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Abstract 

Tin (antimony) substituted and lacunar Dawson phosphotungstomolybdates (1-K10P2W12Mo5O61, 1-

K8P2W12Mo5SnO61 and -Cs4SnP2W12Mo6O62, and -Cs3SbP2W12Mo6O62) were synthesized and charac-

terized by Fourier Transform Infra Red (FTIR), nuclear magnetic resonance (31P NMR), Visible Ultra 

Violet (UV-Vis) spectroscopy, and X-ray diffraction (XRD). Their catalytic properties were examined in 

the oxidation reaction of cyclohexanone at 90 °C and that of cyclohexene at 70 °C to adipic acid (AA), in 

presence of hydrogen peroxide and in free solvent. The effects of catalyst/substrate molar ratios, hydro-

gene peroxide flow rate, heteropolysalt composition, and cyclohexanol addition on AA yields were stud-

ied. The Cs4SnP2W12Mo6O62 (the most efficient) led to 61 % of AA yield from the cyclohexanone oxida-

tion using a catalyst/substrate molar ratio of 13.3×10-4, H2O2 flow rate of 0.5 mL/h, and a reaction time 

of 20 h. Copyright © 2019 BCREC Group. All rights reserved 
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1. Introduction 

Polyoxometalates (POMs) are metal-oxide 

clusters, with great diversity in framework. The 

most studied in field catalysis, are the Keggin-

type followed by Dawson-type POMs [1-8]. 

These latter, although their synthesis is diffi-

cult, present many advantages as a more num-
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ber of transition metal atoms (18 against 12 by 

polyanion) giving thus a more great choice in 

the  polyanion composition variation and there-

fore in the modification of their acid and oxida-

tive properties. Dawson-type POMs were shown 

to be effective in various oxidation processes as 

methanol oxidation [8], 3,4-dihydro-

pyrimidinones synthesis [9], epoxidation of cy-

clooctene and that of cyclohexene [10], phenol 

hydroxylation [7], isobutane oxidehydrogenation 
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to isobutene [5],  adipic acid synthesis [11,12] 

and other catalytic applications [13]. In this 

work, we were interested in the Dawson-type 

POMs application as catalysts, in the cyclohex-

anone oxidation to adipic acid (AA), important 

product principally used in nylon synthesis. In 

industrial process, AA is commonly prepared by 

oxidation of a mixture of cyclohexanone and cy-

clohexanol (known as KA oil) using nitric acid 

in presence of Cu/V catalyst [14-16]. KA-oil was 

obtained from cyclohexane oxidation in the 

presence of air. However, the reduction of 

HNO3 generates a large amount of greenhouse 

gases. Among them, N2O is the most dangerous 

[17]. An alternative to this process was already 

the subject of several works. 

The used oxidants are molecular oxygen, 

air, and particularly hydrogen peroxide [18-25]. 

This latter is easier to handle and in addition, 

its reduction leads only to the water formation. 

The AA synthesis using the hydrogen peroxide 

was examined with different catalysts based on 

Ni, Co, Mn, Mo, and W [12,18-26]. In recent 

works, we have shown that the introduction of 

elements, such as: tin and antimony, into Keg-

gin-type POMs improves the catalytic perfor-

mance of the solid. The AA yields of ca. 60% 

were achieved with NH4SnPMo12O40 [22]. On 

the other hand, we have also demonstrated the 

efficiency of Dawson-type POMs of composition 

K6P2MoxW18-xO62 (x = 5,6) in AA synthesis [12]. 

So, the objective of this work is to introduce tin 

and antimony into this type of material. Daw-

son-type POMs examined in the AA synthesis 

have formula of -K6P2W18O62 , -

K6P2Mo6W12O62, -H6P2W12Mo6O62, 1-

K10P2W12Mo5O61, 1-K8P2W12Mo5SnO61, -

Cs4SnP2W12Mo6O62, and -Cs3SbP2W12Mo6O62. 

The AA synthesis was carried out from liquid-

phase oxidation of cyclohexanone and/or cyclo-

hexanol and cyclohexene in the presence of hy-

drogen peroxide (30 %) without solvent, acidic 

additives, and phase transfer agents. The 

method is based on that proposed by Nomiya et 

al. [28]. POMs were characterized by FT-IR, 
31P NMR, UV-Vis spectroscopy, and XRD. 

 

2. Materials and Method 

2.1 POM Synthesis  

The -K6P2W18O62 ,  1,4,9,10,15,16-

K6P2W12Mo6O62, 1,4,9,10,15,16-H6P2W12Mo6O62, 

1,9 ,10 ,15 ,16-4-K1 0P2W1 2 Mo5O6 1 ,  and 

1,9,10,15,16-4-K8P2W12Mo5SnO61 (noted -

P2W18, -P2W12Mo6, -H6P2W12Mo6, 1-

P2W12Mo5, and 1-P2W12Mo5Sn) were synthe-

sized according to established procedures [28-

33]. The -P2W12Mo6 and 1-P2W12Mo5 were 

obta ined  f r om  hex ava ca nt  a n i on 

[H2P2W126O48]12- according to the method de-

scribed by Contant [30] and Randall [34].    

Figure 1 illustrates successive steps involved 

in synthesis of W/Mo and W/Mo/Sn Dawson 

mixed heteropolyanions and Dawson polyhe-

α-[P2W18O62]6- [H2P2W12  6O48]12- α1-[P2W12Mo5 O61]10- α1-[P2W12Mo5SnO61]8-

α- [P2W12Mo6O62]6-
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Figure 1. Successive steps of W/Mo and W/Mo/Sn mixed Dawson heteropolyanion, notation, and Daw-

son polyhedral representation with a numbering of the metallic atoms according to IUPAC recommen-

dations  
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dral representation with a numbering of the 

metallic atoms according to IUPAC recommen-

dations. In Dawson heteropolyanion, two types 

of clusters are present: two terminal trimetallic 

groups M3O13 (numbers 1-3 and 16-18) and six 

bimetallic groups M2O10 (numbers 4 to 15) ar-

ranged in a double crown [12,28]. 

The mixed cesium salts, Cs4SnP2W12Mo6O62 

and Cs3SbP2W12Mo6O62, were prepared by pre-

cipitation from -H6P2W12Mo6, SnCl2 or SbCl3, 

and CsCl according with the stoichiometric ra-

tios (Equations (1) and (2)). Cs4SnP2W12Mo6 is 

dark blue and the Cs3SbP2W12Mo6 is green. 

 

 

 

 

 

 

 

2.2 Characterization 

Infrared spectra were recorded on the 4000-

400 cm−1 range on Bruker IFS 66 FT-IR spec-

trometer using samples prepared as KBr disks. 
31P MAS NMR spectra were measured at room 

temperature on Bruker Avance 400 spectrome-

ter. The 85 % H3PO4 was used as an external 

reference. UV-Vis Diffuse Reflectance spectra 

were recorded in the 800-200 nm region on  

Specord 210 Plus Analytic Jena spectrometer 

equipped with a polytetrafluoroethylene 

(PTFE) integration sphere. PTFE was used as 

a reference. X-ray Diffraction analysis was ob-

tained on a BRUKER D8 ADVANCE X-ray dif-

fractometer using a Cu-K (k = 1.54178 Å) ra-

diation, in the range of 2θ = 5-60° at a rate of 

0.02 °.s-1.  

 

2.3 Catalytic Methods 

The synthesis method is based on that de-

scribed in the literature [27]. The liquid-phase 

oxidation was carried out at 90 °C in the case of 

cyclohexanone (-one) and at 70 °C in the case of 

cyclohexene (-ene), using a 100 mL round-

bottomed flask equipped with a magnetic stir-

ring bar and a reflux condenser. The whole is 

stirred at 1000 rpm for 20 h reaction time. The 

reaction mixture is constituted by a calculated 

amount of POM catalyst and substrate. Hydro-

gen peroxide (30 %) is added drop wise whenev-

er the POM is reduced. The state of the latter is 

visualized by the presence of a blue color      

corresponding to Mo(V) atoms. After adding of 

H2O2, the catalyst shows a color change from 

blue to yellow, color characteristic of Mo(VI). It 

should be pointed out that only two Mo(VI) per 

Keggin  anion can undergo a reduction at a 

time and the resultant homogeneous mixture 

was cooled at 0 °C overnight. The AA, one of 

oxidation products, was isolated as white crys-

tals and identified by FT-IR and 1H-NMR spec-

troscopy and melting point (~151 °C). The AA 

yield is given by the following relationship:   

AA yield (%) = AA recovered mass × 100 / theo-

retical AA mass. 

 

3. Results and Discussion 

3.1 Catalysts Characterization 

Figure 2 shows FT-IR spectra of the Daw-

son potassium salts (-P2W18, -P2W12Mo6,   

1-P2W12Mo5 and 1-P2W12Mo5Sn), hetero-

polyacid -H6P2W12Mo6 and cesium salts 

(Cs4SnP2W12Mo6 and Cs3SbP2W12Mo6). Dawson 

anion characteristic vibration bands were ob-

served in the low wave number region (500-100 

HCl6OMoWSnPCs

CsCl4SnClOMoWPH

6261224

26261226

+

→++
(1) 

HCl6OMoWSbPCs

CsCl3SbClOMoWPH

6261223

36261226

+

→++
(2) 

Figure 2. FT-IR spectra of -P2W18 (a), -

P2W12Mo6 (b), 1-P2W12Mo5 (c), 1-P2W12Mo5Sn 

(d), -H6P2W12Mo6 (e), Cs4SnP2W12Mo6 (f), and 

Cs3SbP2W12Mo6 (g) 
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cm-1). The metal-oxygen vibration bands corre-

sponding to inter group M–Ob–M and the intra-

group M–Oc–M appear at 898-907 cm-1 and 

725-749 cm-1, respectively. The elongation of 

M=Od band appear at 930-951 cm-1 range. In 

the Dawson anion, the phosphorus-oxygen vi-

bration band is very sensitive to its environ-

ment. An intense vibration band appears 

around 1073-1083 cm-1 assigned to the junction 

phosphorus-bimetallic group M2O10 (noted (P-

Oa)b) and another around 1011-1017 cm-1 of low 

intensity attributed to the junction phosphorus-

trimetallic group M3O13 (noted (P-Oa)t). FT-IR 

band observed around 510-520 cm-1 is attribut-

ed to (P-O) vibration. These results are in 

agreement with those of the literature 

[32,33,35]. In addition, in the cases of 1-

P2W12Mo5 and 1-P2W12Mo5Sn, vibration 

bands were observed at 1117 and 1140 cm-1,  

respectively, resulting of the local symmetry 

decrease attributed to the vacancy presence 

and to the Sn atom introduction in this vacan-

cy situated in bimetallic group (number 4 as 

seen in Figure 1). 

Figure 3. 31P NMR spectrum of -P2W18 (a), -P2W12Mo6 (b), -H6P2W12Mo6 (c), 1-P2W12Mo5 (d), 1-

P2W12Mo5Sn (e) and Cs4SnP2W12Mo6 (f) 



 

Bulletin of Chemical Reaction Engineering & Catalysis, 14 (2), 2019, 287 

Copyright © 2019, BCREC, ISSN 1978-2993 

The 31P NMR chemical shifts data of the 

Dawson POMs are presented in Figure 3. Only 

single resonance peak recorded at –9.8, –13.3, –

10.2 and –11.3 ppm was observed for               

-H6P2W12Mo6, -P2W18O62, -P2W12Mo6, and 

Cs4SnP2W12Mo6, respectively, showing  that the 

two half-anions of the Dawson structure are 

identical. Therefore, these results evidenced 

the purity of prepared Dawson POMs. The 

presence of the vacancy in 1-P2W12Mo5 and 

the Sn atom insertion in the case of                 

1-P2W12Mo5Sn, were highlighted by the two 

signals observed at –7.6 and –10.06 ppm as 

well as –8.9 and –11.1 ppm, respectively, re-

sults according with those observed in FT-IR 

spectroscopy. For Cs3SbP2W12Mo6, no signal ob-

served, lied probably to the antimony element 

paramagnetic.  

The UV–Vis spectra of -P2W18 (a),               

-P2W12Mo6 (b), 1-P2W12Mo5 (c), 1-

P2W12Mo5Sn, (d) Cs4SnP2W12Mo6 (e), and 

Cs3SbP2W12Mo6 (f) (Figure 4) show a large band 

in 200-500 nm wavelengths domain assigned to 

oxygen-metal charge transfer (LMCT),          

corresponding to the oxidation state VI of met-

al [8,36-41]. In the case of substituted POMs, 

the introduction of tin and antimony led to the 

appearance to another LMCT band above 700 

nm that can attributed to molybdenum atoms 

in an oxidation state V. This observation was 

already reported in the case of substituted Keg-

gin-type POMs [37-42]. The intensity of this 

band increases following the sequence 

Cs4SnP2W12Mo6  > 1-P2W12Mo5Sn > 

Cs3SbP2W12Mo6. It was also reported that the 

Mo(VI) reduced amount increases with the  

band intensity [37,38]. These observations sug-

gest a partial reduction of POMs confirmed by 

the observed blue color during their prepara-

tion. This suggests that an electron exchange 

takes place between Sn(II) or Sb(III) and 

Mo(VI) (Equations (3) and (4)). 

 

SnII    +    2MoVI ↔   SnIV   +   2MoV     (3) 

SbIII    +    2MoVI ↔   SbV    +   2MoV     (4) 

 

Figure 5 shows the X-ray patterns of pre-

pared salts. The XR pattern of K6P2W18 is char-

acteristic of a triclinic system, with the follow-

ing parameters: a = 12.8600 Å, b = 14.8300 Å, c 

= 22.3400 Å,  = 94.400°,  = 116.870° and  = 

115.600° and spacial group P -1 (2), according 

to the literature data [43-45]. The                    

-K6P2W12Mo6O62 (Figure 5b) presents also X-

ray pattern characteristic of a triclinic system.  

X-ray diffraction patterns of 1-P2W12Mo5Sn 

(Figure 5 d) and Cs4SnP2W12Mo6 (Figure 5e) 

are similar and appear to crystallize in a differ-

ent system from the triclinic system. It is the 

same for 1-P2W12Mo5 (Figure 5c) and 

Figure 4. UV-vis/diffuse spectra of -P2W18 (a), 

 - P 2 W 1 2 M o 6  (b ) ,  1- P 2 W 1 2 M o 5   ( c ) ,                      

1-P2W12Mo5Sn (d), Cs4SnP2W12Mo6 (e), and 

Cs3SbP2W12Mo6 (f)  

Figure 5. XRD patterns of -P2W18 (a), -P2W12Mo6 

(b), 1-P2W12Mo5 (c), 1-P2W12Mo5Sn (d), 

Cs4SnP2W12Mo6 (e), and Cs3SbP2W12Mo6 (f)  
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Cs3SbP2W12Mo6 (Figure 5f) salts that present 

totally different X-ray patterns which would 

suggest that these two salts would also crystal-

lize in different unidentified systems in the 

frame of this work. These results evidenced the 

influence of the composition of the POM on its 

crystalline structure. 

 

3.2 Catalytic Tests 

The catalytic performance of -H6P2W12Mo6, 

-P2W12Mo6, 1-P2W12Mo5, 1-P2W12Mo5Sn,   

-Cs4SnP2W12Mo6  and  -Cs3SbP2W12Mo6 Daw-

son type salts were examined in adipic acid 

synthesis from oxidation of both cyclohexanone 

at 90 °C and cyclohexene at 70 °C, in the pres-

ence of hydrogen peroxide (30 %) and free sol-

vent. It was showed that the substrate oxida-

tion to AA did not take place in absence of cata-

lyst and when the reaction was carried out in 

one pot (substrate + catalyst + hydrogen perox-

ide) [12, 20-22].  

Catalytic tests were repeated three times in 

the case of cyclohexanone oxidation and twice 

in the case of the oxidation of alcohol/ketone 

and that of alkene to verify the reproducibility 

of the results. As shown by the results in the 

Table 1, the AA yields vary very little from one 

test to another, demonstrating the reproduci-

bility of the catalytic test.  

 

3.2.1 Cyclohexanone oxidation  

In order to optimize the reaction parame-

ters favoring to AA formation, the effect of cat-

alyst/substrate molar ratio was examined with 

-P2W12Mo6 catalyst. The cyclohexanone oxida-

tion was carried out at 90 °C, with a fixed flow 

rate of H2O2 of 1 mL every 150 min, a reaction 

time of 20 h and a magnetic stirring of 1000 

rpm. Table 2 shows an increase of AA yield 

from 12 to 39 % with the increase of cata-

lyst/cyclohexanone molar ratio (noted           

ncatalyst/n-one) from 4.0×10-4 to 13.3×10-4. Up to 

this latter value, AA yield decreases to 32%. 

For all following catalytic experiments, the cat-

alyst/-one molar ratio will fixed at 13.3×10-4, 

corresponding to 90 mg of catalyst and 15 

mmol of substrate. 

The effect of H2O2 flow rate on the adipic  

acid formation from cyclohexanone was exam-

-one   -ol/-one   -ene 
POMs   

Test 1 Test 2 Test 3   Test 1 Test 2   Test 1 Test 2 

-P2W12Mo6 46 39 41   46 47   21 20 

1-P2W12Mo5 30 30 33   34 33   32 31 

1-P2W12Mo5Sn 33 32 33   17 17   23 23 

Cs4SnP2W12Mo6 61 59 59   27 21   11 11 

Cs4SbP2W12Mo6 52 48 49   37 34   29 30 

Table 1.  Reproducibility of the catalytic tests 

ncatalyst / n-one (104) AA Yield (%) 

4.4 12 

6.7 14 

8.8 15 

9.2 30 

13.3 39 

18.5 32 

Table 2. AA yields as function of cata-

lyst/cyclohexanone molar ratio 

Figure 6. Adipic acid yields as function of hy-

drogen peroxide flow rate. Reaction parameters: 

Catalyst: Cs4SnP2W12Mo6, ncatalyst/n-one:   

13.3×10-4, reaction time: 20h; reaction tempera-

ture: 90 °C, stirring:1000 rpm and 6 mL of H2O2 

30 %  

Reaction parameters: reaction time: 20 h; reaction temperature: (90 °C for –one and 70° C for –ene); stirring: 1000 rpm; cata-

lyst/substrate molar ratio: 13.3×10-4 and 6 mL of H2O2 (30%) added with 0.5 mL/h flow rate using manual mode  

Reaction parameters: Catalyst: -P2W12Mo6, reac-

tion time: 20 h, reaction temperature: 90 °C, stir-

ring: 1000 rpm and H2O2 30% (8 mL, flow rate:  1 

mL/2h30) 
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ined in the presence Cs4SnP2W12Mo6 catalyst. 

The oxidation reaction was conducted at 90 °C 

with a catalyst / cyclohexanone molar ratio of 

13.3×10- 4, a reaction time of 20 h and a mag-

netic stirring of 1000 rpm. Hydrogen peroxide 

(30%) was added during the reaction via a con-

tinual automatic mode using a device with a sy-

ringe pump that controls the H2O2 flow rate 

(0.2-1.0 mL/h) and a manual mode that consists 

to add H2O2 by fraction of 0.5 or 1 mL/h. For 

both modes, the injected total H2O2 volume is of 

6 mL. 

Figure 6 shows the obtained results from 

automatic mode. Two distinct domains were ob-

served, with a maximum of AA yield (52 %), ob-

tained with a flow rate of 0.5 mL/h. From 0.2 to 

0.5 mL/h, the AA yield increases from 16 to 52 

% and from 0.5 to 1.0 mL/h, it decreases from 

52 to 23 %. These results emphasize the hydro-

gen peroxide flow rate importance on the AA 

production. So, a low flow rate (<0.5 mL/h), 

slows down the oxidation reaction of substrate 

and up to this value (>0.5 mL/h), probably fa-

voured the others oxidation products. 

The results of the Table 3 confirms that a 

H2O2 flow rate of 0.5 mL/h leads to best results 

regardless the used adding mode. So, when 

H2O2 flow rate increases from 0.5 to 1 mL/h, 

AA yield decreases from 61 to 42 % for manual-

ly adding and from 52 to 23 % for automatical-

ly adding. Moreover, regardless H2O2 flow rate, 

the manual mode leads to the highest yields. 

For the following catalytic tests, a volume of 6 

mL of H2O2 with a flow rate of 0.5 mL/h and 

manual addition mode will used. 

The time oxidation cyclohexanone effect on 

AA formation was examined on -P2W12Mo6 

and Cs4SnP2W12Mo6. The oxidation reaction 

was conducted at 90 °C with a catalyst / cyclo-

hexanone molar ratio of 13.3×10-4, a magnetic 

stirring of 1000 rpm and 6 mL of H2O2 (30 %) 

added with 0.5 mL/h flow rate using manual 

mode. Table 4 shows that after 10 h of reaction, 

the AA yields obtained with both POMs are 

similar (28-29 %), inferior to those obtained af-

ter 20 h of reaction (39-61 %) suggesting an ac-

tive site increase with the reaction time, favor-

ing thus, the AA formation. Whereas, the AA 

yield increase is more important in the case of 

Cs4SnP2W12Mo6 (from 28 to 61 %) compared to 

that observed with -P2W12Mo6 (from 29 to 39 

%). These results evidenced the tin action effi-

ciency with the reaction time, on the catalytic 

performances, lied probably to the presence of 

redox couples Mo(VI)/Mo(V) and Sn(IV)/Sn(II). 

This would promote the oxidation either of the 

substrate or intermediate products to AA. 

Table 5 shows the AA yield, obtained from 

cyclohexanone oxidation, as function of the 

Dawson-type POM composition. The catalytic 

performances were investigated under the opti-

mized conditions. The proton total substitution 

of -H6P2Mo6W12 heteropolyacid by the differ-

ent elements (Cs, K, Sb, Sn) favour the adipic 

H2O2 Flow rate 

(mL/h) 
Mode AA yield (%) 

0.5 
Manual 61 

Automatic 52 

1 
Manual 42 

Automatic 23 

Table 3. Adipic acid yields as function of hy-

drogen peroxide addition mode and H2O2 flow 

rate  

Reaction parameters: Catalyst: Cs4SnP2W12Mo6, 

ncatayst/n-one: 13.3×10-4, reaction time: 20 h; reaction 

temperature: 90 °C; stirring: 1000 rpm and 6 mL of 

H2O2 30% 

POMs Time (h) AA yield (%) 

-P2W12Mo6 
10 29 

20 39 

Cs4SnP2W12Mo6 
10 28 

20 61 

Table 4. AA yields as function of reaction time 

over -P2W12Mo6 and Cs4SnP2W12Mo6 catalyst 

Reaction parameters: reaction temperature: 90 °C, 

stirring: 1000 rpm; ncatayst/n-one: 13.3×10-4 and 6 mL of 

H2O2 (30%) added with 0.5 mL/h flow rate using   

manual mode 

Catalysts 

AA Yields (%) 

-one 
-ol(50%) /  

-one(50%) 

-H6P2Mo6W12 14 ― 

-P2W12Mo6 46 47 

1-P2W12Mo5 30 34 

1-P2W12Mo5Sn 33 17 

Cs4SnP2W12Mo6 61 27 

Cs3SbP2W12Mo6 52 37 

Reaction parameters: reaction time: 20 h; reaction 

temperature: 90 °C; stirring: 1000 rpm; catalyst/ sub-

strate molar ratio: 13.3×10-4 and 6 mL of H2O2 (30%) 

added with 0.5 mL/h flow rate using manual mode 

Table 5. AA yields as function of POMs compo-

sition and substrate nature 
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acid  formation with yields of 30-61 % against 

14 %. In the case of the potassium based salts 

series, -K6P2W12Mo6 is the more active toward 

AA formation with 46 against 30 and 33 % of 

yields in the presence of K10P2W12Mo5 and 

K8P2W12Mo5Sn, respectively. With the caesium 

based salts series, higher AA yields were ob-

tained (52-61 against 30-46 %). In this series, 

Cs4SnP2W12Mo6 exhibits the best catalytic per-

formance with an AA yield of 61 %, evidencing 

the importance of the role played by the tin as 

counter-ion, results in agreement with those 

obtained with the Keggin-type POMs [22]. 

The obtained AA yields (Table 5) from a 

quimolar mixture, cyclohexanol (-ol) and cyclo-

hexanone (-one) are sensitive to POM composi-

tion. In the presence of -P2W12Mo6 and                 

1-P2W12Mo5, the alcohol addition to ketone 

does not seem to influence the formation of AA, 

thus similar AA yields were obtained, respec-

tively, with 46 and 30% from (-one) oxidation 

and 47 and  34% from (-ol)/(-one) mixture oxi-

dation. While in the case of 1-P2W12Mo5Sn, 

Cs4SnP2W12Mo6 and Cs3SbP2W12Mo6, a strong 

decrease of AA yield from 33 to 17, 61 to 27, 

and 52 to 37 % was observed, respectively after 

(-ol) addition to (-one) suggesting that the alco-

hol inhibits AA formation. This is can be at-

tributed to the hydrogen bonds formation be-

tween the C=O group of -one and the hydrogen 

of     C–OH group of -ol, that makes difficult the 

oxidation of both substrates. Results are in 

agreement with those observed in literature 

[12,18-22]. 

The AA yield increases with oxidative power 

increase of POM, following sequence: 

Cs4SnP2W1 2Mo6  > Cs3SbP2W1 2Mo6  >                 

-P2W12Mo6 > 1-P2W12Mo5Sn ~ 1-P2W12Mo5 

> -H6P2Mo6W12. Therefore, these results show 

that the AA formation requires oxidative sites 

coming from the presence several redox couples 

as Mo(VI) / Mo(V), Sn(IV) / Sn(II), and  Sb(V) / 

Sb(III) and different peroxo-POM species, re-

sulting of hydrogen peroxide action on reduced 

POM. 

 

3.2.2 Cyclohexene oxidation  

The catalytic performances of POMs were 

examined in the cyclohexene oxidation to adip-

ic acid in the same operation conditions than 

those used in the cyclohexanone oxidation. The 

reaction temperature was fixed at 70 °C, tem-

perature inferior to that of boiling point (83 

°C). The results of Table 6 show that the POMs 

are less active in cyclohexene oxidation to AA 

compared to those obtained from cyclohexa-

none oxidation with yields of 11-32 % against 

30-61%. 1-P2W12Mo5, and Cs3SbP2W12Mo6 

have a similar behaviour with 30 and 32 % of 

AA yield, superior to those obtained with oth-

ers catalysts (11-23 %). 

Compared to the AA formation from cyclo-

hexanone oxidation that requires of strong oxi-

dative sites, in the case of cyclohexene oxida-

tion, its formation seems to be independent oxi-

dative character of POM. Therefore, a strong 

oxidative power not favored the cyclohexene 

oxidation to adipic acid.  

The obtained AA yields in this study are in-

ferior to those obtained by others authors with 

tungsten-based materials [46-52]. Whereas, 

they used several additives as phase transfer 

agent, surfactant-type catalysts, organic sol-

vents, ionic liquid and mineral acids, harmful 

compounds. 

 

3.2.3 Reusability of the catalyst  

The catalytic performance of used POM cat-

alyst was also evaluated in order to test 

its activity as well as its stability. The results 

are represented in Table 7. Each cycle 

Catalysts 
Adipic acid yields 

(%) 

-P2W12Mo6 21 

1-P2W12Mo5 32 

1-P2W12Mo5Sn 23 

Cs4SnP2W12Mo6 11 

Cs3SbP2W12Mo6 30 

Table 6. AA yield as function of POM composi-

tion with cyclohexene substrate  

Reaction parameters: reaction temperature: 70°C; 

reaction time: 20 h; stirring: 1000 rpm; ncatalyst/n-ene: 

13.3×10-4 and 6 mL of H2O2 (30%) added with 0.5 

mL/h flow rate using manual mode 

POM 
AA yield (%) 

1st cycle 

AA yield (%) 

2nd cycle 

-P2W12Mo6 46 0 

Cs4SnP2W12Mo6 61 0 

Cs3SbP2W12Mo6 52 0 

Table 7. AA yield (%) obtained from cyclohexa-

none oxidation with fresh and used POM 

Reaction parameters: reaction temperature: 90°C, 

stirring: 1000 rpm; ncatayst/n-one: 13.3×10-4 and 6 mL 

of H2O2 (30%) added with 0.5 mL/h flow rate using 

manual mode 
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lasts 20 h. After recovery of the adipic acid, 15 

mmol of cyclohexanone were added to reaction 

mixture and the oxidation reaction was carried 

out with the soluble used catalyst, under the 

optimized conditions. Obtained AA yields after 

the first run are 46, 61, and 52 % in the pres-

ence of -P2W12Mo6, Cs4SnP2W12Mo6, and 

Cs3SbP2W12Mo6, respectively. When the test 

was repeated a second one with the same used 

catalyst, AA was not observed. These results 

seem to suggest a total deactivation of the cata-

lyst. 

 

4. Conclusion 

In this work, the Dawson structure and pu-

rity of salt were confirmed by FT-IR and 31P 

NMR spectroscopies, respectively, for potassi-

um salts, -K6P2W18O62, -K6P2W12Mo6O62,    -

1-K10P2W12Mo5O61, 1-K8P2W12Mo5SnO61 and 

cesium mixed salts, Cs4SnP2W12Mo6O62, and 

Cs3SbP2W12Mo6O62. The UV-Vis spectroscopy 

showed that tin and antimony based hetero-

polysalts were partially reduced. The XRD re-

sults evidenced the effect of Dawson polyoxo-

metalate composition on its crystalline struc-

ture.   

The operation conditions of the cyclohexa-

none oxidation in the presence of 30 % hydro-

gen peroxide toward adipic acid were opti-

mized.  Among, the tested POMs,                       

-Cs4SnP2W12Mo6O62 and -Cs3SbP2W12Mo6O62 

exhibit the best catalytic performances with 61 

and 52 % of adipic acid yield, respectively. In 

the case of the cyclohexene oxidation,             

1-P2W12Mo5 and Cs3SbP2W12Mo6 were found 

to be the most active with 30-32 % of AA yield. 

The absence of additives as phase transfer 

agent, organic solvents and mineral acids, in 

this process makes the synthesis of adipic acid 

more environments respectful. 
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