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Abstract  

The vapor-phase catalytic dehydrogenation of para-diethyl benzene (PDEB) to para-divinyl benzene 

(PDVB) with super-heated steam as a diluent was investigated using alumina supported iron oxide cat-

alyst system. During the catalytic dehydrogenation reaction, ethyl styrene (EST) and thermal cracking 

products were observed as side products. It was found that various reaction parameters influence the 

rate of dehydrogenation reaction. However, the reaction is favored by high temperature and low reac-

tion pressure. Moreover, addition of potassium into iron-oxide catalyst acts as a promoter and thereby 

increases the efficiency of the catalyst. The conversion of PDEB and yield of PDVB also increases as 

the Water/PDEB flow ratio increases. Copyright © 2019 BCREC Group. All rights reserved 
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1. Introduction 

The para-divinylbenzene (PDVB) is an ex-

tremely versatile cross-linking agent. It has 

been used to manufacture adhesives, plastics, 

elastomers, ceramics, biological materials, coat-

ings, catalysts, membranes, pharmaceuticals, 

specialty polymers and ion exchange resins. It 

is used to cross-link polystyrene to increase sol-

vent resistance, heat distortion, impact 

strength, tensile strength, hardness and re-

tained good optical and electrical properties. A 

small amount of divinylbenzene in styrene 

polymerization makes the polymer insoluble in 

most of the solvents. Therefore, para-

Divinylbenzene (PDVB) is used in industrial 

scale for the production of polystyrene ion ex-

change resin beads [1-4]. PDVB is produced by 

the catalytic dehydrogenation of para-diethyl 

benzene (PDEB) at higher temperature in the 

presence of superheated steam over iron-based 

supported catalyst system (Scheme 1) similar to 

the catalytic dehydrogenation of Ethylbenzene 

(EB) to styrene (ST) [5-9].  

Although the PDEB catalytic dehydrogena-

tion is similar to the EB dehydrogenation in 

many ways, however, the former reaction is rel-

atively more complex [10], because of the follow-

ing reasons (Scheme 2): (a). it involves two con-

secutive dehydrogenation steps; PDEB to EST 

and finally EST to PDVB, hence, the employed 

catalyst system should be effective enough to 

successfully carry-out the second dehydrogena-
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tion step [10]; (b). higher reaction temperature 

(>550 0C), which is just below temperature 

when thermal cracking organic compounds be-

comes significant [11-12]; (c) a large amount of 

superheated steam at reaction pressure used to 

shift the equilibrium in forward direction and 

preserve the catalyst activity by avoiding for-

mation of carbonaceous deposits at such a high 

temperature [13-14]. 

The catalytic dehydrogenation product 

stream, usually contains PDVB and ethyl sty-

rene (EST) as major products and benzene, tol-

uene, vinyl toluene, ethyltoluene, xylene, sty-

rene, ethylbenzene, and naphthalene as minor 

components [15-16]. The distillation of the de-

hydrogenation product mixture affords a mix-

ture of PDVB and EST. During dehydrogena-

tion reaction, the meta- and para-isomer of 

PDVB are also obtained, the ortho-isomer rear-

ranges to naphthalene. However, the higher 

quantity of naphthalene adversely affect the 

properties of copolymer and also impart an in-

tolerable odor. Therefore, naphthalene concen-

tration needs to be minimized in the finishing 

distillation. Moreover, the purification of PDVB 

is also complicated due to its tendency to poly-

merize at low temperatures to form cross-

linked gelatinous polymers insoluble in organic 

solvents. Purification of PDVB has been report-

ed by cuprous chloride complex mixture solu-

tion of PDVB treated with Cu2Cl2 followed by 

thermal decomposition of the complex yielded 

100% PDVB [17]. 

The supported iron-based catalyst system 

was found to be most effective catalyst for de-

hydrogenation of ethyl benzene to styrene [18-

22]. However, potential of such catalyst system 

is not explored in detail dehydrogenation of 

PDEB to PDVB. Therefore, the objective of pre-

sent research work was to explore the potential 

of supported iron-based catalyst and effect of 

promoter incorporation in such supported cata-

lyst system towards dehydrogenation of PDEB 

to PDVB. In the present short communication, 

we report the synthesis of iron oxide-, alkali 

metal (potassium)-promoted alumina support-

ed catalyst system and their catalytic activity 

towards dehydrogenation of PDEB to PDVB. 

The effect of reaction parameters namely reac-

tion temperature, PDEB/steam ratio alkali pro-

moter on product selectivity is investigated in 

detail. It was demonstrated clearly that for the 

selective conversion of PDEB to PDVB, which 

involves two-steps of dehydrogenation, incorpo-

ration of potassium promoter into the iron-

oxide based catalyst was critical. It was pro-

posed that the presence of potassium oxide into 

iron-oxide based catalyst system positively en-

hanced the required amount of selective oxygen 

which are responsible to carry-out the second 

dehydrogenation step of EST to PDVB. 

 

2. Materials and Methods 

The crystallinity of catalysts was deter-

mined by “X-ray Powder Diffractometer” (D8 

ADVANCE-Bruker AXS). The diffractograms 

are recorded using Cu-Kα (1.54 Å) (40 kV / 30 

mA) radiation in the 2θ range between 30 and 

900, with a 2θ step of 0.020 for 0.75 sec. per 

point. 

 

Scheme 2. Reaction pathways and by-products of catalytic dehydrogenation reaction of PDEB to 

PDVB  

Scheme 1. The catalytic dehydrogenation of PDEB to PDVB   
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2.1 Materials and Catalyst Testing 

The precursor chemicals used for synthesis 

of catalyst and their evaluation studies are giv-

en  in Table 1. The catalytic reaction was per-

formed in a stainless steel tube reactor 

(SSTBR) with ~11.0 mm ID and a known quan-

tity of catalyst was used. The flow diagram of 

catalyst testing unit (CTU) is shown in Figure 

1. The catalyst test unit was fabricated using a 

furnace (FTS Applied Test Systems Inc.) to 

supply the heat to the reactor (maximum tem-

perature of 1100 0C), two feed pumps 

(KNAUER) to supply the flow of PDEB and wa-

ter, a reactor, pre-heater, condenser, and liq-

uid-gas separator, and all (were made by stain-

less steel) as well as a chiller unit (M/S JULA-

BO LABORATECHNIK GMBH, D-77960 Seel-

bach/Germany). 

  

2.2  Synthesis and Characterization of Iron-

oxide Supported on Alumina Catalysts 

Typically, 4% Fe2O3 per gram on Al2O3 were 

synthesized. The alumina-supported iron oxide 

catalyst used in this work was prepared by im-

pregnation method. Commercial -Al2O3 (BET 

surface area: 163 m2/g; bulk density: 0.35 

g/cm3; Cl: ≤ 0.15 wt.%; and Fe: ≤ 0.03 wt.%) 

was calcined at 600 °C for 3 h before use. The 

active component iron (Fe) was introduced by 

impregnation of the support with aqueous solu-

tion of iron nitrate; Fe(NO3)3•9H2O. Alkali met-

al, potassium (K) promoted catalyst, were pre-

pared by co-impregnation using aqueous solu-

tion of both potassium carbonate (K2CO3) and 

Fe(NO3)3•9H2O. The slurry impregnation was 

conducted for 24 h and then the catalysts were 

dried at 120 °C in air for 4h, and finally cal-

cined at 600 0C in air for 4 h. 

 

2.3 Catalyst Evaluation Studies of PDEB De-

hydrogenation Reaction and Product Analysis 

As a pretreatment step, the catalyst was 

first activated under a nitrogen flow by raising 

the furnace temperature to the desired reaction 

temperature. The catalyst was maintained at 

reaction temperature for 30 minute before in-

troducing super-heated steam, which was gen-

erated in pre-heater by supplying water. Then 

PDEB was passed through sparger by sparging 

nitrogen gas. PDEB and steam were mixed and 

Figure 1. Flow-diagram of catalyst testing unit   

Sr. No. Chemicals Suppliers  Purity (%) 

1 Iron(III) nitrate nonahydrate Sigma-Aldrich Pvt. Ltd. 99.0 

2 Potassium Carbonate Sigma-Aldrich Pvt. Ltd. 99.0 

3 Commercial Gamma-Alumina Sigma-Aldrich Pvt. Ltd. 99.0 

4 Sodium Hydroxide Sigma-Aldrich Pvt. Ltd. 99.0 

5 Para-Diethyl Benzene Reliance Industries Ltd.  99.0 

Table 1. The supplier and purity of chemicals used  
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fed to the reactor. Then the mixed feed is 

passed over iron oxide-based catalyst along 

with superheated steam at 600-700 0C at at-

mospheric pressure. The product stream first 

goes to condenser and then to a gas-liquid sepa-

rator, where liquid product mixtures are col-

lected at the bottom and gases at the top. 

A two-phase liquid product (water and or-

ganic) was obtained. The organic phase con-

tains a mixture of PDEB, EST, benzene, tolu-

ene, EB, ST, and Xylene, as well as unreacted 

PDEB (Scheme 2). Due to the proximity of boil-

ing points of these components, the separation 

was difficult. Water was removed by extraction 

and the organic phase was passed through alu-

mina pad and separated out. Finally the organ-

ic mixture was subjected to GC analysis. The 

liquid products were analyzed with a FID gas 

chromatograph of VARIAN Company using ca-

pillary column Resteck-5 of 30 meter length 

and 0.25 mm diameter. The condition of GC-

FID were injector port temperature: 200 °C; 

carrier gas (He) make-up flow: 30 mL/min; col-

umn oven temperature: 250 °C; H2 flow: 30 

mL/min; air flow: 300 mL/min, and detector 

temperature: 250 °C. The conversion (%) of 

PDEB (XPDEB), selectivity (%) (SPDVB), and yield  

(%) (YPDVB) of PDVB were calculated using 

Equations (1-3), in which nPDEB,in is mole of 

PDEB charged to reactor, nPDEB,out is mole of 

PDEB remained in outlet, nPDVB,out is mole of 

PDVB produced in outlet, and nproducts,out is total 

moles of all products produced in outlet. 

 

      (1) 

 

   

              (2) 

 

 

    (3) 

 

3. Results and Discussion 

The synthesized catalysts were character-

ized by different physiochemical characteriza-

tion techniques. The BET surface area and 

pore volume of catalyst was measured at 200 

°C after degassing for 7 h. The results are 

shown in Table 2. The surface area and pore 

volume of the catalyst is observed to decrease 

on loading iron oxide on alumina surface. The 

XRD pattern of pure alumina and impregnated 

catalyst are presented in Figure 2. The com-

parison of XRD patterns of alumina with that 

of catalyst shows that the XRD patterns of 

both alumina and catalyst are similar. Howev-

er, the peak intensities of the supported cata-

lyst have been reduced compared to the alumi-

na because the support surface was covered by 

the layers of impregnated iron-oxides. Moreo-

ver, in the XRD patterns of supported catalyst 

no peak representing iron oxide was observed. 

The possible reason may be because the iron-

oxide is highly dispersed over the support sur-

face which are out of the detection limit of 

Figure 2. The p-XRD patters of the pure Alumina and 4% Fe2O3/Al2O3 catalysts  

Sample Surface Area (m2/g) Pore Volume (cm3/g) 

Alumina powder 163 0.49 

4% Fe2O3/Al2O3 142 0.39 

Table 2. The surface area and pore volume of catalysts  

*Single point adsorption total pore volumes of pores  
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XRD. The effect of various parameters on dehy-

drogenation reaction have been studies and de-

scribed below. 

 

3.1 Effect of Reaction Temperature 

The dehydrogenation of PDEB to PDVB is 

endothermic and volume-increasing reaction, 

therefore, high temperature and low pressure 

favor for the high conversion of PDEB. As a re-

sult, reactions were carried out from 500 0C to 

550 0C, the flow rate of water and PDEB were 

90 and 20 mL/h respectively using iron-

supported alumina catalysts. However, no sig-

nificant PDEB conversion was observed under 

the employed reaction temperature. The reac-

tion temperature was further increased above 

550 0C. The observed results indicated that 

PDEB conversion increases with rise in the re-

action temperature and maximum PDEB con-

version 37 % observed at 700 0C.  

On the other hand, three major products 

EST, PDVB and lower hydrocarbons were ob-

served during the reaction temperature varia-

tion. As mentioned earlier in (Scheme 2), cata-

lytic dehydrogenation of PDEB to PDVB is a 

two-step reaction wherein PDEB is converted 

into EST followed by further dehydrogenation 

of EST to PDVB. Meanwhile, formation of low-

er hydrocarbon occurs by thermal degradation 

of these aromatic hydrocarbons at higher reac-

tion temperature. Therefore, employed catalyst 

performance and reaction conditions become 

critical in determining the desired product se-

lectivity. Under the employed reaction condi-

tions, on varying the reaction temperature 

from 610 to 700 0C, the EST yield increased 

from 8 to 22 %, thermal cracking products yield 

increased from 1 to 10 % and maximum 5 % 

PDVB yield was observed at 700 0C (Figure 3). 

The above results indicates that while using 

Fe2O3/Al2O3 catalyst system, although the 

higher reaction temperature improves the first 

dehydrogenation step PDEB conversion to EST 

but the activity of employed catalyst was not 

adequate towards the second dehydrogenation 

step of EST to PDVB which may require more 

quantity of labile surface oxygen to carry-out 

Figure 3. Effect of reaction temperature: Fe2O3/Al2O3 catalyst volume = 5.5 mL, reaction pressure = 1 

atm, PDEB flow rate = 20 mL/h, Water flow rate = 90 mL/h  

Figure 4. Effect of promoter: Catalyst volume = 5.5 mL, PDEB/water flow = 20/90 mL/hr; Reaction 

temperature = 700 0C; reaction pressure = 1 atm  
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subsequent dehydrogenation step. Therefore, it 

became inevitable to increase the concentration 

labile surface oxygen by using a suitable pro-

moter into Fe2O3/Al2O3 catalyst system. 

    

3.2 Effect of Incorporation of Potassium Pro-

moter in Fe2O3/Al2O3 Catalyst System 

To further improve that performance of 

Fe2O3/Al2O3 catalyst system particularly to-

wards second dehydrogenation step which EST 

to PDVB, the catalyst system was modified by 

using alkali promoters which will increase the 

quantity of labile surface oxygen. As shown in 

Figure 4, the PDEB conversion increases from 

36 to 42 % with promoted Fe2O3-K2O/Al2O3 cat-

alysts. The yield of PDVB increases from 5 to 7 

%, while EST yield decreases from 21 to 17 %, 

but yield of lower products was increased from 

9 to 18 %. This shows that the promoter in-

creases the performance of catalyst in terms of 

the PDEB conversion.  

The structure of alkyl aromatics play a vital 

role to decide the product yields. The yield of 

the final products mainly depends upon the in-

teraction of selective oxygen to alkyl proton 

molecules. As shown in Scheme 3, unlike the 

EB, the PDEB dehydrogenation reaction re-

quires additional selective oxygen on the cata-

lyst surface to complete the two-step dehydro-

genation reaction towards desired PDVB. 

Therefore, in order to achieve high selectivity 

towards PDVB, the catalyst system requires 

more number of selective oxygen on their sur-

face. In the case of potassium alkali promoted 

Fe2O3-K2O/Al2O3 catalyst provide additional 

surface oxygen in comparison to Fe2O3 /Al2O3 

based catalyst, which resulted enhanced PDVB 

selectivity while using former catalyst system. 

The observed results in the present article also 

support the assumption as the PDEB conver-

sion increased from 36 to 42 % along with 

PDVB yield while using Fe2O3-K2O/Al2O3 as 

catalysts which possesses additional selective 

surface oxygen in comparison to Fe2O3/Al2O3 

based catalyst system. 

 

3.3 Effect of Variation of Water Flow Rate 

The effect of water/PDEB flow ratio on the 

reaction was also investigated. During the ex-

periment PDEB flow rate (20 mL/h), was kept 

Scheme 3. In-sight of EB and PDEB dehydrogenation reactions  

Figure 5. Effect of flow rate: Fe2O3-K2O/Al2O3 catalyst volume = 5.5 mL, PDEB flow = 20 mL/h, reac-

tion temperature = 700 °C, reaction pressure = 1 atm  
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constant and the water flow rate was varied in 

order to vary the PDEB/water ratio. As shown 

in Figure 5, at 70 mL/h water flow rate, ~78 % 

of PDEB conversion was obtained, the yield of 

EST and PDVB were obtained 22 % and 12 % 

respectively, but yield of lower product ob-

tained was as high as 42 %. At the 90 mL/h wa-

ter flow rate, ~42 % of PDEB conversion was 

obtained, the yield of EST and PDVB obtained 

were 17 % and 6 % respectively, but yield of 

lower product obtained was 17 %. While at 110 

mL/h water flow rate, again ~78 % of PDEB 

conversion was obtained and the yield of EST 

and PDVB obtained were 24 % and 25 % re-

spectively and the yield of lower product ob-

tained was 30 %. Such higher PDVB yield (25 

%) observed at higher water/PDEB flow ratio, 

indicated that besides the catalyst perfor-

mance, the employed process conditions is also 

a critical parameter required to shift the equi-

librium in forward direction and large volume 

of steam helps to preserve the catalyst activity 

by avoiding formation of carbonaceous deposits 

due to thermal degradation at higher reaction 

temperature. 

 

4. Conclusion  

The efficiency of alumina supported iron-

oxide based catalysts and alkali metal 

(potassium) promoted iron-oxide catalyst was 

investigated towards dehydrogenation of PDEB 

to PDVB. It was found that the PDEB conver-

sion and yields of PDVB and EST increased sig-

nificantly by incorporation of potassium oxide 

promoter into the iron-oxide catalyst (Fe2O3-

K2O/Al2O3). Therefore, it can be concluded that 

the presence of potassium oxide enhanced cata-

lyst performance by increasing required liable 

surface oxygen which improved the perfor-

mance of catalyst system especially for second 

dehydrogenation step of EST to PDVB in com-

parison to the catalyst system without any po-

tassium oxide. 
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