=|x|^{6}+|\xi|^{2}, \\
& H_{1}(x, \xi)=|x|^{3}
\end{aligned}
$$

For $m>9$ and $\lambda \rightarrow+\infty$, the asymptotic form of the trace is the following :

$$
\operatorname{Tr}(\hat{A}+\lambda)^{-m} \approx \sum_{j \geq 0} c_{j,-m}(\lambda)
$$

$$
\int_{R^{2 n}} \operatorname{tr}\left(b_{\kappa M, \lambda}(x, \xi)\right) d x d \xi=\lambda^{\alpha_{1}} \int_{R^{2 n}} \operatorname{tr}\left(b_{\kappa M}^{\prime}\left(x^{\prime}, \xi^{\prime}\right)\right) d x^{\prime} d \xi^{\prime}, \quad \approx \quad \lambda^{\alpha_{0}} c_{0}+\lambda^{\alpha_{1}} c_{1}+\cdots,
$$

where

$$
\alpha_{1}=\alpha_{0}-\kappa M
$$

and $b_{\kappa M}^{\prime}\left(x^{\prime}, \xi^{\prime}\right)$ is the rest of $b_{\kappa M, \lambda}(x, \xi)$ after the application of the changement of variables (20) and taking λ as a factor.

We use the proposition (5.1) and the theorem of Lidskii we can proving the following theorem:

Theorem 5.1 Let L_{P} be the operator in (17), which is defined on $L^{2}\left(R^{n}\right)$ with H_{0}, H_{1} are positives pseudo-differential operators with the symbols H_{0}, H_{1} of order M and $\frac{M}{2}$, respectively and of type (k, ℓ), if there exists $j, j \geq 1$ such that :

$$
n(k+\ell)=M j .
$$

Then there exists $\lambda_{0} \in C$ and $u_{0} \in L^{2}\left(R^{n}\right)$, $u_{0} \neq 0$ such that $L_{P}\left(\lambda_{0}\right) u_{0}=0$.
with

$$
\begin{array}{llc}
c_{0}= & \int_{R^{3}} & \left(|x|^{3}+1\right)^{-m+3} d x \int_{R^{3}}(|\xi|+1)^{-m} d \xi \\
c_{1}= & 0 \\
\alpha_{0}= & -m+4 \\
\alpha_{1}= & -m+3
\end{array}
$$

and $c_{0} \neq 0$ since $\left(|x|^{3}+1\right)^{-m+3}$ and $(|\xi|+1)^{-m}$ are positives.

Then by using the proposition (5.1) and the theorem (5.1) we can prove the existence of non trivial solutions for the operator L.

REFERENCES

[Aboud, 2009] F.Aboud. Ph.D Thesis, Problèmes aux valeurspropres non-linéaires. University of Nantes,

May 2009. https://tel.archives-ouvertes.fr/tel00410455.
[Aboud, 2010] F.Aboud and D. Robert. Asymptotic expansion for nonlinear eigenvalue problems. Journal de MathématiquesPures et Appliquées. 93 (2), pp.149-162 (2010).
[Aboud, 2018] F.Aboud. Asymptotic expansion for nonlinear eigenvalue problems. ,Volume: 14 Issue: 4 Pages: 88-104 (2018).
[Beals, 1977] R.Beals : A general calculus of pseudodifferential operators, Duke Math. J., 44,1977.
[Chanillo, Helffer, Laptev, 2004] SagunChanillo,BernardHelffer, Ari Laptev : Nonlinear eigenvalues and analytic hypoelipticity, June 21, 2003 (ce travail estpubliéen 2004 en "journal of analysis functional").
[Helffer, 1979] BernardHelffer : Remarques sur des résultats de G. Métivier sur la non-hypo-analyticité, Séminaire de l'Université de Nantes, exposé No.9, 1978-1979.
[Helffer, Robert, 2003] BernardHelffer, Didier Robert : Semiclassical Analysis of nonlinear eigenvalue problem and non analytic hypoellipticity, October 21, 2003.
[Helffer, Robert, 1982] BernardHelffer, Didier Robert : Propriétésasymptotiques du spectred'opérateurs pseudo-différentiels sur R^{n}, Comm. in P.D.E.,Vol.7,p.795-882, 1982.
[Helffer, Robert, Wang, 2005] BernardHelffer, D. Robert, Xue Ping Wang : Semiclassical analysis of a non linear eigenvalue problem and analytique hypoellipticity, St-Petersburg Mathematical Journal, Vol. 16, No 1, p. 285-296, 2005.
[Gohberg, Krein, 1972] I.Gohberg et M. G. Krein : Introduction à la théorie des opérateurslinéaires non autoadjoints, Dunod, 1972.
[Keldysh, 1951] M. V. Keldysh : Valeurspropres et fonctionpropres de certaines classes d'équationsnon auto-adjointes, DAN,77,No. 1, 11-14, (1951).
[Kelydsh, 1971] M. V. Keldysh : On the completness of the eigenfunctions of classes of non-selfadjoint linear operators, Russian Math. Surveys 26, No.4, 15-44, (1971).
[Markus] A.S. Markus : Introduction to the spectral theory of polynomial operator pencils, vol.71, Translation
of mathematical monographs. American Mathematical Society.
[Müller,
1961]P.H.Müller:EigenwertabschtzungenfürGleich
ungenvomTyp $\left(\lambda^{2} I-\lambda A-B\right) x=0, \quad 12$, Nr.4, Arch. Math., p.307-310, 1961.
[Pham, Robert, 1980] Pham The Lai, Didier Robert : Sur un problème aux valeurspropres non linéaire, Israel journal of mathematics, vol.36, No.2, p.169-186, 1980.
[Christ] M. Christ : Some non-analytic-hypoelliptic sums of squares of vector fields, Bull.A.M.S., vol.26, No.1, p.137-140, 1992.
[Robert, 2004] Didier Robert : Non linear eigenvalue problems, MatemàticaContemporânea, vol.26, p.109-127, 2004.
[Robert, 1978] Didier Robert : Propriétésspectralesd'opérateurspseudodifferentiels , Comm. Partial Differential Equitions, 3 (1978),755-826.
[Robert, 1987] Didier Robert : Autour de l'approximation semi-classique, Progress in Mathematics no.68, Birkhäuser, (1987).
[Rndeaux, 1984] C.Rndeaux: Classe de Schattend'opérateurs pseudo-différentiels, Annales scientifiques de l'É.N.S, 4^{e} série, tome 17 , no. 1, 67-81, (1984).

[^0]: * Corresponding Author:

 Fatima M ABOUD
 E-mail fatima.aboud@sciences.uodiyala.edu.iq Article History: Received: 03/02/2019 Accepted: 13/02/2019 Published: 12/05 /2019

